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Abstract: In this paper, we introduce a shrinking projection method of an inertial type with self-adaptive

step size for finding a common element of the set of solutions of a split generalized equilibrium problem and

the set of common fixed points of a countable family of nonexpansive multivalued mappings in real Hilbert

spaces. The self-adaptive step size incorporated helps to overcome the difficulty of having to compute the

operator norm, while the inertial term accelerates the rate of convergence of the proposed algorithm. Under

standard and mild conditions, we prove a strong convergence theorem for the problems under considera-

tion and obtain some consequent results. Finally, we apply our result to solve split mixed variational

inequality and split minimization problems, and we present numerical examples to illustrate the efficiency

of our algorithm in comparison with other existing algorithms. Our results complement and generalize

several other results in this direction in the current literature.

Keywords: inertial, split generalized equilibrium problems, self-adaptive, step size, nonexpansive multi-

valued mappings, firmly nonexpansive mapping, fixed point problems
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1 Introduction

Let H be a real Hilbert space with inner product ,⟨⋅ ⋅⟩ and induced norm ∥⋅∥. Let C be a nonempty closed

convex subset of H and �ϕ C C: × → , �F C C: × → be two bifunctions. The generalized equilibrium

problem (GEP) is to find a point x C∈∗ such that

F x y ϕ x y y C, , 0, .( ) + ( ) ≥ ∀ ∈∗ ∗ (1)
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The solution set of the GEP is denoted by F ϕGEP ,( ). In particular, if we set ϕ 0= in (1), then the GEP

reduces to the classical equilibrium problem (EP), which is to find a point x C∈∗ such that F x y, 0,( ) ≥∗

y C∀ ∈ . The solution set of EP is denoted by FEP( ).
The EP is a generalization of many mathematical models such as variational inequality problems

(VIPs), fixed point problems (FPPs), certain optimization problems (OPs), Nash EPs, minimization problems

(MPs), and others, see [1,2]. Many authors have studied and proposed several iterative algorithms for

solving EPs and related OPs, see [3–18].

In 2013, Kazmi and Rizvi [19] introduced and studied the following split generalized equilibrium

problem (SGEP): let C H1⊆ and Q H2⊆ , where H1 and H2 are real Hilbert spaces. Let �F ϕ C C, :1 1 × →
and �F ϕ Q Q, :2 2 × → be nonlinear bifunctions, and A H H: 1 2→ be a bounded linear operator. The SGEP

is defined as follows: find x C∈∗ such that

F x x ϕ x x x C, , 0, ,1 1( ) + ( ) ≥ ∀ ∈∗ ∗ (2)

and such that

y Ax Q F y y ϕ y y y Qsolves , , 0, .2 2= ∈ ( ) + ( ) ≥ ∀ ∈∗ ∗ ∗ ∗ (3)

We denote the solution set of SGEP (2)–(3) by

F ϕ F ϕ x C x F ϕ Ax F ϕSGEP , , , : GEP , and GEP , .1 1 2 2 1 1 2 2( ) ≔ { ∈ ∈ ( ) ∈ ( )}∗ ∗ ∗

Furthermore, an iterative algorithm was also presented by the authors for approximating the solution of

SGEP in a real Hilbert space. Ifϕ 01 = andϕ 02 = , then the SGEP reduces to split equilibrium problem (SEP),

which is to find x C∈∗ such that

F x x x C, 0, ,1( ) ≥ ∀ ∈∗ (4)

and such that

y Ax Q F y y y Qsolves , 0, .2= ∈ ( ) ≥ ∀ ∈∗ ∗ ∗ (5)

Observe that (4) is the classical EP. Therefore, the inequalities (4) and (5) comprise a pair of EPs, which

involves finding the image y Ax=∗ ∗ under a given bounded linear operator A, of the solution x∗ of (4) in H1,

which is the solution of (5) in H2. The solution set of SEP (4)–(5) is denoted by F F z FSEP , EP :1 2 1( ) ≔ { ∈ ( )
Az FEP 2∈ ( )}.

Another important problem in fixed point theory is the fixed point problem (FPP), which is defined as

follows:

x C Sx xFind a point such that ,∈ =∗ ∗ ∗ (6)

where S C C: → is a nonlinear operator. If S is a multivaluedmapping, i.e., S C: 2C→ , then x C∈∗ is called

a fixed point of S if

x Sx .∈∗ ∗ (7)

We denote the set of fixed points of S by F S( ). The fixed point theory for multivalued mappings can be

utilized in various areas such as game theory, control theory, and mathematical economics.

In this article, we are interested in studying the problem of finding a common solution for both the

SGEP (2)–(3) and the common FPP for multivalued mappings. The motivation for studying such problems is

in its potential application to mathematical models whose constraints can be expressed as FPP and SGEP.

This occurs, in particular, in practical problems such as signal processing, network resource allocation, and

image recovery. A scenario is in network bandwidth allocation problem for two services in heterogeneous

wireless access networks in which the bandwidth of the services is mathematically related (see, for

instance, [20,21] and references therein).

In 2016, Suantai et al. [22] introduced the following iterative scheme for solving SEP and FPP of non-

spreading multi-valued mapping in Hilbert spaces:
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for all n 1≥ , whereC is a nonempty closed convex subset of a real Hilbert space H α r, 0, 1 , 0,n n{ } ⊂ ( ) ⊂ ( ∞),
S is a nonspreading multivalued mapping, and γ 0,

L

1( )∈ such that L is the spectral radius of A A∗ and A∗ is

the adjoint of the bounded linear operator A. Under the following conditions on the control sequences:

(i) α α0 lim inf lim sup 1n n n n< ≤ <→∞ →∞ ; and

(ii) rlim inf 0n n >→∞ ,

the authors proved that the sequence xn{ } defined by (8) converges weakly to p F S F FSEP ,1 2∈ ( ) ∩ ( ) ≠ ∅.

