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INTRODUCTION

Starting from a Landau-Ginzburg free energy functional of the form

1) = [ [E19eP/2+F9)| da

with double well potential F', where the field ¢ is an order parameter rep-
resenting local degree of solidification, one seeks an evolution equation for
# which will decrease J(¢). This view of phase transition was proposed
by Halperin, Hohenberg and Ma [HHM], Langer {L1,2] and later by Collins
and Levine [CL]. The potential F' is temperature dependent so that the rel-
ative depth of the two wells, representing pure solid and pure liquid phases,
changes with temperature. If the reduced temperature is denoted by u
then the usual choice for F, which ensures solid is the preferred state for
low temperatures and liquid for high temperatures, is given by

F(¢) = %(qs? _1Y - 2u.

Here we have taken u = 0 to be the critical temperature for planar inter-
faces. At u =0, ¢ = —1 and ¢ = +1 give the pure solid and liquid phases,
respectively. (See Fig. 1)
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w70 Figure 1

For the model to account for the latent heat released by freezing and
subsequent conduction, an evolution equation for ¢ which decreases J for
fixed temperature must be coupled with an evolution equation for u. The

system devised by those mentioned previously is known as the phase-field
equations:
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¢ = NP + ¢ — ¢ + 2u
(PF){(qugqs)t — KAu

where 7 is a relaxation time, £ is a length scale, [ is latent heat and k is
thermal diffusivity. A good description of the derivation of (PF) together
with more sophisticated models which allow temperature dependent latent
heat, etc., can be found in Penrose and Fife [PF]| (see also [F]). They also
show that these systems are themodynamically consistent in the sense that
entropy increases along trajectories of (¢, u).

Apart from the theoretical foundations being sound, computer simula-
tions with the phase-field equations (see [K] for example) showing instability
of moving planar interfaces and dendrite formation closely resemble physical
experiments. Furthermore, recent analytical and formal asymptotic studies
(see [AB], [BF], [C1-4], [CF], [F] and [FC] for example) have predicted ob-
served phenomena such as the Gibbs-Thompson relation, the spontaneous
generation of phase interfaces and subsequent coarsening. A rigorous anal-
ysis is far from complete, however. It is our intent to demonstrate that in
one and two space dimensions, after a short time, the dynamics of (PF) are
essentially governed by a finite system of ODEs. Granted, extremely com-
plex behavior can be generated by finite dimensional dynamical systems
but we like to think that this nevertheless represents a significant simpli-
fication for a system of PDEs. When we say that the dynamics of (PF),
together with appropriate boundary conditions, are essentially governed by
a finite dimensional dynamical system, we are referring to the existence of
an inertial manifold (or set). This is a finite dimensional manifold (or set)
within the infinite dimensional state space which attracts all solutions to
(PF) at an exponential rate (see [FST], [T]).

We wish to point out that a fundamental difficulty in dealing with the
system (PF) is that it does not possess a maximum principle and only
crude comparison results can be obtained. Furthermore, in its present
form regardless of which boundary conditions are imposed, the linearized
operator is not self-adjoint and so does not fit the framework needed to
produce inertial manifolds.

The paper is organized as follows: In section 1 we consider the Dirichlet
problem for (PF) in a bounded domain in B” for n < 3. We show that
positive semi-orbits of (¢, u) are compact in H' x L? and that the flow is



smoothing. Furthermore, there exists a compact global attractor in H! x L?

In section 2, motivated by the results in [BF],we change variables in
(PF) transforming it into a system with self-adjoint linear part. We use a
different change of variables from that given in [BF] allowing more flexibility
in our choice of boundary conditions. We proceed then to demonstrate
the existence of an inertial manifold in the case n = 1 and n = 2 with
Q =[0,L] x [0,L], imposing Dirichlet boundary conditions on u and
either Dirichlet or Neumann boundary conditions on ¢

In section 3 we show that for a smoothly bounded domain Q C B*, n <
3, (PF) has an inertial set, that is, a positively invariant set of finite fractal
dimension which attracts all solutions at an exponential rate. The latter
result relies on recent work by Eden, Foias, Nicolaenko and Temam (see
[EFNT 1,2]).

Finally, we show that the previous results hold when u and ¢ satisfy Neu-
mann boundary conditions provided one restricts attention to fixed energy
surfaces [o(u + +¢)dx = constant.

