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Abstract. The existence of an inertial manifold is established for the nonlinear sys-
tem of equations describing the motion of a bipolar incompressible viscous fluid. In this
paper we consider only the case of a spatially periodic velocity field. Existence of an
inertial manifold for the model complements earlier work on the existence of compact
global attractors for bipolar viscous fluids and serves to further highlight the differences
between the bipolar model and the usual model based on the linear Stokes constitutive
relation.

1. Introduction: Bipolar viscous fluids. The theory of multipolar materials
is due to Green and Rivlin [1], [2], who considered the constitutive equations for an
elastic, nonviscous material; a model for a bipolar fluid may be found in the paper of
Bleustein and Green [3]. Necas and Silhavy [4] developed a thermodynamic theory of
constitutive equations for multipolar viscous fluids within the framework of the theory
of Green and Rivlin [1], [2]; the general constitutive theory developed in [4] is consistent
with the principle of material-frame indifference and the second law of thermodynamics as
expressed by the Clausius-Duhem inequality. In [5], Bellout, Bloom, and Necas expanded
upon some of the consequences of the multipolar fluid model with particular emphasis
on the nonlinear, isothermal, incompressible bipolar case.

The Navier-Stokes model of fluid flow is based upon the Stokes hypothesis, which re-
stricts the relation between the stress tensor and the velocity. By relaxing the constraints
of the Stokes hypothesis, the mathematical theory of multipolar viscous fluids generalizes
the usual Stokes model in three important respects: it allows for nonlinear constitutive
relations between the viscous part of the stress tensor and velocity gradients, it allows
for a dependence of the viscous stress on velocity gradients of order two or higher, and
it introduces constitutive relations for higher-order stress tensors (moments of stress),
which must be present in the balance of energy equation as soon as higher-order velocity
gradients are admitted into the theory.
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The simplest expression for the viscous stress tv . which is consistent with the primitive
conceptual idea of a viscous fluid, i.e., that tv be zero when there is no relative motion
between neighboring portions of the fluid, is one of the form (see, e.g., Shinbrot [6])

tv — f(Vv, VVv,...),V ' (1.1)
f (0,0 0) = 0,

where v is the velocity vector. The Stokes hypothesis consists of the simplifying as-
sumption that, in (1.1), f depends linearly on the first velocity gradient Vv and is
independent of all higher-order velocity gradients. The possible utility of considering
more general relations, which allow for a nonlinear velocity-dependent viscosity, has
been clearly indicated in Ruelle [7] and various theories of viscous fluid response which
allow for nonlinearity in the constitutive theory, as well as the presence of higher-order
velocity gradients, have been considered, e.g., in Ladyzhenskaya [8], [9], Kaniel [10], and
Du and Gunzburger [11]; perturbations of the Navier-Stokes equations which incorporate
higher-order velocity gradients may be found, e.g., in the papers of Lions [12] and Ou
and Sritharan [13], [14], and the references cited therein, as well as in the book [15] by
Temam.

The constitutive relations for isothermal, nonlinear, incompressible bipolar viscous
fluid which were introduced in [5] have the form

Tij = -pSij + 2/i0(e + |e|-)~a,2eij - 2/iiAeijt (1.2)

Tijk = 2^1^-, (1.3)

with the Tij being the (components of the) stress tensor, Tijk the first multipolar stress
tensor, and p the pressure. In (1.2), (1.3) the e^- are the components of the rate of
deformation tensor, i.e.

(14>

while e, /.to, > 0 and a, 0 < a < 1, are constitutive parameters. Besides the presence of
the multipolar stress tensor rl3k (which affects only higher-order boundary conditions),
and the higher-order velocity gradients, the theory also involves a nonlinear viscosity

H = /io(e+ |e|2)"a/2 (1.5)

in which /iq has the form /zo = /I0ea/2 with Jl0 the usual Stokes viscosity while e has the
same physical dimensions as e, i.e., t~2\ thus

M = Mo(e/e + |e|2)a/2 = M0(e j + e2|e|2)"a/2,

ej = e/e and ?2 = 1/e. The constitutive relation (1.2) for the lower-order stress in the
bipolar model thus bears the same relation to the usual Stokes model that, e.g., the
constitutive relation

D = (cj + e2|E|2)E (ei,C2>0), (1.6)
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which is commonly employed [16] in nonlinear optics (D the electric displacement field,
E the electric field), bears to the usual relation for a linear dielectric medium, i.e.,

D = eE (e > 0). (1.7)

With no having the form indicated above, viz., po = the theory represented by
(1.2), (1.3) reduces, in fact, precisely to that given by the Stokes model when a = pi = 0.

The constitutive relations (1.2), (1.3), and the condition of incompressibility, produce
for the nonlinear bipolar model of a viscous fluid the following system of nonlinear partial
differential equations:

<9v
p— + v • Vv = - Vp + V • {2fie) — 2fii V • (Ae) + pf, (1.8)

V • v = 0, (1.9)

where p is the constant density, f is the external body force vector, and ju(|e|) is given
by (1.5). The system of equations (1.8), (1.9) holds in some domain ft x [0, T), C Rn,
n = 1,2,3, T > 0, and is subject to initial conditions of the form

v(x, 0) = v0(x), xffi. (i-io)

When fl C Rn is a bounded domain (1.8)—(1.10) is supplemented by the boundary
conditions

v = 0, TijkVjVk = 0, i = l,2,3, on dfl x [0, T). (I ll)

The first set of conditions in (1.11) represents the usual no-slip condition associated with
a viscous fluid, while the second set expresses the fact that the first moments of the
traction vanish on <9f2; it is a direct consequence of the principle of virtual work (e.g.,
Toupin [16]). In (1.11), v represents the exterior unit normal to dfl.

If O = [0, L]n, L > 0, then we are looking at spatially periodic solutions of (1.8)—(1.10);
if {ej,e2,... ,en} is the natural basis of Rn then the spatial periodicity conditions are

Vi(x,t) = Vi(x +Lej,t), t > 0, (1.12a)

v(x,t)dx = 0. (1.12b)L
For the initial-boundary value problem (1.8)—(1.11), Bellout, Bloom and Necas [17],

[18] have established the following result on existence and uniqueness of solutions:

Theorem 1.1 ([17], [18]). Let H(f2) = {v e L2(f2)|V • v = 0}. If vo 6 H then
there exists a unique solution v of the problem (1.8)—(1.11) such that Wto > 0, v £
L°°([0, oo); H) fl oo); H2(Q,)). Furthermore, the solution operators S(t) : vq —>
v(t) are C° maps from H into H, Vf > 0. In fact, v € C([0,T); H), VT > 0, so that S(t)
yields a nonlinear semigroup.

For the spatially periodic problem, i.e., (1.8), (1.9), (1.10), (1.12a,b), with p\ > 0, a
result analogous to the above theorem follows quite easily; these results contrast quite
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sharply with what is known about the solutions of the Navier-Stokes equations in space
dimension n — 3, where there exists a unique strong solution only on some interval [0, ii],

while a weak solution exists Vt > 0 and agrees with the strong solution
on [0, ti], but may not be unique.

For the space-periodic version of the bipolar viscous problem in dimensions n = 2,3,
with fix = 0, Bellout, Bloom, and Necas [18] have established the following results, where
p = 2 — a:

Theorem 1.2. Consider the problem (1.8), (1.9), (1-10) with fii = 0 in fl = [0, L]n,
n = 2,3, subject to the spatial periodicity conditions (1.12a,b).

(i) For |<p<2o0<a<|, in dimn = 2, or for | < p < ^ ■*=>■ — | < a < in
dimn = 3, there exists a weak solution (which is probably not unique).

(ii) For p > 2 <=> a < 0, in dimn = 2, or for p > ^ O a < — in dimn = 3, there
exists a unique regular weak solution (i.e., a unique solution in Lp([0, T); W/l p(fi))fl
L~([0,T);W^(n)).

(iii) For p > 1 a < 1, in dimn = 2, or for | < p < | <=> | < a < g, in dimn = 3,
there exists a unique Young measure-valued solution.

The results delineated in Theorem 1.2 for the spatially periodic case with /uj = 0 have
also been summarized in [19] and may be compared with those obtained by Ladyzhen-
skaya [18], [9], who proved (again for Hi = 0 in (1.8), (1.9), (1-10), but in a bounded
domain f2 with v = 0 on dfl x [0, T)) the existence of a weak solution for p > 1 +
and the existence of a unique weak solution for p > 2 in dimn = 2, and for p > | in
dimn = 3. Du and Gunzburger [11] claim to have proven the existence of a unique weak
solution for the same problem in dimn = 3, in the bounded domain scenario, for p > -U-,
but the proof of one of their key results appears to be flawed.

The existence proofs in [17], [18], [19] depend, in part, on two Korn-type inequalities
as given by

Theorem 1.3. (i) For v € Wq'2(£1) n W2,2(f2), C Rn, n = 2,3 with sufficiently
smooth boundary dfl,

f)p ■ • F)p ■ •
°e" <& > MS!)|v|2„I(n| (113)

/J nn dxk dxk

for some &i(fi) > 0.
(ii) For v e Whp(Cl)

\ 2!p
[eij(v)eij(v)]p/2dxj > fc2(fi)|v|^i,p(n) (1.14)

for some ^(fi) > 0.
The proof of part (i) of Theorem 1.3 may be found in the appendix to [17], while part

(ii) is generally attributed to Necas [20].
Finally, we note that special examples of flows of incompressible bipolar viscous fluids

have been examined in detail in [5] as well as in the recent series of papers by Bellout
and Bloom on plane Poiseuille flows ([21]—[23]) and the study by Bloom and Hao [24] of
Couette flow between rotating cylinders.
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From the aforementioned existence and uniqueness theorems proven for the incom-
pressible, nonlinear, bipolar initial-boundary value problem, in the case where jui > 0
(and we consider in dimn = 2, 3 either the associated boundary data (1.11) or the spa-
tial periodicity conditions (1.12a, b)), it follows that the solution operator S(t) yields
a nonlinear semigroup; the nature of the orbits of this semigroup, as t —> oo, has been
investigated in a series of papers [25]—[27], where it is proven that the problem ad-
mits absorbing sets BPH, a ball of radius p in H(Q), and BPH2, a ball of radius p' in

= {u€ i/2(Q)|V • u = 0}. We recall (see, e.g., Temam [15]) that a set B C H(f2)
is absorbing in J C H(Q) if, for every bounded set Bo C J, 3to = to(Bo) such that
S(t)Bo C B for t > tQ{Bo) with the analogous definition for absorbing sets in H%(Q).
The existence of the absorbing sets BPH and (p' depends on pi > 0 and p' —> +oo
as pi —* 0+) enabled the authors in [25] to prove that the set

A=f]S(t)BpHUQ) (1.15)
t>o

is a maximal compact global attractor for the orbits of the bipolar equations when 0 <
a < 1 and pi > 0. By an attractor for the orbits of the bipolar equations we mean, of
course, a set A which satisfies S(t)A — A, Wt > 0, and dist(5(i)vo, A) —» 0 as t —> oo,
for all Vq in some neighborhood of A. We note that the existence of the absorbing set
Bph2 enables one to deduce the uniform compactness of the semigroup S(t) for large t.

