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Abstract— This paper deals with the attitude estimation and
control problems for rigid bodies, using inertial vector mea-
surements. First, we revisit the attitude estimation algorithm
on SO(3) that has been recently proposed in the literature,
and propose some practical extensions and new insightful unit-
quaternion based proofs. Then, we propose an attitude stabi-
lization control scheme using only inertial vector measurements.
The originality of this control strategy stems from the fact that
the explicit reconstruction of the attitude as well as the angular
velocity measurements are not required anymore.

I. INTRODUCTION

The attitude control problem of rigid bodies has been
widely studied over the last decades. The interest devoted
to this problem is motivated by its technical challenges as
well as its practical implications in aerospace and marine
applications. The main technical difficulty encountered in
this type of mechanical systems may be attributed to the
fact that the orientation (angular position) of the rigid body
is not a straightforward integration of the angular velocity.
Nevertheless, the efforts of the research community in this
field paid-off and led to a multitude of solutions to this
problem, especially with the major help of the (singularity-
free) unit-quaternion representation which has proven to be
an instrumental tool (see, for instance, [10], [18], [23]).
As it is customary in the position control of mechanical
systems, the majority of the control schemes developed
for rigid bodies are (roughly speaking) of Proportional-
Derivative (PD) type, where the proportional action is in
terms of the orientation and the derivative action (generating
the necessary damping) is in terms of the angular velocity.
The requirement of the angular velocity can be removed
through an appropriate design, usually based on the passivity
properties of the system as done, for instance, in [3], [5],
[10], [14], [18] and [22]. The explicit use of the attitude
(e.g., the unit-quaternion) in the control law calls for the
development of suitable attitude estimation algorithms that
reconstruct the attitude from the measurements provided by
the appropriate sensors (depending on the type of the rigid
body and its domain of application). Usually, for small scale
Unmanned Aerial Vehicles (UAVs), due to cost and weight
constraints, we make use of small, compact and relatively in-
expensive inertial measurement units (IMUs), attached to the
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rigid body, equipped with three-axis accelerometers, magne-
tometers and gyroscopes. The gyroscopes provide the angular
velocity of the rigid body, while the accelerometers and
magnetometers provide, respectively, vector measurements
of the acceleration and the earth magnetic field directions in
the body attached frame. In the present paper, by “vector
measurements” or “vector observations” we mean body-
frame measurements of known vectors (or directions) in the
inertial frame.
Initially, the attitude determination from vector observations,
has been tackled as a static optimization problem for which
several solutions, based on Wahba’s problem, have been
proposed [16]. These algorithms have been refined, later on,
incorporating filtering techniques of Kalman-type to handle
the measurement noise [17]. Extended Kalman filters have
been extensively used in aerospace engineering and have
proven to be the backbone of satellite attitude estimation
algorithms (we refer the reader to the survey paper [4] for
further details). On the other hand the most simple and yet
practical dynamic IMU-based attitude estimation approach
is based on linear complementary filtering [1], [19], where
the vector measurements are fused with the angular velocity
measurement to recover the orientation of the rigid body for
small angular movements. This approach has been extended
to nonlinear complementary filtering for the attitude estima-
tion from vector measurements in [6] and [11]. The gyro bias
estimation has also been addressed in [21] and incorporated
in the attitude estimation algorithms developed in [11]. The
IMU-based attitude estimation techniques proposed in [11]
are effective for quasi-stationary flights where the linear
acceleration of the body is assumed to be relatively small
compared to the gravitational acceleration. This restriction
has been overcome in the recent work of [7] and [12] based
on the symmetry preserving observers [2], where the linear
velocity of the rigid body is used together with the IMU
measurements to recover the attitude in accelerated flights.

In the present paper, we revisit the vector measurement
based attitude estimation algorithm, initially proposed in
[6] and [11], to which we bring some additional practical
insights and new proofs using unit-quaternion. On the other
hand, as explained earlier, most of the existing dynamic
estimation algorithms (for small scale UAVs) make use of
the whole IMU’s information to reconstruct the orienta-
tion of the rigid body. Therefore, a natural question that
may arise is whether it makes sense to use velocity-free
attitude controllers such as those proposed, for instance,
in [10], [18] and [22], since the angular velocity will be
used (anyways) to recover the attitude via an appropriate
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IMU-based estimation algorithm. In this context, the main
contribution of the present paper, is the development of a
new attitude stabilization control scheme that uses explicitly
vector measurements without requiring (either directly or
indirectly) the velocity measurement. This controller is a
“true velocity-free ” scheme since neither the velocity nor
the unit-quaternion (representing the body’s orientation) are
used in the control law.

