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A theoretical framework for low-frequency electromagnetic (drift-)kinetic turbulence
in a collisionless, multi-species plasma is presented. The result generalises reduced
magnetohydrodynamics (RMHD) and kinetic RMHD (Schekochihin et al., Astrophys. J.
Suppl. Ser., vol. 182, 2009, pp. 310–377) to the case where the mean distribution
function of the plasma is pressure-anisotropic and different ion species are allowed to
drift with respect to each other – a situation routinely encountered in the solar wind
and presumably ubiquitous in hot dilute astrophysical plasmas such as the intracluster
medium. Two main objectives are achieved. First, in a non-Maxwellian plasma,
the relationships between fluctuating fields (e.g. the Alfvén ratio) are order-unity
modified compared to the more commonly considered Maxwellian case, and so a
quantitative theory is developed to support quantitative measurements now possible
in the solar wind. Beyond these order-unity corrections, the main physical feature
of low-frequency plasma turbulence survives the generalisation to non-Maxwellian
distributions: Alfvénic and compressive fluctuations are energetically decoupled, with
the latter passively advected by the former; the Alfvénic cascade is fluid, satisfying
RMHD equations (with the Alfvén speed modified by pressure anisotropy and species
drifts), whereas the compressive cascade is kinetic and subject to collisionless damping
(and for a bi-Maxwellian plasma splits into three independent collisionless cascades).
Secondly, the organising principle of this turbulence is elucidated in the form of a
conservation law for the appropriately generalised kinetic free energy. It is shown
that non-Maxwellian features in the distribution function reduce the rate of phase
mixing and the efficacy of magnetic stresses, and that these changes influence the
partitioning of free energy amongst the various cascade channels. As the firehose
or mirror instability thresholds are approached, the dynamics of the plasma are
modified so as to reduce the energetic cost of bending magnetic-field lines or of
compressing/rarefying them. Finally, it is shown that this theory can be derived as a
long-wavelength limit of non-Maxwellian slab gyrokinetics.
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1. Introduction
Reduced magnetohydrodynamics (RMHD) is a nonlinear system of fluid equations

used to describe anisotropic fluctuations in magnetised plasmas at length scales L
much larger than the ion gyroradius ρi and at frequencies ω much smaller than the
ion gyrofrequency Ωi. It was initially used to model elongated structures in tokamaks
(Kadomtsev & Pogutse 1974; Strauss 1976, 1977) but has since become a standard
paradigm for astrophysical contexts such as solar-wind turbulence (Zank & Matthaeus
1992a,b; Bhattacharjee, Ng & Spangler 1998) and the solar corona (Oughton, Dmitruk
& Matthaeus 2003; Perez & Chandran 2013).

Although RMHD was initially derived from incompressible ideal MHD, a colli-
sional fluid theory, it can also be obtained without assuming the plasma to be
collisional (Schekochihin et al. 2009, hereafter S09). The resulting set of fluid-kinetic
equations describing both Alfvénic (RMHD) and compressive, i.e. density and
magnetic-field-strength, fluctuations is referred to as kinetic reduced magnetohydrody-
namics (KRMHD). S09 argued that KRMHD is an appropriate description for
small-scale solar-wind fluctuations, which are anisotropic (e.g. Horbury & Chen 2012)
and weakly collisional (e.g. Bruno & Carbone 2005), as well as for inertial-range
turbulence in the hot ionised phase of the interstellar medium and in the intracluster
medium of galaxy clusters.

Two of the assumptions of KRMHD are that the equilibrium distribution functions
of all species are Maxwellian (and therefore that the equilibrium pressure is isotropic)
and that there is only one ionic species. The former assumption works well for
plasmas such as the interstellar medium, where collisions are weak (λmfp � ρi and
νii�Ωi, where λmfp is the collisional mean free path and νii is the ion–ion collision
frequency) but non-negligible (λmfp� L and νii� ω). However, the collisional mean
free path in space plasmas is of the order of 1 au – the distance between the
Sun and the Earth – and proton (H ions), alpha (He ions), and electron pressures
in the solar wind are observed to be highly anisotropic with respect to the local
magnetic-field direction (e.g. Hellinger et al. 2006; Štverák et al. 2008; Bale et al.
2009; Maruca, Kasper & Gary 2012). The observed distribution functions in the
solar wind (especially the electron one) also exhibit non-Maxwellian suprathermal
tails (see Maksimovic et al. 2005, Marsch 2006 and references therein) containing
small (∼5 % of the total density) populations of energetic particles. In the intracluster
medium, where λmfp∼ 0.1–30 kpc is many orders of magnitude larger than ρi∼ 1 npc,
conservation of particles’ first adiabatic invariant during (macroscale) turbulent
stretching of the magnetic field is expected to render the distribution function
anisotropic (e.g. Schekochihin et al. 2005; Schekochihin & Cowley 2006; Kunz
et al. 2011). How such anisotropic distribution functions affect the turbulent cascade
in these systems is at present unknown, and it seems dangerous to describe their
dynamics with a set of equations built upon the assumption of isotropy.

The assumption of a single ionic species is equally unwarranted in the solar
wind, where the abundances of alpha particles and heavy ions have been established
observationally for nearly fifty years (for a review, see von Steiger, Geiss & Gloeckler
1997). The protons and alphas (as well as many other ions) drift with respect to the
centre-of-mass frame, often with parallel drift velocities of the order of the Alfvén
speed (Asbridge et al. 1976; Marsch et al. 1981, 1982; Neugebauer et al. 1994;
Goldstein et al. 2000).

In this paper we present a generalisation of KRMHD to account for non-Maxwellian
distribution functions and multiple ionic species. Our theory of pressure-anisotropic
KRMHD can be applied to a broad range of plasmas that exhibit these characteristics



Kinetic turbulence in pressure-anisotropic plasmas 3

and satisfy the original assumptions of KRMHD: that the turbulent fluctuations
are small compared to the mean field, are spatially anisotropic with respect to
it, have frequencies small compared to the ion cyclotron frequency, and have
length scales large compared to the ion gyroradius. The purpose of this paper is
twofold: first, to explain the organising principle governing the turbulent cascade
in a pressure-anisotropic plasma; second, to provide a quantitatively correct set
of equations to describe that turbulence. A reader interested only in the former
can proceed directly to § 5.1, where we present a generalised free-energy invariant
describing a turbulent cascade from large to small scales (as well as into phase space)
in a non-Maxwellian plasma. A reader interested only in the latter will find those
equations summarised in § 2.6.

Before proceeding with the derivation, we caution that pressure-anisotropic plasmas
are subject to a variety of kinetic microscale instabilities if their pressure anisotropy
p⊥ − p‖ becomes larger than the magnetic pressure (times a factor of order unity).
Some of these instabilities (e.g. ion-cyclotron, whistler) are ordered out of KRMHD
by its restriction to sub-Larmor frequencies. Others, namely firehose and mirror,
are included (§§ 3.1, 4.4), but have growth rates that increase without bound with
wavenumber due to the exclusion of finite-Larmor-radius effects that would have
regularised them. Plasmas exhibiting super-Alfvénic inter-species drifts can also be
subject to cyclotron- and Landau-resonant electromagnetic instabilities (e.g. Marsch &
Livi 1987; Gary 1991; Daughton & Gary 1998; Verscharen, Bourouaine & Chandran
2013). With these complications borne in mind, KRMHD as a quantitative theory is
only suitable for kinetic turbulence residing within the microscale stability boundaries.
We will show that pressure anisotropies and interspecies drifts, even those lying
within the stability boundaries, lead to order-unity modifications of the relations
between different fluctuating fields and of the kinetics of the phase-space turbulent
cascade compared to what was deduced previously for a Maxwellian plasma.

The paper is organised as follows. In § 2 we derive the generalised KRMHD
equations starting from the drift kinetics. Several consequences of these equations
are detailed both mathematically and physically there and in §§ 3 and 4. These
include linear waves and stability (§§ 3.1, 4.4, appendix B), nonlinearly conserved
quantities (§§ 3.3, 4.1, 5.1), and their combined implications for the efficacy of
phase mixing (§§ 4.5, 4.6). In appendix C we re-derive KRMHD systematically from
a generalisation of slab gyrokinetics (Howes et al. 2006, S09) to non-Maxwellian
distribution functions and multiple ionic species. The latter approach enables analytical
and numerical studies of fluctuations at and below the ion gyroradius, including the
effects of pressure anisotropy on the nonlinear perpendicular phase mixing and the
phase-space cascade of kinetic Alfvén waves and entropy. These topics will be the
subject of a separate publication. Finally, in appendix E we provide a list of frequently
used symbols and their definitions.

2. General nonlinear equations of KRMHD
2.1. Kinetic MHD

We begin with the equations of kinetic MHD (KMHD), as derived by Kulsrud (1964,
1983). KMHD is a hybrid fluid-kinetic theory, appropriate for scales k−1 larger than
the ion gyroradius (kρi � 1) and frequencies ω smaller than the ion gyrofrequency
(ω�Ωi) in a weakly collisional (ρi� λmfp) plasma. The equations for species s are
the continuity equation

(
∂

∂t
+ us · ∇

)
ns =−ns∇ · us, (2.1)
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the momentum equation

msns

(
∂

∂t
+ us · ∇

)
us =−∇ · Ps + qsns

(
E+ us

c
×B

)
+Fs, (2.2)

and the drift-kinetic equation

Dfs

Dt
+ D ln B

Dt
w⊥
2
∂fs

∂w⊥
+
(

qsE‖
ms
+ w2

⊥
2
∇ · b̂− Du⊥s

Dt
· b̂
)
∂fs

∂v‖
=
(
∂fs

∂t

)

c

, (2.3)

where D/Dt .= ∂/∂t+u⊥s ·∇+ v‖b̂ ·∇. Our notation is standard: ms, qs (=Zse), ns, us,
and Ps are, respectively, the mass, charge, number density, mean velocity, and pressure
tensor of species s; B is the magnetic field; and E is the electric field. The rate of
change in the momentum of species s due to inter-species collisions, Fs, is obtained
by taking the first velocity moment of the collision term (∂fs/∂t)c. The distribution
function of species s, fs = fs(v‖, w⊥), is written in terms of the velocity-space
variables v‖ and w⊥, which are measured parallel and perpendicular, respectively, to
the magnetic field direction, b̂ .=B/B. As in Kulsrud’s original formulation, we use as
the perpendicular kinetic variable w⊥ = v⊥ − u⊥s, the perpendicular velocity peculiar
to the mean perpendicular flow of species s. The parallel component of (2.2) is
redundant, as it may be straightforwardly obtained by taking the first parallel velocity
moment of the drift-kinetic equation (2.3).

With Larmor gyrations ordered out of these equations, fs is independent of
gyrophase. As a result, the pressure tensor is diagonal in a coordinate system defined
by the parallel and perpendicular directions with respect to the magnetic field:

Ps = p⊥s
(
I − b̂b̂

)+ p‖sb̂b̂, (2.4)

where I is the unit dyadic, and

p‖s
.= nsT‖s =

∫
d3v ms(v‖ − u‖s)2fs, (2.5)

p⊥s
.= nsT⊥s =

∫
d3v ms

w2
⊥

2
fs (2.6)

are the parallel and perpendicular pressures, respectively, of species s. By expanding
(2.3) in powers of (me/mi)

1/2 and using the quasineutrality constraint,
∑

s

qsns = 0, (2.7)

it is straightforward to show that the parallel component of the electric field satisfies

E‖ =−b̂ ·
(∇ · Pe

ene

)
=− 1

ene

[
b̂ · ∇p‖e − (p⊥e − p‖e)∇ · b̂

]
(2.8)

to leading order.† Equation (2.8) expresses parallel pressure balance for the (effectively
massless) electron fluid, taking into account the forcing-out of large-pitch-angle
particles (those with α .= cos−1(v‖/v)∼π/2) from regions of increased magnetic-field
strength. Indeed, in the absence of collisions, (2.3) guarantees that each particle’s

†Equation (2.8) may also be obtained directly from the electron force equation, (2.2) with s= e, after
neglecting both the inertial terms on its left-hand side and the friction force on its right-hand side.
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adiabatic invariant µs
.= msw2

⊥/2B is identically preserved (i.e. fs remains constant
along the phase-space trajectory Dµs/Dt = 0). The second term in parentheses on
the left-hand side of (2.3) is then straightforwardly interpreted as the mirror force,
(msw2

⊥/2)∇ · b̂ = −µsb̂ · ∇B, which, by (2.8), is compensated in the electron fluid
by the parallel electric force, −eE‖, and by the divergence of the parallel electron
pressure, −(1/ne)∇ · (p‖eb̂).

2.2. Particle drifts and centre-of-mass variables
The same ordering as one uses to obtain a gyrophase-independent fs also guarantees
that all species drift perpendicular to the magnetic field with identical velocities.
Indeed, the lowest-order contribution to the perpendicular electric field is E⊥ =
−(us/c)×B, so that u⊥s= u⊥= cE×B/B2. With this borne in mind, we interpret the
D/Dt operator in (2.3) as measuring the rate of change of a quantity in a Lagrangian
frame that is transported parallel to the magnetic field at velocity v‖ and drifts
perpendicular to the magnetic field at the E×B velocity.

It then follows that the mean drift of any species relative to the centre-of-mass
velocity u .=∑s msnsus/

∑
s msns must be in the parallel direction, viz., us = u+ u′‖sb̂

with
u′‖s =

1
ns

∫
d3v (v‖ − u‖)fs. (2.9)

In centre-of-mass variables with ρ .=∑s msns, (2.1) and (2.2) become
(
∂

∂t
+ u · ∇

)
ρ =−ρ∇ · u, (2.10)

ρ

(
∂

∂t
+ u · ∇

)
u=−∇

(
p⊥ + B2

8π

)
+∇ ·

[
b̂b̂

(
p⊥ − p‖ −

∑

s

msnsu′2‖s +
B2

4π

)]
,

(2.11)

where p⊥
.= ∑

s p⊥s and p‖
.= ∑

s p‖s are the total perpendicular and parallel
pressures, respectively. The parallel drifts contribute to the total parallel pressure
in a straightforward way. The magnetic field satisfies the ideal induction equation

∂B
∂t
=−c∇×E=∇× (u×B), (2.12)

i.e. the magnetic flux is frozen into a frame moving perpendicular to the magnetic
field at the velocity u⊥.

2.3. Reduced ordering and dimensionless parameters
We proceed by separating all fields into equilibrium values plus fluctuations: fs= f0s+
δfs, B= B0ẑ+ δB, ns = n0s + δns, p⊥s = p⊥0s + δp⊥s, p‖s = p‖0s + δp‖s, and u′‖s = u′‖0s +
δu′‖s. The mean magnetic field B0ẑ and the equilibrium distribution function f0s are
both taken to be spatially uniform (the slab limit). The asymptotic ordering

k‖
k⊥
∼ δfs

f0s
∼ u⊥
vA
∼ δB⊥

B0
∼ u‖
vA
∼ δB‖

B0
∼ δns

n0s
∼ δp⊥s

p⊥0s
∼ δp‖s

p‖0s
∼ δu

′
‖s

u′‖0s
∼ ε, (2.13)

where
vA
.= B0√

4πρ0
(2.14)
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is the Alfvén speed, is then applied to ‘reduce’ the equations so that they describe
the evolution of anisotropic (k‖ � k⊥) fluctuations whose parallel Alfvén time scale
and perpendicular nonlinear time scale are of the same order, k‖vA ∼ k⊥u⊥ – the
so-called critical-balance conjecture (Goldreich & Sridhar 1995), used here as an
ordering assumption (S09). Such spatial anisotropy is both measured directly in the
solar wind (e.g. Bieber, Wanner & Matthaeus 1996; Horbury, Forman & Oughton
2008; Podesta 2009; Wicks et al. 2010; Chen et al. 2011) and observed in numerical
simulations of Alfvénic turbulence (e.g. Shebalin, Matthaeus & Montgomery 1983;
Oughton, Priest & Matthaeus 1994; Cho & Vishniac 2000; Maron & Goldreich 2001).
The perpendicular perturbations are taken to be Alfvénic (δB⊥/B0 ∼ u⊥/vA) and the
compressive perturbations (δu‖, δB‖, δns, δp⊥s, δp‖s, δu′‖s) are ordered comparable to
the Alfvénic ones, with the parallel and perpendicular thermal speeds of species s,

vth‖s
.=
√

2T‖0s

ms
and vth⊥s

.=
√

2T⊥0s

ms
, (2.15a,b)

respectively, ordered comparable to the Alfvén speed (i.e. β‖s, β⊥s defined in (2.21)
ordered unity). We further assume that the characteristic frequency of the fluctuations
satisfies ω ∼ k‖vA ∼ vth‖i/L. This means that fast magnetosonic modes, for which
ω ∼ k⊥vA, are ordered out of our equations. Fast-wave fluctuations are rarely seen
in the solar wind (Howes et al. 2012); observations of turbulence in the solar
wind confirm that it is primarily Alfvénic (e.g. Belcher & Davis 1971) and that
its compressive component is substantially pressure-balanced (Burlaga et al. 1990;
Roberts 1990; Marsch & Tu 1993; Bavassano, Pietropaolo & Bruno 2004; see (2.26)).
We expect the same to hold true in the intracluster medium, where observationally
inferred turbulent velocities are convincingly subsonic (e.g. Sanders & Fabian 2013;
Zhuravleva et al. 2014). Indeed, our reduced ordering is consistent with a small sonic
Mach number, Ma= u⊥/vthi ∼ ε(vA/vthi)� 1.

The density fluctuations of the various species are related to one another via
quasineutrality (2.7):

∑

s

cs
δns

n0s
=
∑

s

cs

n0s

∫
d3v δfs = 0, (2.16)

where cs
.=Zsn0s/n0e is the charge-weighted ratio of number densities; note that ce=−1

and
∑

s cs = 0. The perturbed pressures are calculated via

δp‖s =
∫

d3v ms(v‖ − u′‖0s)
2 δfs and δp⊥s =

∫
d3v ms

w2
⊥

2
δfs. (2.17a,b)

Perturbed parallel drifts may be obtained directly from taking first moments of the
perturbed distribution functions,

δu′‖s =
1

n0s

∫
d3v (v‖ − u′‖0s) δfs − u‖ with u‖ =

∑

s

ms

∫
d3v v‖δfs

∑

s

msn0s

, (2.18)

rather than indirectly via the momentum equations (2.2) and (2.11). In other words,
they are not independent quantities.

The resulting set of equations has a number of dimensionless free parameters:

τ‖s
.= T‖0s

T‖0e
and τ⊥s

.= T⊥0s

T⊥0e
(2.19a,b)
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are the ratios of the parallel and perpendicular temperatures of species s to their
respective electron temperatures (note that τ‖e = τ⊥e = 1);

∆s
.= p⊥0s

p‖0s
− 1 (2.20)

is the dimensionless pressure anisotropy of species s; and

β‖s
.= 8πp‖0s

B2
0

and β⊥s
.= 8πp⊥0s

B2
0

(2.21a,b)

are the ratios of the parallel and perpendicular pressures of species s to the magnetic
pressure. We use the shorthand β‖

.=∑s β‖s and β⊥
.=∑s β⊥s. All of these quantities,

evaluated in the equilibrium state, are taken to be order unity in the ε expansion
(subsidiary limits in high and low β‖, for example, can be taken after the ε expansion
is done: see § 4.4). Likewise, we order u′‖0s ∼ vth‖i for all species s. This precludes
equilibrium parallel drifts in the electron fluid from entering into our equations,
because v‖ ∼ vth‖e ∼ √mi/mevth‖i � vth‖i for the electrons (i.e. the random thermal
motions of electrons are characterised by speeds much in excess of the ion thermal
speed and, therefore, any parallel drifts in the equilibrium state).

We will also make frequent use of the following compact notation:

f ‖0s
.=−v2

th‖s
∂f0s

∂(v‖ − u′‖0s)
2

and f⊥0s
.=−v2

th⊥s
∂f0s

∂w2
⊥
, (2.22a,b)

which are dimensionless derivatives of a species’ equilibrium distribution with respect
to the square of the parallel velocity (peculiar to the species equilibrium drift velocity)
and perpendicular velocity (peculiar to the E×B drift velocity), respectively; and

Df0s
.= p⊥0s

p‖0s
f ‖0s − f⊥0s , (2.23)

which measures the velocity-space anisotropy of that distribution. These definitions
are, of course, only useful insofar as particle collisions and scatterings are unable to
maintain a Maxwellian distribution in the equilibrium state, for which f ‖0s= f⊥0s = f0s and
Df0s = 0. To allow for this to be the case, we order the collision frequency νii� εω.
This means that collisional relaxation of f0s towards a Maxwellian distribution
occurs at higher orders than will be treated in this paper, as does the heating of
the background plasma due to collisional smoothing of the (secularly increasing)
fine-scale structure in velocity space. For our purposes, the background equilibrium
is thus stationary in time.

