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Abstract—Building a complete inertial navigation system using
the limited quality data provided by current smartphones has
been regarded challenging, if not impossible. This paper shows
that by careful crafting and accounting for the weak information
in the sensor samples, smartphones are capable of pure inertial
navigation. We present a probabilistic approach for orientation
and use-case free inertial odometry, which is based on double-
integrating rotated accelerations. The strength of the model is
in learning additive and multiplicative IMU biases online. We
are able to track the phone position, velocity, and pose in real-
time and in a computationally lightweight fashion by solving
the inference with an extended Kalman filter. The information
fusion is completed with zero-velocity updates (if the phone
remains stationary), altitude correction from barometric pressure
readings (if available), and pseudo-updates constraining the
momentary speed. We demonstrate our approach using an iPad
and iPhone in several indoor dead-reckoning applications and in
a measurement tool setup.

I. INTRODUCTION

The deployment of global navigation satellite systems

(GNSSs) has solved many large-scale positioning problems.

However, these systems are not suited for precise tracking or

for indoor use, which is where people spend most of their time.

Accurate and fast indoor localization and tracking has many

potential uses, including safety and emergency assistance,

security, resource efficiency, navigation and augmented reality.

The idea of an inertial navigation system (INS, see [1, 2])

is to use the fusion of inertial sensors (accelerometers and

gyroscopes) to continuously estimate the position, orientation,

and velocity of a moving object. This type of tracking,

known as dead-reckoning, is typically associated with air-

craft, submarines, and missile technology. Recent advances in

MEMS sensors have brought motion and rotation sensors to

standard consumer smartphones and devices, and introduced

the potential for new INS applications.

Smartphones and tablet devices are equipped with MEMS

sensors in order to enhance human-computer interaction and

enable new applications. For example, thanks to the ac-

celerometer, devices can automatically rotate the screen based

on the device orientation with respect to gravity. Furthermore,

gyroscopes have enabled new ways to interact with digital

content, such as watching of panoramic video or controlling

games by rotating the device. In fact, besides gravitation

sensing and tracking [3], information fusion from accelerome-

ters, gyroscopes and magnetometers can be utilised for robust

real-time tracking of the full device orientation [4, 5]. Such

approaches are sometimes referred to as attitude and heading

reference systems (AHRS).

Tracking the translational motion of devices based on in-

ertial sensors is considerably harder than orientation track-

ing. However, certain applications, like pedestrian tracking

and indoor positioning, would greatly benefit from accurate

inertial navigation on smartphones. The difficulty of inertial

navigation is due to the need to double-integrate the observed

accelerations, which rapidly accumulates errors from the high

noise-level of MEMS accelerometers. Small errors in the

attitude estimation will make this even more challenging as

the gravitation may ‘leak’ to the integrated accelerations [6].

In order to solve the aforementioned challenges, many

current systems resort to additional hardware, such as foot-

mounted sensors [7, 8] or video cameras. While providing

accurate results, these are quite impractical for wide use in

consumer applications. For example, camera-based approaches

do not work when the device is in a closed bag or pocket,

and capturing and processing video consumes a lot of energy

compromising battery longevity. Further, while foot-mounted

sensors can provide accurate tracking thanks to frequent zero-

velocity updates and high-quality sensors, they are inconve-

nient for large-scale consumer use and the current solutions

do not work well when the movement happens without steps,

for example in a trolley, elevator, or escalator.

In this paper we show how an inertial navigation system

can be built to work on the limited-quality data provided by a

standard smartphone. We propose a general inertial navigation

approach which is not based on detecting steps and therefore

works in various use cases, covering both legged motion and

motion with wheels, as well as motion in elevators and esca-

lators. Moreover, the approach does not require constraining

the device orientation, and thus the device can be held freely.

In addition, the approach is computationally light-weight and

capable for real-time processing on a smartphone. To the best

of our knowledge, this is the first paper demonstrating such a

system with a standard smartphone.