II. BACKGROUND

A. Equations of motion

In this work, we consider a rigid body whose rotational
dynamics are governed by

ΣR :

{
Q̇ = 1

2Q⊙ ω̄,
If ω̇ = τ − S(ω)Ifω,

(1)

where the vector ω̄ is the quaternion associated to three-
dimensional vector ω, denoted by (0, ω), where ω denotes
the angular velocity of the rigid body expressed in the body-
attached frame B. If ∈ R3×3 is a symmetric positive definite
constant inertia matrix of rigid body with respect to B.
The external torque applied to the system expressed in B
is denoted by τ .
The unit quaternion Q = (q0, q), composed of a vector com-
ponent q ∈ R3 and a scalar component q0 ∈ R, represents the
orientation of the inertial frame I with respect to the body-
attached frame B, and are subject to the constraint qT q+q20 =
1. The rotation matrix, related to the unit-quaternion Q, that
brings the inertial frame into the body-attached frame, can
be obtained through the Rodriguez formula as

R(Q) = (q20 − qT q)I3 + 2qqT − 2q0S(q) (2)

where I3 is the 3-by-3 identity matrix and S(x) is the skew-
symmetric matrix associated to the vector x ∈ R3 such that
S(x)V = x × V for any vector V ∈ R3, where × denotes
the vector cross product.

B. Quaternion preliminaries

The set of quaternion Q is a four-dimensional vector space
over the reals, which forms a group with the quaternion
multiplication denoted by “⊙”. The quaternion multiplication
is distributive and associative but not commutative [15]. The
multiplication of two quaternion P = (p0, p) and Q = (q0, q)
is defined as

P ⊙Q = (p0q0 − pT q , p0q + q0p+ p× q), (3)

and has the quaternion (1,0) as the identity element. Note
that, for a given quaternion Q = (q0, q), we have Q⊙Q−1 =

Q−1 ⊙Q = (1,0), where Q−1 = (q0,−q)
∥Q∥2 .

Note that in the case where Q = (q0, q) is a unit-quaternion,
the inverse is given by Q−1 = (q0,−q).
Throughout this paper, we will denote by X̄ := (0, X) the
quaternion associated to the three-dimensional vector X . A
vector xI expressed in the inertial frame I can be expressed
in the body frame B by xB = RxI or equivalently in terms of
unit-quaternion as x̄B = Q−1⊙ x̄I⊙Q, where x̄I = (0, xI),

x̄B = (0, xB), and Q is the unit-quaternion associated to R
as per (2).

III. ATTITUDE ESTIMATION

A. Attitude estimation using raw vector measurements

In this section, we derive an attitude estimation algorithm
that relies on set of vector measurements in the body-attached
frame associated to a set of known inertial measurement.
We assume that the angular velocity as well as the vector
measurements are known.
Consider n ≥ 2 measured vectors bi in the body attached
frame, corresponding to n known inertial vectors ri such
that bi = Rri or equivalently in terms of the unit-quaternion

b̄i = Q−1 ⊙ r̄i ⊙Q. (4)

Assume that we have two non-collinear vectors among the
measured vectors. We consider the following unit-quaternion
based attitude observer

˙̂
Q =

1

2
Q̂⊙ β̄, (5)

β = ω −
i=n∑
i=1

γiS(b̂i)bi, (6)

where γi > 0, and b̂i is the vector part of ¯̂bi = Q̂−1⊙ r̄i⊙Q̂.

Note that this attitude observer has been proposed in
[6], [11] in terms of the rotation matrix instead of the
unit-quaternion. Here the result of [6] is revisited and an
alternative proof, in terms of the quaternion, is provided. In
the sequel, we will denote the orientation error by R̃ = R̂TR
which corresponds to the quaternion error Q̃ = Q⊙ Q̂−1.