Bauschke and Combettes [23] pointed out that in solving OPs, strong convergence of iterative schemes

is more desirable than their weak convergence counterparts. Hence, there is a the need to construct iterative

schemes that generate a strong convergence sequence.

Takahashi et al. [24] introduced an iterative scheme known as the shrinking projection method for

finding a fixed point of a nonexpansive single-valued mapping in Hilbert spaces. The shrinking projection

method is a famous method, which plays a significant role in mastering strong convergence for finding fixed

points of nonlinearmappings. Themethod has receivedmuch attention due to its applications, and it has been

developed to solve many problems, such as, EPs, VIPs, and FPPs in Hilbert spaces (see, for example, [25]).

Very recently, Phuengrattana and Lerkchaiyaphum [26] introduced the following shrinking projection

method for solving SGEP and FPP of a countable family of nonexpansive multivalued mappings: for x C1 ∈
and C C1 = , then













�

u T I γA I T A x

z α x α y α y y S u

C p C z p x p

x P x n

,

, ,

: ,

, .

n r
F ϕ

r
F ϕ

n

n n n n n n
n

n
n

n
i

i n

n n n n

n C

, ,

0 1 1

1
2 2

1 1

n n

n

1 1 2 2

1

( ( ) )= − −
= + +⋯+ ∈
= { ∈ ∥ − ∥ ≤ ∥ − ∥ }
= ∈

( ) ∗ ( )

( ) ( ) ( ) ( ) ( ) ( )

+

+ +

(9)

They proved that if

(i) rlim inf 0n n >→∞ ,

(ii) The limits αlim 0, 1n n
i ∈ ( )→∞
( ) exist for all i 0≥ ,

then the sequence xn{ } generated by (9) converges strongly to P xΓ 1, where F S F ϕ F ϕΓ SGEP , , ,i i1 1 1 2 2= ⋂ ( ) ∩ ( )=
∞

≠ ∅ and Si is a countable family of nonexpansive multivalued mappings.

It is important to point out at this point that the step size γ of the aforementioned algorithm plays an

essential role in the convergence properties of iterative methods. The result obtained by the authors in

[22,26] and several other related results in the literature involve step size that requires prior knowledge of

the operator norm A∥ ∥. One of the drawbacks of such algorithms is that they are usually not easy to

implement because they require computation of the operator norm A∥ ∥, which is very difficult if not

impossible to calculate or even estimate. Moreover, the step size defined by such algorithms is often

very small and deteriorates the convergence rate of the algorithm. In practice, a larger stepsize can often

be used to yield better numerical results.

Based on the heavy ball methods of a two-order time dynamical system, Polyak [27] first proposed an

inertial extrapolation as an acceleration process to solve the smooth convex minimization problem. The

inertial algorithm is a two-step iteration where the next iterate is defined by making use of the previous two

iterates. Recently, several researchers have constructed some fast iterative algorithms by using inertial

extrapolation (see, e.g., [1,28–32]).

Motivated by the above results and the ongoing research interest in this direction, in this paper, we

present a new inertial shrinking projection algorithm, which does not require any prior knowledge of the

operator norm for finding a common element of the set of solutions of SGEP and the set of common fixed

points of a countable family of nonexpansive multivalued mappings in Hilbert spaces. We prove strong

convergence theorem for the proposed algorithm and obtain some consequent results. Moreover, we apply

our results to solve split mixed variational inequality problem (SMVIP) and split minimization problem

(SMP), and we provide numerical examples to illustrate the efficiency of the proposed algorithm in com-

parison with the existing results in the current literature.
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The remaining sections of the paper are organized as follows. In Section 2, we recall some basic

definitions and results that will be employed in the convergence analysis of our proposed algorithm. Our

new inertial shrinking projection algorithm is presented and analyzed in Section 3, and we also obtain some

consequent results. In Section 4, we apply our result to solve SMVIP and SMP. In Section 5, we present some

numerical experiments to demonstrate the validity and efficiency of our proposed method in comparison

with some recent results in the literature. Finally, in Section 6, we give the concluding remarks.

2 Preliminaries

Let C be a nonempty, closed, and convex subset of a real Hilbert space H with an inner product ,⟨⋅ ⋅⟩ and
norm ∥⋅∥. The nearest point projection of H onto C is denoted by PC, that is, x P x x yC∥ − ∥ ≤ ∥ − ∥ for all x H∈
and y C∈ . PC is called the metric projection of H onto C. It is known that PC is firmly nonexpansive, i.e.,

P x P y P x P y x y, ,C C C C
2∥ − ∥ ≤ ⟨ − − ⟩ (10)

for all x y H, ∈ . Moreover, x P x y P x, 0C C⟨ − − ⟩ ≤ holds for all x H∈ and y C∈ , see [33,34]. We denote

the strong convergence and weak convergence of a sequence xn{ } to a point x in a Hilbert space H by x xn →
and x xn ⇀ , respectively. It is well known [35] that a Hilbert space H satisfies Opial condition, that is, for any

sequence xn{ } with x xn ⇀ , the inequality

x x x ylim sup lim sup
n

n
n

n∥ − ∥ < ∥ − ∥
→∞ →∞

(11)

holds for every y H∈ with y x≠ .