Figure 1 summarizes the features of the proposed INS

system in a test performed with a standard iPhone 6. In this

example, the path was started on the ground floor with zero-

velocity updates for calibrating the sensors (no pre-calibrations

done). After walking up the stairs to the first floor holding the

phone in the hand, a position fix was given, after which the

phone was put in a bag. Next, the phone was taken out of

the bag and put in the trouser pocket. Before descending to
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Fig. 1. Features of the INS system summarized into one figure: The path was started on the ground floor with zero-velocity updates. After walking up the
stairs to the first floor a position fix was given, after which the phone was put in a closed bag. Then the phone was put in the pocket. Before descending to
the ground floor, the phone was taken out of the pocket and a second position fix was given (aligning the path to the map). On the ground floor a manual
loop-closure was given. The data was collected by an iPhone 6 and calibrations were performed on the fly.

the ground floor, the phone was taken out of the pocket and a

second position fix was given, which aligned the path to the

map. On the ground floor a manual loop-closure indicated that

we were where we started.

The contributions of this paper are two-fold:

• We show that inertial navigation on a standard smart-

phone is feasible by careful crafting of the model, taking

advantage of weak signals, and accounting for uncertain-

ties in data.

• We present a streamlined estimation approach for the

INS problem which builds upon learning the dynamical

sensor bias parameters as a part of the state variables. The

probabilistic inference is solved by a sequential filtering

scheme, where the only approximations come from the

linearizations inside the extended Kalman filter. The

approach is complemented with zero-velocity updates and

pseudo-measurements limiting the momentary speed.

This paper is structured as follows. In the next section

we provide a brief literature review of previous work. In

Section III we present the INS model. The exact model is

presented in detail, and measurement updates for fusing mea-

surements with dynamics are described. Section IV presents

empirical studies where the inertial navigation algorithm is

employed in pedestrian dead-reckoning examples, a gener-

alized dead-reckoning example, and as a measurement tool.

Finally, the results are discussed in Section V.

II. RELATED WORK

Inertial navigation systems have been studied for decades. The

classical literature cover primarily navigation applications for

aircraft and large vehicles [1, 2, 9, 10]. The development of

handheld consumer-grade devices has awakened an interest

in pedestrian navigation applications, where the challenges

are slightly different from those in the classical approaches.

That is, the limited quality of smartphone MEMS sensors

and abrupt motions of hand-held devices pose additional chal-

lenges which have so far prevented generic inertial navigation

solutions for smartphone applications.

In order to focus on the relevant previous literature, we

restrict our scope to tracking algorithms that use the sensors

available in a smartphone, primarily accelerometers, gyro-

scopes, and magnetometers.

The extensive survey by Harle [11] covers many approaches

with different constraints for the use of inertial sensors for

pedestrian dead-reckoning (PDR). Typically INS systems ei-

ther constrain the motion model or rely on external sensors.

In fact, we are not aware of any previous system which would

have all the capabilities that we demonstrate in this paper.

One prominent INS solution relying on external hardware

is the OpenShoe project [8, 12]. It uses foot-mounted inertial

sensors with several pairs of accelerometers and gyroscopes

to estimate the step-by-step PDR (in an INS-SHS framework,

see below). The model is constrained by zero-velocity updates

(ZUPTs) on each step once the foot touches the ground.

Step and heading systems (SHS, see e.g. [5, 13–16]) use the

inertial sensor to estimate the heading and the step length of

the user. These are introduced into a constrained model that

estimates the walking path by accumulating the step vectors

in order to do PDR. These systems have been proven to work

well for PDR in short and medium range but they typically

impose constraints for the device orientation. For example, the

device orientation is often known or fixed with respect to the

walking direction. Further, they are very sensitive to changing

gaits and are prone to false positives (see discussion in [11]). A

recent approach [17] uses bipedal locomotion models to model

the periodical behavior of the INS in a smartphone and, thus,

estimate steps. Although they are able to relax the constraint

of known and fixed device orientation to some extent, their



approach is still step-based, and heading estimation is error-

prone, especially if there are frequent and abrupt changes in

orientation.