Our result is stated in the following proposition.
Proposition 1: Consider the observer (5)-(6), with n ≥ 2

vector measurements bi, corresponding to the inertial vectors
ri, i = 1, . . . , n. Assume that there are at least two non-
collinear vectors among the n inertial vectors. Assume that
the angular velocity ω is bounded. Then
i) limt→∞ R̃(t) = I (equivalently limt→∞ Q̃(t) =

(sgn(q̃0(0)), 0)), for almost any initial condition (i.e.,
except for a set of Lebesgue measure zero described by
Ψ = {Q̃ = (q̃0, q̃) ∈ S3 | q̃0 = 0}).

ii) The set Ψ is forward invariant and non-attractive.
iii) If q̃0(0) = 0, Q̃(t) will converge to one of the equilibria

Q̃ = (0,±q̃), where q̃ are the unit eigenvectors of the
matrix M =

∑n
i=1 γirir

T
i .

Proof: Consider the following Lyapunov function can-
didate

V =
1

2

n∑
i=1

γib̃
T
i b̃i, (7)

where b̃i is the vector part of the quaternion

¯̃
bi =

¯̂
bi − b̄i. (8)
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The time derivative of (7), in view of (1) and (5), is given
by

V̇ =
n∑

i=1

γib̃
T
i (S(b̂i)β − S(bi)ω)

=
n∑

i=1

γib̃
T
i (S(b̂i)β − S(b̂i)ω + S(b̃i)ω)

=

n∑
i=1

γib̃
T
i S(b̂i)(β − ω)

(9)

where we used the fact that

d

dt
¯̂
bi =

d

dt

(
Q̂−1 ⊙ r̄i ⊙ Q̂

)
= (0, S(b̂i)β), (10)

and

d

dt
b̄i =

d

dt

(
Q−1 ⊙ r̄i ⊙Q

)
= (0, S(bi)ω). (11)

Using (6) and the fact that S(b̂i)bi = −S(b̂i)b̃i, the
Lyapunov time-derivative (9), becomes

V̇ = −(

n∑
i=1

γiS(b̂i)bi)
T (

n∑
i=1

γiS(b̂i)bi), (12)

It is clear that all signals involved in the control scheme are
bounded, and V is nonincreasing and converges to a constant
as t goes to infinity. Due to the boundedness of V̈ , one can
conclude that

lim
t→∞

n∑
i=1

γiS(b̂i)bi = 0. (13)

One can show that

S(b̂i)bi = R̂S(ri)R̃ri (14)

with R̃ = R̂TR, where R and R̂ are the rotation matrices
associated, respectively, to Q and Q̂. Therefore, in view of
(14), equation (13) leads to

lim
t→∞

n∑
i=1

γi(ri × R̃(t)ri) = 0. (15)

It is clear, from (15), that if all vectors are collinear, R̃
would be any rotation matrix about the axis collinear to ri.
Therefore, at least two non-collinear vector measurements
are required to avoid this situation. In this case, it is clear
that R̃ = I3 (or equivalently Q̃ = (±1, 0) ) is an equi-
librium which is the desired one. However, there are other
“undesired” equilibria as it will be shown next.
Using the unit quaternion Q̃ corresponding to R̃, the equi-
librium equation

∑n
i=1 γi(ri × R̃ri) = 0, leads to

n∑
i=1

γiS(ri)((q̃
2
0 − q̃T q̃)I3 + 2q̃q̃T − 2q̃0S(q̃))ri = 0. (16)

which reduces to
n∑

i=1

γiS(ri)(q̃q̃
T − q̃0S(q̃))ri = 0. (17)

Multiplying the previous equation by q̃T ̸= 0, and using the
properties of the skew symmetric matrix, one gets

− q̃0q̃
TWq̃ = 0. (18)

where W = −
∑n

i=1 γiS(ri)
2 =

∑n
i=1 γi(r

T
i riI − rir

T
i ).