Definition 2.1. A single-valued mapping S C C: → is said to be

• nonexpansive, if and only if

Sx Sy x y x y C, , ;∥ − ∥ ≤ ∥ − ∥ ∀ ∈

• δ-inverse strongly monotone [36], if there exists a positive real number δ such that

x y Sx Sy δ Sx Sy x y C, , , ;2⟨ − − ⟩ ≥ ∥ − ∥ ∀ ∈

• monotone, if and only if

y x Sy Sx x y C, 0, , .⟨ − − ⟩ ≥ ∀ ∈

If S is δ-inverse strongly monotone, for each γ δ0, 2∈ ( ], it is known [26] that I γS− is a nonexpansive

single-valued mapping.

A subset K of H is called proximal if for each x H∈ , there exists y K∈ such that

x y x Kd , .∥ − ∥ = ( )

We denote by CB C CC C K C, ,( ) ( ) ( ), and P C( ) the families of all nonempty closed bounded subsets of C,

nonempty closed convex subset of C, nonempty compact subsets of C, and nonempty proximal bounded

subsets of C, respectively. The Pompeiu-Hausdorff metric on CB C( ) is defined by

H A B x B y A, max sup d , , sup d , ,
x A y B

( ) ≔ { ( ) ( )}
∈ ∈

for all A B CB C, ∈ ( ). Let S C: 2C→ be a multivalued mapping. We say that S satisfies the endpoint condition

if Sp p= { } for all p F S∈ ( ). For multivalued mappings �S C i: 2i
C→ ( ∈ ) with F Si i1⋂ ( ) ≠ ∅=

∞ , we say Si
satisfies the common endpoint condition if S p pi( ) = { } for all �i p F S, i i1∈ ∈ ⋂ ( )=

∞ . We recall some basic and

useful definitions on multivalued mappings.
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Definition 2.2. A multivalued mapping S C CB C: → ( ) is said to be nonexpansive if

H Sx Sy x y x y C, , , .( ) ≤ ∥ − ∥ ∀ ∈

The class of nonexpansive multivalued mappings contains the class of nonexpansive single-valued map-

pings. If S is a nonexpansive single-valued mapping on a closed convex subset of a Hilbert space, then F S( )
is closed and convex. The closedness of F S( ) can easily be extended to the multivalued case. However, the

convexity of F S( ) cannot be extended (see, e.g., [37]). But, if S is a nonexpansive multivalued mapping

which satisfies the endpoint condition, then F S( ) is always closed and convex as shown by the following

result:

Lemma 2.3. [38] Let C be a nonempty closed convex subset of a real Hilbert space H . Let S C CB C: → ( ) be a
nonexpansive multivalued mapping with F S( ) ≠ ∅ and Sp p= { } for each p F S∈ ( ). Then, F S( ) is a closed and

convex subset of C.

The best approximation operator PS for a multivalued mapping S C P C: → ( ) is defined by

P x y Sx x y d x Sx: , .S( ) ≔ { ∈ ∥ − ∥ = ( )}

It is known that F S F PS( ) = ( ) and PS satisfies the endpoint condition. Song and Cho [39] gave an example of

a best approximation operator PS which is nonexpansive, but where S is not necessarily nonexpansive.

The following results will be needed in the sequel:

Lemma 2.4. [40] In a real Hilbert space H , the following inequalities hold for all x y H, ∈ :

(i) x y x y x y2 ,2 2∥ + ∥ ≤ ∥ ∥ + ⟨ + ⟩;
(ii) x y x x y y2 ,2 2 2∥ + ∥ = ∥ ∥ + ⟨ ⟩ + ∥ ∥ ;
(iii) x y x x y y2 ,2 2 2∥ − ∥ = ∥ ∥ − ⟨ ⟩ + ∥ ∥ .

Lemma 2.5. [41] Let H be a Hilbert space, xn{ } be a sequence in H , and α α α, , , N1 2 … be real numbers such

that α 1i
N

i1∑ == . Then,

α x α x α α x x .
i

N

i i

i

N

i i

i j N

i j i j

1

2

1

2

1 ,

2∑ ∑ ∑= ∥ ∥ − ∥ − ∥
= = ≤ ≤

(12)

Lemma 2.6. [42] Let H be a Hilbert space, and let xn{ } be a sequence in H . Let u v H, ∈ be such that

x ulimn n∥ − ∥→∞ and x vlimn n∥ − ∥→∞ exist. If xnk{ } and xmk{ } are subsequences of xn{ } that converge weakly

to u and v respectively, then u v= .

Lemma 2.7. [43] Let C be a nonempty closed convex subset of a real Hilbert space H . Given x y z H, , ∈ and

a real number α, the set u C y u x u z u α: ,2 2{ ∈ ∥ − ∥ ≤ ∥ − ∥ + ⟨ ⟩ + } is closed and convex.

Lemma 2.8. [44,45] Let C be a nonempty closed convex subset of a real Hilbert space H , and let P H C:C →
be the metric projection. Then,

y P x x P x x y x H y C, , .C C
2 2 2∥ − ∥ + ∥ − ∥ ≤ ∥ − ∥ ∀ ∈ ∈

Assumption 2.9. Let C be a nonempty closed and convex subset of a Hilbert space H1. Let �F C C:1 × →
and �ϕ C C:1 × → be two bifunctions satisfying the following conditions:

(A1) F x x, 01( ) = for all x C∈ ,

(A2) F1 is monotone, that is, F x y F y x, , 01 1( ) + ( ) ≤ for all x y C, ∈ ,

(A3) F1 is upper hemicontinuous, that is, for all x y z C, , ∈ , F tz t x y F x ylim 1 , ,t 0 1 1( + ( − ) ) ≤ ( )↓ ,