For the space-periodic problem associated with (1.8)—(1.10), it is known (Theorem 1.2)
that, if vo G W^(0), there exists a unique solution v in C([0, T); Wq'2^)), VT > 0, for
p > 2 in dimn = 2, and for p > -y in dimn = 3, when — 0. In [26], [27], Bloom has
established the existence in dimn = 2, for the spatially periodic case, of absorbing sets
Bp/n^ in W^;}r(Vl) for the bipolar problem > 0) which are, in fact, independent of

WperV^'J ^

Pi when p > 2; these sets are then also absorbing sets in when dimn = 2, for
the non-Newtonian problem (pi = 0) with p > 2. With p\ > 0 and p > 2, we also have
the existence of absorbing sets in Hper(fl) and V^,er(f2), where

Hper(fl) = {u : n -► Rn | u G L2pjn); V • u = 0, / udx = 0},
J o

Vper(fi) = {u : ft -> Rn I U G Hper(fl); V • u = 0, / udx = 0},
J n

(1.16)

and, as a consequence, the existence of attractors Afll, p\ > 0, and Ao which are given
by

' pi > o: Alll = n
(1.17)

pi > 0 : Ao = D So{t)Bp1<2
t> 0 Wperl,";

In (1.17) the dependence on p\ is now explicitly displayed and both the cases pi = 0
and pi > 0 refer to the situation where dimn = 2, p > 2, and the spatial periodicity
conditions apply; it is then possible to draw some conclusions about the relation between
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Af_ll and Ao- In fact, it is proven in [26], [27] that if d denotes the semidistance for sets,
then, as /l<i —* 0+

d{Aa,<4Ml)=sup inf |x - yMl |L2(n) -* 0, (1.18)
x€^4q y^i ^ a4i

thus establishing the upper semicontinuity of the attractor -4Ml, with respect to the
higher-order viscosity parameter //.;, when p > 2, in the spatially periodic case.

For a fixed, arbitrary > 0, with 0 < a < 1 (•£> 1 < p < 2) it has been demonstrated
in [25] that

(i) the S'Ml (t) are uniformly differentiable on the attractor A^, Vi > 0, and
(ii) the linear operators L(i;uo) : J —> U(i), \J(t) the unique solution of the lin-

earized bipolar problem in L°°([0, oo); H(£l)) satisfying U(0) — J 6 with
the linearization taken about u(t) = S(t)Uo, are uniformly bounded, Vi > 0, in
C(H(Q); H(fl)), when u0 e A)Xl.

The uniform differentiability of the SIH (t) in [25] is established by showing that

sup (|©(£)|L2/|v0 - u0|l2) —> 0 as e -> 0, (1.19)
Uo .voE^j

0<|vo— U„|<£

where &(t) — Sl^1 (t)vo — S"Ml (t)u0 — C(t\u0)(vo — u()). The uniform boundedness of the
linear operators C(t; u0) is established by examining the behavior of the solution of the
linearized problem, i.e., of

dUi TT dui dUi
~dT + u'd^1+v'a7,

j<Ae"(U,)+4
u(t) = SMl(t)u0, u0 e AM1, and

d2r
-(e(u))eH(U)

deijdeki

(1.20)

r(eyeij) = [ " " /Uo(e + s)"a/2 ds (1.21)
Jo

subject to
V-U = 0, infix [0,T),
U(x,0) = U0(x), in (1.22)

Ui = Tijk{U)i>jVk = 0, on dtt x [0,T).

Once the uniform differentiability of SMl (t) on the attractor APl, and the uniform bound-
edness of the linearized operators £(£;uo), uo £ Afll, have been established, it is then
possible to use the framework developed by Constantin, Foia§, and Temam (see, e.g.,
[15], [28], or [29]) in order to deduce upper bounds for both the Hausdorff and fractal
dimensions, d//(^Ml) and dp{Alll), respectively, of the global compact attractor
it is, in fact, shown in [25] that for 0 < a < 1 (<;=> 1 < p < 2) and > 0, in space
dimn = 3, dyi(A^) < k and dp{A^J < 2k, with k the first positive integer such that

t-K ""n)|f|g,2 < k. (1.23)
(A1A)3/2^/12
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In (1.23), m(f2) is a generic constant arising through the implementation of various
embeddings and interpolation-type estimates, |f|oo = |f|L~([o.oo):L2(n))i -^1 is the smallest
eigenvalue of —A on f2, and A —> 0 as /.i\ —> 0.

The same type of analysis as that referenced above has been used for the bipolar
problem (/xi > 0) in both dimn = 2,3, when p > 2, to establish upper bounds for
dniAfj J and dp(A^1) which are in fact independent of Hi; such a procedure for the case
/.ti = 0, p > 2, even in dimn = 2 with the spatial periodicity conditions, does not appear
possible, as it does not seem to be true that So(t) is uniformly differentiable on the
attractor ^40. Furthermore, even though the bounds obtained for d# (*4Ml) and dp(Alll)
are independent of /ii > 0, the upper semicontinuity result represented by (1.18) is not
strong enough to enable one to deduce an upper bound for, say, dniAo) by looking at the
limit limMl_»0+ of the relevant upper bound for dn(AIX]); this problem of determining
upper bounds for the Hausdorff and fractal dimensions of the global attractor Ao for
the non-Newtonian (/zi = 0) problem, when p > 2 (even in space dimn = 2 with the
assumption of spatial periodicity), appears to still be open and is the subject of current
work by Malek and Necas [30]. Another open problem in the dynamical systems approach
to the large time behavior of solutions of the incompressible bipolar equations is that
of the existence of an inertial manifold; it is on that problem that our attention will be
focused in this paper.

The concept of an inertial manifold for dissipative nonlinear evolutionary equations
appears to have been introduced in Foia§, Sell, and Temam [31]. Formally, an inertial
manifold is a finite-dimensional attractor which attracts exponentially all orbits of the
evolutionary equation in question. Denoting again by 5Ml(*) the solution operator for
the bipolar problem (/zi > 0 and 0<a<lol<p<2) (1.8), (1.9), (1.10) satisfying
the spatial periodicity conditions (1.12a,b) on O = [0,L]n, L > 0, n = 2,3, we have the
following:

Definition 1.1. A set M is an inertial manifold for the bipolar problem on Q x [0, T),
T > 0, with solution operator (•), if

(i) M is a finite-dimensional Lipschitz manifold,
(ii) M is invariant in the sense that Vt > 0, SMl(£)A1 C M, and

(iii) M attracts exponentially all orbits of 5;il(*), i.e.,

dist(5fll (i)vo, M) —> 0 as t —> oo. (1-24)

The convergence indicated in (1.24) holds Wo G I?(A1/4), where A is the linear
selfadjoint positive operator associated with the highest-order derivative terms in (1.8);
in fact, (1.24) holds Vvo € Hper(Sl,) and the rate of decay is uniformly exponential in
(1.24) for v() in bounded sets of V(A^4) with M. C V{A1//4). In the next section we
will specify the structure of the operator A and recast the problem (1.8)—(1.10), (1.12
a,b) as an initial-value problem for a nonlinear evolution equation in the Hilbert space
Vper(fi), H = [0, L]n, n = 2,3. In §3 we provide a broad and specific outline of all the key
results to be proved in subsequent sections, culminating in the theorem which implies
the existence of an inertial manifold for the bipolar problem.

The subject of inertial manifolds for dissipative evolutionary equations has attracted
considerable interest since the initial work by Foia§, Sell, and Temam [31], and there is
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now an extensive literature. We may refer the interested reader to the monographs [32],
[33] as well as to the recent papers [34]—[49]; many of these papers deal with efforts to
construct inertial manifolds for the Navier-Stokes equations or some ad hoc regulariza-
tion thereof (i.e., an approximate inertial manifold). A critical discourse on the use of
approximate inertial manifolds for the Navier-Stokes model in the modeling of turbulence
phenomena may be found in the paper of Heywood and Rannacher [49]. For related work
on the existence of attractors for nonlinear evolution equations, and estimates of their
dimension, with a particular emphasis on problems arising in viscous fluid flow (including
turbulence), we may direct the reader to the excellent surveys by Temam [15], Hale [50],
and Babin and Vishik [52], as well as to the recent papers [56]—[62].

2. Formulation of the problem in Hilbert space. We begin by explicitly writing
out the system of equations in the form

<9v_+v.Vv=-Vp-2„,V.(Ae) (21)

+ V-(2Mo(e+|e(v)[2)^-2)/2e) + f.