Since W is positive definite as long as we have at least two
non-collinear vectors ri, it is clear that the equilibria are char-
acterized by q̃0 = 0. In this case, we have “undesired” equi-
libria given by Q̃ = (0,±q̃), where q̃T q̃ = 1. In fact, in the
case where q̃0 = 0, the equilibrium equation

∑n
i=1 γi(ri ×

R̃ri) = 0 is equivalent to
∑n

i=1 γiS(ri)q̃q̃
T ri = 0, which

can be written as

S(q̃)Mq̃q̃T = 0, (19)

with M =
∑n

i=1 γirir
T
i . Multiplying (19) by q̃ ̸= 0 and

using the fact that q̃T q̃ = 1, one gets

S(q̃)Mq̃ = 0, (20)

which shows that, the vector parts q̃ of the “undesired”
equilibria are the unit eigenvectors of M .
Now, let us show the set Ψ is forward invariant and unstable
(non-attractive).
The time derivative of the quaternion error Q̃ = Q ⊙ Q̂−1

corresponding to R̃, is given by

˙̃Q =
1

2
Q̃⊙ ¯̃ω (21)

where ω̃ = R̂T (ω−β). In particular, in view of (6) we have

˙̃q0 = − 1
2 q̃

T ω̃ = −1
2 q̃

T R̂T

n∑
i=1

γiS(b̂i)bi

= − 1
2 q̃

T R̂T

n∑
i=1

γiR̂S(ri)R̃ri

= − 1
2 q̃

T

n∑
i=1

γiS(ri)R̃ri

= −q̃T
n∑

i=1

γiS(ri)(q̃q̃
T − q̃0S(q̃))ri

= q̃0q̃
TWq̃,

(22)

Therefore, it is clear that ˙̃q0 = 0 for q̃0 = 0, this shows the
invariance of the set Ψ. One can also show that

d

dt
(q̃20) = 2q̃20 q̃

TWq̃ ≥ 0, (23)

which shows that |q̃0| is non-decreasing and hence if q̃0(0) ̸=
0, q̃0(t) will never cross zero for all t ≥ 0, and this shows
that the set Ψ is a repeller.

B. Attitude estimation using filtered vector measurements

In practical applications, the measurements are often con-
taminated with noise. A common practice, well known by
control engineers, is to introduce low-pass filters and use the
filtered signals in the estimation and control algorithms. This
filtering procedure is routinely used in control applications,
often without any rigorous proof of stability.
In this section, instead of using raw vector measurements in
the estimation algorithm of Proposition 1, we suggest the use
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of filtered vector measurements. The filter parameters can be
selected by the designer to set up the desired noise cut-off.
The overall closed loop stability results of the new scheme
remain similar to those of proposition 1. Moreover, as it will
become clear later, the additional filter brings in an extra
degree of freedom, instrumental in breaking the singularity
at the undesired equilibrium characterized by q̃0 = 0 through
an adequate choice of the filter’s initial conditions. Our new
attitude observer, using filtered vector measurements, is given
in the following proposition:

Proposition 2: Consider the rotational dynamics (1) with
the following observer

˙̂
Q =

1

2
Q̂⊙ β̄, (24)

with β = ω − αψ and ψ is given by

ψ̇ = −αψ + α
i=n∑
i=1

γiS(b̂i)bi, (25)

The vector b̂i is the vector part of ¯̂bi = Q̂−1⊙r̄i⊙Q̂. Assume
that there are at least two non-collinear vectors among the
n ≥ 2 inertial vectors. Assume also that the angular velocity
ω is bounded. Then, there exists α > 0, γ1 > 0 and γ2 > 0,
such that

i) The estimator has the following equilibria: (q̃0 =
±1, q̃ = 0, ψ = 0) and (q̃0 = 0, q̃ = v, ψ = 0), where
v are the unit eigenvectors of M .

ii) The equilibria (q̃0 = ±1, q̃ = 0, ψ = 0) are almost
globally asymptotically stable and the equilibria (q̃0 =
0, q̃ = v, ψ = 0) are unstable.
Proof: Consider the following Lyapunov function can-

didate

V =
1

2

n∑
i=1

γib̃
T
i b̃i +

1

2
ψTψ, (26)

The time derivative of (26), in view of (1), (24), is given by

V̇ =

n∑
i=1

γib̃
T
i (S(b̂i)β − S(bi)ω) + ψT ψ̇

=
n∑

i=1

γib̃
T
i (S(b̂i)β − S(b̂i)ω + S(b̃i)ω) + ψT ψ̇

=
n∑

i=1

γib̃
T
i S(b̂i)(β − ω) + ψT ψ̇

= (β − ω)T
n∑

i=1

γiS(b̂i)bi + ψT ψ̇

(27)
Using (25), the Lyapunov time-derivative (27), becomes

V̇ = −αψTψ, (28)