Besides inertial PDR systems, there exist many camera-

aided inertial tracking solutions (visual-inertial odometry),

which can provide accurate tracking in visually distinguishable

environments (e.g. [18–21]). However, as these approaches

require constant use of a video camera, causing increased

battery usage, and unobstructed visibility of surroundings, they

are not directly comparable to our approach.

Finally, it should be noted that often odometry estima-

tion techniques, either inertial or visual, are part of larger

localization systems, which combine odometry with various

kinds of maps or fingerprinting methods that provide reference

positions. Examples of mapped signals, which have been

utilized for indoor localization, include signal strengths of Wi-

Fi and Bluetooth radio beacons [22], cellular communications

radio [23], RFID tags [24], and variations of the ambient

magnetic field [25, 26].

III. METHODS

Even though, the physical interpretation of how an inertial

navigation system works is straight-forward, this setup has

many pitfalls. All inertial navigation systems suffer from

integration drift. Small errors in the measurements of acceler-

ation and angular velocity cause progressively larger errors in

velocity—and even greater errors in position. The dominating

component in the accelerometer data is gravity, which means

that even slight errors in orientation make the gravity ‘leak’

into the estimates. The sequential nature of the problem makes

the errors accumulate. Once the estimates start to drift, they

quickly diverge.

These problems underline the importance of accurately

modelling and handling the inherent noises, sampling times,

uncertainties, and numerical instabilities in the system. We use

the data provided by the inertial measurement unit (IMU) in

the smartphone to continuously infer the relative change in

position, velocity and orientation of the device with respect

to a starting point (see [1, 2]). The three-axis IMU measures

data of the specific force (accelerometer data) and angular rate

(gyroscope data).

A. Non-Linear Estimation

An inertial navigation system is non-linear both in the dynam-

ics and observations. Non-linear filtering methods (see [27]

for an overview) are concerned with this kind of estimation

problems. Consider a non-linear state-space equation model of

form

xk = fk(xk−1, εk), (1)

yk = hk(xk,γk), (2)

where xk ∈ R
n is the state at time step tk, k = 1, 2, . . ., yk ∈

R
m is a measurement, εk ∼ N(0,Qk) is the Gaussian process

noise, and γk ∼ N(0,Rk) is the Gaussian measurement noise.

The dynamics and measurements are specified in terms of the

dynamical model function fk(·) and the measurement model

function hk(·), both of which can depend on the time step k.

We employ the extended Kalman filter (EKF, [9]) which

provides a means of approximating the state distributions

p(xk | y1:k) ≃ N(xk | mk,Pk) (3)

with Gaussians through first-order linearizations. In the exper-

iments, we also employ the fixed-interval extended Rauch–

Tung–Striebel smoother (see [27] for detailed presentation)

for obtaining the state distributions p(xk | y1:N ) conditioned

on the entire track of observations.

B. Dynamical Model

The state variables hold the knowledge of the system state at

any given time step. The state variables are:

xk = (pk,vk,qk,b
a
k
,bω

k
,Ta

k
), (4)

where pk ∈ R
3 is the position, vk ∈ R

3 the velocity, and qk

the orientation unit quaternion at time step tk. The remaining

components are the additive accelerometer and gyroscope bias

components, and Ta
k

denotes the diagonal multiplicative scale

error of the accelerometer.

The dynamical model (Eq. 1) is based on the assumption

that position is velocity once integrated, and velocity is accel-

eration (with the influence of gravity removed) once integrated.

The orientation of the acceleration is tracked with gyroscope

measurements. The accelerometer and gyroscope readings are

regarded as control signals, and their measurement noises are

seen as the process noise of the system.