These energy surfaces are invariant under (PF') when zero flux bound-
ary con ditions are imposed. This of course means that there is not a
global attractor in the usual sense but the state space is foliated with in-
variant affine hyperplanes, each of which contains a compact attractor and
an inertial manifold (or set).



1 Absorbing Set and Global Attractor

In this section we are going to prove that for the following problem of the
phase field equations

Th =N+ ¢ — ¢ +2u (1.1)

ut+é¢t =K Au (1.2)

ulr = ur(z), ¢lr = ¢r(z) (1.3)

u/t=0 = uo(z), @/1=0 = ¢o(z) (1.4)

for given functions ur(z) and ¢ér(z) and for all ue(z),do(z) in certain
Sobolev spaces there exists an absorbing set and a global attractor. We
first prove the following global existence and uniqueness results.

Theorem 1.1 LetQ C B*(n < 3) be a bounded domain with smooth bound-
ary T' and let ur(z) and ¢r(z) be given smooth functions of x on T'. Sup-
pose uo(z) € L*(Q), ¢o(z) € H'(Q) satisfying the compatibility condition
Yo(¢o) = ¢r. Then problem (1.1) -(1.4) admits a unique global solution,
¢ € C(R*; H'),u € C(R*,L?) for any T > 0, ¢, € L*([0,T),L*), ¢ €
L*([0,T], H?*). Moreover, u and ¢ € C*((0,00), C°(R)) and the orbit
t € [e,400) = (@(+,1),u(-,t)) is compact in H* x L* for any e > 0.

Remark The restriction n < 3 is not necessary and for general n the solution
(6(-,1),u(-,t)) € (H' N L*) x L. For existence and uniqueness of solutions,
we only need the boundary data ur and ¢r to be in the trace class H%(I‘).
The corresponding regularity of the solution is as expected.

Proof The global existence and uniqueness of a smooth solution has been

proved in [EZ] for (¢o,uo) € H*() x H*(Q). Moreover,

2 1 1 4 t t4K
2 4 2 2 2 2
[ IVF + 56" — 58+ Sutde + 7 [ llgfat+ [ = IVulfat (15)



£? , 1., 1, 4,
:/9(3|V¢0| +Z¢0— §¢o+7u0)dx,Vt >0

Then, the usual compactness argument yields the global existence and
uniqueness for (¢o,uo) € H! x L*. Moreover, the identity (1.5) still holds.
To prove the compactness of the orbit ¢t € [e,4+00) — (¢(-, 1), u(-,t)) we
need the following lemma.

Lemma 1.2 Suppose f € L*([0,T); L*),uo € L*(). Then the following

problem

w —Au = f in Qx(0,T) (1.6)
ulp = 0 on T x(0,T) (1.7)
uUli=o = uo(z) in Q (1.8)

admits a unique solution v € C([0,T]; L*) N L*([0,T]; Hy). Moreover, u €
C((0,T); HY) N I*([e, T}, H), v, € LA([e, T); L) for any ¢ > 0,

D) t
()l < 2ol +2 [ 17Pde vt >0 (19)
Furthermore, if fi € L*([0,T),L*), then v, € C([0,T);H}), and u €

c(0,7); H?)
lue®lfn < ol + 5 1AW +4 [ IfiPdLYE> 0 (1.10)

We postpone the proof of Lemma 1.2.
Once we have Lemma, 1.2, it follows from equation (1.2) that v € C((0,T); H')
and

lu@lm < Ce ViteleT] (1.11)

It turns out from (1.2) and the regularity results (see Theorem II. 3.3 in
[T]) that we have

¢, € L*([e, T); L?) for e>0 (1.12)
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Thus, equation (1.1) can be viewed as

Th =E NG+ f (1.13)
with

fe L’ (T L), fieL*([e,T];L%)

Applying Lemma 1.2 again, we conclude

¢ € C([e, T),H"), ¢ € C(le,T); H*) (1.14)

o)z < Ce Vi € [26,T). (1.15)

By the usual bootstrap argument, we get the C*(Q x (0, 4+00)) regularity
results. The compactness of the orbit ¢t € (¢,+00) — (¢(-,t),u(-,t)) in
H*' x L? follows from (1.11), (1.15) and the uniform a priori estimates given
in the paper [EZ]. Thus the proof of Theorem 1.1 is completed. We now
give the proof of Lemma 1.2.