In (2.1) we have set a = 2 — p, with 1 < p < 2 for 0 < a < 1, have denoted the
pressure field by p, to distinguish it from the index p, and have, without loss of generality,
set the constant density p = 1. We are considering the system (2.1), coupled with
the incompressibility constraint (1.9) and the initial data (1.10), for the space-periodic
situation in which (1.12a,b) hold for some L > 0, so that our basic function spaces
are Hpev(fl) and Vper(f2), Q = [0,L]", n — 2, 3, as given by (1.16). We introduce the
following fundamental linear problem associated with (2.1), (1.9), (1.10), (1.12a,b): find
(u,p) : £1 —> Rn x R such that

V • (Ae) + Vp = /, in fi, (2.2a)
V • u = 0, in Q, (2.2b)

where e = e(u) and u satisfies the periodicity conditions (1.12a,b). Associated with the
problem (2.2a,b), (1.12a,b) is the linear operator A which is defined as follows: consider
the positive definite Vper(fi)-elliptic symmetric bilinear form a(-,-) : Vper x Vper —* R
given by

a(u,v) = |(Au,Av). (2.3)

As a consequence of the Lax-Milgram lemma [12] we obtain an isometry A G £(Vper; Vper),
Vp'er the dual of Vper, via

(All, v)v-p'erxVper = o(u,v) = (f, v)vjjerxvp'srj Vv € Kper, (2.4)

with f G VpeT. For the domain of A we have

D{A) = {u G Vper I a(u,v) = (f,v)L2(n), f e //"per C Vv G Vper}. (2.5)

In all that follows, (•, •) without a subscript will denote (*,-)L2(n)- Thus A G £(D(A);
Hper) fl C(Vper, Vper)- As a consequence of Rellich's lemma [12], A-1 is compact as a
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mapping in Vp'er (or in Hper). Therefore, the spectrum of A consists of real eigenvalues
Aj, with the multiplicity of each Xj finite; these eigenvalues Aj may be ordered, i.e.,

0 < Ai < A2 < • • • , Xj —>> +00 as j —> +00, (2.6)

and the only possible accumulation point of {A.,} is at infinity. The selfadjoint- operator
A possesses an orthonormal set of eigenfunctions {4>j}j^=1, which is complete in Vp'er (or
Hper), and which satisfies

A4>j = Xj4>j, with 4>j £ Vper (or D(A)), Vj. (2.7)

Because A'"1 is compact, we can define the fractional powers of A by using the spectral
resolution of A as follows: Va E R we define

OO

AQu = ^A£(u,0fc)0fc, Vu 6 D(Aa), (2.8)
fc=i

where for a > 0

D(Aa) = { u 6 Hper

while for a < 0, D(Aa) is the completion of Hper with respect to the norm

X2ja(u,4>j)2 < oo J. , (2.9)
i=i

llUlla=|EA?a(U'^)2|

which is induced by the scalar product

OO

(u ,v)D(Ao) = ^A|a(u,^j)(v,^). (2.11)

j=i

Using the Fourier transform, it is a straightforward exercise to show that there exist
constants ki,k2 >0 such that

llull#4(n) < |Au|£2(n) < fc2||u||H4(n), Vu£fl(A), (2.12a)
Mullff2(fi) < |A1/2u|L2(a) < fc2||u||W2(n), Vu e £>(Ai/2),

(2.12b)

and

fci||u||ffi(") ^ lAl/4uU2(n) < fc2||u||ifi(n), Vu e D(A1/4). (2.12c)

Therefore, we have the equivalences

|Au|L2(q) ~ ||u||wi(n),

|A1/2u|£,2(r!) ~ ||u||W2(q), (2-13)

|A1/4u|L2(n) ~
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For the space-periodic problem it is easy to show that the eigenvalues of A have the
form

o_4

Ak = —|k|4, k (2.14)

for n = 2,3. An extended discussion of the eigenvalue problem (2.7) may be found in
the Appendix.

We now set, for e = e(u),

[APu]i = |^"[(e + lel2)(p~2)/2ed> i = l,...,n, (2.15)

B(u, v) = u • Vv, (2.16)

and
R(u) = —2/i0Ap(u) + B(u, u) - f, (2.17)

where we take f € Hper. Then the bipolar problem (2.1), (1.9), (1.10), (1.12a,b) can be
viewed as an initial-value problem for an equation of evolution in the Hilbert space Vper,
namely,

+ 2fii Au + R(u) = 0, t > 0, (2-18)

U(0) = U0 e //per- (2.19)

In §3 we will map out the steps that are involved in proving the existence of an inertial
manifold for (2.18), (2.19).

3. An outline of the basic methodology. We delineate, in this section, the
sequence of results that will lead to the proof of the existence of an inertial manifold
for the initial-value problem associated with the evolution equation (2.18) in the Hilbert
space Vper. The basic ideas are as follows:

I. We first prove a Lipschitz property for the nonlinear map R(*); in fact, we will show
that R(u) is Lipschitz on bounded sets of D(A1/4) with values in D(A-1/4), i.e., for
M > 0, 3Cm > 0 such that

|A-1/4R(u) - A^1/4R(v)| < Cm|A1/4(u - v)|, (3.1)

Vu, v e D(A1/4) such that |A'/4(u)| < M and |A1/4(v)| < M, where, as in the remain-
der of this paper, j • | means the L2 norm | • |l2(si), n = 2,3, Cl — [0, L]n, L > 0. The
result expressed by (3.1) will be stated as a formal theorem and proven in §4; it clearly
implies that R is bounded on bounded subsets of D(A1'4), i.e., that 3C'M > 0 such that

|A~1/4R(u)| < C'M, Vu G £>(A1/4) with |A1/4u| < M. (3.2)

II. Using the Lipschitz property (3.1) we will establish, in §5, a squeezing property for
orbits of the semigroup generated by (2.18), (2.19) of the following form. Let wj,..., wn
be the first N eigenfunctions of the operator A. Let P/v : Hper —> spanjwj,..., w/v}
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be the usual projection operator and set Qn = I — Pat. Let 7 > 0. Then we will prove
that if, for t £ [0, T\, T > 0,

|A1/4(u(t))| < M and |A1//4(v(i))| < M, (3.3)

M > 0, as in the statement of the Lipschitz property (3.1), then 3ci > 0, i = 1,2,
depending only on 7, M, T, f, /z0, H\,e, and 0, such that for every N and every t € [0, T]
either

IQivA~1/4(u(i) - v(t))I < 7|PArA_1/4(u(t) - v(f))I (3.4)

or else
|A~1/4(u(t) - v(7)) < ci exp(-c2Mi7v+i^)|A_1/4(u(0) - v(0))|. (3.5)

We remark in passing that an L2 version of the squeezing property expressed by (3.4),
(3.5) also holds relative to the orbits of the semigroup generated by (2.18), (2.19) but is
not well-adapted to the proof of the existence of an inertial manifold; the L2 version of
the squeezing property for the (space-periodic) bipolar problem has been established by
the authors in [68].

III. From the analysis in [25] it follows that there exist absorbing balls in Hper,
D(A1//4), and Vper which attract all the orbits of (2.18), (2.19). We will want, how-
ever, in the subsequent discussion to restrict our attention to the dynamics inside an
absorbing ball Bri C £)(A1/4); to this end we shall introduce the smooth cut-off func-
tion 0 : R+ —♦ [0,1] given by

0(0 = 1, 0<£<1,
0(0 = 0, £>2, (3.6)
[O'COI <2, £ > 0,

and then set ©ri(?~) = 0(r/ri). We then modify (2.18) and consider, in its place, the
evolution equation

^ + 2/i!Au + 0r. (,A:,4u )R(u) = 0. (3.7)

It is not difficult to prove the existence and uniqueness of solutions to (3.7), (2.19) with
Uy £ -ffpen in addition, we will show, in §6, that the ball Br2, = 2rj, is an absorbing set
(for the orbits of (3.7), (2.19)) in D(A1/4); it is also proven, in §6, that after a sufficiently
large time t*, the dynamics of the original equation (2.18) are exactly represented by the
dynamics of the modified equation (3.7).

IV. In §6 we introduce the space Hbj of the Lipschitz maps (b > 0, I > 0)

0 : PnD(A^4) -> QnD(A^4)

satisfying

supp0 C {p e PnD(A1/4) I |A1/4p| < r2}, (3.8)
|A1/40(p)| <6, Vp € PjVjD(A1/4), (3.9)
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and Vpi,p2 £ P/v^KA1/4)

|AvV(Pi) - A1/40(p2)| < /|A1/4(pi - p2)|. (3.10)

It is not difficult to prove that H^ i is complete with respect to the metric induced by
the norm

1101 021| — sup |A1/40i(p) - A1/402(p)|, (3.11)
pePwD(A1/4)

0,: G Hbj, i = l,2.
V. We next specify a mapping T which associates with each </> G Hb.i a function T</>

defined on P^£)(A1/4); the mapping T arises in the following manner:
(i) We apply the projections P/v, Qn to the modified equation (3.7) to obtain evolution

equations for p = P/vu and q = Q\U of the form

f + 2^lAp + PyvF(u) = °' (3.12a)

^ + 2/UiAq+ QwF(u) = 0, (3.12b)

where F(u) = Ori (|A1//4u|)R(u).
(ii) Next, we choose 0 £ Hb,i and po G Pa<-D(A'/4) and consider p = p(i) as deter-

mined by the initial value problem

f +2M,Ap + P„F(p + 0(p)) = O, (313)
P(0) = Po,

i.e., p(t) = p(t; <p, po).
(iii) We employ for our operator A the following lemma, a proof of which may be found

in Temam [15]: for any a £ R1, if <r £ Loc(R1-D(Aa~1^2)) then 3! function £,
continuous and bounded from R1 into D(Aa), which satisfies

Cdt+M = Cr■ (3'14)

Remark. In establishing the lemma cited above one looks at the initial value problem

( dt.+A^~°' (3.15)
I €(0) - 6,

whose (unique) solution e~tA : £o -> £(^) is continuous as a mapping from D(Aa~1/<2)
into D{aa), Vi > 0; the unique solution of (3.14) then has the form

£(t) = e-(*-'o)A£(to) + f e-(t-T)A(T(r)
Jtn

dr (3.16)

and as |e tA|£(D(A°)) < exp(—Xt), for some A > 0, all a £ Rl, and all t > 0, as to —*- —oo
we obtain ^

£(t)= f e_(t_T)Acr(r) dr. (3.17)
J —OO
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(iv) Having introduced the initial-value problem (3.13) we consider, with p = p(t; 0, po)
as defined by (3.13), the analog of the equation for p(i), namely,

+ 2/xi Aq + Qj\rF(p + 0( p)) = 0. (3.18)

In (3.18), <t = -Q/vF(p + 0(p)) G L°°(Rl\D(A-1/4)), i.e., (3.18) is of the form
(3.14); thus by the lemma referenced in (iii), 3! solution q = q(i; 0, po) of (3.18)
which is continuous and bounded as a mapping from R1 into QjvD(A1/4). In
particular,

q(0) = q(0; 0, p„) G QnD(A1/4). (3.19)

(v) Finally, we consider the function that maps

po G PWD(A1/4) ^ q(0; 0, p0) G Q,ND(A1/4). (3.20)

This function, which depends on the choice of 0 G Hbj, will be denoted by T0;
by virtue of (3.18), (3.19), and (3.20), coupled with the representation (3.17),
T0 : po —> q(0; 0, po) has the specific form

T0(po) ~ — f e2/il AtQtvF(p(t) + 0(p(r)) dr = q(0; 0, p0). (3.21)
J —OO

VI. Once the mapping T has been specified, the task at hand will be
(i) to prove that for Aand — A^2 both sufficiently large

T - W 'nt.° I]
J- • Hb,l —* lib,I,

with T a strict contraction on Hb,i, and then
(ii) to prove that the manifold M defined by the graph of the (resulting) fixed point

0o of T is an inertial manifold for the bipolar problem.
The manifold, M, as defined above, will be a finite-dimensional Lipschitz manifold by

virtue of the definition of Hb,i.
Remark. Because it is known for the space-periodic problem that the eigenvalues of

A have the form (2.14) for n = 2,3, the requirements that both A^2 and aJ/2j — Aj/2
be sufficiently large are easy to satisfy for dimn = 2, but for dimn = 3 the spectral gap
condition is only satisfied for large n\.