The dynamical model given by the mechanization equations

(see, e.g., [8, 10] for similar model formulations) is




pk

vk

qk



 =





pk−1 + vk−1∆tk
vk−1 + [qk(ãk + ε

a
k
)q⋆

k
− g]∆tk

Ω[(ω̃k + ε
ω

k
)∆tk]qk−1



 , (5)

where the time step length is given by ∆tk = tk − tk−1

(note that we do not assume equidistant sampling times), the

accelerometer input is denoted by ãk and the gyroscope input

by ω̃k. Gravity g is a constant vector. The quaternion rotation

is denoted by the qk[·]q
⋆

k
notation, and the quaternion rotation

update is given by the function Ω : R3 → R
4×4 (see [10] for

details).

The system is deterministic up to the uncertainties (measure-

ment noises and biases) associated with the accelerometer and

gyroscope data. The process noises associated with the inputs

are modelled as i.i.d. Gaussian noise ε
a
k
∼ N(0,Σa∆tk) and

ε
ω

k
∼ N(0,Σω∆tk). The Jacobians of (5), required for the

linearizations in filtering, can be constructed in closed-form.

The accelerometer and gyroscope readings provided by

the low-cost sensors in the mobile device may suffer from

misalignment errors and scale errors in addition to white

measurement noise. These are taken into account inside the

dynamic model as follows:

ãk = Ta
k
ak − ba

k
,

ω̃k = ωk − bω

k
,

(6)



where the accelerometer and gyroscope sensor readings at tk
are ak and ωk. The additive biases are denoted by ba

k
and bω

k
,

respectively. The diagonal scale error matrix Ta
k

accounts for

miscalibrations in the accelerometer scale.

The biases and diagonal scale error terms are estimated

online as a part of the state estimation problem. They are

considered fixed over the entire time horizon, thus the dynamic

model for their part is fixed and without any process noise:

ba
k
= ba

k−1, bω

k
= bω

k−1, and Ta
k
= Ta

k−1. (7)

This means that their values are controlled by the prior state

and information provided by the measurement updates.

The complete dynamical model must be differentiated both

in terms of the state variables and process noise terms in

order to fit the EKF estimation scheme (see [27]). These

derivatives can be derived in closed-form in order to preserve

the stability of the system. The initial (prior) state is given by

p0 ∼ N(0,Σp
0), v0 ∼ N(0,Σv

0), and q0 chosen such that it

defines the initial orientation (deduced from gravity direction).

The additive biases are initialized to zero and the scale bias

to an identity matrix.

C. Position Fixes and Loop-Closures

In terms of the sequential inference scheme all auxiliary

observation data is combined with the model through the

measurement model in Equation 2. Position fixes are noisy

measurements of the position vectors pk in the state (i.e.

hpos.(x) = p). The additive Gaussian measurement noise

represents the uncertainty associated with the given position.

Position fixes provide uncertain information of the position

and thus also the distance travelled between the position fixes.

This first-hand information helps the model pin down the

bias estimates very accurately. Loop-closure points do not

provide any exact position information, but indicate that at

two different points in time, the positions are the same. Also

this information is valuable in inferring sensor biases.

Manual loop-closures can be combined with the estimation

scheme by augmenting the current position estimate in the

state by a Kalman update at loop-opening. The state dimension

grows by three at opening the loop, and the state becomes

x = (xold,pLC), (8)

where the prior pLC ∼ N(0,ΣLC
0 ) with the ΣLC

0 sufficiently

large indicating the non-informativity of the initial location of

the loop-closure point. In practice, both at topen and tclose (the

loop can be closed many times) the measurement model

hLC(x) = p− pLC (9)

defines an observation y = 0 with some measurement noise

γ ∼ N(0,ΣLC). The measurement noise covariance ΣLC

should reflect the mismatch of the user not exactly being at the

loop-closure spot. Both the position fix and loop-closures are

linear observations of the state, and can thus be implemented

using a standard (linear) Kalman update.