Proof of Lemma 1.2 The existence and uniqueness of solution in the
space uv € C([0,T],L*) N L*([0,T); Hy) is well known (for instance, see
Theorem II. 3.1 in [T]. See also [H| and [P]). Therefore, we only need to
prove (1.9) and (1.10). Similar estimates can be found in [H] but for later
use we include the details of the proof.

Let u; be the solution to the problem

u—ADu=f (1.16)
ulr =0 (1.17)
ult:o =0 (1.18)

and u, be the solution to the problem

u —Au =20 (1.19)



ull' =0 (1.20)

wfi=0 = uo() (1.21)

By uniqueness we have

U =uU + U2 (122)

Applying the regularity result to u, (see Theorem II. 3.3 in [T]) we have
u; € C([0,T); Hy) N L*([0,T), H?), w, € L*([0, T}; L?). Moreover,

o < [ 1fd, iz 0 (1.23)

Since —A is a symmetric operator with the domain D(A) = H?> N H} dense
in L*(Q) by a well known result in the semigroup theory [P] we have

uy € CU((0,00); D(A¥)),  Vj, k>0 (1.24)
Multiplying equation (1.4) by u and u; respectively and integrating yields
S @I + IVl =0 V>0 (1.25)
2 dt " = ‘
L4 o =0 Vt>0 1.26
VP =0 Ve (1.26)
Multiplying (1.26) by ¢t and then adding to (1.25) yields
1 d , , 1d. ., 1. _
- - = z — 2
S I 20 W I Ay R A I G
Integrating with respect to ¢ gives
tIVu®* + )] < [Juol? (1.28)
2 _ 2 1 2 :
IVuI” = ()l < S luo (1.29)

Adding (1.29) with (1.23) results in (1.9). Similarly, since (w1 ): satifies
u, — Au = f (1.30)
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ulr =0 (1.31)

Uli=0 = f(z,0) (1.32)
we have
@Ol < SUFOI +2 [ 1fide (133)
For u, we have
2 1 NE
[1(u2)e(®) |7 < gll(uz)t(?ll (1.34)

Noticing that ||(u2)(¢)||* is decreasing with respect to t, we have by inte-
grating (1.27) with respect to ¢

I+ 5 )P < ol (135)
)P < 5 ol (1.36)

Using (1.34), (1.36), we find
)l < I < luol? (137)

Thus, (1.10) follows from (1.34), (1.36).

In what follows, we prove the existence of an absorbing set. We first
use translation of v and ¢ to make the boundary condition homogeneous.
Let @, ¢ be harmonic functions satisfying on the boundary I’

ale =ur(z),  gIr = ¢r(z) (1.38)

We introduce new unknown functions

v=1u-—1u, Y=¢—¢ (1.39)
Then ¥ and v satisfy



T =AY+ (P + ) — (¥ + ¢ +2(v+0) (1.40)
vt+—;— v, =K Av (1.41)

YT = vl = 0 (1.42)

Ylizo = Yo(z) = do(z) — §(z), Vli=o = uo(z) — u(z) =vo(z)  (1.43)

To prove the existence of an absorbing set for ¢ and u, we only need to
prove the existence of absorbing set for 1 and v.

Multiplying (1.40) by ¢ and (1.41) by Jv, adding and integrating with
respect to x yields

&L ITP 4 506+~ 20+ 3 + 30 — 29

+7 || =0 (1.44)

Let

2

1 _
V(t) =/Q(%!W)|2+Z(¢+¢) ——(¢+¢) + v —2%pa)dz  (1.45)
It is easy to see from the expression for V(t) that the boundedness of

V(t) from above implies the boundedness of ||9|3: + ||v||*. Therefore, we
only need to prove that hmsu” Vit)<C

Multiplying (1.40) by % and integrating with respect to z yields

JLEIVHE + (8 +8)' = 36+ 8P = (b + 9 + §( + 6)

—2(¢p + gZ)v +2¢v — 2(¢p + q_S)ﬂ + 2(}’_)12 + 7Y (Y + q_S) — TP ]dz =0 (1.46)

By the Young inequality ab < “p + , we easily get from (1.46)
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LIE V6P + 50+ 8 — (043 —alde < 27l + <ol +C. (147)