In §6 we will establish the content of part (i) of VI, above, by proving the following
result:

Theorem 6.1. Let Hbj be the space of Lipschitz maps (b > 0,1 > 0) 0 : PyvZ^A1/4) -»
QatD(A1/'4) that satisfy (3.9)-(3.11). Define the mapping T by (3.21), where 0 € Hbti,
Po € PnD(A1^4) and q(O;0,po) G Qzv-C^A1/4) is the value at t = 0 of the unique,
continuous solution of (3.18) (with p(t) the unique solution of the initial-value problem
(3.13)). Then 3 constants k\,k?. such that if

(i) ^N+1 ~ — ̂ i/(2Mi)>
(ii) A^/2 > fc2/(2/xi),

then T : Hbj '^>° Hb,i and is a strict contraction on Hb.i-
The proof of Theorem 6.1 depends on several lemmas, all of which are established in

§6; in their order of appearance, these key lemmas read as follows:
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Lemma 6.1. For 0 G Hi^ we have

supp T0 C{pe PlWD{Al/4) | |A1/4p2| < 2 n}. (3.22)

Lemma 6.2. Let 0 G Hbi and Pi,P2 G P/viHA1/4). If u, = + 0(pO, = 1,2, then
3Mi, M2 > 0 such that

(i) |A_1/4F(Ul)| < Mi, (3.23a)
(ii) |A-1/4(F(Ul) - F(U2))| < Af2(l + 0|A1/4(Pl - P2)|. (3.23b)

Remark. Lemma 6.2 will be a consequence of the Lipschitz property (3.1) and the
standard lemmas in Temam [15].

Lemma 6.3. If po G P/v-t^A1/4), then

T0(po) G QnD(A1/4) and |A1/4[T0(p(1)]| < b' (3.24)

with b' — e-1/2/^1 A^^j2 < b (for Aj/^ sufficiently large).
Remark. Lemma 6.3 will be a direct consequence of the explicit representation of

T0, i.e., (3.21), with 0 G H^j.
Lemma 6.4. Assume that

aN = 2^{\N+l - XN) - M2( 1 + OAf > 0. (3.25)

Then for 0 G Hbj, and Poi,Po2 G P,vZ?(A1/4), we have

|A1/4(T0(Poi) - T0(pO2))| < /'|A1/4(p01 - Po2)|, (3.26)

where

V = M2( 1 + OA^/i2^!)"1 + (2^1 - rjv&v)-1]*-1/2 exp , (3.27a)

riv = Xn/Xn+u (3.27b)

fjv = 2/xi + M2(l + 0A^1/2- (3.27c)

Remark. As a consequence of (3.26), T0 G . It is proven in Lemma 6.6 that
the ki, i = 1,2, in the statement of Theorem 6.1 may be chosen so that when (i) and (ii)
of Theorem 6.1 are satisfied, so is (3.25).

Lemma 6.5. Assume, again, that an > 0, where an is defined by (3.25). Then for
0i,02 G Hbi and po G PatI?(A1/'4) we have

|A1/4(T0i(Po) - T02(Po))| < £110! - 02|| (3.28)

with L = |^-(2e~1/2A^1+/12 - \~Nl/2V) and ||0i - 02|| given by (3.11).
The final lemma in this series actually serves to establish Theorem 6.1, i.e.,
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Lemma 6.6. For 0 < I < 1, if (i) and (ii) of Theorem 6.1 hold with

h = 2M2(1 + Or1, fc2 = 2M2(2e"1/2 + I), (3.29)

then aN > 0 (with as defined by (3.25)), /' as given by (3.27a,b,c) satisfies I' < I (so
that, by virtue of (3.26), T4> E Hb.i), and L < | (so that, in view of (3.28), T is a strict
contraction on #&,/).

The content of part (ii) of VI, above, is established in §7. In fact, to show that the
graph A4 of the fixed point 0o of T is an inertial manifold we essentially need to prove
only that M attracts exponentially all orbits of 5Ml(f); as was previously indicated, the
fact that A4 C D( A1/4) is a finite-dimensional Lipschitz manifold follows directly from
the definition of Hb,i and the invariance of M under 5Ml(i), W > 0, and is relatively
easy to establish. In addition, the fact that M. attracts exponentially all orbits of the
evolution equation (2.18) will follow once we prove, in §7, that M. attracts exponentially
all orbits of the modified equation (3.7), and this requires a squeezing property for the
modified equation (3.7); from this squeezing property we will obtain, in §7, the following
result:

Theorem 7.1. Let M be the graph of the fixed point (po of T, whose existence is implied
by Theorem 6.1 and the completeness of the space Hb,i with respect to the norm specified
in (3.11). Then 3to > 0 such that for Uo E D(A1/4) and t < to

dist(5Ml (£)u0, M) < exp ( — —In2 ) dist(uo,A^). (3.30)
\ 2<o J

In the next section we will begin working our way through the program described in
steps I-VI by establishing the Lipschitz property (3.1) for solutions of the initial-value
problem (2.18), (2.19).

4. The Lipschitz property. The purpose of this section is to prove the following:

Lemma 4.1. Let R(u) be defined by (2.15)-(2.17) with e = e(u). Then R(u) is a
Lipschitz function on the bounded sets of D(A''4) with values in D(A-1/4), i.e., for
M > 0, 3Cm > 0 such that (3.1) holds Vu, v € D(A1/4) with |A1,/4u| < M and
|A1/4v| < M.

Proof. Let u, v E D(A1//4) and set w = u — v. With Ap defined as per (2.15) we have

(Ap(u) — Ap(v), w) = / [Ap(u)j - Ap(v)i]wi dx

(4.1)
^-[(e+ le(u)|2)^^(u)] - ^r.^e+ |e(v)|2)E^eii(v)]| Widx.

Integrating (4.1) by parts, and using the fact that, as a consequence of the space peri-
odicity satisfied by u and v,

[ [(e+ le(u)|2)E^ei;l(w) - (e + |e(v)|2)£^eij(v)]wiz/j dS = 0, (4.2)
J dn
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we easily find that
(Ap(u) - Ap(v), w)

= ~ Jj(e + le(u)|2)^eij(u) - (£+ Ie(v)|2)^Mv)]|^dx-

We now set

rp(e) = ^(e + |e|2)P//2, (4.4)

e»j(t) = eij(u) +t(eij(y)-eij(u)), 0 < f < 1. (4.5)

Then

so that

= (e + |e|2)^eijh (4.6)

[(e + e(u)|2)E^eij(u) - (e + |e(v)|2)iL^elj(v)]

1 d ( dr„ , (4-7)-I
Employing (4.7) in (4.3) yields

l(Ap(u) - Ap(v), w)|
1 d (drv ,1 dw„ dt{^{e"m>)dtra^dx

sIfJn J 0 dt \deij l° J dxj dtdx..

However, by virtue of (4.4)-(4.6)

9 Tp -(eij(t)){eki(v)-eki(u)),

d2rp _p- 2/r _ ^ , u,2^.
deijdeki 2

Therefore, for any £ 7^ 0, ij ^ 0

B2r
7 -^fcidendeki

P 2(e + + (e + M2)^^-^

<

<

2
P — 2

2
pi 2

2

(4.8)

(4.9)
— q 0 V

deijdeki

while
^ _ o

(e+|e|2) 2 e^efc; + (e + ]e|2) 2 (4-10)

(e + |e|2) 2 \eij£ij\ \ekif]ki\ + (e + |e|2) 2 \£kjVkj\ (4-11)

(e + |e|2)^|e|2|£| |tj| + (e + |e|2)^ |£| \r,\
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because 0 < p < 2. Combining (4.8)—(4.11), we obtain

|(Ap(u) - Ap(v),w)|

d2rn ,.s w . . , s, dw.
<

//'Jn Jo de„de,Je.At»Mv)-eu(u))-^

<

9

2 — P , t P-2~T

dtdx

+ 1 - EMv-u)i2 E
i/2 / \ 1/2

dwi

k.i dxj
dtdx. (4-12)

1/2 / „\ 1/2

^(t+1)"((ewv-u)i2| fx;
k.l

dwi 2
&Ej

dx

or, for some Ci = Ci (f2) > 0

|(Ap(u) - Ap(v),w)|

'2 — p \ 2z-a „ (4-13)< / 2 — P \ p —2I-2 hlJ£ 2 ~ vllffl(n)Hwllwl(")-

Next, consider B(u,v) as defined by (2.16). We have

|(B(u, u) - B(v,v), w)|

dui dvi dvi
dxj 1,3 dxj VJ dxj _

f dui [ d
/ (Uj - Vj) — Widx + / Vi-g—-(Ui - Vi)Wi dx

< - v,)(u, - „>«rfx) gig <fx)
(4.14)

\ 1/2
+ ( I VjVjWiWi dx IXn .J

5(uj - Ui) 2
1/2

dx

Using the Sobolev embedding H](fi) <—» L4(U), which is valid for Q = [0,1/]™, n = 2,3,
we obtain from this last estimate

(B(u, u) - B(v,v),w)|

^ -vi)4dx) ( [E £ dx) f £Eiw<i4dxj
!/4 / \ , V 1/4

so that for some C2 = C2(f2) > 0

l(B(u, u) - B(v,v),w)|

^ C2(||u||//i(o) + ||v||ffi(n))||u - vll^f 1(57)||w||
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Now, by virtue of the definition of R(u), i.e. (2.15)—(2.17),

R(u) - R(v) = —2/i0(Ap(u) - Ap(v)) + (B(u, u) - B(v, v)); (4.17)

so, combining (4.17) with (4.13) and (4.16), we find that

l(R(u) - R(v), w)|
< 2^o|(Ap(u) - Ap(v), w)| + |(B(u, u) - B(v,v),w)|

< 2/Li0 ̂ e 2 Ci+C2(||u||Hi(0) + ||v||Hi(u)) ||u-v||ffi(n)||w||Hi(n).