D. Zero-Velocity Updates

In this paper, the most important source of auxiliary infor-

mation is so called zero-velocity updates (ZUPTs, see [8] for

discussion). Once the phone is detected to be stationary for

any period of time, it is known to the model that the system

velocity must be zero (v = 0). In terms of the measurement

model, this means

hZUPT(x) = v (10)

and the additive measurement noise γ is small (by only spec-

ifying a pseudo-noise scale). This update can be performed as

a standard (linear) Kalman update.

For triggering, we use an iterative Dickey–Fuller stationarity

test [28] on a rolling window of accelerometer data (window

size 250 ms) with an additional requirement of the sample

standard deviation being small. This means that trends in the

data are used as a proxy for movement.

E. Pseudo-Measurement Updates

Without position fixes, loop-closures, or ZUPTs the inertial

navigation system quickly becomes unstable. Once the esti-

mates start diverging, they easily loose their numerical preci-

sion. The main source of these problems is gravity ‘leaking’

into the acceleration input and corrupting the velocity vector.

Once the velocity starts to drift, the position diverges almost

instantly. However, even without other auxiliary information,

it is possible to keep the system informed about a reasonable

scale of velocity. In our model, we present a simple yet

powerful pseudo-update formulation that keeps the speed in

the range of some meters per second and discourages the

system from accelerating into higher velocities.

The pseudo-update model is defined in terms of the speed of

the object, when it is not stationary. The speed (the Euclidean

norm of the velocity) is

hpseudo(x) = ‖v‖. (11)

In our experiments the pseudo-updates are parametrized as

follows. The speed observation y = 0.75 m/s with a mea-

surement noise γ = N(0, 22). The large measurement noise

variance keeps the update non-informative in comparison to

other information sources.

F. Barometer Readings

Barometric air pressure data (typically also available in high-

end smartphones) can be mapped to heights through lineariza-

tion of the barometric formula around sea level. Over short

time periods the air pressure at a given altitude tends to

stay constant. In this case the barometer readings relative

to the starting point can provide absolute height updates

(corresponding to position fixes as presented above).

The barometric pressure drifts over longer time horizons

(in the order of tens of minutes), leading to accumulation

of measurement errors. Another approach is to only use

the relative pressure differences between two consecutive

barometer observations mitigating drift issues. This alternative

corresponds to opening an altitude loop-closure point on each

barometer observation and closing them on the next.
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(b) Multi-floor example

Fig. 2. (a) The altitude (vertical) profile, the velocities, and the orientations of the phone along the path in Figure 1. The shading shows the stationarity
detection outcome, where zero-velocity updates were triggered. The subtle periodicity in the path is due to walking, and the drop in altitude on the first floor
is because of the phone being in a bag for parts of the path. (b) A PDR example with first descending two levels down and then taking the elevator back up.
The path was started at origin and the path ends with a loop-closure in the same place. The points where the phone touches the floor level (the sharp drops
in vertical position) are zero-velocity updates. No absolute position info was given to the model.

IV. EXPERIMENTS

In the examples, the interest was put on Apple phones and

tablets—mostly because of their uniform hardware and good

software compatibility between devices. The device models

used in the examples are the iPhone 6 and the iPad Pro (12.9-

inch model). Both these models are equipped with built-in

IMUs (InvenSense MP67B) and a barometric sensor (Bosch

Sensortec BMP280). In all experiments, the IMU sensor data

and the associated timestamps were collected at 100 Hz, and

the barometer data (when used) at approximately 0.75 Hz. The

data was collected using an in-house developed data collection

application, and the paths were reconstructed on the iPhone

hardware off-line after the data acquisition.

A. Pedestrian Dead-Reckoning

The most apparent use case for the presented model is to

apply it to pedestrian dead-reckoning, where the mobile phone

(iPhone 6) is carried by the user indoors. There exist a

multitude of methods for dead-reckoning using data provided

by mobile phones. Therefore the aim of this experiment is to

show how this method differs from others by its generality.