While most applications to non-Maxwellian space and astrophysical plasmas make
use of the bi-Maxwellian distribution function,

fbi-M,s(v‖,w⊥)
.= n0s√

πvth‖s
exp

[
−(v‖ − u′‖0s)

2

v2
th‖s

]
1

πv2
th⊥s

exp
(
− w2

⊥
v2

th⊥s

)
, (2.24)

to describe the equilibrium distribution function of the plasma (for which f ‖0s= f⊥0s = f0s

and Df0s = ∆s f0s), we keep our derivation of KRMHD general with respect to the
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form of f0s(v‖, w⊥).† That being said, because of its widespread use by the space
and astrophysical communities, we will often refer back to (2.24) to present useful
particular cases of our more general results. To ease application of our theory to the
solar wind, in appendix D we also specialise our equations for the case of a bi-kappa
equilibrium distribution function.

Finally, we caution that there are some situations in weakly collisional magnetised
astrophysical plasmas for which the KRMHD ordering (2.13) is inapplicable. One
such situation is when the equilibrium pressure anisotropy takes on values beyond
the firehose stability boundary (3.2), since k‖ is not much smaller than k⊥ for the
fastest-growing firehose modes. Likewise, beyond the mirror stability boundary (B 14),
the nonlinear evolution of the mirror instability involves the trapping of particles, a
feature not accounted for in the KRMHD ordering (note however that the expected
wavevector anisotropy k‖/k⊥ � 1 of these modes is captured). That being said, the
majority of the solar wind does lie within these stability boundaries (e.g. Bale et al.
2009), and so our theory should be appropriate for describing Alfvénic turbulence in
that part of parameter space. A second limitation of the KRMHD ordering is that there
are times and places in both the solar wind and the magnetosheath where δB/B0 is
not small (e.g. Alexandrova, Lacombe & Mangeney 2008), usually at the outer scale.
However, as the free energy stored in the turbulent fluctuations cascades to smaller
scales (in the inertial range and beyond), the fluctuations become smaller and more
anisotropic. If anything, these fluctuations tend towards the KRMHD limit (or, more
generally, the gyrokinetic limit: see appendix C).

2.4. Alfvénic fluctuations
To zeroth order in ε, (2.10) becomes ∇⊥ · u⊥ = 0. Likewise, the divergence-free
constraint on the magnetic field, ∇ · B = 0, becomes ∇⊥ · δB⊥ = 0. These
simplifications allow the Alfvénic fluctuations to be expressed in terms of scalar
stream (flux) functions:

u⊥ = ẑ×∇⊥Φ and
δB⊥√
4πρ0

= ẑ×∇⊥Ψ. (2.25a,b)

We substitute these expressions into (2.11) and (2.12) and examine the result order by
order in ε.

To lowest order, (2.11) and (2.12) become, respectively,

∇⊥
(∑

s

δp⊥s + B2
0

4π

δB‖
B0

)
= 0, (2.26)

∂

∂t
Ψ + {Φ, Ψ } = vA

∂

∂z
Φ, (2.27)

where the Poisson bracket

{Φ, Ψ } .= ẑ · (∇⊥Φ ×∇⊥Ψ ). (2.28)

The first of these equations expresses perpendicular force balance, a result which will
aid our description of the compressive fluctuations in § 2.5. The second equation is

†Some restrictions on f0s are necessary in order to make sense of the generalised free-energy invariant
of KRMHD, derived and discussed in §§ 4.1 and 5.1. Namely, f ‖0s must be strictly positive throughout all of
the parallel velocity space; i.e. f0s must decay monotonically away from v‖ = u′‖0s and not be too flat around
that point. This restriction also eliminates the possibility that f0s is unstable to high-frequency bump-on-tail
instabilities, which are outside the KRMHD ordering. This class of distribution functions covers all plausible
distribution functions for the solar wind, e.g. Maxwellian, bi-Maxwellian, kappa, bi-kappa.
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identical to the induction equation in standard RMHD. At the next order, we derive
an evolution equation for the stream function. Its simplest form is obtained by taking
the z-component of the curl of the force equation (2.11) – the vorticity equation –
which gives

∂

∂t
∇2
⊥Φ + {Φ,∇2

⊥Φ} =
[

1+
∑

s

β‖s
2

(
∆s −

2u′2‖0s

v2
th‖s

)](
vA
∂

∂z
∇2
⊥Ψ + {Ψ,∇2

⊥Ψ }
)
.

(2.29)
For an isotropic equilibrium pressure (p⊥0s= p‖0s, ∆s= 0) and no equilibrium parallel
drifts (u′‖0s = 0), this reduces to the standard RMHD momentum equation.

The nonlinearities in (2.27) and (2.29) involving the magnetic field imply that
Alfvénic fluctuations propagate along the locally deformed magnetic field rather than
the uniform equilibrium field, and so the parallel and perpendicular directions do not
strictly lie along the Cartesian axes defined by the guide field. Indeed, by introducing
the Lagrangian operators

d
dt
.= ∂

∂t
+ u⊥ · ∇⊥ = ∂

∂t
+ {Φ, . . .}, (2.30)

b̂ · ∇ .= ∂

∂z
+ δB⊥

B0
· ∇⊥ = ∂

∂z
+ 1
vA
{Ψ, . . .}, (2.31)

equations (2.27) and (2.29) may be written compactly as

∂Ψ

∂t
= vAb̂ · ∇Φ, (2.32)

d
dt
∇2
⊥Φ = vAb̂ · ∇v

2
A∗
v2

A
∇2
⊥Ψ, (2.33)

where we have introduced the effective Alfvén speed

vA∗
.= vA

[
1+

∑

s

β‖s
2

(
∆s −

2u′2‖0s

v2
th‖s

)]1/2

. (2.34)

In systems where p⊥0 − p‖0 −
∑

s msn0su′2‖0s < 0, the speed at which deformations in
the magnetic field are propagated is effectively reduced by the excess parallel pressure,
which undermines the restoring force exerted by the tension of the magnetic-field lines.
When p⊥0 − p‖0 −

∑
s msn0su′2‖0s = −B2

0/4π, the magnetic tension is exactly balanced
by the anisotropy in the distribution function and the plasma does not respond to
(perpendicular) magnetic perturbations. Parallel drifts in the equilibrium distribution
functions of different species make this criterion easier to satisfy by supplementing the
parallel thermal pressure. For values of p⊥0 − p‖0 below this threshold, the effective
Alfvén speed becomes imaginary and the stream and flux functions acquire a π/2
relative phase shift. The plasma then becomes firehose unstable, an effect that we
discuss in § 3.1. For now we caution that, if the equilibrium pressure anisotropy and
parallel drifts make vA∗/vA as small as ε, the reduced ordering (2.13) is broken and
the KRMHD theory, as derived here, becomes inapplicable.

Equations (2.32) and (2.33) form a closed set, and so the Alfvén-wave inertial-range
cascade is completely decoupled from all other (compressive) types of perturbations
(the Alfvénic cascade is further discussed in § 3). While this result is usually derived
starting from the collisional MHD limit, we have shown that the same holds true even
for a collisionless plasma (as in S09) with arbitrary gyrotropic equilibrium distribution
function.
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2.5. Compressive fluctuations
2.5.1. Parallel electric field

To obtain the equations describing the density (δne) and magnetic-field-strength
(δB‖) fluctuations, we return to the drift-kinetic equation (2.3). Applying the reduced
ordering (2.13) and neglecting collisions, we have for the electron species
(

d
dt
+ v‖b̂ · ∇

)(
δfe − δB‖B0

w2
⊥

v2
th⊥e

f⊥0e

)
+ (v‖ − u′‖0e)

(
eE‖
T‖0e
+ w2

⊥
v2

th‖e
b̂ · ∇ δB‖

B0

)
f ‖0e = 0.

(2.35)
Further expanding (2.35) in the small parameter (me/mi)

1/2 removes the d/dt term
and the equilibrium electron drift (u′‖0e) to lowest order. Dividing the result by v‖ and
employing the D notation (2.23) to group terms, we find

b̂ · ∇
(
δfe + w2

⊥
v2

th⊥e

δB‖
B0

Df0e

)
+ eE‖

T‖0e
f ‖0e = 0. (2.36)

Integrating over the velocity space leads to an expression for the parallel electric field,

E‖ =− 1

C‖0e

b̂ · ∇ T‖0e

e

(
δne

n0e
+∆1e

δB‖
B0

)
, (2.37)

where we use the following notation: for integer `,

C‖`e
.= 1

n0e

∫
d3v

1
`!
(

w⊥
vth⊥e

)2`

f ‖0e

= 1 for a bi-Maxwellian (2.38)

are dimensionless coefficients related to perpendicular moments of the parallel-
differentiated equilibrium electron distribution function, and

∆`e
.=C‖`e

p⊥0e

p‖0e
− 1 (2.39)

is the dimensionless pressure anisotropy (cf. (2.20)) of the electrons weighted by those
coefficients. For isotropic electrons, the parallel electric field is entirely related to
fluctuations in the electron (and therefore ion) density; the corresponding (first) term
in (2.37) ultimately leads to the Landau damping of ion acoustic waves. When the
equilibrium electron pressure is anisotropic, fluctuations in magnetic-field strength also
contribute to the parallel electric field; this second term enforces quasineutrality in the
face of preferential exclusion of large-pitch-angle electrons from regions of enhanced
field strength.

2.5.2. Pressure perturbations
With knowledge of the parallel electric field (2.37), we can rewrite the perturbed

electron distribution as†

δfe = 1

C‖0e

(
δne

n0e
+∆1e

δB‖
B0

)
f ‖0e −

w2
⊥

v2
th⊥e

δB‖
B0

Df0e (2.40)

†Technically, the perturbed electron distribution function can only be determined up to an additive unknown
function whose parallel gradient vanishes. We have set this homogeneous solution to zero, a simplification
which may be justified by assuming stochastic field lines (S09).
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and compute the perturbed parallel and perpendicular electron pressures by taking the
appropriate second moments (cf. (2.17)):

δp‖e
p‖0e
= 1

C‖0e

(
δne

n0e
+∆1e

δB‖
B0

)
−∆e

δB‖
B0
, (2.41)

δp⊥e

p⊥0e
= C‖1e

C‖0e

(
δne

n0e
+∆1e

δB‖
B0

)
− 2∆2e

δB‖
B0
. (2.42)

Note that, if the equilibrium distribution function of electrons is isotropic, no electron
pressure anisotropy can be generated by the fluctuations and the electron fluid remains
isothermal along magnetic-field lines:

b̂ · ∇δTe = 0. (2.43)

The latter occurs physically by rapid electron conduction along field lines. Deviations
from isothermality in non-Maxwellian plasmas arise when electrons conserve their
adiabatic invariant µe in the presence of field-line compressions and rarefactions.
Indeed, by taking the third velocity moments of (2.40), we see that the parallel flows
of parallel and perpendicular electron heat, respectively

Q‖e
.=
∫

d3v mev
3
‖ δfe and Q⊥e

.=
∫

d3v mev‖
w2
⊥

2
δfe, (2.44a,b)

satisfy b̂ · ∇Q‖e = b̂ · ∇Q⊥e = 0. For bi-Maxwellian electrons, this translates into

b̂ · ∇δT‖e = 0 and b̂ · ∇(δT⊥e +∆e〈µe〉δB‖)= 0, (2.45a,b)

where 〈µe〉 = mev
2
th⊥e/2B0 is the lowest-order contribution to the mean adiabatic

invariant of the electrons. Equation (2.45) states that, while the parallel temperature
of the electrons remains constant along field lines, the perpendicular temperature
cannot do so without violating µe conservation (cf. equations 39–40 of Snyder,
Hammett & Dorland 1997).

2.5.3. Reduced drift-kinetic equation
It is often computationally convenient as well as physically illuminating to replace

the perturbed distribution function δfs by the function

gs
.= δfs − w2

⊥
v2

th⊥s

δB‖
B0

f⊥0s , (2.46)

which is the perturbed distribution function if f0s is taken to be a function of the exact
adiabatic invariant µs =mw2

⊥/2B (rather than of mw2
⊥/2B0); to wit,

fs − f0s(v‖, µs) = fs − f0s

(
v‖,

msw2
⊥

2B0
− msw2

⊥
2B0

(
1− B0

B

))

' fs − f0s(v‖,w⊥)+ w⊥
2
δB‖
B0

∂f0s

∂w⊥

= δfs − w2
⊥

v2
th⊥s

δB‖
B0

f⊥0s = gs. (2.47)
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Indeed, using (2.40) in (2.46), we find that

ge =
[

1

C‖0e

(
δne

n0e
+∆1e

δB‖
B0

)
− w2

⊥
v2

th‖e

δB‖
B0

]
f ‖0e (2.48)

does not contain any derivatives of the equilibrium distribution function with respect
to w⊥. We will see that the same holds true for gi, whose evolution equation we now
derive.

The evolution equation for the perturbed ion distribution function is obtained by
applying the reduced ordering (2.13) to (2.3) with s= i. Using (2.37) for the parallel
electric field, the reduced kinetic equation for the ions may be written in a compact
form analogous to equation (145) of S09:
(

d
dt
+ v‖b̂ · ∇

)
gi + (v‖ − u′‖0i)b̂ · ∇

[
1

C‖0e

Zi

τ‖i

(
δne

n0e
+∆1e

δB‖
B0

)
+ w2

⊥
v2

th‖i

δB‖
B0

]
f ‖0i = 0.

(2.49)
Note that this equation does not contain any derivatives of the equilibrium distribution
function with respect to w⊥. In terms of gi, (2.16), (2.18), and (2.26) become

δne

n0e
− δB‖

B0
=
∑

i

ci

n0i

∫
d3v gi, (2.50)

u‖ +
∑

i

ciδu′‖i =
∑

i

ci

n0i

∫
d3v (v‖ − u′‖0i) gi, (2.51)

C‖1e

C‖0e

(
δne

n0e
+∆1e

δB‖
B0

)
+ 2

(∑

i

ci
τ⊥i

Zi
+ 1
β⊥e
−∆2e

)
δB‖
B0
=−

∑

i

τ⊥i

Zi

ci

n0i

∫
d3v

w2
⊥

v2
th⊥i

gi,

(2.52)

which reduce to equations (146)–(148) of S09 for a single-ion-species Maxwellian
plasma.

Equations (2.49)–(2.52) evolve the ion distribution function gi; the ‘slow-wave
quantities’ u‖, δu′‖i, and δB‖; and the density fluctuations δne. All nonlinearities are
contained in the d/dt and b̂ · ∇ Lagrangian operators, which include the Alfvénic
quantities Φ and Ψ ; these are determined separately and independently by (2.27)
and (2.29). Nonlinear scattering/mixing of slow waves and the entropy mode by the
Alfvénic perturbations takes the form of passive advection of the distribution function
gi. In other words, even when the equilibrium distribution function is non-Maxwellian
and there are parallel drifts between the various species, the compressive fluctuations
are passively transported by the Alfvénic fluctuations, a result that we have, thus,
generalised from MHD (Lithwick & Goldreich 2001) and Maxwellian KRMHD (S09).
The passive cascades of compressive fluctuations, as well as their kinetic damping
and susceptibility to mirror instability in a pressure-anisotropic plasma, are further
discussed in § 4.

2.6. Summary
The reduced theory derived here evolves 4+Nion unknown functions: Φ, Ψ , δB‖, δne,
and gi for each of the Nion different ionic species. The stream and flux functions,
Φ and Ψ respectively, are related to the fluid quantities (perpendicular velocity
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and magnetic-field perturbations) via (2.25). They satisfy a closed set of equations,
(2.27)–(2.29), which describe the decoupled cascade of Alfvénic fluctuations whose
phase speed is modified by pressure anisotropy and inter-species parallel drifts. In
the collisional limit, they revert to the standard equations of RMHD. The density and
magnetic-field-strength fluctuations (the ‘compressive’ fluctuations, or the slow waves
and the entropy mode in the collisional limit) require a kinetic description in terms of
the ion distribution function gi, which is evolved by the kinetic equation (2.49). This
kinetic equation itself contains δne and δB‖, which are, in turn, calculated by taking
velocity-space integrals of gi via (2.50) and (2.52). The nonlinear evolution of gi, δB‖,
and δne is due solely to passive advection of gi by the Alfvénic turbulence, which
mixes δne and δB‖ in the direction transverse to the magnetic field. In the Lagrangian
frame associated with the Alfvénic fluctuations, the compressive fluctuations obey a
one-dimensional linear equation, which may be solved independently of the Alfvénic
turbulence.

Here we summarise our new set of equations:

∂Ψ

∂t
= vAb̂ · ∇Φ, (2.53a)

d
dt
∇2
⊥Φ = vAb̂ · ∇v

2
A∗
v2

A
∇2
⊥Ψ, (2.53b)

(
d
dt
+ v‖b̂ · ∇

)
gi + (v‖ − u′‖0i)b̂ · ∇

[
1

C‖0e

Zi

τ‖i

(
δne

n0e
+∆1e

δB‖
B0

)
+ w2

⊥
v2

th‖i

δB‖
B0

]
f ‖0i = 0;

(2.53c)

δne

n0e
=−

∑

i

[. . .]−1 ci

n0i

∫
d3v

[
w2
⊥

v2
th⊥i
− 2ci

(∑

i′

ci′τ⊥i′Zi

ciτ⊥iZi′
+ 1
β⊥i

)

+ Zi

τ⊥i

(
2∆2e − C‖1e

C‖0e

∆1e

)]
gi, (2.53d)

δB‖
B0
=−

∑

i

[. . .]−1 ci

n0i

∫
d3v

(
w2
⊥

v2
th⊥i
+ C‖1e

C‖0e

Zi

τ⊥i

)
gi, (2.53e)

where

[. . .] .= Zi

τ⊥i

(
C‖1e

C‖0e

− 2∆2e + C‖1e

C‖0e

∆1e

)
+ 2ci

(∑

i′

ci′τ⊥i′Zi

ciτ⊥iZi′
+ 1
β⊥i

)
. (2.54)

These equations reduce to (155)–(159) of S09 when the equilibrium distribution
function is Maxwellian and only one ionic species is present (for which vA∗ = vA,
u′‖0i = 0, C‖`e = 1, τ‖s = τ⊥s, ∆`e = 0, vth‖s = vth⊥s, β‖s = β⊥s, and f ‖0s = f⊥0s = f0s).

It should be noted that (2.53) are ideal, in that they are ignorant of any physics
capable of dissipating the large gradients in phase space that will inevitably be
produced as the turbulence cascades to smaller and smaller scales. While some
of this fine-scale structure is regularised by finite-Larmor-radius effects, which are
included in the non-Maxwellian gyrokinetic theory derived in appendix C, numerical
implementation of (2.53) requires the addition of finite collisionality and resistivity.
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3. Alfvénic fluctuations in the inertial range
Having constructed a theoretical framework for the evolution of anisotropic kinetic

turbulence in collisionless magnetised astrophysical plasmas, we now investigate its
implications for the behaviour of Alfvénic fluctuations in the inertial range (dynamical
equations for these fluctuations were derived in § 2.4). In this section we demonstrate
that pressure anisotropy and parallel drifts do not interfere with the nonlinear mixing
of counter-propagating Alfvénic fluctuations. In doing so, we derive the two Alfvénic
invariants that are independently conserved and cascaded by these interactions. The
explanation of the physical content of these invariants is aided by the linear theory of
Alfvén waves, which we present in the next section.

3.1. Linear theory of Alfvénic fluctuations: Alfvén waves and firehose instability
The linear theory of Alfvénic fluctuations in KRMHD can be readily obtained by
dropping the nonlinear terms in (2.53a) and (2.53b) and adopting the solutions Φ,
Ψ ∼ exp(−iωt+ ik · r). The resulting dispersion relation is simply

ω=±k‖vA∗, (3.1)

with eigenvectors satisfying Φ =∓Ψ (vA∗/vA). When

p⊥0 − p‖0 −
∑

s

msn0su′2‖0s <−
B2

0

4π
, (3.2)

the phase speed of the Alfvén wave becomes imaginary and the firehose instability
results (Rosenbluth 1956; Chandrasekhar, Kaufman & Watson 1958; Parker 1958;
Vedenov & Sagdeev 1958). Physically, negative pressure anisotropies and/or parallel
drifts reduce the elasticity of the magnetic-field lines, undermining the supplied
restoring force necessary to propagate the wave. In KRMHD, the fastest growth occurs
at arbitrarily small parallel scales, with no small-scale regularisation accessible within
the long-wavelength approximation, kρi � 1, in which (2.2) is derived. To obtain
the fastest growing mode, finite-Larmor-radius effects must be taken into account
(cf. Schekochihin et al. 2010). Direct calculation from the hot-plasma dispersion
relation yields k‖ρi ∼ |β⊥/β‖ − 1+ 2/β‖|1/2 for the parallel (k⊥ = 0) firehose (Kennel
& Sagdeev 1967; Davidson & Völk 1968) and kρi ∼ 1 for the oblique firehose with
k⊥ 6= 0 (Yoon, Wu & de Assis 1993; Hellinger & Matsumoto 2000).