(A4) for each x C y F x y, ,1∈ ↦ ( ) is convex and lower semicontinuous,

(A5) ϕ x x, 01( ) ≥ for all x C∈ ,

(A6) for each y C x ϕ x y, ,1∈ ↦ ( ) is upper semicontinuous,

(A7) for each x C ϕ x y,1∈ ↦ ( ) is convex and lower semicontinuous,
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and assume that for fixed r 0> and z C∈ , there exists a nonempty compact convex subset K of H1 and

x C K∈ ∩ such that

F y x ϕ y x
r
y x x z y C K, ,

1
, 0, \ .1 1( ) + ( ) + ⟨ − − ⟩ < ∀ ∈

Lemma 2.10. [46] Let C be a nonempty closed and convex subset of a Hilbert space H1. Let �F C C:1 × →
and �ϕ C C:1 × → be two bifunctions satisfying Assumption 2.9. Assume thatϕ1 is monotone. For r 0> and

x H1∈ , define a mapping T H C:r
F ϕ,

1
1 1 →( )

as follows:









T x z C F z y ϕ z y
r
y z z x y C: , ,

1
, 0, ,r

F ϕ,
1 1

1 1 ( ) = ∈ ( ) + ( ) + ⟨ − − ⟩ ≥ ∀ ∈( )
(13)

for all x H1∈ , Then,

(i) for each x H T, r
F ϕ

1
,1 1∈ ≠ ∅( )

,

(ii) Tr
F ϕ,1 1( )

is single-valued,

(iii) Tr
F ϕ,1 1( )

is firmly nonexpansive, that is, for any x y H, 1∈ ,

T x T y T x T y x y, ,r
F ϕ

r
F ϕ

r
F ϕ

r
F ϕ, , 2 , ,1 1 1 1 1 1 1 1∥ − ∥ ≤ ⟨ − − ⟩( ) ( ) ( ) ( )

(iv) F T F ϕGEP ,r
F ϕ,

1 1
1 1( ) = ( )( )

,

(v) F ϕGEP ,1 1( ) is compact and convex.

Furthermore, assume that �F Q Q:2 × → and �ϕ Q Q:2 × → satisfy Assumption 2.9, where Q is a non-

empty closed and convex subset of a Hilbert space H2. For all s 0> and w H2∈ , define the mapping

T H Q:s
F ϕ,

2
2 2 →( )

by









T v w Q F w d ϕ w d
s
d w w v d Q: , ,

1
, 0, .s

F ϕ,
2 2

2 2 ( ) = ∈ ( ) + ( ) + ⟨ − − ⟩ ≥ ∀ ∈( )
(14)

Then, we have

(vi) for each v H T, s
F ϕ

2
,2 2∈ ≠ ∅( )

,

(vii) Ts
F ϕ,2 2( )

is single-valued,

(viii) Ts
F ϕ,2 2( )

is firmly nonexpansive,

(ix) F T F ϕGEP ,s
F ϕ,

2 2
2 2( ) = ( )( )

,

(x) F ϕGEP ,2 2( ) is closed and convex,

where F ϕGEP ,2 2( ) is the solution set of the following GEP: find y Q∈∗ such that

F y y ϕ y y y Q, , 0 .2 2( ) + ( ) ≥ ∀ ∈∗ ∗

Moreover, F ϕ F ϕSGEP , , ,1 1 2 2( ) is a closed and convex set.

Lemma 2.11. [47] LetC be a nonempty closed and convex subset of a Hilbert space H1. Let �F C C:1 × → and

�ϕ C C:1 × → be two bifunctions satisfying Assumption 2.9, and let Tr
F ϕ,1 1( )

be defined as in Lemma 2.10 for

r 0> . Let x y H, 1∈ and r r, 01 2 > . Then,

T y T x y x
r r

r
T y y .r

F ϕ
r
F ϕ

r
F ϕ, , 2 1

2

,
2

1 1
1

1 1
2

1 1− ≤ − + − −( ) ( ) ( )

3 Main results

In this section, we state and prove our strong convergence theorem for finding a common element of the set

of solutions of SGEP and the set of common fixed points of a countable family of nonexpansive multivalued

mappings in real Hilbert spaces.
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Theorem 3.1. Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively.

Let A H H: 1 2→ be a bounded linear operator, and let Si{ } be a countable family of nonexpansive multivalued

mappings of C into CB C( ). Let �F ϕ C C, :1 1 × → , �F ϕ Q Q, :2 2 × → be bifunctions satisfying Assumption

2.9. Let ϕ ϕ,1 2 be monotone, ϕ1 be upper hemicontinuous, and F2 and ϕ2 be upper semicontinuous in the first

argument. Assume that F S F ϕ F ϕΩ SGEP , , ,i i1 1 1 2 2= ⋂ ( ) ∩ ( ) ≠ ∅=
∞ and S p pi = { } for each p F Si i1∈ ⋂ ( )=

∞ . Let

x x C,0 1 ∈ with C C1 = , and let xn{ } be a sequence generated as follows:
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n
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n C

1

, ,

,0 1 , , ,

1
2 2

1
2

1
2

1 1

n n
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1 1 2 2

1

∑

= + ( − )

= − −

= + ∈
= { ∈ ∥ − ∥ ≤ ∥ − ∥ − ⟨ − − ⟩ + ∥ − ∥ }
= ∈

−
( ) ∗ ( )

=

+ − −

+ +

(15)


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
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τ I T Aw

A I T Aw
if Aw T Aw

γ otherwise γ being any nonnegative real number

,

,

n

n r
F ϕ

n

r
F ϕ

n

n r
F ϕ

n

, 2

, 2

,n

n

n

2 2

2 2

2 2
( )
( )=
∥ − ∥
∥ − ∥

≠

( )

( )

∗ ( )
( )

where a τ b0 1n< ≤ ≤ < , �θn{ } ⊂ , α 0, 1n i,{ } ⊂ ( ), such that α 1i
n

n i0 ,∑ == , and r 0,n{ } ⊂ ( ∞). Suppose that

the following conditions hold:

(C1) rlim inf 0n n >→∞ ,

(C2) the limits αlim 0, 1n n i, ∈ ( )→∞ exist for all i 0≥ .