Figures 1 and 2(b) summarize features of the proposed

INS system; the example includes the use of zero-velocity

updates, position fixes, pseudo-measurements constraining the

speed, and barometer observations. This experiment covers

traditional navigation-like PDR use cases (walking with the

phone in a fixed orientation), where SHS systems are often

used, cross-floor tracking, where visual tracking methods are

usually the method of choice, and bag/pocket use cases, which

currently often require resorting to radio based positioning.

The generality of our INS system can cover them all with

only one method and no external hardware.

In the first example, the path was started on the ground floor

with zero-velocity updates (no pre-calibrations done). First the

user walked up a flight of stairs to the first floor holding the

phone in the hand. On the first floor a position fix was given,

after which the phone was put in a bag. Next, the phone was

taken out of the bag and put in the trouser pocket. Before

descending to the ground floor, the phone was taken out of

the pocket and a second uncertain position observation was

given, which aligned the path to the map and was able to

provide absolute information of the scale. On the ground floor

a manual loop-closure was given to indicate that the phone

had returned to the starting point, and the phone was placed

on the floor for some final zero-velocity updates. The tracking

path is accurate and follows the true path up to decimetres.

Figure 2(a) shows the altitude profile of the path. The

ZUPTs where the phone is placed on the floor are clearly

showing, as well as the stair climbing. The drop in altitude on

the first floor is due to the phone being in the bag for a part

of the path. The figure also shows the estimated velocity. The

periodicity is due to walking. This effect is less evident when

the phone is in the bag, and at clearest when the phone is in

the trouser pocket firmly attached to the body.

We briefly present a second PDR example which is shown in

Figure 2(b). In this example the path was started at origin with

zero-velocity updates in different phone orientations. After

this the user walked two floors down. When waiting for the

elevator on floor level 1, further ZUPTs were done. The path

is completed with taking the elevator back to floor level 3

and closing the loop at the starting point. In this example

no absolute position information was given. The scale comes

entirely from the accelerometer data. In both examples, an

backward smoother pass (see Sec. III-A) is run after every
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Fig. 4. The evolution of the position estimate and path are visualized along
the way at those points where the pushchair was momentarily stopped. The
dashed line shows the final path for reference. The phone remained leaning
on the top for the entire experiment. No position fixes nor loop-closures were
used.

update, thus also correcting the past estimates.

These expeiments demostrate the unconventional nature

of the proposed method; this odometry method delivers a

combination of use cases, which cannot be delivered with

other methods running on the same device. Visual methods

fail in the bag/pocket, and SHS methods fail when the device

orientation is not fixed or steps/motion cannot be observed.

B. Generalized Dead-Reckoning

Wheel based motion and general non-legged motion are use

cases which are not covered by conventional step counting

PDR methods. We now set the method in a more general scope

for general dead-reckoning that can be applied to any wheeled,

sliding, or flying objects indoors or outdoors. Applications

include push-carts, trolleys, robots, hover boards, quadcopters,

etc. We include an example with a human manoeuvred

wheeled object with an intrinsic noise source—that is a baby

pushchair/stroller with a baby on board. Figure 3 shows the

test setup, where the phone is placed leaning on the top. The

phone (iPhone 6) remains fixed to the pushchair body for the

entire experiment.

Walking was started from a stationary state, where the

phone automatically performed ZUPTs. Along the route the

pushchair was stopped irregularly and ZUPTs triggered if it

became stationary enough. INo position fixes nor loop-closures

were used. The only measurement data are the automatic

zero-velocity updates, the barometer observations, and pseudo-

updates constraining the momentary speed. The total path

length was ∼93 m. Figure 4 shows the path estimate at the

times when the pushchair was stopped. The dashed line is the

path estimate at t = 108.3 s which is shown for reference.