It is clear that all signals involved in the control scheme
are bounded, and V is nonincreasing and converges to a
constant as t goes to infinity. One can also show that V̈ is
bounded, and hence, one can conclude that limt→∞ ψ(t) =

0. Since the right hand side of (25) is uniformly continuous
and limt→∞ ψ(t) = 0, it is clear that

lim
t→∞

n∑
i=1

γiS(b̂i)bi = 0. (29)

Using the same arguments of the proof of Proposition 1, one
can show that limt→∞ Q̃(t) = (±1, 0), or limt→∞ Q̃(t) =
(0,±v), where v are the unit eigenvectors of M . Therefore,
the closed equilibria are given by

a) Desired equilibria: (q̃0 = ±1, q̃ = 0, ψ = 0)
b) Undesired equilibria: (q̃0 = 0, q̃ = v, ψ = 0), where v

are the unit eigenvectors of M .
Now, let us show that the equilibrium point (q̃0 = 0, q̃ =
v, ψ = 0) is unstable using Chetaev arguments [9]. Let us
define δ ≡ q̃T R̂Tψ, and consider the dynamics of q̃0 and δ
around the equilibrium point (q̃0 = 0, q̃ = v, ψ = 0), where
the quadratic term in ψ has been discarded

˙̃q0 = −α
2 δ

δ̇ = −αδ − 2αηq̃0 + vT R̂TS(ω)ψ
(30)

where η = vTWv and v is an eigenvector of M (i.e., v is
the value of q̃ when q̃0 = 0). Consider the Chetaev function

V = −q̃0δ

whose time derivative, in view of (30), is given by

V̇ = α
2 δ

2 + 2αηq̃20 + αq̃0δ − q̃0v
T R̂TS(ω)ψ

≥ α
2 δ

2 + 2αηq̃20 − α(ϵ1q̃
2
0 +

δ2

4ϵ1 )

−∥ω∥(ϵ2q̃20 + κ2δ2

4ϵ1 )
≥ k1δ

2 + k2q̃
2
0

(31)

where k1 = α
2 − α

4ϵ1
− kωκ2

4ϵ2
and k2 = 2αη−αϵ1 − kωϵ2,

and kω is the upper bound of ω, i.e., ||ω(t)|| ≤ kω . We also
used the fact that ψ and δ are bounded and δ ̸= 0 for ψ ̸= 0,
which guarantees the existence of a finite gain κ > 0 such
that ∥ψ∥ ≤ κ|δ|. Note that Young’s inequality has been used,
with arbitrary ϵ1 > 0 and ϵ2 > 0, to obtain the result in (31).
Pick η sufficiently large such that k1 > 0 and k2 > 0.

Define the set

Br = {x ≡ (q̃0, δ) ∈ [−1 , 1]× R | ∥x(t)∥ < r}

where 0 < r < 1. Note that V̇ > 0 on Br. Let us also define
a subset of Br where V > 0, that is

Ur = {x ∈ Br | V(x) > 0}

Note that Ur is non-empty for all 0 < r < 1. Pick the
initial conditions, around the equilibrium point, such that
x(0) ∈ Ur and V(x(0)) = σ > 0. It is clear that x(t)
must leave Ur since V(x) is bounded on Ur and V̇(x) > 0
everywhere in Ur. Since V(x(t)) ≥ σ, it is clear that x(t)
must leave Ur through the circle ∥x∥ = r and not through the
edges V(x) = 0 (i.e., δ = 0 or q̃0 = 0). Since this can happen
for arbitrarily small r, such as the liberalization is valid, it
is clear that (q̃0 = 0, δ = 0) is an unstable equilibrium.
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Remark 1: The result of Proposition 2 can also be looked
at from the passivity point of view. In fact, it is clear (from
the proof of Proposition 2 that the mapping from (β−ω) to∑n

i=1 γiS(b̂i)bi is passive. Knowing that the passivity is pre-
served for a passive system in cascade with a Strictly Positive
Real (SPR) transfer function, one can take β in Proposition
2 as β = ω−αψ, and [ψ] = H(s)

[∑n
i=1 γiS(b̂i)bi

]
, where

H(s) is any SPR filter.
Remark 2: It is clear that the main advantage of the

filter, besides cleaning the measurements noise, is to relax
the restriction on the initialization at q̃0 = 0 through an
appropriate choice of the initial conditions of the filter ψ(0).
In fact, it is clear that if q̃(0)T R̂(0)Tψ(0) ̸= 0, the manifold
Ψ = {Q̃ = (q̃0, q̃) ∈ S3 | q̃0 = 0}) is not invariant, which
causes the estimator trajectories, initialized on this set to
leave it to ultimately reach the desired equilibrium.