Then, the sequence xn{ } generated by (15), converges strongly to P xΩ 1.

Proof. We divide the proof into several steps as follows:

Step 1: First, we show that xn{ } is well-defined for every �n ∈ .

By Lemmas 2.3 and 2.10, we have that F ϕ F ϕSGEP , , ,1 1 2 2( ) and F Si i1⋂ ( )=
∞ are closed and convex subsets of C.

Therefore, the solution set Ω is a closed and convex subset of C. By Lemma 2.7, it then follows that Cn 1+ is

closed and convex for each �n ∈ . Let p Ω∈ , then we have p T pr
F ϕ,
n

1 1= and Ap T Apr
F ϕ,
n

2 2= ( )( )
. SinceTr

F ϕ,
n

1 1( )
is

nonexpansive, by Lemma 2.4, we have

u p T w γ A I T Aw p

w γ A I T Aw p

w p γ A I T Aw γ w p A I T Aw2 , .

n r
F ϕ

n n r
F ϕ

n

n n r
F ϕ

n

n n r
F ϕ

n n n r
F ϕ

n

2 , , 2

, 2

2 2 , 2 ,

n n

n

n n

1 1 2 2

2 2

2 2 2 2

∥ ( ( ) ) ∥
∥ ( ) ∥
∥ ∥ ( ) ∥ ( )

∥ − ∥ = − − −

≤ − − −

= − ∥ + − − − −

( ) ∗ ( )

∗ ( )

∗ ( ) ∗ ( )

(16)

By the firmly nonexpansivity of I Tr
F ϕ,
n

2 2− ( )
, we get

w p A I T Aw Aw Ap I T Aw

Aw Ap I T Aw I T Ap

I T Aw

, ,

,

.

n r
F ϕ

n n r
F ϕ

n

n r
f ϕ

n r
F ϕ

r
F ϕ

n

, ,

, ,

, 2

n n

n n

n

2 2 2 2

2 2 2 2

2 2

( ) ( )
( ) ( )

∥( ) ∥

− − = − −

= − − − −

≥ −

∗ ( ) ( )

( ) ( )

( )

(17)

By substituting (17) into (16), applying the definition of γn and the condition on τn, we obtain











u p w p γ A I T Aw γ I T Aw

w p γ I T Aw γ A I T Aw

w p γ τ I T Aw

2

2

2

n n n r
F ϕ

n n r
F ϕ

n

n n r
F ϕ

n n r
F ϕ

n

n n n r
F ϕ

n

2 2 2 , 2 , 2

2 , 2 , 2

2 , 2

n n

n n

n

2 2 1 1

2 2 1 1

2 2

∥ ( ) ∥ ∥( ) ∥
∥( ) ∥ ∥ ( ) ∥
( )

∥ − ∥ ≤ ∥ − ∥ + − − −

= ∥ − ∥ − − − −

= ∥ − ∥ − ( − )∥ − ∥

∗ ( ) ( )

( ) ∗ ( )

( )
(18)

w p .n
2≤∥ − ∥ (19)
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Applying Lemma 2.5 and using (19), we have

z p α u α y p

α u p α y p α α u y

α u p α d y S p α α u y

α u p α H S u S p α α u y

α u p α u p α α u y

u p α α u y

,

,

n n n

i

n

n i n i

n n

i

n

n i n i n

i

n

n i n n

n n

i

n

n i n i i n

i

n

n i n n i

n n

i

n

n i i n i n

i

n

n i n n i

n n

i

n

n i n n

i

n

n i n n i

n n

i

n

n i n n i

2
,0

1

, ,

2

,0
2

1

, ,
2

,0

1

, ,1
2

,0
2

1

, ,
2

,0

1

, ,
2

,0
2

1

,
2

,0

1

, ,
2

,0
2

1

,
2

,0

1

, ,
2

2
,0

1

, ,
2

∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑

∥ − ∥ = + −

≤ ∥ − ∥ + ∥ − ∥ − ∥ − ∥

= ∥ − ∥ + ( ) − ∥ − ∥

≤ ∥ − ∥ + ( ) − ∥ − ∥

≤ ∥ − ∥ + ∥ − ∥ − ∥ − ∥

≤ ∥ − ∥ − ∥ − ∥

=

= =

= =

= =

= =

=
(20)

u p .n
2≤ ∥ − ∥ (21)

Also, by applying Lemma 2.4(iii), we get

w p x p θ x x x p θ x p x x θ x x2 , .n n n n n n n n n n n n
2

1 1
2 2

1
2

1
2∥ − ∥ = ∥( − − ( − ))∥ = ∥ − ∥ − ⟨ − − ⟩ + ∥ − ∥− − − (22)

By using (19) and (22) in (21), we have

z p x p θ x p x x θ x x2 , .n n n n n n n n n
2 2

1
2

1
2∥ − ∥ ≤ ∥ − ∥ − ⟨ − − ⟩ + ∥ − ∥− − (23)

This shows that p Cn 1∈ + , and it follows that C CΩ n n1⊂ ⊂+ . Therefore, P xC 1n 1+ is well-defined for every x C1 ∈
and the sequence xn{ } is well defined.

Step 2: Next, we show that x qlimn n =→∞ for some q C∈ .