3.2. Elsasser fields and Alfvén ratio
The effective Alfvén speed can be used to cast (2.32) and (2.33) in a symmetric form
via the introduction of the generalised Elsasser potentials,

ζ± .=Φ ± vA∗
vA
Ψ, (3.3)

and the corresponding Elsasser fields

z± .= ẑ×∇⊥ζ± = u⊥ ± vA∗
vA

δB⊥√
4πρ0

. (3.4)

The latter are a straightforward generalisation of the standard Elsasser (1950) variables
to non-Maxwellian equilibria, for which vA∗ 6= vA. Combining (2.27) and (2.29), one
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can show that the Elsasser potentials satisfy
(
∂

∂t
∓ vA∗

∂

∂z

)
∇2
⊥ζ
± =−1

2

({
ζ+,∇2

⊥ζ
−}+ {ζ−,∇2

⊥ζ
+}∓∇2

⊥
{
ζ+, ζ−

})
. (3.5)

Thus, the standard result that nonlinear interactions (‘scatterings’) of Alfvénic
fluctuations occur only between counter-propagating fluctuations (Kraichnan 1965)
holds true for general (gyrotropic) distribution functions. What is modified by the
non-Maxwellian nature of the distribution function is the amount of (perpendicular)
magnetic fluctuations that comprise each of the Elsasser potentials. As vA∗→ 0, the
magnetic fluctuations fail to propagate and the distinction between ζ+ and ζ− is
no longer meaningful. Indeed, the very idea of critical balance that underpins the
RMHD ordering k‖vA ∼ k⊥u⊥ is based upon a causality argument: fluctuations cannot
be correlated over a distance larger than that over which an Alfvén wave propagates in
a nonlinear interaction time. Significantly reducing the signal speed, with vA∗/vA ∼ ε
or smaller, interferes with this argument and breaks the reduced ordering used in
this paper. This is what will happen if the firehose threshold is approached. On the
unstable side of the threshold, the firehose fluctuations that emerge are not anisotropic
in the same way that Alfvénic, or more generally gyrokinetic, fluctuations are: in
fact, they have k‖ ∼ k⊥ (Yoon et al. 1993; Hellinger & Matsumoto 2000; Kunz,
Schekochihin & Stone 2014). This is why the considerations in this paper do not
describe the turbulence on the unstable side of the firehose threshold.

The fact that the Alfvén ratio

rA
.=
∣∣∣∣
Φ

Ψ

∣∣∣∣
2

= 1+
∑

s

β‖s
2

(
∆s −

2u′2‖0s

v2
th‖s

)
(3.6)

depends on the anisotropy inherent to the distribution function (cf. Barnes 1979)
becomes testable in the solar wind, where measurements find that the energy in
magnetic-field fluctuations exceeds the energy in the velocity fluctuations, rA < 1
(e.g. Belcher & Davis 1971; Matthaeus & Goldstein 1982; Bruno, Bavassano &
Villante 1985; Roberts et al. 1987; Tu, Marsch & Thieme 1989; Marsch & Tu
1990; Grappin, Velli & Mangeney 1991; Goldstein, Neugebauer & Smith 1995;
Bavassano, Pietropaolo & Bruno 1998; Podesta, Roberts & Goldstein 2007; Salem
et al. 2009; Perri & Balogh 2010; Chen et al. 2011; Borovsky 2012). This result is
often interpreted in terms of ‘residual energy’, σr

.= (rA − 1)/(rA + 1), the difference
between the energy in velocity and magnetic-field fluctuations that is believed to
be an inherent feature of the turbulence itself (Pouquet, Frisch & Leorat 1976; see
Chen et al. 2013 and Wicks et al. 2013 for brief reviews of the relevant literature
and contemporary analyses). While the observed scale-dependent component of the
residual energy is likely to be intrinsic – recent theory predicts a ∝ k−2

⊥ residual-energy
spectrum for both balanced and moderately imbalanced strong turbulence (e.g. Müller
& Grappin 2005; Boldyrev et al. 2011; Boldyrev, Perez & Wang 2012) – the constant
component can (at least partially) be attributed to non-MHD corrections to the Alfvén
speed due to pressure anisotropies and parallel drifts. Indeed, this interpretation is
supported by (3.6), and one may thus construct a more appropriate Alfvén ratio by
weighting the flux function by vA∗/vA (Belcher & Davis 1971; Matthaeus & Goldstein
1982). This was the route followed by Chen et al. (2013), who found that such a
‘kinetic normalisation’, equivalent to using

rA∗
.=
∣∣∣∣
vA

vA∗

Φ

Ψ

∣∣∣∣
2

(3.7)
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instead of rA, yields fluctuations that are closer to equipartition, with a mean residual
energy of σr∗

.= (rA∗ − 1)/(rA∗ + 1) = −0.19 and a mean Alfvén ratio of rA∗ = 0.71
(rather than σr = −0.43 and rA = 0.40 using (3.6)). Using the appropriate kinetic
normalisation is thus essential when measuring quantities like the residual energy in
plasmas with anisotropic distribution functions, such as the solar wind.

3.3. Alfvén-wave invariants
Another standard result – that interactions between ‘+’ and ‘−’ waves occur without
exchanging energy – can also be shown to hold true in general. Multiplying (3.5) by
ρ0ζ

± and integrating the result over space, we find

dW±AW

dt
= 0, (3.8)

where
W±AW

.= 1
2

∫
d3r ρ0|∇⊥ζ±|2 (3.9)

are the independently conserved (free) energies of the forward- and backward-
propagating Alfvénic fluctuations, respectively. Their sum,

WAW
.= W+AW +W−AW

= 1
2

∫
d3r ρ0(|∇⊥ζ+|2 + |∇⊥ζ−|2)

= 1
2

∫
d3r ρ0

(
|∇⊥Φ|2 + v

2
A∗
v2

A
|∇⊥Ψ |2

)

=
∫

d3r

{
ρ0u2
⊥

2
+
[

1+
∑

s

β‖s
2

(
∆s −

2u′2‖0s

v2
th‖s

)]
δB2
⊥

8π

}
, (3.10)

is, of course, also conserved. If v2
A∗ (equivalently, the expression in the square brackets

in (3.10)) is positive – i.e. if the plasma is firehose-stable – WAW is a positive definite
quantity measuring the total kinetic and potential energy stored in the Alfvénic
fluctuations. To interpret (3.10) when v2

A∗ is driven negative by the pressure anisotropy
and parallel drifts, we separate the various terms in the conservation law for WAW as
follows:

d
dt

∫
d3r
(
ρ0u2
⊥

2
+ δB

2
⊥

8π

)
=
∑

s

n0sT‖0s

2

∫
d3r

∣∣∣∣∣∆s −
2u′2‖0s

v2
th‖s

∣∣∣∣∣
∂

∂t
δB2
⊥

B2
0
. (3.11)

We then see that the terms on the right-hand side of this equation constitute a source
for the kinetic and magnetic fluctuations on the left-hand side. Indeed, recent work
on the nonlinear evolution of the firehose instability (e.g. Schekochihin et al. 2008b;
Rosin et al. 2011; Kunz et al. 2014) has shown that the rate of relaxation of the
pressure anisotropy ∆s is related to ∂δB2

⊥/∂t, and so one can, heuristically, interpret
the right-hand side of (3.11) as a velocity-space source of free energy multiplied by
the rate at which fluctuations act to remove that source of free energy. In this case,
the Alfvénic invariant (3.10) is minimised by growing fluctuations.

Another way to interpret (3.10) for a non-Maxwellian plasma is as follows.
How close the equilibrium pressure-anisotropic distribution is to the firehose
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threshold has the effect of weighting the (free) energy associated with perpendicular
magnetic perturbations. As the threshold is approached, bending field lines becomes
energetically less demanding (dynamically, the negative-pressure-anisotropy stress
cancels the tension force: see (2.11)). As the threshold is crossed, WAW is no longer
positive definite and so can be conserved even if perturbations grow – which is
indeed what happens.

In § 5.1, we show that WAW is part of a generalised free-energy invariant conserved
and cascaded to small scales in phase space by the plasma turbulence.

4. Compressive fluctuations in the inertial range
We now turn our focus to the behaviour of compressive fluctuations in the inertial

range (dynamical equations for these fluctuations were derived in § 2.5). In this
section, we show that the compressive fluctuations possess their own invariant, which
has a natural interpretation when the equilibrium distribution function is cast in terms
of the particle kinetic energy and adiabatic invariant. For a bi-Maxwellian plasma
with a single ionic species, the inertial-range cascade of compressive fluctuations can
be further split into three independent kinetic cascades. We derive the linear theory
of compressive fluctuations in a bi-Maxwellian plasma (the general linear theory is
given in appendix B) and use it to demonstrate how pressure anisotropy affects the
efficacy of linear parallel phase mixing and the partitioning of free energy amongst
the various cascade channels.

4.1. Compressive invariant
In § 2.5.3, we derived the evolution and constraint equations for the perturbed
ion distribution function gi, whose moments describe compressive fluctuations in
a pressure-anisotropic plasma. The nonlinear evolution of these fluctuations is due
solely to passive advection of gi by the Alfvénic turbulence, which mixes δne and
δB‖ in the direction transverse to the local magnetic field. (Mathematically, this is
a statement that, in the Lagrangian frame associated with the Alfvénic component
of the turbulence, (2.53c) is linear.) During this mixing, the compressive fluctuations
satisfy an important conservation law, which we now derive.

Multiplying (2.49) by (τ‖i/Zi)(ci/n0i)(gi/f
‖
0i) and integrating over the phase space,

we find that

d
dt

∫
d3r

τ‖i
Zi

ci

n0i

∫
d3v

g2
i

2f ‖0i

+
∫

d3r
ci

n0i

∫
d3v (v‖ − u′‖0i)gi b̂ · ∇

[
1

C‖0e

(
δne

n0e
+∆1e

δB‖
B0

)
+ τ‖i

Zi

w2
⊥

v2
th‖i

δB‖
B0

]
= 0.

(4.1)

On the other hand, multiplying (2.49) by the term in the square brackets in (4.1),
integrating the result over phase space, and performing integration by parts gives

∫
d3r
∫

d3v
dgi

dt

[
1

C‖0e

(
δne

n0e
+∆1e

δB‖
B0

)
+ τ‖i

Zi

w2
⊥

v2
th‖i

δB‖
B0

]

=
∫

d3r
∫

d3v v‖gi b̂ · ∇
[

1

C‖0e

(
δne

n0e
+∆1e

δB‖
B0

)
+ τ‖i

Zi

w2
⊥

v2
th‖i

δB‖
B0

]
. (4.2)
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Using this expression in (4.1), summing over ion species, and using (2.50) and
(2.52) to eliminate the resulting velocity-space integrals of gi produces the following
conservation law:

dWcompr

dt
=
∫

d3r
∑

i

u′‖0i

[
T‖0iδni

Zi

τ‖i
b̂ · ∇ 1

C‖0e

(
δne

n0e
+∆1e

δB‖
B0

)
+ δp⊥ib̂ · ∇ δB‖B0

]

= −
∫

d3r u′‖0i

(
ZieδniE‖ − δp⊥ib̂ · ∇ δB‖B0

)
, (4.3)

where

Wcompr
.= n0eT‖0e

2

∫
d3r

{∑

i

τ‖i
Zi

ci

n0i

∫
d3v

g2
i

f ‖0i

+ 1

C‖0e

(
δne

n0e
− δB‖

B0

)2

− p⊥0e

p‖0e

[
C‖1e

C‖0e

− 2∆2e + C‖1e

C‖0e

∆1e + 2

(∑

i

ci
τ⊥i

Zi
+ 1
β⊥e

)]
δB2
‖

B2
0

}
. (4.4)

In the absence of interspecies drifts, Wcompr is an invariant conserved by (2.49)–(2.52).
The simpler version of Wcompr that is conserved for the pressure-isotropic case ((201)
of S09) is related to the perturbed entropy δSs of the system (cf. Krommes & Hu
1994; Sugama et al. 1996; Howes et al. 2006; Schekochihin et al. 2008a). With
interspecies parallel drifts, the right-hand side of (4.3) constitutes a source or sink
for this quantity. It is the work done by the fluctuating parallel electric field (2.37)
and by magnetic-mirror forces acting on the interspecies drifts, and represents the
exchange of free energy between these drifts and the compressive fluctuations. (See
§ B.2 for a specific example of this physics, where we explicitly demonstrate that
free energy can flow into or out of the interspecies drifts depending upon whether
the system is unstable to an ion-acoustic, i.e. streaming, instability.)

Adding and subtracting the phase-space integral of T‖0eg2
e/2f ‖0e to the right-hand side

of (4.4), with ge given by (2.48), the compressive invariant may be rewritten in the
following compact form:

Wcompr =
∫

d3r

[∑

s

∫
d3v

T‖0sg2
s

2f ‖0s

− (1+ β⊥)
δB2
‖

8π

]
. (4.5)

We now make a transformation analogous to that made in equation (149) of S09.
Defining

δf̃s
.= gs + w2

⊥
v2

th‖s

δB‖
B0

f ‖0s = δfs + w2
⊥

v2
th⊥s

δB‖
B0

Df0s (4.6)

and using (2.48) and (2.52) to eliminate the resulting velocity-space integrals over ge
and gi, respectively, we can rewrite (4.5) in a particularly useful form:

Wcompr =
∫

d3r

[∑

s

∫
d3v

T‖0sδf̃ 2
s

2f ‖0s

+
(

1−
∑

s

β⊥s∆2s

)
δB2
‖

8π

]
, (4.7)

where

∆2s =
(

1
n0s

∫
d3v

1
2

w4
⊥

v4
th⊥s

f ‖0s

)
p⊥0s

p‖0s
− 1 (4.8)
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is the extension of ∆2e to arbitrary species s (cf. (2.39)). This form of Wcompr parallels
the final expression in (3.10) for the Alfvénic invariant: we have a quantity that has
one interpretation if 1 −∑s β⊥s∆2s > 0, namely that it is the generalised energy of
the compressive fluctuations, and another if 1 −∑s β⊥s∆2s < 0, in which case the
final term in (4.7) becomes a free-energy source for the mirror instability, for which
the expression multiplying δB2

‖/8π in (4.7) is related to the stability parameter (see
§ 4.4.2 and § B.3); neglecting interspecies drifts,

d
dt

∫
d3r

(∑

s

∫
d3v

T‖0sδf̃ 2
s

2f ‖0s

+ δB
2
‖

8π

)
=
∑

s

n0sT⊥0s

∫
d3r∆2s

∂

∂t

δB2
‖

B2
0
. (4.9)

In the unstable case, one can interpret ∂δB2
‖/∂t as the rate of relaxation of the pressure

anisotropy as the mirror fluctuations grow (see e.g. Schekochihin et al. 2008b; Kunz
et al. 2014; Riquelme, Quataert & Verscharen 2014; Rincon, Schekochihin & Cowley
2015). In this case, Wcompr is minimised by growing fluctuations.

Another interpretation of what happens when the stability threshold is approached
and crossed is analogous to the one we offered at the end of § 3.3 for a similar
situation concerning the Alfvénic fluctuations. Within the mirror stability boundary,
Wcompr is a positive definite conserved free-energy-like quantity. As the system gets
closer to the mirror threshold, it becomes energetically ‘cheaper’ to produce magnetic
compressions or rarefactions (δB‖) – dynamically, this is due to the fact that the effect
of positive p⊥0 − p‖0 is to reduce the magnetic pressure response (cf. Southwood &
Kivelson 1993). Once the threshold is crossed, Wcompr is no longer positive definite and
its conservation is compatible with the growth of δB‖ and δf̃s (the mirror instability).

The astute reader will recognise that the factor multiplying δB2
‖ in the free-energy

invariant, namely 1 −∑s β⊥s∆2s, is not the exact mirror stability parameter, (B 14).
While the latter reduces to the former in the case of very high β or of cold electrons
(for which the right-hand side of (B 14) vanishes), in general there is a stabilising
term due to the interaction of linearly resonant particles with the parallel electric
field (i.e. Landau damping). This physics is contained inside the first term in the
compressive invariant, proportional to δf̃ 2

s . In order to see this, and to make better
sense of the structure of Wcompr, we must understand the physical meaning of δf̃s.

4.2. Meaning of δf̃s: (v‖,w⊥) versus (εs, µs) coordinates
Our decision to write f0s as a function of v‖ and w⊥, while analytically convenient, is
not the most natural choice for interpreting the compressive invariant Wcompr. Instead,
let us introduce the kinetic energy and adiabatic invariant of a particle of species s,
given respectively by

εs
.= 1

2 ms(v‖ − u′‖0s)
2 + 1

2 msw2
⊥, (4.10)

µs
.= msw2

⊥
2B

, (4.11)

and rewrite the drift-kinetic equation (2.3) using εs and µs as our velocity-space
coordinates (e.g. Hazeltine 1973):

Dfs

Dt
+
[

ms(v‖ − u′‖0s)

(
qs

ms
E‖ − Du⊥

Dt
· b̂
)
+µs

(
dB
dt
+ u′‖0s

∂B
∂z

)]
∂fs

∂εs
=
(
∂fs

∂t

)

c

,

(4.12)
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where v‖ − u′‖0s = ±
√

2ms(εs −µsB). This is perhaps the most transparent form of
KMHD: particles parallel-stream, E × B-drift, conserve µs, and change their kinetic
energy by interacting with a parallel electric field E‖ and/or a changing magnetic field
(mirroring) in the frame of the equilibrium species drift; the term −(Du⊥/Dt) · b̂ =
u⊥ · (Db̂/Dt) is an inertial term having to do with the fact that the direction of the
magnetic-field line changes as the particle streams along it and so the plane of the
E×B drift tilts.

When compared to the formulation of KMHD in (v‖, w⊥) coordinates (2.3), this
formulation makes clear that there is a more general class of equilibrium solutions
in a collisionless drift-kinetic plasma than those satisfying fs = f0s(v‖, w⊥), namely,
fs= f̃0s(εs, µs). Thus, what is referred to as the ‘equilibrium state’ may in fact contain
inhomogeneous fluctuations (e.g. Alfvén waves), so long as the energy of each particle
is conserved. As a result, there are pieces of δfs in the (v‖, w⊥) formulation that
may be absorbed into the equilibrium distribution function when f0s is taken to be
a function εs and µs (e.g. fluctuations in magnetic-field strength that do not violate
µs-conservation). To see that this is the case, we relate the two formulations via

f0s

((
v‖ − u′‖0s

)2
,w2
⊥
)
= f0s

(
2εs

ms
− 2µsB

ms
,

2µsB
ms

)

' f0s

(
2εs

ms
− 2µsB0

ms
,

2µsB0

ms

)

+ 2µsB0

ms

δB‖
B0

[
− ∂f0s

∂(v‖ − u′‖0s)
2
+ ∂f0s

∂w2
⊥

]

= f̃0s(εs, µs)+ w2
⊥

v2
th⊥s

δB‖
B0

Df0s. (4.13)

Comparing (4.6) and (4.13), it then becomes clear that the perturbed distribution
function appearing in the compressive invariant Wcompr (see (4.7)) satisfies

δf̃s
.= δfs + w2

⊥
v2

th⊥s

δB‖
B0

Df0s = δfs + f0s − f̃0s = fs − f̃0s, (4.14)

i.e. it is the perturbed distribution function if f0s is taken to be a function of (εs, µs)
instead of (v‖,w⊥).

The meaning of the first entropy-like term in the compressive invariant Wcompr (see
(4.7)) is then readily apparent: it is the non-Alfvénic piece of the distribution function
that represents changes in the kinetic energy of the particles due to interactions with
the compressive fluctuations. In it are contributions from Landau-resonant particles,
whose energy is changed by the parallel electric and magnetic-mirror forces in such a
way as to facilitate Landau (§ B.2) and Barnes (§ B.3) damping of ion-acoustic waves
and slow modes. As long as the plasma stays within the mirror and streaming stability
boundaries, the compressive invariant is positive definite.

In the next four sections (§§ 4.3–4.6), we show that the conservation of Wcompr
represents a turbulent cascade of compressive fluctuations from large to small scales
in phase space.