With e being an arbitrary constant and €, > 0 a constant depending only
on €, ¢, u.
By the Poincare inequality, we have

lv]* < ClIVol? (1.48)
with C' > 0 depending only on the domain 2. Dividing (1.47) by 2 and

choosing € = %1‘;, then adding with (1.44) yields

% +V()<C (1.49)

with C’ > 0 depending only on ¢, . It follows from (1.49) that

V(t) < e‘tV(O) + (1.50)
Notice that

2 2 ]' 4 1 2 2 2 —
V) = [[5IVbl + 58— 58+ T — 2omde  (151)

is bounded if ||%o]|%: + ||vo||? is bounded. The inequality (1.50) implies the
existence of an absorbing set.
We now have

Theorem 1.2 Suppose L C R" is a bounded domain with smooth boundary
T. Suppose ur(a), ¢r(z) are given smooth functions. Then the semigroup
S(t) associated with the system (1.1) - (1.4) possesses a mazimal attractor
A which is bounded in H*(2) x H*(Q), compact and connected in H'(Q) x
L(Q), and attracts the bounded sets of H'(2) x L*(Q2)

Proof The semigroup S(t) associated with the system (1.1) - (1.4) is
defined as follows

S(T): (do,u0) € H' x L* — ($(-,1), (-, 1)) (1.52)

11



Since ¢, € LER*,L*(Q)),uv € L*[0,T); H(Q)) for any T > 0 as
proved in Theorem 1.1, then f = ¢ — ¢ + 2u € L*([0,T); L?),g = %qﬁt €
L*([0,T); L?) immediately imply that S(¢) is continuous in H'(Q) x L*(Q2)
for t > 0. Theorem 1.1 also claims that for any € > 0 and any bounded set
B C H'x L*,U{S(t)B : t > €} is relatively compact in H' x L?. The exis-
tence of an absorbing set has been proved in the above. Thus the conclusion
of this theorem follows from Theorem 1.1.1 in [T].

Remark If ¢ satisfies homogeneous Neumann instead of Dirichlet boundary
conditions, the previous proofs are easily modified to again deduce the
existence of a compact attractor.

2 Inertial Manifolds

In this section we will discuss the inertial manifold of semigroup S(¢) asso-
ciated with the system (1.40) - (1.43) instead of (1.1) - (1.4) in one and two
space dimension and in the next section we will also discuss the existence
of an inertial set, a notion recently introduced and studies by Eden, Foias,
Nicolaenko and Temam (see [EFNT 1,2] and [EMN]).

We first discuss the system (1.40) - (1.43) in one space dimension. Since
the phase field equations (1.40) - (1.41) is not a diagonal parabolic system,
if we put it into the abstract framework of first order evolution equations

d
E%+Au+F(u)=O (2.1)
by subtracting (1.41) from (1.40) times —3;, then the operator is not selfad-

joint. But the existing theory for inertial manifolds (see [T]) requires that
A be a selfadjoint operator. In what follows we use the technique similar
to that in [BF] to reduce the problem into one with A being selfadjoint.
Dividing (1.40) by 7 we obtain

2
po=S DY h - rd r bl (22)

Multiplying (2.2) by —% and then adding to (1.41) yields

T



vt:KAv—g ¢——[(¢+¢) (¥ + ¢)° + 2v + 24] (2.3)

since —A defined on H2 N Hy C L*() is a positive definite operator, we
can write —A as

~A = A (2.4)

where A is selfadjoint positive definite operator. It can be given explicity

by

Au= § M(uu)un  Vu€ D(A) = H) (2.5)

n=1
with u, being normalized eigenfunctions of —A associated with eigenvalues
M. and (u,u,) being the inner product in L% Also,

Ay = %O /\;%(u,un)un (2.6)
Let

a=—— e=aA'v (2.7)
Then (2.2) becomes

o = A¢+J5A e+ fi(4) (2.8)

ﬂlf-‘

fi=—l+¢) - (¥ +¢)° +2u] (2.9)
Acting on equation (2.3) with aA™! yields

\fE

e = K Aet Y2 A + fr() (2.10)

with
fi) = LA+ 9) - 0+ 7 420 (2.11)
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Then the system (2.8), (2.10) can be written as

% + AU = R(U) (2.12)

with

Here dom (A) = H>N H} x H* N H;

It is easy to see from the expression for R that the system (1.40) - (1.43)
is equivalent to the system (2.12) - (2.14) in the sense that if (¥,u) is a
solution to the system (1.40) - (1.43), then (%, ¢) is a solution to (2.12) -
(2.14) and vice versa.