We know that Ω is a nonempty closed convex subset of H1, then there exists a unique w Ω∈ such that

w P xΩ 1= . Since x P xn C 1n
= and x C Cn n n1 1∈ ⊂+ + for all �n ∈ , we have

�x x x x n, .n n1 1 1∥ − ∥ ≤ ∥ − ∥ ∀ ∈+ (24)

Similarly, since CΩ n⊂ , we have

�x x w x n, .n 1 1∥ − ∥ ≤ ∥ − ∥ ∀ ∈ (25)

Therefore, x xn 1{∥ − ∥} is bounded, and it follows that xn{ } is bounded. Consequently, w u z, ,n n n{ } { } { }, and yn i,{ }
are bounded. Hence, x xlimn n 1∥ − ∥→∞ exists. From the construction ofCn, it is clear that x P x C Cm C m n1m

= ∈ ⊂
for m n 1> ≥ . By Lemma 2.8, we have that

x x x x x x m n0 as , .m n m n
2

1
2

1
2∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥ → → ∞ (26)

Since x xlimn n 1∥ − ∥→∞ exists, then it follows that xn{ } is a Cauchy sequence. By the completeness of H1 and

the closedness of C, we have that there exists an element q C∈ such that x qlimn n =→∞ .

Step 3: We next show that y ulim 0n n i n,∥ − ∥ =→∞ for all �i ∈ .

From (26), we get

x xlim 0.
n

n n1∥ − ∥ =
→∞

+ (27)

Since x Cn n1 1∈+ + , we have

z x x x θ x x x x θ x x2 , .n n n n n n n n n n n n1
2

1
2

1 1
2

1
2∥ − ∥ ≤ ∥ − ∥ − ⟨ − − ⟩ + ∥ − ∥+ + + − −
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By (27), we obtain

z xlim 0.
n

n n 1∥ − ∥ =
→∞

+ (28)

By applying (27) and (28), we get

z x z x x x n0, .n n n n n n1 1∥ − ∥ ≤ ∥ − ∥ + ∥ − ∥ → → ∞+ + (29)

Hence, z qlimn n =→∞ .

By the triangle inequality, we have that

w x x θ x x x x x θ x x .n n n n n n n n n n n n1 1∥ − ∥ = ∥ + ( − ) − ∥ ≤ ∥ − ∥ + ∥ − ∥− −

By (27), we obtain

w xlim 0.
n

n n∥ − ∥ =
→∞ (30)

Applying (29) and (30), we get

z w z x x w n0, .n n n n n n∥ − ∥ ≤ ∥ − ∥ + ∥ − ∥ → → ∞ (31)

From (19) and (20), we obtain

z p w p α α u y ,n n n

i

n

n i n n i
2 2

,0

1

, ,
2∑∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥

=

which implies that

α α u y α α u y w p z p w z w p z p .n n i n n i n

i

n

n i n n i n n n n n n,0 , ,
2

,0

1

, ,
2 2 2∑∥ − ∥ ≤ ∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥ ≤ ∥ − ∥(∥ − ∥ + ∥ − ∥)

=

By the conditions on αn i,{ } and using (31), we get

�u y ilim 0, .
n

n n i,∥ − ∥ = ∀ ∈
→∞ (32)

Step 4: We show that u x 0n n∥ − ∥ = .

Substituting (18) into (21), we have









z p w p γ τ I T Aw2 .n n n n r

F ϕ
n

2 2 , 2

n

2 2∥ − ∥ ≤ ∥ − ∥ − ( − ) − ( ) (33)

From this, we obtain









γ τ I T Aw w p z p w z w p z p2 .n n r

F ϕ
n n n n n n n

,
2

2 2
n

2 2( − ) − ≤ ∥ − ∥ − ∥ − ∥ ≤ ∥ − ∥(∥ − ∥ + ∥ − ∥)( )

By the definition of γn, condition on τn and (31), we get

τ τ I T Aw

A I T Aw
n

2
0, ,

n n r
F ϕ

n

r
F ϕ

n

, 4

, 2

n

n

2 2

2 2

∥( ) ∥
∥ ( ) ∥
( − ) −

−
→ → ∞

( )

∗ ( )

which implies that

I T Aw

A I T Aw
n0, .

r
F ϕ

n

r
F ϕ

n

, 2

,

n

n

2 2

2 2

∥( ) ∥
∥ ( ) ∥
−
−

→ → ∞
( )

∗ ( )

Since A I T Awr
F ϕ

n
,

n

2 2( )∥ − ∥∗ ( )
is bounded, it follows that









I T Aw n0, .r

F ϕ
n

,
n

2 2− → → ∞( )
(34)

From this, we obtain





























A I T Aw A I T Aw A I T Aw n0, .r

F ϕ
n r

F ϕ
n r

F ϕ
n

, , ,
n n n

2 2 2 2 2 2− ≤ − = − → → ∞∗ ( ) ∗ ( ) ( )
(35)
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SinceTr
F ϕ,
n

1 1( )
is firmly nonexpansive and I γ A I T An r

F ϕ,
n

2 2( )− −∗ ( )
is non expansive by invoking Lemma 2.4(ii),

we obtain






























u p T I γ A I T A w T p

T I γ A I T A w T p I γ A I T A w p

u p I γ A I T A w p

u p I γ A I T A w p u w γ A I T Aw

u p w p u w γ A I T Aw

γ u w A I T Aw

,

,

1

2

1

2

2 , ,

n r
F ϕ

n r
F ϕ

n r
F ϕ

r
F ϕ

n r
F ϕ

n r
F ϕ

n r
F ϕ

n

n n r
F ϕ

n

n n r
F ϕ

n n n n r
F ϕ

n

n n n n n r
F ϕ

n

n n n r
F ϕ

n

2 , , , 2

, , , ,

,

2 , 2 , 2

2 2 2 2 , 2

,

n n n

n n n n

n

n n

n

n

1 1 2 2 1 1

1 1 2 2 1 1 2 2

2 2

2 2 2 2

2 2

2 2

∥ ( ( ) ) ∥
⟨ ( ( ) ) ( ( ) ) ⟩
⟨ ( ( ) ) ⟩

∥( ( ) ) ∥ ∥ ( ) ∥

∥ ( ) ∥

( )