4.3. Parallel kinetics: two decoupled collisionless cascades
We begin by noting that, under our collisionless ordering, the w⊥ dependence in
(2.53c) can be integrated out. We introduce two auxiliary functions, Gn(v‖) and
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GB(v‖), defined so that

δne

n0e
=
∫

dv‖Gn and
δB‖
B0
=
∫

dv‖GB, (4.15a,b)

i.e. they contain all the w⊥ integrals and species summations in the right linear
combination as per (2.53d) and (2.53e). Then (2.53c) reduces to the following two
coupled one-dimensional kinetic equations (cf. (179) and (180) of S09):

dGn

dt
+ v‖b̂ · ∇Gn =

∑

i

(v‖ − u′‖0i)F
‖
0i(v‖) b̂ · ∇

[
λnn

i (v‖)
δne

n0e
+ λnB

i (v‖)
δB‖
B0

]
, (4.16a)

dGB

dt
+ v‖b̂ · ∇GB =

∑

i

(v‖ − u′‖0i)F
‖
0i(v‖) b̂ · ∇

[
λBn

i (v‖)
δne

n0e
+ λBB

i (v‖)
δB‖
B0

]
, (4.16b)

where the v‖- and ion-species-dependent λi coefficients, given in appendix A, depend
upon various perpendicular moments of the parallel-differentiated equilibrium ion
distribution function:

F‖`i(v‖)
.= 2π

n0i

∫ ∞

0
dw⊥w⊥

1
`!
(

w⊥
vth⊥i

)2`

f ‖0i(v‖,w⊥) (4.17)

for integer `. This coupled system of integral equations, compactly expressed as
(

d
dt
+ v‖b̂ · ∇

) [
Gn(v‖)
GB(v‖)

]

=
∑

i

(v‖ − u′‖0i)F
‖
0i(v‖) b̂ · ∇

∫ ∞

−∞
dv′‖

[
λnn

i (v‖) λ
nB
i (v‖)

λBn
i (v‖) λ

BB
i (v‖)

] [
Gn(v

′
‖)

GB(v
′
‖)

]
, (4.18)

has a simple physical interpretation. Kinetic fluctuations in each of the i′ = 1 . . . Nion
ionic species collectively excite compressive fluctuations in the magnetic-field strength
(via perpendicular pressure balance), the electron density (via quasineutrality), and
thereby the electric field (via parallel pressure balance in the massless electron
fluid; see (2.37)). These electromagnetic fields in turn feed back upon the kinetic
fluctuations exhibited by each individual ionic species, in a way that is dictated by
the various λi coefficients. This system of equations describing the evolution of the
compressive fluctuations and their interactions with the particles is closed, signalling
the fact that the compressive dynamics proceeds independently from that of the
Alfvénic fluctuations.

Because each ion species responds to the compressive fluctuations in a different
way (λi 6= λi′ for i 6= i′), (4.18) cannot be diagonalised in general. Moreover, the mode
structure excited in the parallel-velocity space by these fluctuations will generally
be different to the mode structure present in the fluctuations themselves (in general,
λ(v‖) 6= λ(v′‖) for v‖ 6= v′‖), and so this system can only be diagonalised if the λi
coefficients are independent of v‖. Both of these requirements for diagonalising (4.18)
are guaranteed only for a plasma consisting of a single species of bi-Maxwellian
ions, for which F‖`i(v‖)= FM(v‖)

.= (1/√πvth‖i) exp(−v2
‖/v

2
th‖i) for all integer `. Then,

assuming a bi-Maxwellian plasma and proceeding with the diagonalisation, we find
that (4.18) is equivalent to

dG±

dt
+ v‖b̂ · ∇G± = v‖FM(v‖)

Λ±
b̂ · ∇

∫ ∞

−∞
dv′‖G±(v′‖), (4.19)
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where

G+ =GB + p‖0i

p⊥0i

1
σi

(
1+ Zi

τ⊥i

)
Gn and G− =Gn + $i

σi

τ‖i
Zi

2
β⊥i

GB (4.20a,b)

are the eigenvectors,

Λ± =−τ‖i
Zi
+ p‖0i

p⊥0i

ςi

β⊥i
±
√(

τ‖i
τ⊥i
+ τ‖i

Zi

)2

+
(

p‖0i

p⊥0i

ςi

β⊥i

)2

(4.21)

are the (inverses of) the corresponding eigenvalues, and we have defined

σi
.= τ‖i
τ⊥i
+ τ‖i

Zi
+ p‖0i

p⊥0i

1
β⊥i
+
√(

τ‖i
τ⊥i
+ τ‖i

Zi

)2

+
(

p‖0i

p⊥0i

ςi

β⊥i

)2

, (4.22)

ςi
.= 1− β⊥∆e, (4.23)

$i
.= 1+ p‖0e

p⊥0i
∆e

(
1− 1

2
β⊥∆e

)
, (4.24)

the latter two expressions equating to unity for isotropic electrons.
Equation (4.19), which reduces to equation (181) of S09 for a Maxwellian plasma,

describes two decoupled kinetic cascades. These are the subject of § 4.5, in which
we derive the two collisionless invariants associated with G+ and G−. But first,
we specialise G± and Λ± for application to two different astrophysical systems
representing two distinct parameter regimes and determine what their values imply
for the evolution of compressive fluctuations in the linear regime.

4.4. Linear theory: collisionless damping and mirror instability

To develop the linear theory for a two-component bi-Maxwellian plasma,† we Fourier-
transform (4.19) in time (∂/∂t→ −iω) and space (b̂ · ∇ → ik‖), divide both sides
by −i(ω − k‖v‖), and integrate over the parallel velocity. Dividing both sides of the
resulting equation by

∫
dv‖G± and using

∫
dv‖ FM(v‖) = 1, we obtain the following

dispersion relation:

Λ± − 1= ω

k‖

∫
dv‖

FM(v‖)
v‖ −ω/k‖ = ξiZM(ξi), (4.25)

where ξi
.= ω/k‖vth‖i is the dimensionless phase speed and the (Maxwellian) plasma

dispersion function (Fried & Conte 1961)

ZM(ξ)
.= 1√

π

∫ ∞

−∞
dx

e−x2

x− ξ , (4.26)

the integration being performed along the Landau contour. Formally, (4.25) has an
infinite number of solutions, most of which are strongly damped with damping rates
Im(ξi) ∼ 1. A few of the more interesting solutions may be obtained analytically in
the low- and high-beta limits.

†The linear theory for a plasma with an arbitrary gyrotropic equilibrium distribution function and multiple
ionic species is presented in appendix B.
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4.4.1. Low-beta limit: solar corona
When βs� 1∼∆s, (4.20) and (4.21) give†

Λ− − 1'−
(

1+ τ‖i
Zi

)
, G− 'Gn + τ‖iZi

(
1+∆i +∆e

Zi

τ‖i

)
GB, (4.27a,b)

Λ+ − 1' p‖0i

p⊥0i

2
β⊥i

, G+ 'GB (4.28a,b)

For the ‘−’ branch, we have Im(ξi)∼ 1, and so

ω∼−i|k‖|vA

√
β‖i, (4.29)

which is much smaller than the Alfvénic cascade rate k‖vA. For the ‘+’ branch,
consisting predominantly of fluctuations in magnetic-field strength,

ω∼−i|k‖|vA

√
β‖i

∣∣∣∣ln
p‖0i

p⊥0i

2
β⊥i

∣∣∣∣, (4.30)

up to logarithmically small corrections. This damping rate is slightly greater than
that of the ‘−’ branch, though still much smaller than the Alfvénic cascade rate.
Compressive fluctuations in a low-beta plasma are therefore weakly damped. Pressure
anisotropies do not affect this conclusion.

4.4.2. High-beta limit: intracluster medium
When βs ∼ 1/∆s� 1, we have

Λ− − 1'−2
(
τ‖i
τ⊥i
+ τ‖i

Zi

)
, G− 'Gn, (4.31a,b)

Λ+ − 1' p‖0i

p⊥0i

1
β⊥i

(
1−

∑

s

β⊥s∆s

)
, G+ 'GB + 1

2
Zi

τ‖i

p‖0i

p⊥0i
Gn. (4.32a,b)

The ‘−’ branch corresponds to the density fluctuations and is strongly damped with
Im(ξi)∼ 1. In contrast, the damping rate of the ‘+’ branch is small: it can be obtained
by expanding ZM(ξi)= i

√
π+O(ξi), which gives

γ
.=−iω=− |k‖|vA√

πβ‖i

p2
‖0i

p2
⊥0i

(
1−

∑

s

β⊥s∆s

)
. (4.33)

This expression generalises (in the limit k‖/k⊥ � 1) for bi-Maxwellian distribution
functions what is known in astrophysics as the Barnes (1966) damping and in plasma
physics as transit-time damping (Stix 1962). Particles that are almost at rest with
respect to the slow wave (i.e. ‘Landau resonant’ with ω ∼ k‖v‖) are subject to the
action of the mirror force associated with the magnetic compressions in the wave.
Since, for a monotonically decreasing distribution function (f ‖0i > 0), there are more

†In some regions of the solar atmosphere, this subsidiary expansion in low βs may conflict with the prior
mass-ratio expansion if βi ∼me/mi.
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particles with v‖ < ω/k‖ than with v‖ > ω/k‖, the energy exchange between resonant
particles and the wave leads to a net gain (loss) of energy by the particles (wave). Put
differently, the only way to maintain perpendicular pressure balance for a slow wave is
to increase the energy of the resonant particles (referred to as ‘betatron acceleration’,
due to the last term in square brackets in (4.12)) at the expense of the wave energy.
The result is wave damping.

Because Gn is strongly damped, the fluctuations that are damped at the rate
(4.33) are predominantly of the magnetic-field strength. For large ion beta, the
damping rate is a small fraction ∼1/

√
β‖i of the Alfvénic cascade rate, becoming

even smaller in a plasma exhibiting positive pressure anisotropy. This reduction is
due to the proportional increase (for ∆s > 0) in the number of large-pitch-angle
particles in the magnetic troughs (δB‖ < 0). This inflates the field lines (in order to
maintain perpendicular pressure balance), thereby (partially) offsetting the damping
of the field-strength fluctuations. If the concentration of these particles leads to more
perpendicular pressure than can be stably balanced by the magnetic pressure, the
troughs must grow deeper to compensate. This process runs away as the resonant
particles in the deepening troughs lose energy at a rate µ∂B/∂t ∼ µγ δB‖ (‘betatron
deceleration’). This is the mirror instability (e.g. Southwood & Kivelson 1993). It
is the inevitable outcome of trying to maintain perpendicular pressure balance in
the midst of an effectively negative magnetic pressure (see appendix B and, in
particular, (B 6)).

4.5. Collisionless invariants and phase mixing
The linear theory elucidated, we now return to the principal result of § 4.3: that, for a
plasma with a single species of bi-Maxwellian ions, the compressive fluctuations can
be decomposed into two decoupled kinetic cascades. Here we show that these two
cascades independently obey their own conservation laws.

If we multiply (4.19) by G±(v‖)/FM(v‖), integrate over space and parallel velocity,
and perform integration by parts on the right-hand side, we find that

d
dt

∫
d3r
∫

dv‖
(G±)2

2FM(v‖)
=− 1

Λ±

∫
d3r
(∫

dv‖G±
)

b̂ · ∇
∫

dv‖ v‖G±. (4.34)

On the other hand, integrating (4.19) over parallel velocity gives

d
dt

∫
dv‖G± =−b̂ · ∇

∫
dv‖ v‖G±, (4.35)

because
∫

dv‖ v‖FM(v‖)= 0. Using this to replace the final term on the right-hand side
of (4.34), we find

dW±compr

dt
= 0, (4.36)

where the two invariants are

W±compr =
n0iT‖0i

2

∫
d3r

[∫
dv‖

(G±)2

FM(v‖)
− 1
Λ±

(∫
dv‖G±

)2
]
. (4.37)

For these invariants to be conserved, the first term in the square bracket must grow
to compensate for the decay of the second due to collisionless damping. To see how
this arrangement proceeds, it is useful to split

G± = G̃± + FM(v‖)
∫

dv‖G±, (4.38)
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noting that
∫

dv‖ G̃± = 0 since
∫

dv‖ FM(v‖)= 1. Then

W±compr =
n0iT‖0i

2

∫
d3r

[∫
dv‖

(G̃±)2

FM(v‖)
+
(

1− 1
Λ±

)(∫
dv‖G±

)2
]
. (4.39)

For a Maxwellian equilibrium distribution function, the two invariants W±compr
are guaranteed to be positive definite because Λ+ > 1 and Λ− < 0 (see (4.21)).
Collisionless damping leads to exponential decay of the density and magnetic-field-
strength fluctuations, or, equivalently, of

∫
dv‖G±, while conserving W±compr. This

means that damping is a redistribution of the conserved quantity W±compr: the first term
grows to compensate for the decay of the second. This is a manifestation of linear
parallel phase mixing (Landau 1946; Hammett, Dorland & Perkins 1992; Krommes &
Hu 1994; Krommes 1999; Watanabe & Sugama 2004): free energy passes from the
low (density) moment of the distribution function to higher moments (contained in
G̃). As time goes on, the latter part of the solution becomes increasingly oscillatory
in v‖ (G̃± ∝ e−ik‖v‖t, the so-called ballistic response), representing the development of
finer structure in the parallel-velocity space (see § 6.2.4 of S09 for further discussion).

What is novel for anisotropic distribution functions is what happens near the mirror
threshold Λ+ = 1 (cf. (4.32)). When the perpendicular pressure is greater than the
parallel pressure, the Barnes damping rate is reduced (4.33), and so the free energy
is transferred from the electromagnetic fluctuations to the ballistic kinetic fluctuations
at a slower rate. As we explained in our discussion (4.7), it is easier to compress
magnetic-field lines (δB‖ 6= 0) when p⊥0 > p‖0, so the energetic cost of perturbing
the magnetic-field strength is relatively small; this is the physical origin of the small
factor (1 − 1/Λ+) multiplying the second term in (4.39). In other words, as the
mirror threshold is approached, the generation of fine-scale structure in velocity space
by phase mixing is achieved by damping increasingly large magnetic-field-strength
fluctuations at an ever decreasing rate. When Λ+ < 1 and the plasma is driven
mirror-unstable, the second term in (4.39) becomes increasingly negative as the
magnetic-field-strength fluctuations grow. Consequently, the first term in (4.39) must
grow increasingly positive to compensate, which corresponds to the production of
fine-scale structure in velocity space. This structure is caused by the fraction of
particles that are linearly resonant with (and nonlinearly trapped by) the unstable
mirror mode (e.g. Southwood & Kivelson 1993).

4.6. Wcompr revisited: compressive phase-space cascade
We now show that, for a bi-Maxwellian plasma with a single ion species, the
compressive invariant Wcompr obtained in § 4.1 incorporates the two invariants derived
in § 4.5. We begin by expressing the density and magnetic-field-strength fluctuations
in terms of G±:

δne

n0e
= 1
κi

(
σi

∫
dv‖G− −$i

τ‖i
Zi

2
β⊥i

∫
dv‖G+

)
, (4.40)

δB‖
B0
= 1
κi

[
σi

∫
dv‖G+ − p‖0i

p⊥0i

(
1+ Zi

τ⊥i

) ∫
dv‖G−

]
, (4.41)

where σi and $i are defined in (4.22) and (4.24) and

κi
.= 2

√(
τ‖i
τ⊥i
+ τ‖i

Zi

)2

+
(

p‖0i

p⊥0i

ςi

β⊥i

)2

. (4.42)
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(There is a factor of 2 missing in the definition of κ in S09, their equation (204). This
error affects their equation (213).) To express gi in terms of G±, we decompose gi as
follows (cf. § 6.2.5 of S09):

gi = n0i

πv2
th⊥i

e−x ĝ(x, v‖), ĝ(x, v‖)
.=
∞∑

`=0

L`(x)G`(v‖), (4.43a,b)

where x = w2
⊥/v

2
th⊥i and the Laguerre polynomials L`(x) = (ex/`!)(d`/dx`) x`e−x.

Because Laguerre polynomials are orthogonal, we have

1
n0i

∫
d3v

g2
i

2f0i
=
∞∑

`=0

∫
dv‖

G2
`

2FM(v‖)
, (4.44)

where the expansion coefficients are determined via the Laguerre transform:

G`(v‖)=
∫ ∞

0
dx e−x L`(x)ĝ(x, v‖). (4.45)

Since L0 = 1 and L1 = 1 − x, (2.50) and (2.52) can be used to write the ` = 0 and
`= 1 expansion coefficients as linear combinations of Gn and GB. Using (4.20) and
(4.21) to replace Gn and GB by suitable combinations of Λ+G+ and Λ−G−, we find
after some straightforward but tedious algebra that

G0 = −1
κ

{[
σ

p⊥0i

p‖0i

(
1+ p‖0e

p⊥0i
∆e

)
−$i

2
β⊥i

]
Λ+G+

+ Zi

τ‖i

[
σ −

(
τ‖i
τ⊥i
+ τ‖i

Zi

)(
1+ p‖0e

p⊥0i
∆e

)]
Λ−G−

}
, (4.46)

G1 = 1
κ

[
σ

p⊥0i

p‖0i
Λ+G+ −

(
1+ Zi

τ⊥i

)
Λ−G−

]
. (4.47)

Substituting (4.43) into the ion kinetic equation (2.53c), we see that all higher-order
expansion coefficients satisfy a simple homogeneous equation:

dG`

dt
+ v‖b̂ · ∇G` = 0, ` > 1. (4.48)

Thus, the distribution function can be explicitly written in terms of G±:

gi =
[

G0(v‖)+
(

1− w2
⊥

v2
th⊥i

)
G1(v‖)

]
n0i

πv2
th⊥i

e−w2
⊥/v

2
th⊥i + g̃i, (4.49)

where g̃i comprises all G` with ` > 1. In other words, g̃i is a passively mixed,
undamped, ballistic-type mode that contributes to neither density nor magnetic-field
strength:

dg̃i

dt
+ v‖b̂ · ∇g̃i = 0,

∫
d3v g̃i = 0,

∫
d3v

w2
⊥

v2
th⊥i

g̃i = 0; (4.50a−c)

it is the homogeneous solution of (2.53c).
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Equipped with expressions for G0 (4.46), G1 (4.47), δne/n0e (4.40), and δB‖/B0
(4.41) written in terms of G±, we now substitute these into our expression for the
compressive invariant (4.5) with (4.44) to find that

Wcompr =
∫

d3r
∫

d3v
T‖0ig̃ 2

i

2f0i
+ p2

⊥0i

p2
‖0i

{
1+ 2

κi

(
τ‖i
τ⊥i
+ τ‖i

Zi

)(
1+ p‖0e

p⊥0i
∆e

)

+ 1
2

[(
1+ p‖0e

p⊥0i
∆e

)2

− 1

](
1− 2

κi

p‖0i

p⊥0i

ςi

β⊥i

)}
(Λ+)2 W+compr

+ 1
2

Z2
i

τ 2
‖i

(
1+ 2

κi

p‖0i

p⊥0i

ςi

β⊥i

)
(Λ−)2 W−compr. (4.51)

Thus, for a bi-Maxwellian plasma, the generalised invariant for compressive
fluctuations splits into three independently cascading parts: W±compr associated with
the density and magnetic-field-strength fluctuations and a purely kinetic part given by
the first term in (4.51):

Wg̃i

.=
∫

d3r
∫

d3v
T‖0ig̃ 2

i

2f0i
. (4.52)

All three cascade channels lead to small perpendicular spatial scales via passive
mixing by the Alfvénic turbulence and to small scales in v‖ via the linear parallel
phase mixing, the rates of mixing being functions of the velocity-space anisotropy of
the equilibrium distribution function.

5. Conclusions
5.1. Generalised free-energy cascade in a pressure-anisotropic plasma

Assembling the results of §§ 3 and 4, we now arrive at the central unifying concept of
this paper. The Alfvénic invariants (3.10) and the compressive invariant (4.7) together
make up the generalised free energy,

W .= W+AW +W−AW +Wcompr

=
∫

d3r

{∑

s

∫
d3v

T‖0sδf̃ 2
s

2f ‖0s

+ ρ0u2
⊥

2

+
[

1+
∑

s

β‖s
2

(
∆s −

2u′2‖0s

v2
th‖s

)]
δB2
⊥

8π
+
(

1−
∑

s

β⊥s∆2s

)
δB2
‖

8π

}
, (5.1)

which is the quantity conserved by (2.53) in the absence of equilibrium interspecies
drifts and cascaded to small scales in phase space across the inertial range of KRMHD
turbulence (analogous to the energy cascade in fluid or MHD turbulence). It contains
(in the order of appearance in (5.1)) the perturbed entropy of the system in the frame
of the Alfvénic fluctuations, the energy associated with the E×B motion, the energy
carried by the magnetic fluctuations, and terms arising from the exchange of free
energy between the magnetic fluctuations and the equilibrium pressure anisotropy
and parallel interspecies drifts. Just as shown by S09 for a two-species Maxwellian
plasma, the inertial-range kinetic cascade can generally be split into three independent
cascades of the generalised Alfvénic and compressive-fluctuation energies: W+AW , W−AW ,
and Wcompr. In § 4.6, we showed that, for a single-ion-species bi-Maxwellian plasma,
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Wcompr can be further decomposed into three independently cascading parts: W+compr,
W−compr, and Wg̃i . In all of these cascades, what is affected by pressure anisotropies
and interspecies drifts are the amount of magnetic-field fluctuations associated with
each of the invariants (§§ 3.3, 4.3) and the rate at which linear parallel phase mixing
generates small-scale structure in velocity space (§ 4.4).