In what follows, we will study the dynamical system (2.12) - (2.14) in-
stead of the system (1.40) - (1.43). Theorem 1.3 shows, by the equivalence
of two systems mentioned above, that the semigroup operator S(t) associ-
ated with the system (2.12) - (2.14) possesses a global (maximal) attractor
which is bounded in H? x H?, compact and connected in Hy x Hj, and
attracts the bounded sets of Hj(2) x Hi(2). Consider it as an operator
from H?2 N H} x H* N H} into L? x L?. Then it is easy to see that A is
selfadjoint. Also

(AU, U) = (£ A, ) — 228 (A, e) + (K Ae+ Le,e)
= €5 ()P — 2 50 A (), ) (e, ) (2.15)
+£ § |(ea“n)l2 + I io: /\n|(es“n)|2

S { K2, Aal(e,un) if e#0
=1 €52, A, un)? if e=0

Thus A is a positive definite operator.

14



Theorem 2.1 Letn = 1,(2 = (0,L)). Then system (2.12) - (2.14) pos-
sesses an inertial manifold of the form given by Theorem VIII. 8.2 in ([T]
p. 486)in D (A%) = Hy x Hy. This implies that the system (1.40) - (1.43)

admits an inertial manifold in H} x L2.

Proof It reamins to prove that R is a bounded mapping from D(.A4%)
into D(A*)(a = 1,7 = 04n[T]) and R is locally Lipschitz, and also to prove
that the spectral gap condition is satisfied.

For 1 € H},n = 1, by Sobolev’s imbedding theorem, fi, f; are bounded
mappings from Hy — Hj. It is easy to see that f; is locally Lipschitz from
H} to H}. To prove f; is also locally Lipschitz, since A™! is a bounded
operator from L? to H}, we only need to consider the term A7![(v) + ¢)°].
By (2.6) we have

AT (%1 + )1 = A7 (%2 + @)l = |I(%1 +6)° = (42 + 6)°||2 (2.16)

SCOmlly =2l if Wl <M, [[¢]l;m <M
Ch being a constant depending on M.

The spectral gap condition is the condition that the spectrum of A lies
outside a sufficiently large interval of the positive real axis. We shall show
that there are arbitrarily large gaps in the spectrum of A

For = (0, L), we look for the eigenvalue A and the associated eigenfunction
such that (¢,e) € H*N H} x H* N Hy

€A ey (g ¥ |
(5 Eal) e

We rewrite the equations separately:

P,
-

_VE

T

Ae = Xy (2.18)

T

!
Ay — K Ae+ —e = e (2.19)
T

15



Acting with A on (2.18), using (2.4), replacing Ay by the one in (2.19) we
get

k¢ o A K7 XNro VI
SNt (Gt N Bt (=N =0 (2.20)

The normalized eigenfunctions, which are also the eigenfunctions of —A on

H?N H}, are
[2 .
€n = Esmn—zx, n=12---,. (2.21)

The corresponding eigenvlues A = An satisfy

PEARY/NE (AT + £2 K¢
VA Vg i
where {),} are the eigenvalues of —A on H?N H{, which in this case are
given by A, = (%), n=1,2,---.
Thus, the eigenvalues {:\"}Zo:l are given by two forms:

Mn + =0 (2.22)

Moo= ah+b Hyf(ad + 52— 22

and (2.23)
Ay =ada b —yf(adn + D) = A2
where a = K%i, b=L and c= \/gﬁ Note that a® > c2.

We find

and (2.24)
di == A = (A — An)la — ay

where a, — Va? - ¢? as n — oo.

It follows that df > d, — oo since App1 — Ap @as n — o0

For fixed N, we define the gap at Ay to be the maximum of (Ayp) and
(v — Ay) where p(v) is the largest (smallest) eigenvalue of A less (greater)
than A\y. Let K = K(N) be defined by

{ djz,— = /\T-‘l-{-l - /\: = (/\n-l-l - /\n)[a + an]

+ - +
Ak SAN < Agxq

16



Then

either =2 or p=X\y_;

and either v =Xk, or v=\y,

It follows that the gap at Ay is at least

1
dy = min {d;,,d;,_l, §d,+\,} . (2.25)

Clearly K = K(N) — oo and hence dy — oo as N — oo. Thus, the
spectral gap conditions (3.7) and (3.51) in [T] p423 and p435 are satisfied
and the proof of the Theorem is complete.