(

∥ − ∥ = − − −

≤ − − − − − −

= − − − −

= ∥ − ∥ + − − − − − + −

≤ ∥ − ∥ + ∥ − ∥ − ∥ − ∥ + −

+ − −

( ) ∗ ( ) ( )

( ) ∗ ( ) ( ) ∗ ( )

∗ ( )

∗ ( ) ∗ ( )

∗ )

∗ ( )

which implies that

u p w p u w γ A I T Aw γ w u A I T Aw

w p u w γ w u A I T Aw

2 ,

2 .

n n n n n r
F ϕ

n n n n r
F ϕ

n

n n n n n n r
F ϕ

n

2 2 2 2 , ,

2 2 ,

n n

n

2 2 2 2

2 2

∥ ( ) ∥ ( )
∥ ( ) ∥

∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥ − − + − −

≤ ∥ − ∥ − ∥ − ∥ + ∥ − ∥ −

∗ ( ) ∗ ( )

∗ ( )
(36)

Substituting (36) into (20), we have

z p w p u w γ w u A I T Aw2 .n n n n n n n r
F ϕ

n
2 2 2 ,

n

2 2∥ ( ) ∥∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥ + ∥ − ∥ −∗ ( )

From this, we get

u w w p z p γ w u A I T Aw

w p z p γ M A I T Aw

w z w p z p γ M A I T Aw

2

2

2 ,

n n n n n n n r
F ϕ

n

n n n r
F ϕ

n

n n n n n r
F ϕ

n

2 2 2 ,

2 2 ,

,

n

n

n

2 2

2 2

2 2

∥ ( ) ∥
∥ ( ) ∥
∥ ( ) ∥

∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥ + ∥ − ∥ −

≤ ∥ − ∥ − ∥ − ∥ + −

≤ ∥ − ∥(∥ − ∥ + ∥ − ∥) + −

∗ ( )

∗ ( )

∗ ( )

(37)

where �M w u nsup :n n= {∥ − ∥ ∈ }.
By applying (31) and (35) in (37), we get

u wlim 0.
n

n n∥ − ∥ =
→∞ (38)

Combining this together with (30) and (31), we have

u z u w w z n0,n n n n n n∥ − ∥ ≤ ∥ − ∥ + ∥ − ∥ → → ∞ (39)

and

u x u w w x n0, .n n n n n n∥ − ∥ ≤ ∥ − ∥ + ∥ − ∥ → → ∞ (40)

Step 5: Next, we show that q F Si i1∈ ⋂ ( )=
∞ .

By (32), for all �i ∈ , we get that

d u S u u ylim , lim 0.
n

n i n
n

n n i,( ) ≤ ∥ − ∥ =
→∞ →∞ (41)

For each �i ∈ , we have

d q S q q u u y d y S q

q u d u S u H S u S q

q u d u S u

, ,

, ,

2 , .

i n n n i n i i

n n i n i n i

n n i n

, ,( ) ≤ ∥ − ∥ + ∥ − ∥ + ( )

≤ ∥ − ∥ + ( ) + ( )
≤ ∥ − ∥ + ( )

By (40), we have that u qlimn n =→∞ . Then, it follows from (41) that

�d q S q i, 0 .i( ) = ∀ ∈
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This shows that q S qi∈ for all �i ∈ , which implies that q F Si i1∈ ⋂ ( )=
∞ .

Step 6: Next, we show that q F ϕ F ϕGEP , , ,1 1 2 2∈ ( ).
First, we will show that q F ϕGEP ,1 1∈ ( ). Since u T I γ A I T A wn r

F ϕ
n r

F ϕ
n

, ,
n n

1 1 2 2( ( ) )= − −( ) ∗ ( )
, then by Lemma 2.10,

we obtain

F u y ϕ u y
r

y u u w γ A I T Aw y C, ,
1

, 0, ,n n
n

n n n n r
F ϕ

n1 1
,

n

2 2⟨ ( ) ⟩( ) + ( ) + − − − − ≥ ∀ ∈∗ ( )

which implies that

F u y ϕ u y
r

y u u w
r

y u γ A I T Aw y C, ,
1

,
1

, 0, .n n
n

n n n
n

n n r
F ϕ

n1 1
,

n

2 2⟨ ( ) ⟩( ) + ( ) + ⟨ − − ⟩ − − − ≥ ∀ ∈∗ ( )

Since F1 and ϕ1 are monotone, we have

r
y u u w

r
y u γ A I T Aw F y u ϕ y u y C

1
,

1
, , , , .

n
n n n

n
n n r

F ϕ
n n n

,
1 1n

2 2( )⟨ − − ⟩ − − − ≥ ( ) + ( ) ∀ ∈∗ ( )