IV. VELOCITY-FREE ATTITUDE STABILIZATION USING
VECTOR MEASUREMENTS

In this section, we assume that the angular velocity ω
is not available for feedback. We assume that we have
n ≥ 2 measured vectors bi in the body attached frame,
corresponding to n known inertial vectors ri such that bi =
Rri or equivalently in terms of the unit-quaternion as given
by (4). We assume that among the n measured vectors, at
least two are non-collinear.
Our objective is to design a control law to stabilize the
attitude of the rigid body (i.e., limt→∞R(t) = I , or
limt→∞Q(t) = (±1, 0)) using only vector measurements
without any knowledge of the angular velocity. Note that the
attitude control of a rigid body using vector measurements,
in the case where a biased angular velocity is available, has
been dealt with in [13].

Let b̃i = b̂i − bi, with b̂i being the vector part of ¯̂
bi =

Q̂−1 ⊙ r̄i ⊙ Q̂, where Q̂ is the unit quaternion generated by
the following auxiliary system

˙̂
Q =

1

2
Q̂⊙ β̄, (32)

with Q̂(0) = (q̂0(0), q̂(0)) being any arbitrary unit-
quaternion, and the input β being

β = −
n∑

i=1

γiS(b̂i)bi. (33)

with γi > 0. we propose the following angular velocity-free
control law:

τ = −
n∑

i=1

S(bi)(ρiri + γib̂i), (34)

with ρi > 0. Now, we can state the following result:
Theorem 1: Consider system (1) under the control law

(34). Assume that we have n ≥ 2 vector measurements bi,
corresponding to the inertial vectors ri, i = 1, . . . , n, and
that there are at least two non-collinear vectors among the
n inertial vectors. Then, there exists strictly positive gains
ρi and γi, i = 1, .., n, such that all signals are bounded and

lim
t→∞

ω(t) = 0, and lim
t→∞

Q(t) = (±1, 0) for almost all initial
condition excluding the manifold Ψq = {Q = (q0, q) ∈
S3 | q0 = 0}.

Proof: Consider the following Lyapunov function can-
didate

V =
1

2

n∑
i=1

γib̃
T
i b̃i +

1

2

n∑
i=1

ρi(bi − ri)
T (bi − ri) +

1

2
ωT Ifω

(35)
whose time-derivative, in view of (1), (10) and (11) is given
by

V̇ =

n∑
i=1

γib̃
T
i S(b̂i)(β − ω)

+
n∑

i=1

ρi(bi − ri)
TS(bi)ω + ωT τ

=
n∑

i=1

γib̃
T
i S(b̂i)(β − ω)−

n∑
i=1

ρir
T
i S(bi)ω + ωT τ

= (β − ω)T
n∑

i=1

γiS(b̂i)bi

+ωT

n∑
i=1

ρiS(bi)ri + ωT τ

(36)
which in view of (33) and (34), leads to

V̇ = −(
n∑

i=1

γiS(b̂i)bi)
T (

n∑
i=1

γiS(b̂i)bi), (37)

Consequently, it is clear that ω, b̃i, (bi−ri) are bounded (the
measurements bi as well as the the estimates b̂i are naturally
bounded since the inertial directions ri are bounded. The
unit quaternion Q and Q̂ are bounded by definition. Hence,
all signals involved in the control scheme are bounded.
It is clear that V is nonincreasing and converges to a
constant as t goes to infinity. Due to the boundedness of
V̈ , one can conclude that limt→∞

∑n
i=1 γiS(b̂i)bi = 0.