For n = 2 and Q = [0, L]?, using a result in the number theory (see [R])
we have

Theorem 2.2 Let n = 2,(2 = [0, L]*). Then system (2.12) - (2.14) pos-
sesses an nertial manifold of the form given by Theorem VIII. 3.2 in [T]
in D(A) = H*NH} x H*NH}. This implies that the system (1.40) - (1.48)

admits an inertial manifold in H> N H} x H}.

Proof By Sobolev’s imbedding theorem, H*(n = 2) is continuously imbed-
ded in C(Q). Therefore, R is a bounded mapping from D(A) into D(A)(a =
1, ¥ = 0). The same argument as in Theorem 2.1 yields that R is also lo-
cally Lipschitz. The spectrum is still given by (2.23) but A, is now the n
eigenvalue of —A with domain

H*([0,L]*) N Hy ([0, L)
These eigenvalues have the form
T
T
and a result in number theory (see [R]) then implies the existence of g > 0
such that

(2 + j*) with i and j integers, (2.26)

Ang1 — An > Blogn asn — oo (2.27)
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As before, the spectral gap condition is satisfied and so the proof is
complete.
Remark It is clear that this approach will fail for 0 a cube in B® since the
set of integers expressible as the sum of three squares has uniformly boun
ded gaps.

Remark If we have the Neumann boundary condition for ¢ and the Dirichlet
boundary condition for u:

0
wp = ure),  Soh=0 13y

instead of both Dirichlet boundary conditions (1.3), then the theorems on
the existence of absorbing set, the global attractor and the inertial manifold
still hold with a slight modification of the proof: (2.4) is replaced by

— A +I = A (2.28)
and D(A) = H'(Q); the operator A in (2.13) is replaced by

—§;A+I _YE& 4
A= Mty K A4

3 Inertial Set

We can see from the above that the gap condition imposed severe restric-
tions on the domain in order to obtain the existence of an inertial manifold.
Recently, Eden, Foias, Nicolaenko and Temam (see [EFNT1] and [EFNT2])
introduced the notion of inertial set which is defined to be a set of finite
fractal dimension that attracts all solutions at an exponential rate. More
precisely, let H be a separable Hilbert space and B be a compact subset of
H. Let {S(t)},5¢ be a nonlinear continuous semi-group that leaves the set
B invariant. Let S be the global attractor for {S()},5, on B. Let us now
recall the definition of inertial set (see [EMN], [EFNTT, 2]).

Definition 3.1 A set M is called an inertial set for ({S(¢)i=0,B}) if (i)
§ C M C B (ii) S¢)M C M for every t > 0 (iii) for every up €
B, disty(S(t)uo, M) < Cie ?t for all t > 0, where C; and C; are inde-
pendent of ug, and (iv) M has finite fractal dimension, d;(M).
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Definition 3.2 A continuous semigroup {S(t)},5 is said to satisfy the squeez-
ing property on B if there exists t, > 0 such that S, = S(t,) satisfies: there
exists an orthogonal projection P of rank Ny such that if for every v and v

in B
|P(Seu — Sev)|lr < [[(1 — P)(Sau — Sev)ln (3.1)

then

1
|Seu — Sev||g < §||u — vl (3.2)

In [EFNT1] the following result has been established.

Theorem 3.1 ([EFNT1]) If ({S(t)},5o B) satisfies the squeezing property
on B and if S, = S(t.) is Lipschitz on B with Lipschitz constant L then
there ezists an inertial set M for ({S(t)},5, B) such that

dy(M) < Nomax {1, In(16L + 1)/In2} (3.3)

and
disty (S(t)uo, M) < Crexp {(—Cy/t:)t} (8.4)

In what follows, we are going to prove that for the system (1.1) - (1.4)
((1.1), (1.2), (1.3), (1.4), respectively) and for general smooth domain
2 (n < 3) there exists an inertial set.

As in section 2, instead of system (1.1) - (1.4), we will consider system
(2.12) - (2.14). We notice that the squeezing property implies the Lipschitz
condition on the map (%,ug) € [0,t,] x B — S(t)uo in the norm of H.