The zero-velocity updates in the various heading angles of the

pushchair are clearly enough to capture the bias estimates and

stabilize the system. The final estimate is off from the starting

point by ∼0.73 m (0.78%). As the phone orientation is fixed to

the pushchair and only moves in a plane, this use case is well

suited for SHS sytems [11]. For comparison we implemented a

2D odometry method combining movement detection with turn

rates projected to the horizontal plane [3]. The final estimate

is only 1.80 m (1.94%) off from the starting point at the end,

which is good for an SHS method.

C. Comments on Computational Complexity

The odometry method was implemented in C++ with wrappers

in Objective-C for running on the device. The implementation

uses the Eigen matrix library. The computational complexity

scales linearly with the number of data points, meaning a

constant computational burden per sample.

For development purposes, the method was run on the

device hardware, but not online. For example, running the

odometry for the track in Figure 4 (108.3 s of data) took 0.30 s

on the iPhone 6 hardware (single-threaded). Thus the method

is capable of running in a real-time application.

D. Sensing of Surroundings

The model proposed in this paper has many potential appli-

cations beyond simple odometry and tracking. For example,

the orientation and ZUPT information can be used as a

measurement tool per se. By consecutively placing the phone

flat on the walls of a room, a model of the geometry of the

room can be built. From each ZUPT on the trajectory, a wall

can be projected parallel to the phone screen, thus capturing

the geometry of the room. Associating several ZUPTs to the

same wall with the additional knowledge that the points span



a plane through the space, can also make it possible to better

estimate the wall placement and orientation.

The model is flexible enough that new constraints—in form

of estimated quantities and prior information about them—can

be introduced. For this particular application there are several

useful constraints, such as coplanarity between some ZUPT

positions. A similar smartphone application that delivers these

functionalities is publicly available. Therefore we seek to

deliver comparable results to the RoomScan (Locometric Ltd,

http://locometric.com) application.

Conventional loop-closures are not suited for this particular

purpose. In this case the loop-closure points are touching the

same plane. This plane is a line in the xy-plane, and the

coefficients of the equation of the line for each wall can

be augmented in the state vector. Each ZUPT is thus an

observation of a point and orientation on a line representing

a wall. In our setup, we do not enforce any prior information

about walls being orthogonal to each other, whereas we

speculate that the RoomScan application enforces some shape

constraint for the room.

Markers were placed upon the walls of a room of known

geometry (7.30 m × 8.45 m). The phone was moved along

the walls stopping for 3 s at each marker until arriving

at the starting point, such that the first two markers were

visited twice. Figure 5 shows the results obtained by using

our model. Measurement #1 was done by stopping at all the

available markers, while measurement #2 was done using only

every second marker. The resulting rooms are not exactly

rectangular, but remarkably close considering no orthogonality

constrains were implemented. The estimated size of the room

was approximately 7.4 m × 8.3 m for measurement setup #1

and 7.4 m × 8.4 m for setup #2. In both cases the figure

shows that in the beginning of the capture the ZUPTs have

not matched the wall that well, but the next observations are

well matching the wall planes.

For comparison, RoomScan measurements were performed

on the same markers and following a similar trajectory be-

tween them. The RoomScan application gave a rooms size of

7.3 m × 8.3 m for measurement setup #1 and 7.0 m × 8.6 m

for setup #2. This means that the proposed method can deliver

comparable results to the black-box method implemented in

RoomScan. More testing would be necessary to make an

objective comparison, but the purpose of the experiment was

to showcase the flexibility and potential uses of the general

model presented in this paper.

V. DISCUSSION AND CONCLUSIONS

In this paper we have presented a general framework for

inertial navigation using the limited quality data provided by

standard handheld smartphones. Up till now, this has been

regarded challenging, and we are not aware of any prior pub-

lished work where the same would have been accomplished.