(4.18)
Employing (2.12c), i.e., the equivalence between the norms ||u||ffi([2) and |A'/4u| for
u 6 D(A1/4), (4.18) yields the following estimate, for some C3 = Cs(fl) > 0:

(R(u) - R(v), w)|

<C3 2/io + l) + C72(|A1/4u| + |A1//4vj (4.19)

x |A1/4(u- v)| |A1/4w|.

Thus, for u,v G D(A1/4) satisfying |A'/4u| < M, |yl1/4v| < M, for some M > 0,

|(R(u) — R(v), w)| < Cm|A1/4(u- v)| |A1/4w| (4.20)

with
Cm — C3 2/io + 1J e 2 C\ + C2M

The required estimate, i.e., (3.1), is now a direct consequence of (4.20).

(4.21)

5. The squeezing property. Our goal in this section is to prove the following
squeezing property for orbits of the nonlinear semigroup SMl:

Theorem 5.1. Let wi,...,wjv be the first N eigenfunctions of the operator A and
Pat : Hpev —> span{wi,..., w^v} the projective operator; set Qn = I — Pjv, where I is
the identity map on Hper. Let 7 > 0 be given. Then for u,v € D(A'//4) satisfying (3.3),
for t € [0, T], T > 0, and with M > 0 as in the statement of the Lipschitz property (3.1),
3a > 0, i = 1,2, depending only on 7,M, T, f, and such that for every N
and every t £ [0, T] either (3.4) holds or (3.5) does. In addition,

|A-1/4(u(£) - v(t))\ < exp (|A~1/4(u(0) - v(0))|. (5.1)

The proof of Theorem 5.1 hinges on a key lemma which we will establish first. Consider
two different solutions u and v of the initial-value problem (2.18), (2.19) corresponding
to the initial values Uo,v() 6 D{A1/4), where f 6 L2(Qr), Qr = S7 x [0,T). We set
w(t) = u(t) — v(i) and study the behavior of the quotient

q(t) = |A1/4w(0|2/|A"lpw(t)|2. (5.2)
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Lemma 5.1. Let u,v € D(A1/4) be the unique solutions of the initial-value problems

f +2/«Au + R(u) = 0, (53)
u(0) = u0,

ctv-+2WAV + R(V)=0, (54)

v(0) = v0.

Let M > 0 and suppose that Vi G [0,T], JA1/4u(i)| < M, jA1/,4v(£)| < M. Then 3c3 > 0
such that w(t) = u(t) — v(t) satisfies

|A1/4w(t-)|2 |A1/4w(A)|2 , .
|A~'/4w(t)|2 ~ |A~'/4w(t)|2 6 r ~ (5'5)

for 0 < t < t < T.
Proof of Lemma 5.1. For t 6 [0, T] we define the quotient q(t) as per (5.2), i.e.,

(A^w.A^w)
«(<)=(A-Vw,A-i/«w)- (5'6)

Differentiating q(t), we obtain (' = d/dt)

= 2 r(a^1/4w a~1/4w)(a1/4w' a1/4w)
dt (A '' 'w. A '/4W)2' ' n '

— (A_1/4w, A-1^4w)(A1/4w, A1^4w)]

or

However,

so

= |A-i/4wft)|2[(W,,Al/2w)~g(^)(W'A 1/2W)1' (5'7)

^ + 2^iA(w) + R(u) - R(v) = 0; (5.8)
dt

(2/tiAw + R(u), A1//2w — g(i)A_1/2w),
dt |A 1/4w|2

from which it follows that

dq —2
dt |A_1/4W|2

If we now make note of the fact that

(2/ii A3/4w + A-1/4(R(u) - R(v)), A3/4w - q(t)A^^w). (5.9)

(■qA 1/4w, A3/4w - qA 1/4w)

= g(A~1/,4w, A3//4w) - </2(A_1/4w, A~1/4w)

= q{A4/4w, A1^4w) - g2(A_1//4w, A_1/4w)

= 0,
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by virtue of the definition of q(t), i.e., (5.2), then

(A3/4 w, A3/4w-gA"1/4w)

= (A3/4w - (/A_1/4w, A3/4w - gA~1/4w) (5.10)

= |A3/4w - c/A"1/4w|2.

Employing (5.10) in (5.9) and using the Cauchy-Schwarz inequality, we find that

*1 +  |A3/4w - oA~1/4w|2
dt* |A-V4w|2|A qA 1

~2 r(A"1/4(R(u) -R(v)),A3/4w-gA^1/4w)
|A_1/4w|2

2 (5.11)< ,1, ''Kl"! - R(v))| • !A«'w -,A-"«w|

<^^iA3/.w_,A-vY+iraw^,
\A~1i4"w\2' /i i jA 1/4w|2

where for the last estimate we have used the arithmetic-geometric mean inequality. We
now avail ourselves of the Lipschitz property (3.1), which is valid for u,v £ D(A1/4)
satisfying |A1//4u| < M, |A1/4v| < M for M > 0; employing (3.1) in the last estimate in
(5.11), and making use of the definition (5.2) of q(t), we find that

§<--ClU (5.12)at ii\

where Cm is given by (4.21). Integration of (5.12) from r to t yields (5.5) with C3 =
^C27. The lemma is proved. □

We are now in a position to establish the squeezing property for S)J1:
Proof of Theorem 5.1. We begin by taking the scalar product in L2 of (5.8) with

A_1/2w; using the Cauchy-Schwarz inequality and the Lipschitz property (3.1), we ob-
tain

i||A-1/4w|2 + 2Ml|A1/4w|2

= -(A~1/4(R(u) - R(v)), A~1/4w) 13^

< |A_1/4(R(u) - R(v))| • jA~1/4wj

< Cm|A1/4w| |A^1/4w|

with Cm given by (4.21). Employing the arithmetic-geometric mean inequality, we are
led from (5.13) to the estimate

l|A-1/4w|2+4//1|A1/4w|2<3/ii|A1/4w|2 + ^|A-1/4w|2, (5.14)
at 3^i

from which it follows that

|,A-^w|. + |A-vvp(^e-^)£a (5,5)
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By virtue of Lemma 5.1, however, for 0 < t < to < T we have

|A1/4w(i)|2 |A1/4w(io)|2 , / ,, , .
|A-./-w(0l2 2 |A-'/'w(to)|» exP(-c»('» " '» a OtM-cM (5.16)

with
r, = |A1/4w(*0)|7|A-1/4w(i0)|2. (5.17)

Combining (5.15) and (5.16), we find that

-||A~1/4w(£)|2 + |A~1/4w(£)|2 exp(—c3t0) - < 0 (5-18)

so that upon integrating from zero to to we obtain

|A_1/4w(£0)|2 < |.A~1/4w(0)|2exp exp(-c3i0) + j • (5-19)

We now consider the cases

|QyvA"1/4w(i0)| > 7|PatA~1/4w(£0)| (5.20a)

and
|QjvA"1/4w(i0)| < 7|PTvA-1/4w(i0)|. (5.20b)

Then, in view of the statement of Theorem 5.1 (i.e., either (3.4) holds, or (3.5) does), it
is necessary only to consider what happens if (5.20a) applies; in this case

= |A1/4w(i0)|2

>

| A-1/4w(i0) |2

|P/vA1/4w(t0)|2 + |QAfA1/4wfa)|2
P^A-i/4w(to)|2 + |Q7vA-i/4w(to)|2

[QyyA^W (tp)\2 (5'21)
(1 + ^)|QivA-1/4w(i0)|2

^ 7 Xn+ i _ 7 \— 7~i— " _i 75 = i~~l— an+i,1+7 A ' 1+7' atv+i '

A/v+i being the (N + l)st eigenvalue of A. Employing this last lower bound for r) in
(5.19), we are led to the estimate

1/2

2

< |A 1/4w(0)|2exp ^/x1AAr+ii0exp(-c3io) +
t 1 + 7 3/Ui

< |A_1/4w(0)|2 exp {-7-7—Hi^N+ito exp(—c3T) +
11 + 7 3 Hi )

(5.22)
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as to < T. Replacing to by t < T m (5.22), we obtain (3.5) with

Ci = exp ( and c2 = ■—f-r exp(~c3T).
V 3^i J 7+1

To complete the proof of Theorem 5.1 it remains only to establish (5.1). However, by

(5.13),
^|A~1/,4w|2 + 4/ui|A1/'4wj2 < 2Ca,/|A1/4w| |A~ly'4w|

< 4/x1|A1/'4w|2 + —^|A^1/,4w|2,
Mi

(5.23)

so that

A|A-l^w|2 < ^-lA-^wl2. (5.24)(it ji\
The estimate (5.1) now follows by integrating (5.24) and using the definition of w(t).
The theorem is proved. □

6. The fixed point theorem. In this section we will examine both the structure
of the space of Lipschitz maps H\j i (b > 0, I > 0) consisting of those 0 : PjYjD(A1/4) ^
QnD(A}/4) that satisfy (3.8)-(3.10), and also the nature of the mapping T that asso-
ciates with each <fi G -Hfc,; a function Tcf> defined on Pat£)(A1/4). The determination
of T depends on the behavior of solutions of the modified equation (3.7), to which we
will turn our attention first, and is detailed in part V of the procedure outlined in §3,
culminating in the explicit expression (3.21).

As was previously indicated in §3, it is a straightforward matter to prove the existence
and uniqueness of solutions to the modified initial-value problem (3.7), (2.19) for Uq G
Hper. The absorbing property of the modified equation may be easily demonstrated by
taking the inner product of (3.7) with A1/,2u; for |A'/4u| > 2r\ we obtain

^(A1/4u,A1/4u) + 2Ml(A3/4u,A3/4u) = 0 (6.1)

because 0n (|A]/4u|) = 0 for |A1/4u| > 2r\. Inasmuch as (A3/4u, A3/4u) > Ax(A1/4u,
A1/4u), with Ai > 0 the smallest eigenvalue of A, we have

i^|A1/«u|2 + 2MiAi|A1/4u|2<0. (6.2)

Thus,
|A1/4u(^|2 < |A1/4u(0)|2e"4'ilAlt, t > 0. (6.3)

Therefore, if |A1/4Uo | > r-2, where > 2ri, the orbit u(t) will converge exponentially in
D(A:/4) to the ball Br2, while if |A'/4u0| < v2, then u(t) will stay inside the ball BT2 for
all t > 0. However, 0ri(|A1/4u|) = 1, for |A1/,4u| < ri; so the original equation (2.18)
and the modified equation (3.7) are identical in a neighborhood of the global attractor
and the dynamics of (2.18) are exactly represented by those of (3.7) after a sufficiently
large time.
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We now turn to the proofs of Lemmas 6.1 through 6.6, full statements of which may
be found in §3.