We take the product space L? x L? as H. We also take the product
space H*NHy x H*NH} as E

Theorem 3.2 Let @ C R*(n < 3) be a bounded domain with smooth bound-
ary T. Let Uy = (vpo,e0) € H* N H} x H* N Hy. The system (2.12) - (2.14)
admits a global solution (¢,e) € C(RY, H*NHy x H*NHH)NC (R, L2 x L?).
Moreover, there exists an absorbing set B in E = H*N Hy x H>* N H}.
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Proof Since n < 3, by Sobolev’s imbedding theorem R is Locally Lipschitz
on E. Thus, the local existence follows from the standard result from
semigroup theory. To prove the global existence it suffices to have uniform
a priori E - norm estimates for (¢, ¢), i.e. H*N Hy x H} norm for (v, v) for
the system (1.40) - (1.43) which have already been proved in [EZ]. Thus
the global existence and uniqueness follows. To prove the existence of an
absorbing set B it suffices to prove that there exists an absorbing set of
(¢,v) in H* N Hy x Hg for the system (1.40) - (1.43). Multiplying (1.41)
by v; and integrating with respect to z yields

K

BNl + ol = 4 [ e < S+ St 35)
K
LIl 4 2 ol < e (3.6)

Differentiating (1.40) with respect to ¢, then multiplying it by v¥; and inte-
grating with respect to z, we obtain

SR+ ENTHI? +3 [ (6 + 8V 9de = |3l +2 [ vz (3.7

2 dt
1
< 2ol + 3l
Adding (3.7) and (3.6) yields
re Vol + 2 |l¢ I*+ Vel < (3 + )lld) I” (3.8)
2 dt 2dt"" ’ ' '

Multiplying (3.8) by a small positive number § > 0 spec1ﬁed later, and
adding it to (1.44) yields

d 5]\ 4K

SV + —ll¢t|| I+ 7l + Vel

HOE | Vell* <63+ )Ilibzll2 (3.9)

Applying Young’s inequality and Poincare’s 1nequa11ty yields
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2K
l

r
V(t) < <l + == Vol + C
We choose

T

6:—12
43+ %)

and add (3.10) to (3.9) to obtain

d SK 5  OT 9y T , 2K 9
SV + SVl + )+ ZbdP + 19l
+V(@#)<C
Let
. 4 1
C() = 77’1'171(1,6—1,5)

It follows from (3.12) that

0K
2

0K
2

SO+ ol + L+ 6| v + K vl

ot
| <o

which results in

K 6t
V(t) + 7|IVU||2 + 3“%“2 <

(V(O) + 25Vl + T (O)F) - e +C.

Since

I (0)* < €

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

with C being a positive constant depending on ||tho||g2, and ||volzz, (3.15)
implies that |[v(¢)||g: and ||9(2)||r, ||3¢]|2 is absorbed in a bounded set.
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By equation (1.40) we obtain the existence of an absorbing set for (¢, v) in
H?N H} x Hj. This gives the existence of an absorbing set B for (3, ¢) in
E.

To apply Theorem 3.1, we have to verify that ({S(t)},5,,B) satisfies
the squeezing property.
Let U and U be two solutions of (2.12) - (2.14) and

V=U-U (3.17)
Then V satisfies
dv _ ~
d—t-I-AV:R(U)—R(U) (3.18)
V(0) ="V, (3.19)

The selfadjoint positive definite operator A is given by (2.13) which has
relabelled eigenvalues A" (n = 1, ) satisfying

A 4o (n— 400) (3.20)

Let V., be the corresponding eigenvector functions, i.e., AV, = PN
Let Hy = span{V;,---,Vn} and Py : H — Hp, the orthogonal projection
onto Hy, and Qn = I — Py.

Let
W= QnV (3.21)
Then we have by (3.18) - (3.19)
dw ,
= + AW = Qn(R(U) — R(U)) (3.22)

w(0) = Qv
Let V = H! x H}, then multiplying (3.22) by W7, and integrating with

respect to x yields

d _
S WIS + WU < W || @u(RE) — ROl (3.23)

8]
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< vy W Il RCO) = @)l

When Uy, Uy € B, we have by Theorem 3.2

IWHIe < C, [UMIE <C, Vt20 (3:24)

with C' > 0 a constant depending on B. From the expression for R and
Sobolev’s imbedding theorem, we have

IRU) - RU)|lv < CIU - Tlv (3.25)
with €' > 0 a constant depending only on B. From (3.23) we have that
1d AW+ C?

g Wl + X VIWIG < == Wi + g IV - Ul (3:26)

Applying Gronwall’s inequality to (3.26) yields

2 o~ 2 ¢ -
W@l < e IW Ol + vy [, IV - Ol (327
On the other hand, from (3.18) it follows that

1d - _ _ _
SNV + IV < 1V | ROU) — RO (3.28)