We presented a probabilistic approach building on extended

Kalman filtering for continuous estimation of the position,

velocity, and orientation of the mobile device. Furthermore,

the IMU sensor biases and scale errors were estimated as
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Fig. 5. Two examples of measuring the wall placements of an indoor space
with an iPad Pro. The walls (the equations of the planes) are a part of the state
variable. Points where the phone is stationary (against the wall) are visualized
in red. The true size of the room is 7.30 m × 8.45 m.

a part of the system state. Our approach differentiates itself

from prior models by directly employing the Bayesian (fully

probabilistic) interpretation of non-linear state estimation (in

the spirit of [27]), and handling the non-additive process noise

inside the dynamic model. The estimation scheme avoids

unnecessary approximations or error state transformations.

Furthermore, we do not assume the sensor sampling rate to be

fixed, but use the actual observation timestamps of the sensor

events. This helps mitigate problems with missing samples and

other unexpected issues with the inputs.

In order to work, the dynamic model needs to be fused

with observations. We presented several types of alternative

measurements that can be combined with the model. These

were position fixes (see Fig. 1), position loop-closures and

barometric air pressure data (see Figs. 1 and 2(b)), zero-

velocity updates (all examples), and plane tangent observations

(Fig. 5). We also introduced constraining the speed estimate

from exploding by introducing a pseudo-update for the speed.

Even though many of these constraints are not general enough

to fit all applications, they still cover many potential use cases.

The presented method has many strong sides. It is general

and does not requiring any steps to be detected, specific

orientation to be held in, or field of vision to cover any

visual features. This differentiates it from conventional PDR

and odometry methods for mobile phones. The method is also

not limited to estimation in a two-dimensional plane. All these

aspects were covered in the experiments, where the phone was

held in the pocket, in a bag, on a baby pushchair/stroller, and

in an elevator. The last experiment demonstrated how the very

same algorithm can be used as a measuring tool for estimating

the shape and size of an indoor space. In the PDR experiments

we chose to show what the method is capable of as such. While

there exists a multitude of well-tailored methods for all of the

isolated test scenarios, there are no exact competing methods

for mobile phones which could cover all of these scenarios.

Implementing separate methods for comparison with respect

to each use case was not viable, and we rather chose to put our

focus on providing a convincing set of application examples.

In this paper, the data was collected using the mobile device,

but the path was calculated off-line. However, the method is

lightweight and capable of running in real-time on an iPhone

http://locometric.com


or iPad (even older models). The computational efficiency

comes from the sequential nature of the data processing, which

scales linearly in the number of sensor samples.

The method still has some challenges and room for improve-

ment. This kind of inertial navigation systems either work

very well or fail miserably (i.e. diverge)—there is no middle

ground. Therefore handling of the noise scales and biases are

crucial for success. Estimation of the sensor biases requires

some auxiliary information to be fused with the model—be

that ZUPTs, loop-closures, position fixes, or something else.

Even though ZUPTs can be implemented to be performed

subtly in the background (e.g. when the user places the phone

on the table), there are use cases which might be problematic.

Even though, it has been argued that estimating the sensor

biases as a part of the state would not be useful [8], our

experiences are quite the contrary. However, this requires the

model to be both derived and implemented in a stable way

avoiding unnecessary approximations in the error propagation.

The model is also sensitive to the noise scale parameters.

The results in this paper benefit from the good sensors (e.g.

good dynamic range) in the Apple devices. High-end Android

phones show comparable results. On Android devices the

sampling rate can be set higher, which benefits the modelling

(conventional strapdown INS use thousands of Hz, see [10]).

In indoor positioning and tracking the INS presented in this

paper could serve as a PDR replacement. The requirement

for the zero-velocity updates could perhaps be loosened if the

model would receive external position estimates based on Wi-

Fi, BLE, RFID, or magnetic field anomalies.

Supplementary material for this paper available on:

https://aaltovision.github.io/handheld-INS/
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