Proof of Lemma 6.1. The proof follows that of the analogous result in Temam ([15],
Lemma 3.1, §3.2 of Chapter VIII) almost without change. □

Proof of Lemma 6.2. We want to establish (3.23a,b), where ut = + 0(P»), i = 1,2,
with 0 6 Hb^i and pi,p2 e PatD(A1/4). However, as a consequence of Lemmas 2.1
and 2.2 of Temam ([15], Chapter VIII), and the Lipschitz property (3.1), it follows that
3Mi > 0, i = 1,2, such that

|A_1/4F(Ul)| < Mu (6.4a)

|A~1/4(F(u1) - F(u2))| < M2|A1/4(u1 - u2)|, (6.4b)

so that (3.23a) follows. For (3.23b) we use (6.4b), and the definition of H^ i, which
implies that

|A1/4(Ul - u2)| < |A1/4(p! - p2)| + |A1/4(0(Pl) - 0(p2))|

< (l + /)|A1/4(pi -p2)|. □

Proof of Lemma 6.3. For p0 £ PatD(A1//4) we need to establish (3.24). From the
definition (3.21) of the mapping T it is clear that T0(po) 6 Qyv-CKA1/4). Also, as a
consequence of (3.21) and (3.23a),

|A1/4(T0)(p„)| < f |A1/4e2^ArQNF(p(r) + 0(p(r)))|dr
J — OC

(2Mi)1/2 [ {|(2^iAQiv)1//'2e2piAT|£(QA,j^per)
J — OO

x |A~1/4F(p(r) + 0(r))|} dr

(2f |(2MiAQiV)1/2e^lAT|c(QNHpai)dr.
J —OO

<

<

(6.6)

However, as a direct consequence of Temam ([15], Lemma 3.2, Chapter VIII) we have
the following. Let 6 € R1 and r < 0, and set fc2(<5) = 6s e 6 and

k3(S) = { k2(S)
1-6

if 6 < 0,

•<51"'5, if 0 < 5 < 1.

Then |(AQAf)ierACJjv| in £(Qjv-£fPer) is bounded bylper/

I-8

and, moreover, if 8 < 1,

r0

J —(

M<5)|t| , if - |5/Aiv+1 < T < 0,
xn+ ieTX»+\ if t < —6/(N + 1),

|(AQ,v)VAQ»U(QjvHper)dT < k3(S)\SN-^. (6.7b)

(6.7a)
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Applying (6.7b) with S = | to the last estimate in (6.6), we have, by virtue of the
definitions of fc2(<5), ks(6),

|A1/4(T0(p„))| < (2^!)-1/2fc3 (i) (2MlAiV+1)-1/2M1

< e— 1/2/ai

which completes the proof of (3.24) with b' = e-1/2^ 1A^12; note that b' < b for Xn+i
sufficiently large. □

Proof of Lemma 6.4. Given that (3.25) holds, we want to establish the validity of the
estimate (3.26), with V given by (3.27 a,b,c), for </> € Hbj and Poi,Po2 G PnD(A'/4). As
a direct consequence of this lemma it will follow that T<fi, as defined by (3.21), belongs
to the space Hb,r.

We begin the proof by letting </> be a fixed but arbitrary element in Hb.i and pi = pi (t),
p2 = p2(t) solutions of the initial-value problems

r^+2mApi + P„F(Ul) = 0, (69)

I pi(0) = poi,
j^+2„,Ap2 + P„F(u2) = 0, (610)

I P2(0) = P02,

where = p, + 4>(pt), i — 1,2. Setting p(t) — Pi(£) - p2(i), we have

J ^ + 2MlAp + PJV(F(u1) - F(u2)) = 0, (g n)
I p(0) = Pol - P02 •

Taking the inner product of the equation for p(t), above, with AJ/2p, and applying
Lemma 6.2 (specifically, (3.23b)), we obtain

i||A1/4p|2 + 2Ml|A3/4p|2 > —|A_1/'4(F(u1) - F(u2))| • |A3/4p| (g

> -Af2(l + Z)|A1/4p| • |A'3/4p|.

However,
|A3/4p| = |A1/2A1/4p| < A^IA1/4?!;

so
|A1/4p|^|A1/4p| + 2^iAjv|A1/4pjv|2 > -M2( 1 + 0A]v/2|A1/4p|'J (6.13)

or
jt\A 1/4p\ + (2^Xn + M2( 1 + /)A^/2)|A1/4p| > 0. (6.14)

Prom (6.14) we easily deduce that, for r < 0,

|Al/4p(r)| < |A1/4p(0)| exp(—t[2^iAat + M2(l + (6.15)
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Next, using the Lipschitz condition relative to F(u), which is implied by (3.1), we
estimate as follows:

|A1/4(T0(pol)-T0(po2))|

< f |A1/4e2^lATQJV(F(u1)-F(u2))| dr
J — OO

<(2 Mi)"1/2|° |(2MiAQJV)1/2e2^A-|.|A-1/4(F(u1)-F(u2))|dT (g lg)

< M2( 1 + Z)(f |(2/i! AQw)1/2e2"lAT| • |A1/4p(t-)| dr
J — OO

<M2(1 + 0(2mi)_I/2|A1/4p(0)| f |(2MiAQAr)1/2e2^lAT|eTAw«"di,
J — oc

where £/v = 2^i + M2(l + Z)A^2; for simplicity we have written |(2/UiAQjv)1/2e2MlAr|
instead of |(2/LijAQAr)1'/2e2'ilA'r|jC(QJV//per), and we have used (6.15), which is valid for
r < 0. We now focus our attention on the integral

r°
/ \{2fi1A(/)N)1/2e2'llAT\e-TXN6N dr

J —OO

in the last estimate of (6.16). By virtue of bounds for |(AQAr),5e'rACJjv | which are given
by (6.7a) we have, first of all, that

-l/(4^i\n+i)
/ \{2n]AQNy/2e2^AT\-TXNiN dr

J — OO

/• — l/(4^iAjv+i)
< / (2/iiAjV+i)1/2e2'iirAjv+1e-rAjv€jv dr

J —OO

/— 1/(4mi-W+i) (2MiAJV+1)1/2e-T^dr
-OO

(6.17)

< (2/ziAjv-f-i)1^2 — exp
crjv

CTJV

4^iAjv+i J

where crjv is given by (3.25), which is, in fact, equivalent to

&n — Ajv+i(2//i - r^Civ), = A/v/Ajv+i. (6.18)

Therefore,

/—l/(4/iiAjv+i)
|(2yLi1AQiV)1/2e2^AT|e-TAjv«'v c/r

-OO

< (2Ml)1/2A"1+/2e-1/2(2Mi -r^)"1exP .
(6.19)
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In a like fashion, we have, by again using the bounds for |(AQjv)^erAQJV| inherent in
(6.7a), the series of estimates

rO
|(2^1AQiV)1/2e2^lAT|e-rA,v^ dr

J — l/(4/ii Ayv + l)
r0

/:

< [ k2{\)\T\-l,2e-TXN^ dr
J — 1 / (4/LXi\n + i)

<(2e)_1/2exp |r|_1/2 dr
\4/iiAAr+1/ J_i/(4MiAjv+1)

= {2m)-1/2e~1/2\exp ■

Combining (6.19) with the last estimate in (6.20), we are led to the bound

(6.20)

/

0
|(2^1AQiV)1/2e2AtlAr|e-TA'v4'v dr

(6.21)
< [(2/xi)1/2(2/X! -tnZn) 1 + (2/ii) 1/2]AN+ie 1/2exp(~^f)

which, in conjunction with the last estimate in (6.16), i.e.,

|A1/4(T0(PO1)-T0(PO2)|

r°
< Af2(l +0(2mi)_1/2|A1/4p(0)| / \{2^AQN)l/2e2^lAT\e-TXN^N dr

J — oo

serves to establish (3.26) with l' given in (3.27 a,b,c). □
Proof of Lemma 6.5. We now want to establish that with an again given by (3.25),

and assumed (*for now) to be positive, the estimate (3.28) holds for <fo,(fo G Hb,i and
Po £ PjvZ)(A1/4), provided L, in (3.28), is given by

L = ^<2e-"V+/,2-^"V).

We begin by setting
Pi = p(ij Po), u, = p; + <j>i(p^ (6.22)

for z = 1,2, and p = pi — p2- For p(t) the initial-value problem (6.11) is again applicable,
and, thus, so is the first estimate in (6.12). However, if we once again make use of Lemma
6.2, i.e., of (6.4b) as well as (6.5), we have

|A-1/4(F(ui) - F(u2))| < M2|Al/4u, - A'/4u2|

< M2(|A1/4(pi - p2)| + |A1/40i (p!) - A1/402(p2)|)

< M2(|A1/4(p! - p2)| + |A1/4^i(pi) - A1/40i(pi)|
(6.23)

+ |A1/40i(p2) - A1/4(fo(p2)|)

< M2[( 1 + 01 A1/4(pi - p2)| + 1101 - <fo||]
= M2[(l + /)|A1/4p| + 110! - (/>2||],

where ||(fo — (fo|| is given by (3.11).
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Using, once more, the elementary estimate

\A^p\ = lA^A1/^ < Aj/2|A1/4p|,

we can now combine the first estimate in (6.1'2) and the last estimate in (6.23) to produce
the differential inequality

iSlA'/V + ̂ IA (624)
> -Ma(l + i)A^/2|A1/Jp|2 - tl.lj'lit, - <#>21| |A"4p|.