Because we have ordered collisions out of our equations, the collisionless invariant
given by (5.1) is just one of an infinite number of invariants of the system. We place
special emphasis on this particular invariant, W, for two reasons.

First, it neatly reduces to the generalised invariant for a (collisional) Maxwellian
plasma (cf. (74) and (153) of S09):

W→
∫

d3r

(∑

s

∫
d3v

T0sδf 2
s

2f0s
+ ρ0u2

⊥
2
+ |δB|

2

8π

)
, (5.2)

which is variously referred to as the generalised grand canonical potential (Hallatschek
2004) or free energy (Fowler 1968; Scott 2010) because of its similarity to the
Helmholtz free energy A .=−∑s T0sδSs+ δU, where δU is the potential energy stored
in the fluctuations and δSs is the entropy associated with the perturbed distribution
function.

Secondly, it encodes rather neatly in a thermodynamical context the main (linear and
nonlinear) physical effect associated with the presence of firehose (§ 3.1) and mirror
(§ 4.4) instabilities. The firehose and mirror (in)stability parameters appear in (5.1) as
prefactors of the perpendicular and parallel magnetic energies, respectively. As either
of these thresholds is approached, these prefactors get smaller and thus the energetic
weight associated with the corresponding type of magnetic fluctuation gets smaller. At
the firehose threshold, bending magnetic-field lines is free; at the mirror threshold,
compressing them is free. Beyond these thresholds, it becomes energetically profitable
to grow magnetic fluctuations.

As long as the plasma stays within the firehose and mirror stability boundaries, the
generalised free-energy invariant W is positive definite and so describes a turbulent
cascade from large to small scales (as well as into phase space). In this case, linear
stability implies nonlinear stability. As these thresholds are crossed, the reduced
ordering underpinning our equations breaks down, since there are no restoring forces
to keep such fluctuations small. Thus, (5.1) can only be meaningfully interpreted as
a free-energy invariant when the plasma is stable.

In the presence of equilibrium interspecies drifts, the conservation law for the
generalised free energy acquires source/sink terms:

dW
dt
=−

∫
d3r

∑

i

u′‖0i

(
ZieδniE‖ − δp⊥ib̂ · ∇ δB‖B0

)
, (5.3)

which correspond to the change in the free energy due to the work done on the system
by the fluctuating parallel electric (2.37) and by magnetic-mirror forces acting on the
equilibrium parallel drifts.

5.2. Quantitative details matter
Within the stability boundaries imposed by the firehose, mirror, and streaming
instabilities, the theory presented here is analogous to that presented in S09 for
a single-ion-species Maxwellian plasma, with many of the differences amounting
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to a somewhat mundane change of multiplicative coefficients. But this in itself is
interesting, for it demonstrates that many of the salient qualitative features of the
gyrokinetic and KRMHD theories of astrophysical turbulence are robust with respect
to deviations from velocity-space isotropy. On a more practical quantitative level,
these otherwise benign coefficients do affect, at the order-unity level, the relationships
between various fluctuating fields and partitioning of free energy that lie at the heart
of predictive theories of solar-wind turbulence. In light of the ever-increasing scrutiny
placed upon theories of Alfvénic turbulence by the wealth of data from the solar
wind, as well as the astrophysical importance of knowing the proportion of turbulent
energy that is distributed between the ion and electron populations, such details
matter.

The equations derived and discussed herein may be readily incorporated into
existing (Maxwellian) KRMHD and gyrokinetic numerical codes. Such an advancement
is now underway.
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Appendix A. Definitions of λi-coefficients in (4.16)

In § 4.3, we derived (4.18) describing the parallel kinetics of the compressive
fluctuations, which explicitly shows how kinetic fluctuations evolve under the influence
of the density and magnetic-field-strength fluctuations they excite. This equation
involves 4Nion coupling coefficients, which we give here in terms of the usual
plasma parameters and various perpendicular moments of the parallel-differentiated
equilibrium ion distribution function, denoted F‖`i (see (4.17)):

λnn
i
.= [. . .]−1 ci

C‖0e

Zi

τ‖i

[
F‖1i

F‖0i

+ Zi

τ⊥i

(
2∆2e − C‖1e

C‖0e

∆1e

)
− 2ci

(∑

i′

ci′τ⊥i′Zi

ciτ⊥iZi′
+ 1
β⊥i

)]
,

(A 1)

λnB
i
.= [. . .]−1 ci

C‖0e

Zi

τ‖i

{
∆1e

F‖1i

F‖0i

+ 2C‖0e
τ‖i
Zi

p⊥0i

p‖0i

F‖2i

F‖0i

+
(
∆1e +C‖0e

τ‖i
Zi

p⊥0i

p‖0i

F‖1i

F‖0i

)

×
[

Zi

τ⊥i

(
2∆2e − C‖1e

C‖0e

∆1e

)
− 2ci

(∑

i′

ci′τ⊥i′Zi

ciτ⊥iZi′
+ 1
β⊥i

)]}
, (A 2)
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λBn
i
.= [. . .]−1 ci

C‖0e

Zi

τ‖i

(
F‖1i

F‖0i

+ C‖1e

C‖0e

Zi

τ⊥i

)
, (A 3)

λBB
i
.= [. . .]−1 ci

C‖0e

Zi

τ‖i

[
∆1e

F‖1i

F‖0i

+ 2C‖0e
τ‖i
Zi

p⊥0i

p‖0i

F‖2i

F‖0i

+ C‖1e

C‖0e

Zi

τ⊥i

(
∆1e +C‖0e

τ‖i
Zi

p⊥0i

p‖0i

F‖1i

F‖0i

)]
,

(A 4)

where the bracket [. . .] is given by (2.54).

Appendix B. Linear KRMHD theory for arbitrary f0s

In § 4.4 we derived the linear theory of compressive fluctuations under the
assumption that the plasma contained only a single species of bi-Maxwellian
ions. This simplification was necessary in order to diagonalise the ion kinetic
equation (4.16) and thereby decompose the compressive invariant Wcompr into its three
independently cascading parts. In this appendix, the linear theory for the compressive
fluctuations is derived for a plasma containing multiple ionic species with arbitrary
f0s.

B.1. Linear dispersion relation
To obtain the linear dispersion relation governing the compressive fluctuations, we
return to (2.53c). Dropping the nonlinear terms and Fourier-transforming in time
(∂/∂t→−iω) and space (b̂ · ∇→ ik‖), we find

gik =−
[

1

C‖0e

Zi

τ‖i

(
δnek

n0e
+∆1e

δB‖k
B0

)
+ w2

⊥
v2

th‖i

δB‖k
B0

]
v‖ − u′‖0i

v‖ −ω/k‖ f ‖0i. (B 1)

Computing the required moments of this equation introduces poles where ω = k‖v‖,
which correspond to wave-particle resonances and generically result in the growth or
decay of compressive fluctuations. Anticipating this, we define the ion coefficients

C‖`i
.= 1

n0i

∫
d3v

1
`!
(

w⊥
vth⊥i

)2` v‖ − u′‖0i

v‖ −ω/k‖ f ‖0i

=
∫

dv‖ F‖`i(v‖)+
ω− k‖u′‖0i

|k‖|
∫

dv‖
F‖`i(v‖)

v‖ −ω/|k‖| , (B 2)

which engender suitable generalisations of the plasma dispersion function for non-
Maxwellian distributions: e.g.

C‖`i = 1+ ξiZM(ξi) for a bi-Maxwellian, where ξi
.= ω− k‖u′‖0i

|k‖|vth‖i
. (B 3)

Note that these ion coefficients resemble the corresponding electron ones (cf. (2.38))
in the limit ω, k‖u′‖0e� k‖v‖. By analogy with (2.39) for the electron fluid, we also
define the dimensionless pressure anisotropy of the ions appropriately weighted by C‖`i:

∆`i
.=C‖`i

p⊥0i

p‖0i
− 1. (B 4)

Note that the effect of equilibrium parallel drifts is implicit in the modified pressure
anisotropy ∆`i, as they enter through the ξi dependence of the C‖`i coefficients.
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With these definitions in hand, we proceed as follows. Taking the zeroth and
miw2

⊥/2 moments of (B 1) gives, respectively,

δnik

n0i
=−C‖0i

C‖0e

Zi

τ‖i

(
δnek

n0e
+∆1e

δB‖k
B0

)
−∆1i

δB‖k
B0

, (B 5)

δp⊥ik

p⊥0i
=−C‖1i

C‖0e

Zi

τ‖i

(
δnek

n0e
+∆1e

δB‖k
B0

)
− 2∆2i

δB‖k
B0

. (B 6)

Equation (B 6), along with (2.42) for the perturbed perpendicular electron pressure,
allows the pressure-balance relation (2.26) in the linear regime to be written as

∑

s

C‖1s

C‖0e

Zs

τ‖s

β⊥s

2

(
δnek

n0e
+∆1e

δB‖k
B0

)
+
(∑

s

β⊥s∆2s − 1

)
δB‖k
B0
= 0. (B 7)

Combining this with the linearised quasineutrality equation ((2.16) with (B 5)),

∑

s

cs
C‖0s

C‖0e

Zs

τ‖s

(
δnek

n0e
+∆1e

δB‖k
B0

)
−
∑

s

cs∆1s
δB‖k
B0
= 0, (B 8)

we obtain the KRMHD dispersion relation
(∑

s

c2
s C‖0s

2
β‖s

)(∑

s

β⊥s∆2s − 1

)
=
(∑

s

cs∆1s

)2

. (B 9)

The left-hand side of this equation exhibits the usual modification of the plasma
beta parameter by the pressure anisotropy of each species. For a single-ion-species
bi-Maxwellian plasma, (B 9) reduces to (4.25), which most notably contains the
pressure-anisotropic version of the Barnes damping (4.33). We now specialise (B 9)
for two interesting cases.

B.2. Landau damping and ion acoustic instability
Let us first consider the β‖→ 0 electrostatic limit of (B 9):

1+
∑

i

ci
C‖0i

C‖0e

Zi

τ‖i
= 0. (B 10)

We specialise (B 10) for a Maxwellian plasma (cf. (2.38) and (B 3)) consisting of
massless electrons, cold ions (|ξi| � 1), and a small population (cα � 1) of drifting
(u′‖0α � vth‖α) hot alpha particles (|ξα| � 1). Expanding ZM(ξi) ' −1/ξi − 1/2ξ 3

i and
ZM(ξα)' i

√
π, and assuming that the decay/growth rate γ is much smaller than the

real part of the frequency ωr, we find

ωr =±k‖

√
ZiT0e

mi

.=±k‖vs and γ '−|k‖|vs cα
Zα
τα

(
π

8
Zi

τα

mα

mi

)1/2 (
1∓ u′‖0α

vs

)
,

(B 11a,b)
where vs is the ion sound speed. For ωr > k‖u′‖0α, this is simply Landau damping of
an ion-acoustic wave, occurring at a reduced rate due to the flattening of the total
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distribution function in the vicinity of the alpha-particle drift velocity. For ωr < k‖u′‖0α,
(B 11) represents a sort of ion-acoustic instability, driven by the differential streaming
of alpha particles (rather than of electrons, which is the standard case; e.g. Davidson
1983). (Note that the assumption γ � ωr is satisfied because cα � 1.) Outside the
limits taken, this branch of the dispersion relation is heavily damped (§ 4.4.1).

In § 4.1, we stated that the right-hand side of the evolution equation for the
compressive invariant (4.4) represents the work done by the fluctuating parallel electric
field and by magnetic-mirror forces acting on the interspecies drifts, and thus is related
to the rate at which free energy is exchanged between these drifts and the compressive
fluctuations. Here we demonstrate this explicitly for the electrostatic case investigated
in this section. Using (B 5) to express the density perturbation of the alphas in terms
of the density perturbation of the electrons, expanding C‖0α ' 1 + i

√
πξα, and using

(B 11) for the real and imaginary parts of ξα, we find that our free-energy equation
(5.3) becomes

dW
dt
=−p0α

∑

k

|k‖|vthα

∣∣∣∣
Zα
τα

u′‖0α
vthα

δnek

n0e

∣∣∣∣
2 (

ωr

k‖u′‖0α
− 1
)
. (B 12)

When the plasma is streaming-unstable, namely ωr < k‖u′‖0α, the right-hand side of this
equation becomes positive, and free energy is extracted from the interspecies drifts and
put into the compressive fluctuations.

B.3. Barnes damping and mirror instability
Next, we treat the linear theory for Barnes damping and the mirror instability. Two
results are sought: (i) the general mirror stability threshold for a single-ion-species
non-Maxwellian plasma; and (ii) the decay/growth rate for a bi-Maxwellian plasma
consisting of massless electrons, hot ions (|ξi| � 1), and a small (cα� 1) population
of drifting (u′‖0α� vth‖α) hot alpha particles (|ξα| � 1).

For (i), we note that the transition from stability to instability proceeds through ω→
0 (this is not generally true in the case with particle drifts, as we show below). In this
limit, the coefficients

C‖`s→
1

n0s

∫
d3v

1
`!
(

w⊥
vth⊥s

)2`

f ‖0s (B 13)

for both the ion and electron species, and the stability criterion may be read off
directly from (B 9):

1−
∑

s

β⊥s

[(
1

n0s

∫
d3v

1
2

w4
⊥

v4
th⊥s

f ‖0s

)
p⊥0s

p‖0s
− 1
]
>−

(∑

s

cs

n0s

∫
d3v

w2
⊥

v2
th‖s

f ‖0s

)2

∑

s

2
β‖s

c2
s

n0s

∫
d3v f ‖0s

. (B 14)

This is in agreement with existing expressions in the literature (e.g. Pokhotelov et al.
2002; Hellinger 2007, equation 34).

For (ii), we expand ZM(ξi) ' ZM(ξα) ' i
√

π in (B 9) and note that ξα can be
expressed in terms of ξi:

ξα = vth‖i
vth‖α

(
ξi − k‖
|k‖|

u′‖0α
vth‖i

)
. (B 15)
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With ∆s ∼ 1/β⊥s� 1, the leading-order terms in the dispersion relation are

i
√

πβ⊥i

[
ξi

(
T⊥0i

T‖0i
+ β⊥α
β⊥i

T⊥0α

T‖0α

vth‖i
vth‖α

)
− k‖
|k‖|

β⊥α
β⊥i

T⊥0α

T‖0α

u′‖0α
vth‖α

]
= 1−

∑

s

β⊥s∆s. (B 16)

Solving for the real and imaginary parts of the frequency, we find

ωr =−k‖u′‖0α
β⊥α
β⊥i

T‖0i

T‖0α

T⊥0α

T⊥0i

vth‖i
vth‖α

(
1+ β⊥α

β⊥i

T‖0i

T‖0α

T⊥0α

T⊥0i

vth‖i
vth‖α

)−1

, (B 17a)

γ =− |k‖|vA√
πβ‖i

p2
‖0i

p2
⊥0i

(
1−

∑

s

β⊥s∆s

)(
1+ β⊥α

β⊥i

T‖0i

T‖0α

T⊥0α

T⊥0i

vth‖i
vth‖α

)−1

. (B 17b)

Thus, the usual decay/growth rate (4.33) is modified by the pressure anisotropy of the
alpha particles and reduced by the effect of the hot alphas on the Landau resonance.
The mode acquires a real part proportional to the alpha-particle drift so that, even at
marginal stability, ω 6= 0.

Appendix C. Derivation of KRMHD from pressure-anisotropic gyrokinetics
Heretofore, we have worked under the assumption that both ω/Ωs and kρs are

asymptotically small to all orders in ε, where Ωs
.= qsB0/msc is the gyrofrequency

and ρs
.= vth⊥s/Ωs is the gyroradius of species s. In this appendix, we relax this

assumption and allow for fluctuations with k⊥ρs ∼ 1 and ω ∼ εΩs. The resulting set
of nonlinear equations generalises Maxwellian slab gyrokinetics (Howes et al. 2006;
S09) to arbitrary equilibrium distribution function f0s. Some of these results have
been obtained before – notably, the nonlinear gyrokinetic equation for arbitrary f0s
was derived by Frieman & Chen (1982). Our restriction to slab geometry removes
many of the complications introduced by those authors’ applications to axisymmetric
tokamaks and makes the theory rather easier to grasp, which hopefully gives this
appendix some pedagogical value. We will also use these equations to show that the
generalisation of KRMHD derived in this paper can be rigorously obtained from a
gyrokinetic description by taking the k⊥ρs� 1 limit.

C.1. Basic equations and gyrokinetic ordering
We begin with the kinetic Vlasov–Landau (or Boltzmann) equation

ḟs
.= ∂fs

∂t
+ v · ∇fs + qs

ms

(
E+ v×B

c

)
· ∂fs

∂v
=
(
∂fs

∂t

)

c

. (C 1)

The electric and magnetic fields are expressed in terms of scalar and vector potentials:

E=−∇ϕ − 1
c
∂A
∂t

and B= B0ẑ+∇×A, (C 2a,b)

where ∇ ·A= 0 (the Coulomb gauge). In the non-relativistic limit, these fields satisfy
the plasma quasineutrality constraint (which follows from the Poisson equation to
lowest order in k2λ2

D, where λD is the Debye length),

0=
∑

s

qsns =
∑

s

qs

∫
d3v fs, (C 3)
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and the pre-Maxwell version of Ampère’s law,

−∇2A= 4π

c
j= 4π

c

∑

s

qs

∫
d3v vfs. (C 4)

In this appendix, and in contrast with the main text, we work with the velocity-space
coordinate v⊥, i.e. the full velocity perpendicular to the magnetic-field direction, rather
than with the perpendicular velocity w⊥ = v⊥ − u⊥ peculiar to the E×B flow u⊥.

Equations (C 1)–(C 4) are reduced by expanding

fs = f0s + δf1s + δf2s + · · · , (C 5)

where the subscript indicates the order in ε, and by adopting the ordering of § 2.3
along with k⊥ρs ∼ 1 and ω∼ εΩs:

ω

Ωs
∼ ρs

L
∼ k‖

k⊥
∼ u⊥
vA
∼ δB⊥

B0
∼ u‖
vA
∼ δB‖

B0
∼ δf1s

f0s
∼ ε, (C 6)

k⊥ρs ∼ β‖s ∼ β⊥s ∼∆s ∼ τ‖s ∼ τ⊥s ∼ 1. (C 7)

We remind the reader that the collision frequency νii � ε2Ωs, allowing for non-
Maxwellian f0s (cf. § A2.2 of Howes et al. 2006). Also, because the electron–ion
mass-ratio expansion is not performed at the outset of the gyrokinetic derivation
(me/mi � 1 is taken as a subsidiary expansion in § C.8), we must allow for the
possibility of parallel electron drifts in the equilibrium state (u′‖0e ∼ vth‖e).

The formal expansion of (C 1)–(C 4) that results is worked out order by order. We
begin with (C 1), ordered relative to ωf0s.

C.2. Gyrokinetic equation
C.2.1. Minus-first order, O(1/ε)

The largest term in (C 1) corresponds to Larmor motion of the equilibrium
distribution about the uniform guide field:

−Ωsẑ ·
(

v× ∂f0s

∂v

)
= 0. (C 8)

Decomposing the particle velocity in terms of the parallel velocity v‖, the perpendicular
velocity v⊥, and the gyrophase angle ϑ ,

v = v‖ẑ+ v⊥(cos ϑ x̂+ sin ϑ ŷ), (C 9)

we find that (C 8) takes on the simple form

−Ωs
∂f0s

∂ϑ
= 0. (C 10)

The equilibrium distribution function is thus independent of gyrophase (gyrotropic):
f0s = f0s(v‖, v⊥, t).