<G|V

Applying Gronwall’s inequality to (3.28) yields

[ Vi ar < s vl (3.29)

Inserting (3.29) into (3.27), we obtain

) 1 C? _
W@l < e IW Ol + 5 vy VO (3.30)
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AN+ 1 C? N
< (e fot §WGZC NV Ol

from which the aqueezing property follows.
Indeed, we choose

_ 6in2

te = W (3.31)
and we choose Ny such that when N > N,
C
ANF) > = Ot 3.3
> 8\/§e (3.32)
Thus if
1 Pr V ()l < 11Qwo V (E) i (3.33)
then
V(% < 201QnV (E)|IH (3.34)
Also, from (3.30)
o 2 15 2
V(I < o7 IVO)l[a (3.35)
that is
_ 1 .
IV ()l < gHV(O)HH (3.36)

which implies the squeezing property.
Applying Theorem 3.1, we have proved

Theorem 3.3 Let Q) C B*(n < 3) be a bounded domain with smooth bound-
ary I'. Then the system (2.12) - (2.14) (accordingly, the system (1.40) -
(1.43)) has an inertial set M in H*NHj x H*NH} (accordingly, an inertial
set M in H* N H} x Hy ). Moreover, (3.3), (3.4) hold, where t. and Ny are
given by (3.31), (3.32).

Remark The same conclusion holds for the system with the Neumann
boundary condition for ¥ and the Dirichlet boundary condition for w.
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4.  The Energy Conserving System.

Here we consider the case where temperature and phase satisfy homogeneous Neumann
boundary conditions. There is an important difference between this situation and that
discussed previously. In this case there is no bounded absorbing set for initial data varying
throughout the whole space. This is because equation (1.2) and the boundary conditions
imply

/Q(u + §¢)dm = /Q(uo + g%)d:v fort > 0. (4.1)

This is not as problematic as it appears however. The energy conservation property
(4.1) just means that all evolution takes place in an affine hyperplane and so to understand
the dynamics we can consider each of these invariant hyperplanes separately.

We replace (1.3) by

Ou 0¢ .
—8—5—0,51;—00n1" (13)
We change variables by writing
14
’U:u+§¢—00 (42)
where ) 0

= — —¢o)d 4.3
Co |Q|/Q(Uo+2¢0) z (4.3)

and work in L? x L2 where

ﬁ:{veL2:/v=0}.
Q

Spaces H = H*NIZ and H¥ N Ly will also be used, where the subscript N refers to
the weak homogeneous Neumann boundary condition being satisfied. Note that we have

a Poincaré inequality for v € F}v
Also, Equation (1.44) becomes

d 1 1, 2 ¢ 2
& Jq <€2|V¢l2+z¢4—5¢ t7 <”—§¢+CO> ) dx

4K 14
el + S (0 50) I =0 (40

In the same way as before, this yields an absorbing set in H' x L? for any fixed cq.
Similarly, the proof of Theorem 3.2 may be modified to obtain the existence of an absorbing

set in H 12\, X FI for fixed ¢p. The usual argument demonstrates the existence, for fixed ¢y,

of a global attractor which is compact in H' X I (see Theorem 1.3).
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To obtain inertial manifolds (or sets) for the system

The = AP+ ¢ — ¢ + 20 — £ + 2¢,

vy = KAv — I—géAqS,

we again change variables to produce a self-adjoint linear part. Let
A? = — A with domain F?v in L2.
Then A is positive definite on its domain, H'. Let

b= ande = bA 1.

2
VK¢
then the system (4.5), (4.6) becomes

T = E2Ap + VKLAe + f($)

er = KAe + VKA
where f(¢) = (1 —£€)¢ — ¢ + 2¢o.

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

System (4.9)-(4.10) withinitial data (¢o,bA ' vo) is equivalent to the original system

in H% x Hy, as can be seen by existence and uniqueness of solutions. Furthermore, this
modified system is in a form such that inertial manifolds and inertial sets can be shown to

., . . -k .
exist in the appropriate Hf; x H j space, depending on n < 3.

Allowing ¢y to vary in R certainly changes the set of equilibria for (PF) with (1.3)”
and hence the dynamics. However, state space should have a global, finite dimensional,
attracting manifold for (u, ¢) foliated with the invariant affine planes. Locally, this is the
case. The question is how the inertial manifolds may change when ¢, passes through a

critical value.
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