Therefore, from (33), it is clear that limt→∞ β(t) = 0.
From the fact that limt→∞

∑n
i=1 γiS(b̂i)bi = 0, using the

same arguments of the proof of Proposition 1, one can show
that limt→∞ Q̃(t) = (±1, 0), or limt→∞ Q̃(t) = (0,±v),
where v are the unit eigenvectors of M . Furthermore, one
can show that ¨̃Q is bounded, and hence, lim

t→∞
˙̃Q(t) = 0,

which in view of (21), implies that lim
t→∞

(ω(t) − β(t)) = 0.
Consequently, lim

t→∞
ω(t) = 0 since limt→∞ β(t) = 0. One

can also show that ω̈ is bounded, and hence, the fact that
lim
t→∞

ω(t) = 0, implies that lim
t→∞

ω̇(t) = 0. Consequently,
from (1), it follows that τ(t) tends to zero as t goes to
infinity. Using this last fact, together with the fact that
limt→∞

∑n
i=1 γiS(b̂i)bi = 0, one can conclude from (34)

that limt→∞
∑n

i=1 ρiS(bi)ri = 0. Again, using the same
arguments of the proof of Proposition 1, one can show that
limt→∞Q(t) = (±1, 0), or limt→∞Q(t) = (0,±vc), where
vc are the unit eigenvectors of Mc =

∑n
i=1 ρirir

T
i . Now,

let us show that the set Ψq is non-attractive. In fact, the
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dynamics of q0 are given by q̇0 = −1
2q

Tω. Around the
equilibrium points, we know that (ω − β) tends to zero and
hence ω ≃ β = −

∑n
i=1 γiS(b̂i)bi. We also know that τ

tends to zero which, in view of (34), allows to conclude that∑n
i=1 γiS(b̂i)bi tends to

∑n
i=1 ρiS(bi)ri. Consequently, the

asymptotic dynamics around the equilibrium points is given
by q̇0 = q0q

TWcq, with Wc = −
∑n

i=1 ρiS(ri)
2. This rough

analysis, shows that Ψq = {Q = (q0, q) ∈ S3 | q0 = 0}
is asymptotically non-attractive, since |q0| is non-decreasing
around the equilibrium point. More rigorously, one can
show this fact using Chetaev’s theorem as in the proof of
Proposition 2. This part has been omitted due to space
limitation.

Remark 3: It is worth noting that if the system trajectories
are initialized in Ψq (i.e., q0(0) = 0) and q(0)Tω(0) ̸= 0, the
system trajectories will leave the manifold Ψq to ultimately
converge to the desired equilibria (q0 = ±1, q = 0, ω =
0). This is clear from the fact that q̇0 = − 1

2q
Tω and the

equilibria characterized by q0 = 0 are unstable.
Remark 4: In practical applications involving small scale

VTOL-UAVs, for instance, it is customary to equip the
vehicle with an inertial measurement unit (IMU) composed
of accelerometers, magnetometers and gyroscopes. The gy-
roscopes provide the angular velocity ω, the magnetometers
provide a vector measurement of the earth magnetic field in
the body attached frame mB, which is related to the earth’s
magnetic field mI expressed in the inertial frame through
m̄B = Q−1 ⊙ m̄I ⊙Q. The accelerometers provide a vector
measurement of the acceleration aB in the body attached
frame, which is related to the acceleration aI expressed in
the inertial frame through āB = Q−1 ⊙ āI ⊙Q. In the case
of quasi-stationary flights (i.e., ||v̇|| ≪ g), the acceleration
expressed in the inertial frame is given by aI = −ge3. The
estimation algorithms of Proposition 1 and Proposition 2,
could be applied directly using raw measurement obtained
from the IMU (ω, aB,mB), taking n = 2, r1 = aI = −ge3,
b1 = aB, r2 = mI and b2 = mB. In the case of Theorem 1,
the gyroscopes are not necessary and the attitude stabilization
controller could be implemented using only accelerometers
measurements b1 = aB and magnetometers measurements
b2 = mB.

V. CONCLUSION

In existing velocity-free attitude control schemes, the
orientation (e.g., unit-quaternion) appears explicitly in the
control law. Therefore, in UAV applications, where the
attitude is obtained via IMU-measurements-based estimation
algorithms that require the angular velocity, the existing
velocity-free attitude controllers do not make much sense.
Motivated by this fact, we proposed a velocity-free attitude
stabilization scheme that does not require the orientation
reconstruction. In fact, the vector measurements are directly
incorporated in the control scheme. The direct use of vector
measurements in the control scheme has been initiated in
[13], using gyro measurements with constant bias estimation.
To the best of our knowledge, the proposed control scheme is

the first incorporating directly vector measurements without
any knowledge of the angular velocity.
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