C.2.2. Zeroth order, O(1)
Proceeding to next order and decomposing the velocity into its parallel and

perpendicular parts (equation (C 9)), equation (C 1) becomes

v⊥ · ∇⊥δf1s + qs

ms

(
−∇⊥ϕ + v× δB

c

)
· ∂f0s

∂v
−Ωs

∂δf1s

∂ϑ
= 0. (C 11)
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This equation is simplified by employing the shorthand (cf. (2.22) and (2.23))

Df0s = p⊥0s

p‖0s
f ‖0s − f⊥0s , where f ‖0s =−v2

th‖s
∂f0s

∂(v‖ − u′‖0s)
2

and f⊥0s =−v2
th⊥s

∂f0s

∂v2
⊥
, (C 12)

and noting that

T⊥0s

ms

v× δB
c
· ∂f0s

∂v
= v⊥ · ∇⊥

(
v‖A‖

c
Df0s −

u′‖0sA‖
c

T⊥0s

T‖0s
f ‖0s

)

︸ ︷︷ ︸
0

− v⊥ · ∂
∂z

(
v‖A⊥

c
Df0s −

u′‖0sA⊥
c

T⊥0s

T‖0s
f ‖0s

)

︸ ︷︷ ︸
1

, (C 13)

where the order in ε of each term is indicated. The resulting lowest-order equation
for δf1s,

v⊥ · ∇⊥δf1s −Ωs
∂δf1s

∂ϑ
= −v⊥ · ∇⊥ qs

T‖0s

(
ϕ − u′‖0sA‖

c

)
f ‖0s

+ v⊥ · ∇⊥ qs

T⊥0s

(
ϕ − v‖A‖

c

)
Df0s, (C 14)

admits a homogeneous solution and a particular solution.
The homogeneous solution hs satisfies

v⊥ · ∇⊥hs − Ωs
∂hs

∂ϑ

∣∣∣∣
r
= −Ωs

∂hs

∂ϑ

∣∣∣∣
Rs

= 0, (C 15)

where we have transformed the ϑ derivative taken at constant position r to one taken
at constant guiding centre – the centre of the ring orbit that the particle follows in a
strong guide field:

Rs = r+ v× ẑ
Ωs

. (C 16)

Thus, hs is independent of the gyrophase angle at constant guiding centre Rs (but not
at constant position r):

hs = hs(t,Rs, v‖, v⊥). (C 17)

It represents the response of charged rings to the perturbed fields, and is thus referred
to as the gyrokinetic response.

The particular solution of (C 14) – the so-called adiabatic, or ‘Boltzmann’, response
– is given by

δf1s,Boltz =− qs

T‖0s

(
ϕ − u′‖0sA‖

c

)
f ‖0s +

qs

T⊥0s

(
ϕ − v‖A‖

c

)
Df0s. (C 18)

It arises from the evolution of f0s under the influence of the perturbed electromagnetic
fields, a fact that is most clearly demonstrated by transforming (C 18) to (εs, µs)
coordinates (see § C.4). It is instructive to note that the combination

ϕ′s
.= ϕ − u′‖0sA‖/c (C 19)
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in the first parentheses of (C 18) is the fluctuating electrostatic potential in the frame
of the parallel-drifting species s.

Decomposing δf1s into its adiabatic (C 18) and non-adiabatic (C 17) parts (cf.
Antonsen & Lane 1980; Catto, Tang & Baldwin 1981), the complete solution for fs
may be written

fs = f0s(v‖, v⊥, t)+ δf1s,Boltz + hs(t,Rs, v‖, v⊥)+ δf2s + · · · . (C 20)

Next we derive an evolution equation for the the gyrokinetic response hs.

C.2.3. First order, O(ε)
Introducing the gyrokinetic potential

χ
.= ϕ − v‖A‖

c
− v⊥ ·A⊥

c
(C 21)

and using (C 13) and (C 20), at this order (C 1) becomes

∂hs

∂t
+ Ṙs · ∂hs

∂Rs
− qs

T‖0s

(
∂χ

∂t
+ u′‖0s

∂χ

∂z

)
f ‖0s +

qs

T⊥0s

(
∂χ

∂t
+ v‖ ∂χ

∂z

)
Df0s

= Ωs
∂δf2s

∂ϑ

∣∣∣∣
Rs

− qs

ms

(
−∇⊥ϕ + v× δB

c

)
· ∂δf1s

∂v
, (C 22)

where

Ṙs = v‖ẑ+ c
B0

(
−∇ϕ − 1

c
∂A
∂t
+ v× δB

c

)
× ẑ (C 23)

is the velocity of the guiding centre. Upon performing a ring average of (C 22) over
ϑ at fixed Rs, defined, for any function a(t, r, v), as

〈a(t, r, v)〉Rs

.= 1
2π

∮
dϑ a

(
t,Rs − v× ẑ

Ωs
, v

)
, (C 24)

we find that the entire right-hand side of (C 22) vanishes. This follows from the
periodicity of δf2s in ϑ and from the fact that, for any arbitrary function a(r), the
ring average 〈v⊥ · ∇a〉Rs = 0 (see equation (A 21) of Howes et al. 2006). Thus, the
ring-averaged (C 22) is

∂hs

∂t
+ 〈Ṙs〉Rs ·

∂hs

∂Rs
= qs

T‖0s

(
∂〈χ〉Rs

∂t
+ u′‖0s

∂〈χ〉Rs

∂z

)
f ‖0s

− qs

T⊥0s

(
∂〈χ〉Rs

∂t
+ v‖ ∂〈χ〉Rs

∂z

)
Df0s. (C 25)

Using the decomposition δB=∇A‖× ẑ+ δB‖ẑ (C 2) in (C 23) and retaining only first-
order contributions, the ring-averaged guiding-centre velocity is

〈Ṙs〉Rs = v‖ẑ− c
B0
〈∇⊥ϕ〉Rs × ẑ+ v‖

B0
〈∇⊥A‖〉Rs × ẑ− 1

B0
〈v⊥δB‖〉Rs

= v‖ẑ− c
B0

∂〈χ〉Rs

∂Rs
× ẑ, (C 26)

where we have used the identity 〈v⊥δB‖〉Rs =−〈∇⊥(v⊥ ·A⊥)〉Rs .
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Substituting (C 26) into (C 25), we obtain the gyrokinetic equation

∂hs

∂t
+ v‖ ∂hs

∂z
+ c

B0
{〈χ〉Rs, hs} = qsf

‖
0s

T‖0s

(
∂

∂t
+ u′‖0s

∂

∂z

)
〈χ〉Rs

− qs Df0s

T⊥0s

(
∂

∂t
+ v‖ ∂

∂z

)
〈χ〉Rs, (C 27)

where the Poisson bracket is defined in the usual way:

{〈χ〉Rs, hs} .= ẑ ·
(
∂〈χ〉Rs

∂Rs
× ∂hs

∂Rs

)
. (C 28)

The differences between (C 27) and the usual (Maxwellian) slab gyrokinetic equation
(cf. equation (25) of Howes et al. 2006) lie entirely on the right-hand side, which
arises from (ring-averaged) changes in the kinetic energy and magnetic moment of
the particles. In particular, the final term in (C 27), absent in Maxwellian gyrokinetics,
ensures that hs evolves in such a way as to preserve adiabatic invariance. Indeed, if
we augment the gyrokinetic response in the following way,†

h̃s
.= hs + qs Df0s

T⊥0s
〈χ〉Rs, (C 29)

the gyrokinetic equation (C 27) can be expressed more compactly as

∂ h̃s

∂t
+ v‖ ∂ h̃s

∂z
+ c

B0

{
〈χ〉Rs, h̃s

}
= qsf

‖
0s

T‖0s

(
∂

∂t
+ u′‖0s

∂

∂z

)
〈χ〉Rs . (C 30)

These matters are discussed in detail in § C.4.

C.3. Field equations
The equations governing the electromagnetic potentials are obtained by substituting
(C 20) into the leading-order expansions of the quasineutrality constraint (C 3) and
Ampère’s law (equation (C 4)). This procedure requires us to compute parallel
moments of the perpendicular-differentiated equilibrium distribution function: we
denote

C⊥0s
.= 1

n0s

∫
d3vf⊥0s , (C 31a)

C⊥1s
.= 1

n0s

∫
d3v

v‖
vth‖s

f⊥0s ×
(

u′‖0s

vth‖s

)−1

, (C 31b)

C⊥2s
.= 1

n0s

∫
d3v

v2
‖

v2
th‖s

f⊥0s ×
(

1
2
+ u′2‖0s

v2
th‖s

)−1

, (C 31c)

all of which equate to unity for a drifting bi-Maxwellian distribution (2.24).‡

†By (C 15), we can add any gyrophase-independent function (at constant guiding centre Rs) to the gyrokinetic
response hs and still satisfy the zeroth-order kinetic equation.

‡If there are no interspecies parallel drifts and if f⊥0s is symmetric about v‖ = u′‖0s, then u′‖0sC⊥1s = 0.
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To first order, O(ε), (C 3) becomes

0 =
∑

s

qsδns

=
∑

s

qs

[∫
d3vhs

(
t, r+ v× ẑ

Ωs
, v‖, v⊥

)
− qsn0s

T⊥0s

(
C⊥0s ϕ −C⊥1s

u′‖0sA‖
c

)]
. (C 32)

Since the field variables ϕ and A‖ are functions of the spatial variable r, the velocity
integral of hs must be performed at constant location r of the charges rather than at
constant guiding centre Rs. This introduces a gyro-averaging operation dual to the ring
average defined in (C 24):

〈hs(t,Rs, v‖, v⊥)〉r .= 1
2π

∮
dϑ hs

(
t, r+ v× ẑ

Ωs
, v‖, v⊥

)
. (C 33)

Equation (C 32) may then be written as

0=
∑

s

qs

[∫
d3v 〈hs〉r − qsn0s

T⊥0s

(
C⊥0s ϕ −C⊥1s

u′‖0sA‖
c

)]
. (C 34)

Likewise, the parallel and perpendicular components of Ampère’s law become,
respectively,

∇2
⊥A‖ = −4π

c
j‖

= −4π

c

∑

s

qs

[∫
d3v v‖〈hs〉r − qsn0svth‖s

2T⊥0s

(
C⊥1s ϕ

2u′‖0s

vth‖s
+ ∆̃s

vth‖sA‖
c

)]
, (C 35)

∇2
⊥δB‖ = −

4π

c
ẑ · (∇⊥ × j⊥)=−

4π

c
ẑ ·
[
∇⊥ ×

∑

s

qs

∫
d3v 〈v⊥hs〉r

]
, (C 36)

where

∆̃s
.= p⊥0s

p‖0s
−C⊥2s

(
1+ 2u′2‖0s

v2
th‖s

)
(C 37)

is the pressure anisotropy of species s augmented by the parallel ram pressure from
equilibrium parallel drifts. Upon integrating by parts with respect to the gyroangle,
(C 36) can also be written as

∇⊥∇⊥ :
(
δP⊥ + I

B0δB‖
4π

)
= 0, (C 38)

where
δP⊥ =

∑

s

∫
d3v ms〈v⊥v⊥hs〉r (C 39)

is the perpendicular pressure tensor. The perpendicular component of Ampére’s
law is therefore a statement of perpendicular pressure balance for the compressive
fluctuations.

Together with the gyrokinetic equation (C 27), the field equations (C 34)–(C 36)
provide a closed system that describes the evolution of a gyrokinetic plasma with
non-Maxwellian f0s and parallel species drifts. It remains to show that, in the kρi,
me/mi� 1 limit, these equations reduce to those of KRMHD.
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C.4. Meaning of δf1s,Boltz and hs: (v‖, v⊥) versus (εs, µs) coordinates
We pause the derivation here to offer a few comments regarding our choice of velocity-
space coordinates, which will hopefully aid the reader’s grasp of the physical content
encapsulated in the Boltzmann response (C 18) and the gyrokinetic equation (C 27).
Just as in the main text (see § 4.2), we have opted for analytical convenience by
choosing to work with v‖ and v⊥ as our velocity variables. If, instead, our focus were
to be on physical insight, then arguably better variables would be the total particle
energy in the parallel-drifting frame,

εs = ε0s + ε1s
.= 1

2 ms

∣∣v − u′‖0s ẑ
∣∣2 + qsϕ

′
s, (C 40)

and the gyrophase-dependent part of the first adiabatic invariant,

µs =µ0s +µ1s
.= msv

2
⊥

2B0
+ qs

B0

(
ϕ − v‖A‖

c

)
, (C 41)

written out to first order in the fluctuation amplitudes (e.g. Kruskal 1958; Hastie,
Taylor & Haas 1967; Taylor 1967; Catto et al. 1981; Parra 2013). The ring-averaged
time derivatives of both of these quantities, taken along a particle orbit, are first-order
in ε, namely

〈ε̇s〉Rs = qs

(
∂

∂t
+ u′‖0s

∂

∂z

)
〈χ〉Rs ∼O(εωε0s), (C 42)

〈µ̇s〉Rs =
qs

B0

(
∂

∂t
+ v‖ ∂

∂z

)
〈χ〉Rs ∼O(εωµ0s), (C 43)

and thus are the same order as the gyrokinetic equation (see § C.2.3).
In § C.2.2, we stated without proof that the Boltzmann response (C 18) arises from

the evolution of f0s under the influence of the perturbed electromagnetic fields. Using

f ‖0s =−T‖0s
∂f0s

∂ε0s
and f⊥0s =−T⊥0s

(
1
B0

∂f0s

∂µ0s
+ ∂f0s

∂ε0s

)
(C 44a,b)

to transform the (v‖, v⊥)-derivatives into (ε0s, µ0s)-derivatives, the sum of the
equilibrium distribution function and the Boltzmann response may be written in
the following suggestive form:

f0s(ε0s, µ0s)+ δf1s,Boltz = f0s + qsϕ
′
s
∂f0s

∂ε0s
+ qs

B0

(
ϕ − v‖A‖

c

)
∂f0s

∂µ0s

= f0s + ε1s
∂f0s

∂ε0s
+µ1s

∂f0s

∂µ0s

' f0s(ε0s + ε1s, µ0s +µ1s)≡ f0s(εs, µs), (C 45)

i.e. it is the electromagnetically perturbed distribution function f0s(εs, µs) Taylor-
expanded about f0s(ε0s, µ0s) and written out to first order in the change in particle
energy and the (gyrophase-dependent) change in the magnetic moment. Thus, the
Boltzmann response does not change the form of the equilibrium distribution function
if the latter is written as a function of sufficiently precisely conserved particle
invariants.
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Using (C 45), we can absorb the Boltzmann response into f0s and write the total
distribution function of species s (equation (C 20)) as

fs = f0s(εs, µs)+ hs(t,Rs, εs, µs)+ δf2s + · · · . (C 46)

The gyro-averaged Vlasov equation at O(εωf0s) then becomes
∂hs

∂t
+ 〈Ṙs〉Rs ·

∂hs

∂Rs
=−〈ε̇s〉Rs

∂f0s

∂εs
− 〈µ̇s〉Rs

∂f0s

∂µs
. (C 47)

Using (C 42) and (C 43) for the ring-averaged rates of change of εs and µs,
respectively, it then becomes clear that our gyrokinetic equation (C 27) is simply
the ring-averaged Vlasov equation, 〈 ḟs〉Rs = 0, written to lowest order in ε.

It is often convenient and physically intuitive to subtract from µs a first-order
gyrophase-independent piece, namely

µs
.=µs −

qs

B0
〈χ〉Rs . (C 48)

In doing so, we gain an order in the ring-averaged conservation property, 〈µ̇s〉Rs ∼
O(ε2ωµ0s), making µs the asymptotically conserved adiabatic invariant. The additional
contribution to µs in (C 48) also ensures that, at long wavelengths, µs reduces to the
adiabatic invariant defined by (4.11):

µs = msv
2
⊥

2B0
+ qs

B0

(
ϕ − 〈ϕ〉Rs −

v‖A‖
c
+
〈
v‖A‖

c

〉

Rs

)
+ qs

B0

〈
v⊥ ·A⊥

c

〉

Rs

' msv
2
⊥

2B0
− qs

B0

v× ẑ
Ωs
· ∇
[
ϕ(r)− v‖A‖(r)

c

]
− msv

2
⊥

2B0

δB‖
B0

= msv
2
⊥

2B0
− msv⊥ · u⊥

B0
− msv‖v⊥ · δB⊥

B2
0

− msv
2
⊥

2B0

δB‖
B0

' ms

∣∣v − u⊥ − v · b̂b̂
∣∣2

2B

≡ msw2
⊥

2B
. (C 49)

Similarly, we define the energy variable

εs
.= εs − qs〈ϕ′s〉Rs, (C 50)

which reduces in the long-wavelength limit to the energy variable defined by (4.10):

εs = 1
2

ms

∣∣v − u′‖0sẑ
∣∣2 + qs (ϕ

′
s − 〈ϕ′s〉Rs)

' 1
2

msv
2 −msu′‖0svz + 1

2
msu′2‖0s − qs

v× ẑ
Ωs
· ∇
[
ϕ(r)− u′‖0sA‖(r)

c

]

= 1
2

msv
2 −msu′‖0sv ·

(
b̂− δB⊥

B0

)
+ 1

2
msu′2‖0s −msv⊥ · u⊥ −msu′‖0sv⊥ ·

δB⊥
B0

' 1
2

ms(v · b̂− u′‖0s)
2 + 1

2
ms

∣∣v − u⊥ − v · b̂b̂
∣∣2

≡ 1
2

ms(v‖ − u′‖0s)
2 + 1

2
msw2

⊥, (C 51)

i.e. it is the kinetic energy of the particle as measured in the frame moving with the
u′‖0s and E×B drifts.
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If we then write fs = f̃0s(εs, µs)+ δf̃s, it is straightforward to show by using (C 29),
(C 45), (C 48), and (C 50) that the following expressions are equivalent to leading
order:

δf̃s = δfs + f0s(ε0s, µ0s)− f̃0s(εs, µs) (C 52a)

' δfs − qs

(
ϕ′s −

〈
ϕ′s
〉

Rs

) ∂f0s

∂ε0s
− qs

B0

(
ϕ − v‖A‖

c
− 〈χ〉Rs

)
∂f0s

∂µ0s
(C 52b)

= δfs −
(
δf1s,Boltz −

〈
δf1s,Boltz

〉
Rs

)
− qs

B0

〈
v⊥ ·A⊥

c

〉

Rs

∂f0s

∂µ0s
(C 52c)

= hs + 〈δf1s,Boltz〉Rs −
qs

B0

〈
v⊥ ·A⊥

c

〉

Rs

∂f0s

∂µ0s
(C 52d)

= h̃s + qs〈ϕ′s〉Rs

∂f0s

∂ε0s
. (C 52e)

Equation (C 52) is the k⊥ρi∼ 1 generalisation of the perturbed distribution function δf̃s
defined by (4.6), which prominently features in the generalised free energy (5.1) of
KRMHD; i.e. it is the perturbed distribution function if f0s is taken to be a function
of (εs, µs) instead of (v‖,w⊥).

At long wavelengths, the difference between the Boltzmann response and its ring
average that features in (C 52c) is

δf1s,Boltz − 〈δf1s,Boltz〉Rs '
qs

T⊥0s

v⊥ × ẑ
Ωs
· ∇
[
ϕ(r)− v‖A‖(r)

c

]
f⊥0s

+ qs

T‖0s

v⊥ × ẑ
Ωs
· ∇
[
v‖A‖(r)

c
− u′‖0sA‖(r)

c

]
f ‖0s

= −u⊥ · ∂f0s

∂v⊥
− δB⊥

B0
·
[
v‖
∂f0s

∂v⊥
− v⊥

(
1− u′‖0s

v‖

)
∂f0s

∂v‖

]
, (C 53)

where in the third line we have identified (cf. (2.25))

u⊥ = c
B0

ẑ×∇⊥ϕ(r) .= ẑ×∇⊥Φ(r), (C 54a)

δB⊥√
4πρ0

=−vA

B0
ẑ×∇⊥A‖(r)

.= ẑ×∇⊥Ψ (r). (C 54b)

Comparing (C 52c) and (C 52d), we see that the Alfvénic fluctuations comprise the
piece of the gyrokinetic response hs that is cancelled at long wavelengths by the
Boltzmann response. Indeed, by substituting (C 53) and (C 54) into the expression for
the full distribution function, fs= f0s+ δf1s,Boltz+ hs+ · · · , we find that we may absorb
the Alfvénic fluctuations into the equilibrium distribution:

f0s

(
1
2

ms

∣∣v − u′‖0sẑ
∣∣2 , msv

2
⊥

2B0

)
−→ f0s

(
1
2

ms(v‖ − u′‖0s)
2 + 1

2
msw2

⊥,
msw2

⊥
2B0

)
. (C 55)

In other words, Alfvénic fluctuations do not change the form of the distribution
function, but rather define the moving frame in which any changes to it are to
be measured. Physically, this is because particles in a magnetised plasma adjust
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on a cyclotron time scale to take on the local E × B velocity. This principle is
what underlies Kulsrud’s formulation of KMHD, in which the perpendicular particle
velocities are measured relative to the E × B drift, the latter being governed by a
set of MHD-like fluid equations rather than a kinetic equation. The implication – as
discussed at length in the main text of this paper (§ 2.5.3, in particular) – is that
the compressive component of the turbulence is passively advected by the Alfvénic
fluctuations in the inertial range.