From (6.24) we easily obtain

^lA^pl + (2/i1AJV + M2( 1 + Z)Aj/2)|A1//4p| > -Af2A^2||0i - 02||. (6.25)
at

However, p(0) = 0; so integration of (6.25) from zero to r < 0 yields the estimate

|A1/4p(r)| < M2A^2(£jvA;v)_1(exp(—£jvAatt) - 1)||0! - 02|| (6.26)

where £jv — 2/xi + M2(l + ?)AW1/2. From (6.23) and (6.25) we now deduce the following
sequence of estimates (using, once more, the explicit representation of T given by (3.21)):

|A1^4(T0i(Po) — T02(po))|

< [ |A1/4e2"lArQJV(F(u1)-F(u2))| dr
J — OO

< [' |(2AtlAQJV)1/2e2^AT| • |A"-1/4(F(u1) - F(u2))| dr
J — OO

< (2Ml)-1/2M2 f {|(2/xiAQiv)1^2e2MlAT|
J — OO

x K1 + 0lAl/4PWI + Il0i - 02II]} dr
<(2Ml)-1/2M2||01-02|j

x f° |(2/i1AQw)1/2e2^Ar| [l + (l + /)^A"1/2e-TAw^
i-oo L ^1

< (2/Ui)~1/2M2||</)1 — 021|

|(2mAQ w)1/2e2^Ar|dr

dr

4- [° |(2/iiAQw)1/2e2^lAr|(1 + 0^A-1/2e-TA"«N dr
J—OO

Applying (6.21), and the bounds for |(AQjv)#eTAQw | expressed by (6.7a), to the last
estimate above, we deduce that

|A1/4(T01(po)-T02(p«l))|
<(2Mi)-1/2M2||01-02||

x[2e-1/2(2/,l)-i/2A-V2 + ((2mi)1/2(2/x1 - A^n)-1 (6'27)

+ (2^1/2))e"1/2A ~1+/12erjvijv/(4"l)]
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or
|A1/'4(T<^1(po) — T</>2(Po))|

< ~(2,e-1'2^ + A- 021| (6-28)
L[i\

= i||01-02||

where

and V is given by (3.27a). □
We are now in a position to prove Theorem 6.1, i.e., that T : Hf, i '—>° Hb.i and is a

strict contraction on Hb,i- From what has been established in Lemmas 6.1-6.5 it follows
that we may immediately deduce the validity of Theorem 6.1 once we establish Lemma
6.6.

Proof of Lemma 6.6. The goal is to show that for 0 < I < 1, if

A^-A^2 >/ci/(2Ml), (6.29a)

A]f > k2/(2Mi), (6.29b)
with k\,k2 given as per (3.29), then

cjn > 0, I' < I, L<\. (6.30)

The positivity of <x/v enables us to deduce that the estimate (6.28) is valid, while V < I
coupled with (3.26) yields the fact that Tcj) G Hb.i if 0 S Hb,i] finally, L < \ and (6.28)
imply that T is, in fact, a strict contraction on Hb,i- We begin with the sign of an, and
note that the inequality

<jjv = 2/x!(Ajv+i — Ajv) — M2(l + l)X]y2 > 0

is equivalent to the statement that

2/Ui — tn£,n > 0 (6.31)

where rjy and £/v are given, respectively, by (3.27b,c). If (6.31) holds, however, then

I' = M2( 1 + /)A"1+/12[(2Ml)-1 + (2Ml -

< M2(l + OAjv+i [(2mi) 1 + (2^i ~ r/v£jv) X]i

in which case, to obtain I' < I, it suffices to show that

(2Ml)-1M2(l + I)X-W < 1/2 (6.33a)

and
M2(l + l)X~^ < \l{2Ml - rNZN). (6.33b)
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Now, (6.33a) can be written in the form

(2/ii)_1fci < fci = 2M2(1 + l)r\ (6.34)

and if (6.34) holds then (6.33b) can be written as

 ^ /2k\XN+1 < 2hi - tn^n

or, equivalently, as

kiX^+i - 2/xi + 2HirN + Af2( 1 + l)X~^r^2 < 0. (6.35)

Assuming that (6.29a) holds or, equivalently, that

2nir)i2 + kiX^H < 2fii, (6.36)

we find that (6.35) holds, i.e.,

kiXN_h — 2/ii + 2/xirjy + ^2(1 + OAjv+i rjv

< kiXpj^ — 2m + 2mrN + kiXjy^ r J (6.37)
< kiX^i - 2m + 2mr^2 < 0.

However, it is easily seen that both (6.31) and (6.34) are direct consequences of the
spectral gap condition (6.29a). Thus if (6.29a) holds, then both cr^ > 0 and V < I. The
precise sequence of steps delineated above may be ordered as follows:

(i) (6.29a) =>- (6.31) => I' < I if (6.33a) and (6.33b) hold.
(ii) (6.29a) =*» (6.34) <=> (6.33a).
(hi) (6.29a) (6.36) => (6.35) (6.33b).

Finally, in order to show that L < 1, so that T is, in fact, by virtue of the estimate
(6.28), a contraction map on the complete metric space Hb,i, it suffices to demonstrate
that

L = ||(2e~1/2Aw+* + AwV2r) <; I (6'38)

Since V < I, however, and A^j > X1^2,

by virtue of the hypothesis (6.29b) and the explicit form of k2 as given in (3.29). This
completes the proof of Lemma 6.6 and, as a direct consequence, the proof of Theorem
6.1 as stated in §3. □
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7. Existence of the inertial manifold. In this section we will complete the proof
of the existence of an inertial manifold for the bipolar viscous equations by demonstrating
the validity of Theorem 7.1, as stated in §3. As a consequence of Theorem 6.1, we know
that the mapping T is, in fact, a (contraction) map of the complete metric space Hb i
into itself provided (6.29a,b) hold with ki,k'2 given by (3.29); thus T has a fixed point
4>* G Hbj, and we want to show that JV[ = graph <p* is the required inertial manifold.

From the definition of Htj it should be clear that A4 is a finite-dimensional Lipschitz
manifold, and it is an easy exercise to show directly that M is invariant under the action
of the solution operator S^^t), i.e., S/l} (t)M C A4. Therefore, to complete the proof
that JA is an inertial manifold for the bipolar viscous equations it suffices to show that
M. attracts exponentially all orbits of the modified initial-value problem (3.7), (2.19),
i.e., that, for u0 £ D(a1-74), 3 to > 0 such that for t > to the estimate (3.30) applies;
this will be accomplished by making use of the squeezing property for the orbits of (3.7),

(2.19).
Proof of Theorem 7.1. We begin by noting that it is a straightforward matter to

establish a squeezing property for orbits of the modified problem (3.7), (2.91) which is
entirely analogous to the one proven in Theorem 5.1 for the initial-value problem (2.18),
(2.19); more specifically, for solutions u(t),\r(t) of (3.7), (2.19) satisfying (3.3) for some
M > 0, if we are given 7 > 0, then, for any t € [0,T] and every N, 3 c,, i = 1,2, such
that either (3.4) holds or (3.5) does with c; replacing Cj, i = 1,2. For the orbits of (3.7),
(2.19) satisfying (3.3), for some M > 0, (5.1) will also hold, for Cm replaced by some
Cm > 0, and t, e [0,T]; thus, setting

. (m In 2 t\to = mm I __2 , - I (7.1)
\ Cm /

we obtain, from this modified version of (5.1), the estimate

|A~1/4(u(t) - v(£))| < 2|A~1/4(u(0) - v(0))|, t<2t0- (7.2)

If we set 7 = ^ and choose N > No, where No satisfies

A7V0+1 > (ciMi<o)~1ln(2c2), (7.3)

then from the modified forms of (3.4), (3.5) we will have either

|QArA"1/4(u(i) - v(t))| < i|PyvA-1/4(u(£) - v(t))I (7.4)

or
|A-1/4(u(£) - v(t))| < AIA-^XO) - v(0))| (7.5)

where u0,v0 € D(A1/4), |A1/,4u(0)| < M, |Al//4v(0)| < M, and to <t < 2to.
We now denote the distance between any point w in the absorbing ball Br2 in £>(A'/4)

and the manifold A4 by

dist(w,Al)= inf {|A"1/4(w-v)|}. (7.6)
v£M



INERTIAL MANIFOLDS OF BIPOLAR VISCOUS FLUIDS 531

To show that, M attracts all orbits of the modified initial-value problem (3.7), (2.19)
exponentially, it suffices to prove that M attracts, exponentially, all orbits contained in
the absorbing ball Br2, i.e., all orbits u(t) such that |A1/,4u(f)| < r2, t £ [0,oo). So, let
v(0) = vq e M, v0 = P/vv0 + 0(PatVo), be such that

dist(u(0),M) = |A"1/4u(0) - v(0))|. (7.7)

Obviously,
|PivA1/4v(0)| < r2, (7.8)

so that, with b > 0 as in the definition of H^.u

|A1/4v(0)| <r2 + b, (7.9)

in which case, for t > 0,

|A1/4v(t)| = |A1/4^1(t)v(0)| <r2 + b, Vt > 0. (7.10)

Choosing M > 0 (in the statement of the squeezing property for the orbits of (3.7),
(2.19)) to be M = r2 + b, we apply the estimates recorded in (7.4), (7.5) to S'Ml(ii)u()
and S'Ml(iti)vo, with to < t\ < 2tq: if (7.5) applies, then

dist(SMl(£i)u0, M) < \A~1/4(Stll (fx)uo — (ii)v0)|

< i|A"1/4(u0 - v0)| = |dist(u0, M).

On the other hand, if (7.4) holds, then we have the following sequence of estimates:

dist(S'Ml (ii)u0, M)

< |A^1/4(S,AJl(i1)u0 - (Pat^j(ii)v0 + 4>{Y>NS^(ti)w0)))\

< |A-1/4(QAr5Ml(i1)uo|0(Pw5A11(t1)vo))|

< |A"1/4(Q.v5Ml(t1)u0 - Qiv^^Jvo)!

< |A^1/4(0(PAf^1(t1)uo-0(PN5All(^)vo)))|

< (1+ |)|A-1/4(PN5m(i1)u0 - PjvS^iiH)!.

(7-12)

Taking I = | in the last estimate, we find that

dist(5f/il (ti)u0, M) < i|A~1/4(5,AI1(<1)u0 - S^(ti)v0)|

< \ ■ 2jA"1/4(u0 - v0)| < \ dist(u0, M),
(7.13)

for to < ti < 2to- Iterating upon the procedure delineated above, we have, therefore, for
to < h < 210,

dist(S,/Lll (nti)uo, M) < (i)n dist(u0,M) —> 0 (7-14)
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as n —* oo. For arbitrary t > to we may write t = nt\ for some t\, to < ii < 2t0, in which
case

dist(SMl (£)u0, M) < (^)ndist(u0, A1)

< exp In2) dist(un,M) ^ ^

< exp dist(u0, M),

thus establishing the required exponential convergence of orbits of the modified initial-
value problem (3.7), (2.19)—and, hence, of the original problem (2.18), (2.19), as well—to
the manifold M. that is generated as the graph of the unique fixed point of T. The proof
of the existence of an inertial manifold for the space-periodic version of the nonlinear,
incompressible, bipolar viscous model is now complete. □
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Appendix: The spectral gap condition. We will examine, here, the validity of
the spectral gap condition (6.29a) with respect to the operator A as defined by (2.3),
(2.4). Thus, let ft — [0, L\n, L > 0, n = 2, 3, and define Hper(f2) and Vrper(f2) as in (1.16).
We consider, in Vper(f2), the eigenvalue problem

f AAu + Ap — Au,
{ yu = 0. <A1>

Definition. The number A is an eigenvalue of A if 3 u £ Vrper(n), u ^ 0, such that

f Au • Avdx = A I u • vdx, Vv 6 Vper(f2). (A2)
Jn Jq

Of course, u is then called an eigenfunction of A corresponding to the eigenvalue A. We
begin with the case n = 3.

Lemma Al. If n = 3, then the numbers

f 1671"^ 1
< (nf + nj + n|) 7^ 0 | rii, i = 1,2,3 are nonnegative integers >

are eigenvalues of A.
Proof. Let n\, ri2, n3 be three nonnegative integers with n\-\-n\+n\ ^ 0. We first show

that A = (16tt4/L4)(rii + n? + n^) is an eigenvalue of A with corresponding eigenfunction
u of the form

8

Ui (*^ 1 ? <^2 ? *^3)) ^ 1)2,3, (-^-^)
0 = 1
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. , . 2-rrni 2nn2 2ttn3
fi(xi,x2,x3) — cos -xi cos —— x2 cos —— x3,

2irni 2irn2 . 2im3
f2(xI,x2,x3) = cos cos —^—2:2 sm —— x3,

27xni . 2irn2 2ttti3
J3{xi,x2,x3) = cos—xisin—z2cos—x3,

, , \ 2-irrii . 2nn2 . 2ttti3
Ji{x I,x2,x3) = cos —j~x 1 sin —j~x 2 sin —— x3,

, , . 2im\ 2im2 2im3
f5(xi,x2,x3) = sin —j—x 1 cos ~—j—x2cos —r~x3,

, . , . 27m! 2ttti2 . 2im3
j6(xi,x2, x3) = sin —jj~x\ cos ~j^X2 sin "T-^

, 27rni . 2ixn2 27rn3
j7{x\,x2,x3) = sin ~~j^~X\ sin —J^~x2 cos —x3,

, , . 27rni . 2irn2 . 2ttn3
fs{xi,x2,x3) = sm—j—xism—j—x2sm—jr-x3.

By direct calculation, (A3) and (A4) lead to

dui 2im\

d2Ui (2irrij
dx) \ L

2
Ui

Therefore,

(A4)

A r { — Cii/5 - Ci2fe — Ci3/7 - CiifsOX 1 L (A5)

+ Cis/i + Ci6/2 + Cijf3 + Cjs/i},

-K — —f-~{ ~ Cil/3 - Ci2f4 + Ci3f\ + Ciif2dx2 L (A6)
— ̂ 5/7 — Ci6/s + Ci7/5 + Cis/eli

— —r-^"{ — Cnf2 + Ci2fi — Ci3f4 — Cuf3ox3 L (A7)
— Cisfa + Cisf§ — Ci7/§ + C,8/7},

so that for i, j = 1,2,3 it is easily verified that

(A8)

'27r\4AAui = ( — J (nl + nl + nl)2m, i = 1,2,3. (A9)
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Now, employing (A5)-(A7), we have

3 f)
V • u = ^ = ^(niCis + n2C23 + n^C^fi

i=1 1

+ x"(«iCi6 + TI2C24 — n3C3\)f2

+ ^-{n\Cn — n2C2i +

+ ^(niCis " n2C22 - n3C33)/4 (A10)

+ T"(—niCn + 712C27 +

+ ^{—n\C\2 +n2C2$ — n-iC-^fa

+ ^f-(—niCi3 — n2C25 + n-iC^h
+ ^(—niCi4 — n2C2o + n-j,Cw)fs.

For nf + n| + n3 0 the condition V • u = 0 yields the algebraic system

^iCi5 + n2C2 3 + n3C32 — 0,

«iCi6 + n2C2 4 — n3C3i = 0,

n\Cir ~ W2C21 + TI3C34 = 0,

^iCis — TI2C22 ~ n3C33 = 0,

— niCn + n2C"27 + ^3^36 = 0,

— niCi2 + n2C2 8 — 713C35 = 0,

— ̂ iCi3 + n>2C25 + TI3C38 = 0,

— niCn — n2C26 — n3C;u — 0.

Since (All) is a homogeneous system of eight equations in twenty-four unknowns, it
follows that (167r4/L4)(n\ + n\ + n|) is an eigenvalue of A with sixteen corresponding
independent eigenfunctions of the form given by (A3), (A4). Next, if n\ =0 but n^+n^ ^
0, then by virtue of (^3) we will have /5 = /6 = fi = fs = 0. By virtue of (A9), V-u = 0
now implies that

( n2C23 + n3C32 = 0,

I 7i2C24 — //;(( ' i 1 = 0,I 2 24 (A12^

—n2C2i + 713 C34 = 0,

, -n2C22 ~ n-iCxi = 0.

Therefore, as a consequence of (A9) and (A12) it follows that, with n 1 = 0 and n2 + 713 7^
0, (I67r4/L4)(nf + n2 + n3) is an eigenvalue of A with eight corresponding independent
eigenfunctions of the form (A3). In an entirely analogous manner we can show that if
n2 = 0, n\ + n3 7^ 0, or n3 = 0, rii,n2 ^ 0, then (167r4/L4)(nj + n2 + n3) is still an
eigenvalue of A with eight corresponding independent eigenfunctions of the form (A3).
Finally, if rii = n2 = 0, n3 ^ 0, then /3 = /4 = f5 = /7 = /8 = 0, while V • u = 0 implies
that

n3C:i2 = 0, —n3C3i =0«C32 = C31 = 0. (A13)
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Thus, for n\ = ri2 = 0 and 77-3 ̂ 0, /LA)(n\ + n\ + 773) is an eigenvalue of A with
four corresponding, independent, eigenfunctions of the form (A3); the analogous result
holds for the remaining two cases, i.e., 77i = 773 — 0, 772 7^ 0, or 77.2 = 773 = 0, 77.1 ̂ 0, and
the proof of the lemma is complete. □

Lemma A2. The set of numbers

16774 2 2 2\ 1—+ n2 + n3J r 0 I nii 7 = 1, 2,3 are nonnegative integers >

exhausts all of the eigenvalues of A.
Proof. Suppose that A is an eigenvalue of A and u ^ 0 is a corresponding eigenfunction

(in Vper(fi))- Then u possesses the Fourier expansion

u /* ^ U(n1,n2,n3) (A14)
ni ,ri2 ,ri3

nonnegative integers

with each U(ni n2,n3) of the form (A3), (A4). If u 6 Vper(fi), then

/ udx = 0 (A15)
Jn

and Vn ^ 0, n = (m, 772,773), we also have

/ U(n1,n2,n3) dx = 0. n ^ 0. (A16)
Jn

Therefore, by virtue of (A14) and (A15),

/ u(o,o,o)rfx= / udx- / Vu(niin2in3)dx, (A17)
Jn Jn Jn Lnn^O

so that
/ u(o,o,o) dx = 0. (A18)

Jn
Since U(0jo,o) is a constant vector, it follows from (A18) that U(0jo,o) = 0- Also, since we
require that V-u = 0, Vn = (771,772, TI3), with the rij nonnegative integers, V*U(„i ra2 ri3) =
0; that this last statement is true follows from the fact that

V • u = 0 => f (V • u)2 cbc = 0
Jn

53 / (V-u(ni,n2,n3))2dx = i
, Jn

(A19)=>
n=(ri! ,n2,n3) '

as well as the fact that, by virtue of (A3) and (A4), for n ^ n',

/ (^ ' u(ni,n2,n3)) * " u(ni ,n2 ,n3)) = 0'
Jn (A20)
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Since V • U(ni,n2>„3) = 0, a.e. in ft, we have u(niin2,n3) G Vper(ft), Vn ^ 0. However,
u ^ 0 implies that there exists {n\,n'2,n'^ ^ 0 such that U(„lin2)Jl3) 7^ 0. We now claim
that A must be of the form

_ 167T1 ,2 ,2 ,2A — J^4 (nl > n2 ' n3 /)

to see this we note that, by virtue of the definition given above,

/ Au • Av dx = A / u • v dx, Vv6 Vper(n);

so, taking v = u(ni we obtain

Au-Au{n'iy2in>)d-x. = X u-u (n^n^n'3)dx.. (A21)
J u Jn

Integrating the first term on the left-hand side of (A21) by parts and using the fact that
u(ni,ni,ni) satisfies (A9), we have

(A22)
/ Au • Aujn^^y dx — / u- AAu(n'dx

J n Jn
167T4 ,2 ,2 ,2s [ J

= +n2 + %) J^U-U(n[,n'2,n'3)dyL;

so, by (A21), (A22),

/ u-u(ni2 „,2 n,2)dx = 0. (A23)
Jn

llSn,(n?+n?+n?)-\
L4

However, using (A14) in conjunction with (A3), (A4), we get

/ u-u („'linj,nydx= / |u(nitn^„j)| dx ^ 0, (A24)
Jn

and the required result follows directly from (A24). □
Remark. The case N — 2 may be handled in a manner similar to the case n = 3.

We consider functions of the form

4

Uj = }jCijfj{x1,x2), i= 1,2, (A25)
i= 1

with
r / \ Z7m 1/1 (£1,2:2) = cos —-—re 1 cosL L

-X2,

, , , 27rni . 27rn2
j2(Xl,X'2) = cos —j—%1 sin —j—X2,

f3{xi,x2) = sin -^p-xx cos
(A26)

L 1 L
-2:2,

, , s 27rni . 27Tn2
, /4(si, 3:2) = sm —ii sm —^2-

The result for n — 2 which corresponds to Lemmas Al and A2 for n = 3 is
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Lemma A3. For n = 2, the set of numbers

167T4 2 2\ i • 1-jF4~(ni + n2.) r1 0 I nhn2 are nonnegative integers >

contains all the eigenvalues of A.
Remark. Once we have shown that for nonnegative integers rii (i — 1,2,3) the

eigenvalues of A consist of the numbers

A = +nl +n§) ^ 0 (n = 3),

A = ^-(n? + n|)^0 (n — 2),

the validity of the spectral gap condition is a consequence of standard known results on
the difference of consecutive numbers which can be expressed as the sum of squares of
nonnegative integers, e.g., [63]; in fact, as a consequence of such results it follows that, for
the bipolar problem, condition (i) of Theorem 6.1 is satisfied, in dimn = 2, for arbitrary
fii > 0, if is sufficiently large, but in dimn = 3 only when n\ is sufficiently large.
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