C.5. A tactical step: from rings to gyrocentres
Considering the content of (C 55) – that the Alfvénic fluctuations have a gyrokinetic
response that is largely cancelled at long wavelengths by the Boltzmann response –
it is often advantageous to not work directly with hs. This choice is made by most
(Maxwellian) δf gyrokinetic codes (e.g. Astro-GK: Numata et al. 2010), which avoid
the numerical error arising from this near-cancellation by working instead with the
perturbed distribution function

gs = hs − qs

T0s

〈
ϕ − v⊥ ·A⊥

c

〉

Rs

f0s

= hs + 〈δf1s,Boltz〉Rs +
q

T0s

〈
v⊥ ·A⊥

c

〉

Rs

f0s

= 〈δf1s〉Rs +
q

T0s

〈
v⊥ ·A⊥

c

〉

Rs

f0s. (C 56)

In fact, many standard treatments of gyrokinetics use gs instead of hs. In the
electrostatic limit, the use of gs (which, in this limit, equals 〈δf1s〉Rs) aids in the
interpretation of polarisation effects within gyrokinetics (Krommes 2012), places the
gyrokinetic equation in a numerically convenient characteristic form (Lee 1983), and
arises naturally from the Hamiltonian formulation of gyrokinetics (Dubin et al. 1983;
Brizard & Hahm 2007).

We follow these practices and introduce, for non-Maxwellian f0s,

gs
.= h̃s − qs

T‖0s

〈
ϕ′s −

v⊥ ·A⊥
c

〉

Rs

f ‖0s (C 57a)

= hs + 〈δf1s,Boltz〉Rs +
qs

T⊥0s

〈
v⊥ ·A⊥

c

〉

Rs

f⊥0s , (C 57b)

= 〈δf1s〉Rs +
qs

T⊥0s

〈
v⊥ ·A⊥

c

〉

Rs

f⊥0s , (C 57c)

which is the k⊥ρs ∼ 1 generalisation of the perturbed distribution function gs defined
in KRMHD (cf. (2.46)). The physical distinction between the two formulations
of gyrokinetics – one expressed in terms of hs, the other in terms of gs – is as
follows. Written in terms of hs, the set of gyrokinetic-Maxwell equations describes
the dynamics of physically extended rings of charge as they move in a vacuum.
If the fluctuating plasma is instead described by gs, these equations describe a gas
of point-particle-like gyrocentres moving in a polarisable medium (see Krommes
1993, 2012; Abel et al. 2013). Hence, we refer to gs as the gyrocentre distribution
function.
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Using (C 57) to replace hs in the gyrokinetic equation (C 27), we find that gs evolves
according to

∂gs

∂t
+ v‖ ∂gs

∂z
+ c

B0
{〈χ〉Rs, gs} = − qs

T‖0s
(v‖ − u′‖0s)

〈
1
B0
{A‖, ϕ − 〈ϕ〉Rs}

+ 1
c
∂A‖
∂t
+ b̂ · ∇ϕ − b̂ · ∇

〈
v⊥ ·A⊥

c

〉

Rs

〉

Rs

f ‖0s, (C 58)

where
b̂ · ∇= ∂

∂z
+ δB⊥

B0
· ∇⊥ = ∂

∂z
− 1

B0
{A‖, . . .} (C 59)

is the spatial derivative along the perturbed magnetic field (cf. (2.31)).† As in S09, we
have used compact notation in writing out the nonlinear terms: 〈{A‖, ϕ − 〈ϕ〉Rs}〉Rs =〈{A‖(r), ϕ(r)}〉Rs − {〈A‖〉Rs, 〈ϕ〉Rs}, where the first Poisson bracket involves derivatives
with respect to r and the second with respect to Rs.

The field equations (C 34), (C 35), and (C 38) are best written in Fourier space.

C.6. Fourier space
The ring-averaging (C 24) and gyro-averaging (C 33) procedures take on a rather
compact form when expressed in Fourier space. First consider the gyrokinetic
potential, decomposed into plane waves: χ(t, r, v) = ∑k χk(t, v) exp(ik · r). The
ring average of its Fourier coefficient is

〈χk(t, v)〉Rs =
1

2π

∮
dϑ
(
ϕk − v‖A‖kc

− v⊥ ·A⊥k

c

)
exp

(
−ik · v⊥ × ẑ

Ωs

)

= J0(as)

(
ϕk − v‖A‖kc

)
+ T⊥0s

qs

2v2
⊥

v2
th⊥s

J1(as)

as

δB‖k
B0

, (C 60)

where as
.= k⊥v⊥/Ωs and we have used the definition δB‖k = ẑ · (ik × A⊥k).

Simply put, ring averaging amounts to multiplication by either the zeroth- (J0)
or first-order (J1) Bessel function, depending on whether the additional angular
dependence of v⊥ appears in the integrand. Similarly, we can Fourier-decompose
gs(t, Rs, v‖, v⊥) =

∑
k gsk(t, v‖, v⊥) exp(ik · Rs) and perform its gyro-averages at

constant r, viz.

〈gsk(t, v‖, v⊥)〉r = 1
2π

∮
dϑ gsk exp

(
ik · v⊥ × ẑ

Ωs

)
= J0(as)gsk, (C 61)

〈v⊥gsk(t, v‖, v⊥)〉r = 1
2π

∮
dϑ v⊥gsk exp

(
ik · v⊥ × ẑ

Ωs

)

= −ik× ẑ
v2
⊥
Ωs

J1(as)

as
gsk, (C 62)

〈v⊥v⊥gsk(t, v‖, v⊥)〉r = 1
2π

∮
dϑ v⊥v⊥gsk exp

(
ik · v⊥ × ẑ

Ωs

)

= v2
⊥

[
k⊥k⊥

k2
⊥

J1(as)

as
+ (k× ẑ)(k× ẑ)

k2
⊥

dJ1(as)

das

]
gsk. (C 63)

†When taking the gradient of a ring-averaged function, e.g. the term b̂ ·∇〈v⊥ ·A⊥〉Rs in (C 58), the velocity
variable v is held fixed.
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These operations transform integro-differential equations in real space into integro-
algebraic equations in Fourier space.

C.7. Field equations
In order to write the field equations in terms of gs concisely, we first define several v‖-,
v⊥-, and Bessel-function-weighted integrals over the equilibrium distribution function,
suitably normalised:

Γ00(αs)
.= 1

n0s

∫
d3v [J0(as)]2 f0s = 1− αs + · · · , (C 64a)

Γ ⊥00(αs)
.= 1

n0s

∫
d3v[J0(as)]2 f⊥0s =C⊥0s − αs + · · · , (C 64b)

Γ ⊥01(αs)
.= 1

n0s

∫
d3v [J0(as)]2

(
v‖
vth‖s

)
f⊥0s ×

(
u′‖0s

vth‖s

)−1

=C⊥1s − αs + · · · , (C 64c)

Γ ⊥02(αs)
.= 1

n0s

∫
d3v [J0(as)]2

(
v‖
vth‖s

)2

f⊥0s ×
(

1
2
+ u′2‖0s

v2
th‖s

)−1

= C⊥2s − αs + · · · , (C 64d)

Γ ⊥10(αs)
.= 1

n0s

∫
d3v

v2
⊥

v2
th⊥s

2J0(as)J1(as)

as
f⊥0s = 1− 3

2
αs + · · · , (C 64e)

Γ ⊥11(αs)
.= 1

n0s

∫
d3v

v2
⊥

v2
th⊥s

2J0(as)J1(as)

as

(
v‖
vth‖s

)
f⊥0s ×

(
u′‖0s

vth‖s

)−1

= 1− 3
2
αsC11s + · · · , (C 64f )

Γ ⊥20(αs)
.= 1

n0s

∫
d3v

[
2v2
⊥

v2
th⊥s

J1(as)

as

]2

f⊥0s = 2
(

1− 3
2
αsC20s + · · ·

)
, (C 64g)

where αs
.= k2
⊥ρ

2
s /2. In doing so, we have introduced two additional coefficients, given

by

C11s
.= 1

n0s

∫
d3v

v2
⊥

v2
th⊥s

v‖
u′‖0s

f0s and C20s
.= 1

n0s

∫
d3v

1
2
v4
⊥

v4
th⊥s

f0s, (C 65a,b)

both of which equate to unity for a drifting bi-Maxwellian (2.24).† Note the
numbering scheme used for the Γ`m subscripts, which reflects the number of powers
` of v2

⊥ and m of v‖ in the integrand.
With these definitions in hand, and working in the Fourier domain, we can express

(C 34), (C 35), and (C 38), which represent respectively the quasineutrality constraint
and the parallel and perpendicular components of Ampère’s law, as follows:

∑

s

qs

∫
d3v J0(as)gsk =

∑

s

q2
s n0sϕk

T⊥0s

[
C⊥0s − Γ ⊥00(αs)

]−
∑

s

qsn0sΓ
⊥

10(αs)
δB‖k
B0

−
∑

s

q2
s n0su′‖0sA‖k

cT⊥0s

[
C⊥1s − Γ ⊥01(αs)

]
, (C 66)

†If there are no interspecies parallel drifts and if f0s and f⊥0s are symmetric about v‖= u′‖0s, then u′‖0sC11s=
u′‖0sΓ

⊥̀
1(αs)= 0.
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∑

s

qs

∫
d3v v‖J0(as)gsk =

∑

s

q2
s n0su′‖0sϕk

T⊥0s

[
C⊥1s − Γ ⊥01(αs)

]

−
∑

s

qsn0su′‖0sΓ
⊥

11(αs)
δB‖k
B0

+
{

c2k2
⊥

4π
+
∑

s

q2
s n0s

ms
[1− Γ00(αs)]

−
∑

s

q2
s n0s

ms

T‖0s

T⊥0s

(
1+ 2u′2‖0s

v2
th‖s

)
[C⊥2s − Γ ⊥02(αs)]

}
A‖k
c
,

(C 67)
∑

s

β⊥s

n0s

∫
d3v

2v2
⊥

v2
th⊥s

J1(as)

as
gsk = −

∑

s

β⊥s
qsϕk

T⊥0s
Γ ⊥10(αs)−

[
2+

∑

s

β⊥sΓ
⊥

20(αs)

]
δB‖k
B0

+
∑

s

β⊥s
qsu′‖0sA‖k

cT⊥0s
Γ ⊥11(αs). (C 68)

Note that ϕk always enters the field equations in combination with −u′‖0sA‖k/c (cf.
(C 19)).

C.8. Massless electron fluid
In this section, we carry out an expansion of the electron gyrokinetic equation
in powers of (me/mi)

1/2 ' 0.02 (for hydrogen plasma). This expansion is done
while still considering β‖s, β⊥s, τ‖s, τ⊥s, and k⊥ρi to be order unity, so that
k⊥ρe ∼ k⊥ρi (me/mi)

1/2 � 1. Then we can expand the Bessel functions arising from
averaging over the electron ring motion,

J0(ae)= 1− 1
4

a2
e + · · · ,

2J1(ae)

ae
= 1− 1

8
a2

e + · · · , (C 69a,b)

and evaluate the fields ϕ, A‖, and δB‖ at r=Re. The electron kinetic equation, accurate
up to and including the first order in (me/mi)

1/2, then reads

∂ge

∂t︸︷︷︸
1

+ v‖ ∂ge

∂z︸ ︷︷ ︸
0

+ c
B0

{
ϕ

︸︷︷︸
1

− v‖A‖
c︸︷︷︸
0

− T⊥0e

e
v2
⊥

v2
th⊥e

δB‖
B0︸ ︷︷ ︸

1

, ge

}

= e
T‖0e

v‖

(
1
c
∂A‖
∂t︸ ︷︷ ︸
0

+ b̂ · ∇ϕ︸ ︷︷ ︸
0

− T⊥0e

e
b̂ · ∇ v2

⊥
v2

th⊥e

δB‖
B0

)

︸ ︷︷ ︸
0

f ‖0e

− e
T‖0e

u′‖0e

(
1
c
∂A‖
∂t︸ ︷︷ ︸
1

+ b̂ · ∇ϕ︸ ︷︷ ︸
1

− T⊥0e

e
b̂ · ∇ v2

⊥
v2

th⊥e

δB‖
B0

)

︸ ︷︷ ︸
1

f ‖0e, (C 70)

where we have indicated underneath each term the lowest order to which that term
enters when compared with v‖∂δfe/∂z. We refer the reader to § 4.1 and, in particular,
equations (80)–(82) in S09 for details on obtaining this ordering.
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We expand ge=g(0)e +g(1)e +· · · in powers of (me/mi)
1/2 and carry out the expansion

to the first two orders.

C.8.1. Zeroth order
To zeroth order, the electron kinetic equation is

b̂ · ∇
(

g(0)e +
v2
⊥

v2
th‖e

δB‖
B0

f ‖0e

)
− e

T‖0e

(
1
c
∂A‖
∂t
+ b̂ · ∇ϕ

)
f ‖0e = 0. (C 71)

Equation (C 71) is identical to the electron kinetic equation obtained from KRMHD
(2.36), as it should be (since ae� 1). Multiplying (C 71) by T‖0e/en0e and integrating
over the velocity space, we obtain

1
c
∂A‖
∂t
+ b̂ · ∇ϕ = 1

C‖0e

b̂ · ∇ T‖0e

e

(
δne

n0e
+∆1e

δB‖
B0

)
, (C 72)

which matches the expression for (minus) the parallel electric field given by (2.37).
Substituting (C 72) back into (C 71) gives

g(0)e =
[

1

C‖0e

(
δne

n0e
+∆1e

δB‖
B0

)
− v2

⊥
v2

th‖e

δB‖
B0

]
f ‖0e, (C 73)

from which follows the equations of state for the electrons, (2.41) and (2.42).

C.8.2. First order
At first order, (C 70) reads

∂g(0)e

∂t
+ v‖b̂ · ∇g(1)e +

c
B0

{
ϕ − T⊥0e

e
v2
⊥

v2
th⊥e

δB‖
B0
, g(0)e

}

=− e
T‖0e

u′‖0e

(
1
c
∂A‖
∂t
+ b̂ · ∇ϕ − T⊥0e

e
b̂ · ∇ v2

⊥
v2

th⊥e

δB‖
B0

)
f ‖0e. (C 74)

Using (C 72) and (C 73) and integrating (C 70) over the velocity space, we find
(
∂

∂t
+ u′‖0eb̂ · ∇

)(
δne

n0e
− δB‖

B0

)
+ c

B0

{
ϕ,
δne

n0e
− δB‖

B0

}
+ b̂ · ∇u‖e

+ C‖1e

C‖0e

cT⊥0e

eB0

{
δne

n0e
,
δB‖
B0

}
= 0, (C 75)

where the parallel electron velocity is first order:

u‖e = u(1)‖e =
1

n0e

∫
d3v v‖g(1)e . (C 76)

The first two terms in (C 75) can be combined upon identifying

d
dt
= ∂

∂t
+ uE · ∇= ∂

∂t
+ c

B0
{ϕ, . . .} (C 77)
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as the Lagrangian time derivative measured in a frame transported at the E×B drift
velocity, uE =−c∇⊥ϕ × ẑ/B0 (cf. (2.30)):

(
d
dt
+ u′‖0eb̂ · ∇

)(
δne

n0e
− δB‖

B0

)
+ b̂ · ∇u‖e + C‖1e

C‖0e

cT⊥0e

eB0

{
δne

n0e
,
δB‖
B0

}
= 0. (C 78)

As we will show in the following section, (C 78) indicates that, at first order in the
mass-ratio expansion, the magnetic flux is not tied to the E× B flow. This marks a
departure from KRMHD, where k⊥ρi is effectively zero at all relevant orders. However,
(C 78) does not signal the breakdown of magnetic-flux conservation.

C.8.3. Magnetic-flux conservation
While it may not be readily apparent, (C 72) and (C 78) state that the magnetic

flux is frozen into the electron flow velocity and is therefore exactly conserved in
that frame. To see that this is indeed the case, we begin by combining (C 72) for the
parallel electric field with the lowest-order expression for the perpendicular electric
field −∇⊥ϕ′e associated with the Alfvénic fluctuations measured in the frame of the
drifting electrons to obtain the total electric field,

E= (I − b̂b̂
) ·
[
−∇ϕ′e +

1

C‖0e

∇T‖0e

e

(
δne

n0e
+∆1e

δB‖
B0

)]
− 1

C‖0e

∇T‖0e

e

(
δne

n0e
+∆1e

δB‖
B0

)
.

(C 79)
Then Faraday’s law becomes

∂B
∂t
=−c∇×E=∇× (ueff ×B), (C 80)

with

ueff = b̂×∇ c
B

[
ϕ′e −

1

C‖0e

T‖0e

e

(
δne

n0e
+∆1e

δB‖
B0

)]
(C 81)

being the effective velocity into which the magnetic flux is frozen. Therefore, there
is a frame in which the magnetic flux is exactly conserved. We now show that this
frame is associated with the electron flow velocity.

We use (C 59) to rewrite (C 78) in the following equivalent form:
(
∂

∂t
+ u′‖0e

∂

∂z

)(
δB‖
B0
− δne

n0e

)
+ c

B0

{
ϕ′e −

C‖1e

C‖0e

T⊥0e

e
δB‖
B0
,
δB‖
B0
− δne

n0e

}
= b̂ · ∇u‖e.

(C 82)
To the left-hand side of this equation we add zero, written in a rather auspicious guise:

c
B0

{
1

C‖0e

T‖0e

e

(
δB‖
B0
− δne

n0e

)
,
δB‖
B0
− δne

n0e

}
.

Equation (C 82) then becomes
(
∂

∂t
+ u′‖0e

∂

∂z

)(
δB‖
B0
− δne

n0e

)

+ c
B0

{
ϕ′e −

1

C‖0e

T‖0e

e

(
δne

n0e
+∆1e

δB‖
B0

)
,
δB‖
B0
− δne

n0e

}
= b̂ · ∇u‖e, (C 83)

and we may identify the first term in the Poisson bracket as the perpendicular
component of the electron flow velocity,



48 M. W. Kunz and others

u⊥e = ẑ×∇⊥ c
B0

[
ϕ′e −

1

C‖0e

T‖0e

e

(
δne

n0e
+∆1e

δB‖
B0

)]
. (C 84)

It is clear that the leading-order contribution to ueff is precisely that given by (C 84).
This identification made, we can interpret (C 78) as the reduced electron continuity
equation. To wit, (C 83) expressed in terms of u⊥e,

(
∂

∂t
+ u′‖0e

∂

∂z
+ u⊥e · ∇⊥

)(
δB‖
B0
− δne

n0e

)
= b̂ · ∇u‖e (C 85)

may be combined with the parallel component of the induction (C 80) expanded to
O(εωB0), (

∂

∂t
+ u′‖0e

∂

∂z
+ u⊥e · ∇⊥

)
δB‖
B0
= b̂ · ∇u‖e −∇ · ue, (C 86)

to find (
∂

∂t
+ u′‖0e

∂

∂z
+ u⊥e · ∇⊥

)
δne

n0e
=−∇ · ue, (C 87)

the reduced electron continuity equation.

C.8.4. Field equations
The two fluid-like (C 72) and (C 78) form the system that describes the electrons.

These are closed by the gyrokinetic equation for gi ((C 58) with s = i), and by the
three integral relations derived from quasineutrality (C 66) and the parallel (C 67) and
perpendicular (C 68) components of Ampère’s law. We now express the latter explicitly
in terms of δne, u‖e, ϕ, A‖, δB‖, and gi.

Expanding the summation over species and using (C 73) and (C 76) to compute the
velocity-space moments of ge, (C 66)–(C 68) become, respectively,

δnek

n0e︸︷︷︸
0

−
∑

i

ciΓ
⊥

10(αi)
δB‖k
B0

︸ ︷︷ ︸
0

+
∑

i

ci
[
C⊥0i − Γ ⊥00(αi)

] Zieϕk

T⊥0i
︸ ︷︷ ︸

1

−
∑

i

ci
[
C⊥1i − Γ ⊥01(αi)

] Zie
T⊥0i

u′‖0iA‖k
c

︸ ︷︷ ︸
1

=
∑

i

ci

n0i

∫
d3v J0(ai)gik

︸ ︷︷ ︸
0

, (C 88)

{
k2
⊥cB0

4πen0e
︸ ︷︷ ︸

1

+
∑

s

csΩs[1− Γ00(αs)]
︸ ︷︷ ︸

1

−
∑

s

csΩs
T‖0s

T⊥0s

(
1+ 2u′2‖0s

v2
th‖s

)
[C⊥2s − Γ ⊥02(αs)]

}

︸ ︷︷ ︸
1

A‖k
B0

+
∑

i

ciu′‖0i

[
C⊥1i − Γ ⊥01(αi)

] Zieϕk

T⊥0i
︸ ︷︷ ︸

1

+
∑

i

ciu′‖0i

[
1− Γ ⊥11(αi)

] δB‖k
B0

︸ ︷︷ ︸
2

+ u‖ek︸︷︷︸
0

=
∑

i

ci

n0i

∫
d3v v‖J0(ai)gik

︸ ︷︷ ︸
0

=
∑

i

ciu‖ik, (C 89)
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C‖1e

C‖0e

(
δnek

n0e
+∆1e

δB‖k
B0

)

︸ ︷︷ ︸
0

+
[∑

i

ci
τ⊥i

Zi
Γ ⊥20(αi)+ 2

β⊥e
− 2∆2e

]
δB‖k
B0

︸ ︷︷ ︸
0

−
∑

i

ci
τ⊥i

Zi

[
1− Γ ⊥10(αi)

] Zieϕk

T⊥0i
︸ ︷︷ ︸

1

+
∑

i

ci
τ⊥i

Zi

[
1− Γ ⊥11(αi)

] Zie
T⊥0i

u′‖0iA‖k
c

︸ ︷︷ ︸
1

=−
∑

i

τ⊥i

Zi

ci

n0i

∫
d3v

2v2
⊥

v2
th⊥i

J1(ai)

ai
gik

︸ ︷︷ ︸
0

, (C 90)

where we have used
∑

i ciu′‖0i=u′‖0e'0 (which follows from the mass-ratio expansion).
The lowest order in k⊥ρi at which each term enters is indicated underneath that term,
following the subsidiary ordering discussed in § 5.2 of S09. As promised, if we retain
only the zeroth-order terms, (C 88)–(C 90) reduce to their respective KRMHD (2.50)–
(2.52).

C.9. Inertial-range turbulence: reduction to KRMHD
Thus far, we have constructed the theory for electrons, which determines the equations
of state of the electron fluid, evolves the parallel component of the vector potential
via a generalised Ohm’s law, and demonstrates that the magnetic flux is convected by
the perpendicular electron flow. In this section, we proceed to derive the gyrokinetic
theory for the ions, and show that it reproduces the KRMHD (2.53a)–(2.53c) in the
long-wavelength limit relevant to the inertial range.

C.9.1. Compressive fluctuations
Substituting the expression for ∂A‖/∂t that follows from (C 72) into the gyrokinetic

equation (C 58), we find that gi satisfies

∂gi

∂t
+ v‖ ∂gi

∂z
+ c

B0
{〈χ〉Ri, gi}

︸ ︷︷ ︸
0

=− Zie
T‖0i

(v‖ − u′‖0i)

〈
1
B0
{A‖, ϕ − 〈ϕ〉Ri}

︸ ︷︷ ︸
1

+ b̂ · ∇
[

1

C‖0e

T‖0e

e

(
δne

n0e
+∆1e

δB‖
B0

)
−
〈

v⊥ ·A⊥
c

〉

Ri

]〉

Ri︸ ︷︷ ︸
0

f ‖0i. (C 91)

We have indicated underneath each term the lowest order in k⊥ρi at which that term
enters. The zeroth-order terms should reduce to the ion drift-kinetic equation (2.53c).
Using (C 77) and (C 59) to group terms on the left-hand side of (C 91) into the
Lagrangian operators d/dt and b̂ · ∇, and replacing (Zie/T‖0i)〈v⊥ · A⊥/c〉Ri with the
lowest-order expression for it, −(v2

⊥/v
2
th‖i)(δB‖/B0), we find

(
d
dt
+ v‖b̂ · ∇

)
gi + (v‖ − u′‖0i)b̂ · ∇

[
1

C‖0e

Zi

τ‖i

(
δne

n0e
+∆1e

δB‖
B0

)
+ v2

⊥
v2

th‖i

δB‖
B0

]
f ‖0i = 0,

(C 92)
as promised.
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C.9.2. Alfvénic fluctuations
If we now multiply (C 91) by ci/n0i, sum over the ionic species, integrate over the

velocity space (keeping r constant), and use (C 88) and (C 89) to express the velocity-
space integrals of gi, we obtain

∂

∂t

∑

i

ci
Zie
T⊥0i

{[
C⊥0i − Γ ⊥00(αi)

]
ϕk −

[
C⊥1i − Γ ⊥01(αi)

] u′‖0iA‖k
c

}

︸ ︷︷ ︸
1

+ ∂

∂t

[
δnek

n0e
−
∑

i

ciΓ
⊥

10(αi)
δB‖k
B0

]

︸ ︷︷ ︸
0

+ ∂
∂z

(
u‖ek

︸︷︷︸
0

+ k2
⊥cB0

4πen0e

A‖k
B0

)

︸ ︷︷ ︸
1

+ ∂

∂z

∑

i

ciu′‖0i

{
[1− Γ ⊥11(αi)]δB‖kB0︸ ︷︷ ︸

2

+ [C⊥1i − Γ ⊥01(αi)]Zieϕk

T⊥0i

}

︸ ︷︷ ︸
1

+ ∂

∂z

∑

s

csΩs

{
1− Γ00(αs)− T‖0s

T⊥0s

(
1+ 2u′2‖0s

v2
th‖s

)
[
C⊥2s − Γ ⊥02(αs)

]
}

A‖k
B0

︸ ︷︷ ︸
1

+ c
B0

∑

i

ci

n0i

∫
d3v J0(ai) {〈χ〉Ri, gi}k

︸ ︷︷ ︸
0

= 0. (C 93)

It is straightforward to show that the zeroth-order component of this equation is
identical to (C 75) and so vanishes. Next we consider the first-order terms. Noting
that

k2
⊥cB0

4πen0e
=
∑

s

cs

Ωs
k2
⊥v

2
A and

∑

s

cs

Ωs
= ρ0

en0e

c
B0
, (C 94a,b)

we multiply (C 93) by −en0e/ρ0, inverse Fourier-transform back into real space, and
use (C 54) to get

∂

∂t
∇2
⊥Φ +

{
Φ,∇2

⊥Φ
}−

[
1+

∑

s

β‖s
2

(
∆s −

2u′2‖0s

v2
th‖s

)](
vA
∂

∂z
∇2
⊥Ψ +

{
Ψ,∇2

⊥Ψ
})

+
(∑

i

min0iu′‖0i

ρ0vA

)
∇2
⊥

(
∂

∂t
Ψ + {Φ, Ψ } + vA

∂

∂z
Φ

)
= 0. (C 95)

The final term in parentheses vanishes by the reduced induction (2.27), leaving the
reduced vorticity equation (2.29).

This completes our derivation of KRMHD from the k⊥ρi � 1 limit of the non-
Maxwellian gyrokinetic theory.
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Appendix D. Coefficients for a bi-kappa distribution function

A bi-kappa distribution function is often used to describe the non-thermal electron
population in the solar wind and, in particular, its suprathermal (Te ∼ 60 eV) halo
(e.g. Vasyliunas 1968; Maksimovic, Pierrard & Lemaire 1997a; Maksimovic, Pierrard
& Riley 1997b; Maksimovic et al. 2005). In this appendix, we evaluate all of the
dimensionless C`s coefficients introduced in the main text and in appendix C for the
bi-kappa distribution function

fbi-κ,s(v‖, v⊥)
.= n0s√

πκθ‖s

1
πκθ 2

⊥s

Γ (κ + 1)
Γ (κ − 1/2)

[
1+ (v‖ − u′‖0s)

2

κθ 2
‖s

+ v2
⊥

κθ 2
⊥s

]−(κ+1)

, (D 1)

where Γ is the Gamma function, κ > 3/2 is the spectral index, and

θ‖s
.= vth‖s

√
1− 3

2κ
and θ⊥s

.= vth⊥s

√
1− 3

2κ
(D 2a,b)

are the effective parallel and perpendicular thermal speeds, respectively; vth‖s and
vth⊥s are defined as in (2.15). At low and thermal energies, the bi-kappa distribution
approaches a Maxwellian distribution, whereas at high energies it exhibits a
non-thermal tail that can be described as a decreasing power law. Note that (D 1)
tends to the bi-Maxwellian distribution (2.24) as κ→∞.

Evaluation of the C`s coefficients is eased by rewriting fbi-κ,s in integral form:

fbi-κ,s =
∫ ∞

0
dt

tκ e−t

Γ (κ − 1/2)
n0s√
πκθ‖s

exp

[
−(v‖ − u′‖0s)

2

κθ 2
‖s

t

]
1

πκθ 2
⊥s

exp
(
− v2

⊥
κθ 2
⊥s

t
)
.

(D 3)
We then have from (2.38):

C‖0e =
(

1− 1
2κ

)(
1− 3

2κ

)−1

, C‖1e =C‖2e = 1; (D 4a,b)

from (C 31)

C⊥0s =C⊥1s =
(

1− 1
2κ

)(
1− 3

2κ

)−1

, C⊥2s =
(

1+ 2u′2‖0s

v2
th‖s

C⊥0s

)(
1+ 2u′2‖0s

v2
th‖s

)−1

;
(D 5a,b)

and from (C 65):

C11i = 1, C20i =
(

1− 3
2κ

)(
1− 1

2κ

)−1

. (D 6a,b)

The C‖`i coefficients defined by (B 2) involve Landau-like integrals, which may be
written in terms of the modified plasma dispersion function

Zκ(ξ)
.= Γ (κ + 1)
Γ (κ + 1/2)

1√
πκ

∫ ∞

−∞
dx

1
x− ξ

(
1+ x2

κ

)−(κ+1)

(D 7)
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introduced by Summers & Thorne (1991, 1992):

C‖0i =
(

1− 1
2κ

)(
1− 3

2κ

)−1

[1+ ξiZκ(ξi)], (D 8a)

C‖1i =
1

2κ
+
(

1− 1
2κ

)(
1+ ξ

2
i

κ

)
[1+ ξiZκ(ξi)], (D 8b)

C‖2i =
1
κ

[
1− 3

4κ
+
(

1− 3
2κ

)
ξ 2

i

2κ

] (
1− 1

κ

)−1

+
(

1+ ξ
2
i

κ

)2 (
1− 3

2κ

)(
1− 1

2κ

)(
1− 1

κ

)−1

[1+ ξiZκ(ξi)], (D 8c)

where ξi
.= (ω− k‖u′‖0i)/|k‖|vth‖i is the dimensionless Doppler-shifted phase speed.

Appendix E. Nomenclature
In this appendix, for the reader’s benefit we provide a glossary of frequently used

symbols in our formulations of non-Maxwellian KRMHD and gyrokinetics. Each
symbol is accompanied by a textual description and a numerical reference to either
the section(s) in which the symbol was introduced or, if available, the equation by
which the symbol was defined (given in parentheses). Throughout the manuscript,
the subscript ‘0’ appended to any of the following symbols denotes an equilibrium
value; the prefactor ‘δ’ denotes a fluctuation. The species index s= i (for ion), e (for
electron), or α (for alpha).

Miscellaneous
ms mass of species s § 2.1
qs charge of species s (= Zse) § 2.1
e electric charge magnitude § 2.1
c speed of light § 2.1
I unit dyadic § 2.1
ε expansion parameter (�1) § 2.3, § C.1
J0, J1 zeroth- and first-order Bessel functions § C.6

Length scales
L fiducial macroscale § 1, appendix C
λmfp collisional mean free path (=vth‖i/νii) § 1
ρs gyroradius of species s (= vth⊥s/Ωs) § 2.1, appendix C
k−1
‖ (inverse) parallel wavenumber § 2.3, § C.1

k−1
⊥ (inverse) perpendicular wavenumber § 2.3, § C.1

Frequencies
ω frequency of the fluctuations (=ωr + iγ ) § 2.3, § C.1
νii ion–ion collision frequency § 1, § C.1
ξs dimensionless phase speed (=ω/k‖vth‖s − u′‖0s/vth‖s) § 4.4, § B.1
Ωs gyrofrequency of species s (= qsB0/msc) § 1, appendix C

Phase-space coordinates
v‖ velocity-space coordinate parallel to the magnetic field § 2.1, (C 9)
v⊥ velocity-space coordinate perpendicular to the magnetic field § 2.1, (C 9)
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w⊥ velocity-space coordinate perpendicular to the magnetic field
and peculiar to the mean perpendicular flow of species s

§ 2.1

r real-space coordinate § 2.1
εs kinetic energy of a particle of species s as measured in the frame

of the Alfvénic fluctuations and the equilibrium species drift
(4.10), (C 50)

µs first adiabatic invariant of a particle of species s (4.11), (C 48)
ϑ gyrophase angle (C 9)
Rs guiding-centre position of species s (C 16)
εs total energy of a particle of species s in the frame of the

equilibrium species drift
(C 40)

ε0s kinetic energy of a particle of species s in the frame of the
equilibrium species drift

(C 40)

ε1s first-order correction to the kinetic energy of species s (C 40)
µs gyrophase-dependent part of the first adiabatic invariant of a

particle of species s
(C 41)

µ0s lowest-order magnetic moment of a particle of species s (=
msv

2
⊥/2B0)

(C 41)

µ1s first-order gyrophase-dependent correction to the magnetic
moment

(C 41)

as dimensionless velocity-space coordinate perpendicular to the
magnetic field (=k⊥v⊥/Ωs)

§ C.6

Distribution functions

fs distribution function of species s § 2.1
f ‖0s dimensionless derivative of the equilibrium distribution of

species s with respect to the square of the parallel velocity
peculiar to the equilibrium species drift

(2.22), (C 12)

f⊥0s dimensionless derivative of the equilibrium distribution of
species s with respect to the square of the perpendicular
velocity

(2.22), (C 12)

fbi-M,s bi-Maxwellian distribution function of species s (2.24)
gs perturbed distribution function if fs is taken to be a function

of v‖ and µs (in KRMHD); gyrocentre distribution function
(in gyrokinetics)

(2.46), (C 57)

f̃s distribution function of species s as a function of (εs, µs) § 4.2
g̃i passively mixed, undamped, ballistic component of the

perturbed ion distribution function gi

(4.50)

hs gyrokinetic response (C 17)
δf1s,Boltz leading-order Boltzmann response (C 18)
h̃s gyrokinetic response corrected for µs conservation (C 29)
fbi-κ,s bi-kappa distribution function of species s (D 1)

Moments of the zeroth-order distribution function

C‖`s dimensionless coefficients related to perpendicular moments
of the parallel-differentiated equilibrium distribution function;
includes Landau resonance for ions

(2.38), (B 2)

ZM Maxwellian plasma dispersion function (4.26)
C⊥`s dimensionless coefficients related to parallel moments of the

perpendicular-differentiated equilibrium distribution function
(C 31)

Γ
(⊥)
`m several dimensionless v2`

⊥ -, vm
‖ -, and Bessel-function-weighted

integrals over the (perpendicular-differentiated) equilibrium
distribution function

(C 64)

Zκ kappa plasma dispersion function (D 7)
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Densities

ns number density of species s (= ∫ d3v fs) § 2.1
ρ volume density of plasma (=∑s msns) § 2.2
cs charge-weighted ratio of number densities (=Zsn0s/n0e) § 2.3

Velocities

us mean velocity of species s (= n−1
s

∫
d3v v fs) § 2.1

u⊥s mean perpendicular velocity of species § 2.1
u centre-of-mass velocity (=∑s msnsus/

∑
s msns) § 2.2

u⊥ perpendicular centre-of-mass velocity (= cE×B/B2) § 2.2
u′‖s mean parallel velocity of species s measured in a frame

comoving with the centre-of-mass velocity
(2.9)

vA Alfvén speed (2.14)
vth‖s parallel thermal speed of species s (2.15)
vth⊥s perpendicular thermal speed of species s (2.15)
vA∗ effective Alfvén speed (2.34)
θ‖s effective parallel thermal speed of species s for a bi-kappa

distribution function
(D 2)

θ⊥s effective perpendicular thermal speed of species s for a bi-
kappa distribution function

(D 2)

Pressures
Ps pressure tensor of species s (2.4)
p‖s parallel pressure of species s (2.5)
p⊥s perpendicular pressure of species s (2.6)
p‖ parallel pressure of plasma (=∑s p‖s) § 2.2
p⊥ perpendicular pressure of plasma (=∑s p⊥s) § 2.2
∆s dimensionless pressure anisotropy of species s (2.20)
β‖s ratio of parallel pressure of species s to the magnetic pressure (2.21)
β⊥s ratio of perpendicular pressure of species s to the magnetic

pressure
(2.21)

β‖ ratio of parallel pressure of plasma to the magnetic pressure
(=∑s β‖s)

§ 2.3

β⊥ ratio of perpendicular pressure of plasma to the magnetic
pressure (=∑s β⊥s)

§ 2.3

∆`s dimensionless pressure anisotropy of the electrons weighted by C‖`s (2.39), (B 4)
∆̃s dimensionless pressure anisotropy of species s augmented by

the parallel ram pressure from equilibrium parallel drifts
(C 37)

Temperatures
T‖s parallel temperature of species s (2.5)
T⊥s perpendicular temperature of species s (2.6)
τ‖s ratio of parallel temperature of species s to the parallel

electron temperature
(2.19)

τ⊥s ratio of perpendicular temperature of species s to the
perpendicular electron temperature

(2.19)

Electromagnetic fields and potentials
E electric field § 2.1
B magnetic field § 2.1
b̂ unit vector in the magnetic-field direction (=B/B) § 2.1
E‖ parallel electric field (2.8), (2.37)
E⊥ perpendicular electric field (=−u⊥ ×B/c) § 2.2
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Φ velocity stream function (2.25)
Ψ magnetic flux function (2.25)
ζ± generalised Elsasser potentials (3.3)
z± generalised Elsasser fields (3.4)
ϕ electrostatic scalar potential (C 2)
A magnetic vector potential (C 2)
j current density (C 4)
ϕ′s electrostatic scalar potential in the frame of the parallel-

drifting species s
(C 19)

χ gyrokinetic potential (C 21)

Functions defined for parallel kinetics (§ 4.3)
Gn integral over the perpendicular velocity space in (2.53d),

which relates the fluctuating electron number density to the
lower-order moments of gi

(4.15)

GB integral over the perpendicular velocity space in (2.53e),
which relates the fluctuating magnetic-field strength to the
lower-order moments of gi

(4.15)

F‖`i various perpendicular moments of the parallel-differentiated
equilibrium ion distribution function

(4.17)

λ(...)i coupling coefficients quantifying the influence of the density
and magnetic-field-strength fluctuations on the kinetic
fluctuations; superscripts are nn, nB, Bn, and BB

(4.18), appendix A

G± eigenvectors resulting from diagonalising the reduced ion
kinetic equation for a bi-Maxwellian plasma

(4.20)

Λ± (inverse) eigenvalues resulting from diagonalising the reduced
ion kinetic equation for a bi-Maxwellian plasma

(4.21)

σi useful ion coefficient (4.22)
ςi useful ion coefficient (4.23)
$i useful ion coefficient (4.24)
κi useful ion coefficient (4.42)

Invariants
W±AW Alfvén-wave invariants associated with ζ± (3.9)
WAW Alfvén-wave invariant (3.10)
Wcompr compressive invariant (4.4)
W±compr compressive invariants associated with G± (4.37)
Wg̃i compressive invariant associated with g̃i (4.52)
W generalised free energy (5.1)

Differential and integral operators
D/Dt time derivative measured in a frame co-moving with the

Alfvénic fluctuations and streaming along the magnetic field
at velocity v‖ (= ∂/∂t+ u⊥s · ∇+ v‖b̂ · ∇)

§ 2.1

D differential operator measuring the velocity-space anisotropy
of a distribution function

(2.23), (C 12)

{·, ·} Poisson bracket (2.28), (C 28)
d/dt time derivative measured in a frame co-moving with the

Alfvénic fluctuations
(2.30), (C 77)

b̂ · ∇ space derivative measured along the exact magnetic-field
direction

(2.31), (C 59)

ḟs time derivative of the function fs(t, r, v) taken along the full
phase-space trajectory of a particle of species s

(C 1)

〈. . .〉Rs ring average over ϑ at fixed Rs (C 24)
〈. . .〉r gyro-average over ϑ at fixed r (C 33)
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