By (30) and (38), and x qlimn n =→∞ , we obtain u qlimn n =→∞ . Then, by Condition (C1), (34), (38), Assump-

tion 2.9, (A4) and (A7), it follows that

F y q ϕ y q y C0 , , .1 1≥ ( ) + ( ) ∀ ∈

Let y ty t q1t = + ( − ) for all t 0, 1∈ ( ] and y C∈ . Then, y Ct ∈ , and thus, F y q ϕ y q, , 0t t1 1( ) + ( ) ≤ . Therefore,

by Assumption 2.9, (A1)–(A7), we obtain

F y y ϕ y y

t F y y ϕ y y t F y q ϕ y q

t F y y ϕ y y t F q y ϕ q y

F y y ϕ y y

0 , ,

, , 1 , ,

, , 1 , ,

, , .

t t t t

t t t t

t t t t

t t

1 1

1 1 1 1

1 1 1 1

1 1

≤ ( ) + ( )
≤ ( ( ) + ( )) + ( − )( ( ) + ( ))
≤ ( ( ) + ( )) + ( − )( ( ) + ( ))
≤ ( ) + ( )

This implies that

F y y ϕ y y y C, , 0, .t t1 1( ) + ( ) ≥ ∀ ∈

Letting t 0→ , and by using assumption together with the upper hemicontinuity of ϕ1, we obtain

F q y ϕ q y y C, , 0, .1 1( ) + ( ) ≥ ∀ ∈

This implies that q F ϕGEP ,1 1∈ ( ).
We next show that Aq F ϕGEP ,2 2∈ ( ). Since A is a bounded linear operator, Aw Aqn → . Thus, from (34)

we have

T Aw Aq.r
F ϕ

n
,

n

2 2 →( ) (42)

By the definition of T Awr
F ϕ

n
,

n

2 2( )
, we have

F T Aw y ϕ T Aw y
r

y T Aw T Aw Aw y Q, ,
1

, 0, .r
F ϕ

n r
F ϕ

n
n

r
F ϕ

n r
F ϕ

n n2
,

2
, , ,

n n n n

2 2 2 2 2 2 2 2( ) ( )+ + − − ≥ ∀ ∈( ) ( ) ( ) ( )

Since F2 and ϕ2 are upper semicontinuous in the first argument, it follows from (42) that,

F Aq y ϕ Aq y y Q, , 0, .2 2( ) + ( ) ≥ ∀ ∈

This implies that Aq F ϕGEP ,2 2∈ ( ). Hence, q F ϕ F ϕSGEP , , ,1 1 2 2∈ ( ).

Step 7: Finally, we show that q P xiΩ= .

We know that x Pc xn n 1= and CΩ n⊂ , then it follows that x x x p, 0n n1 − − ≥ for all p Ω∈ . Hence, we have

x q q p, 01 − − ≥ for all p Ω∈ . This implies that q P xΩ 1= .

Consequently, we can conclude by steps 1–8 that xn{ } converges strongly to q P xΩ 1= as required. □
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If ϕ ϕ 01 2= = in (2)–(3), then the SGEP reduces to the SEP. Hence, from Theorem 3.1, we obtain the

following consequent result for approximating a common element of the set of solutions of SEP and the set

of common fixed points of a countable family of nonexpansive multivalued mappings.

Corollary 3.2. Let C andQ be nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively.

Let A H H: 1 2→ be a bounded linear operator, and let Si{ } be a countable family of nonexpansive multivalued

mappings of C into CB C( ). Let �F C C:1 × → , �F Q Q:2 × → be bifunctions satisfying Assumption 2.9. Let

F2 be upper semicontinuous in the first argument. Assume that F S F FΩ SEP ,i i1 1 2= ⋂ ( ) ∩ ( ) ≠ ∅=
∞ and S p pi = { }

for each p F Si i1∈ ⋂ ( )=
∞ . Let x x C,0 1 ∈ with C C1 = , and let xn{ } be a sequence generated as follows:

























�

w x θ x x

u T I γ A I T A w

z α u α y y S u

C p C z p x p θ x p x x θ x x

x P x n

,

,

, ,

: 2 , ,

, ,

n n n n n

n r
F

n r
F

n

n n n i

n
n i n i n i i n

n n n n n n n n n n n

n C

1

,0 1 , , ,

1
2 2

1
2

1
2

1 1

n n

n

1 2

1

( ( ) )
∑

= + ( − )
= − −

= + ∈

= ∈ ∥ − ∥ ≤ ∥ − ∥ − − − + ∥ − ∥

= ∈

−
∗

=

+ − −

+ +

(43)









γ

τ I T Aw

A I T Aw
if Aw T Aw

γ otherwise γ being any nonnegative real number

,

,

n

n r
F

n

r
F

n
n r

F
n

2

2

n

n

n

2

2

2
∥( ) ∥
∥ ( ) ∥=
−
−

≠

( )

∗

where a τ b0 1n< ≤ ≤ < , �θn{ } ⊂ , α 0, 1n i,{ } ⊂ ( ), such that α 1i
n

n i0 ,∑ == , and r 0,n{ } ⊂ ( ∞). Suppose that the

following conditions hold:

(C1) rlim inf 0n n >→∞ ,

(C2) the limits αlim 0, 1n n i, ∈ ( )→∞ exist for all i 0≥ .

Then, the sequence xn{ } generated by (43), converges strongly to P xΩ 1.

By the properties of the best approximation operator, we obtain the following consequent result.

Corollary 3.3. Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively.

Let A H H: 1 2→ be a bounded linear operator, and let Si{ } be a countable family of multivalued mappings ofC

into P C( ) such that PSi is nonexpansive. Let �F ϕ C C, :1 1 × → , �F ϕ Q Q, :2 2 × → be bifunctions satisfying

Assumption 2.9. Letϕ ϕ,1 2 be monotone,ϕ1 be upper hemicontinuous, and F2 andϕ2 be upper semicontinuous

in the first argument. Assume that F S F ϕ F ϕΩ SGEP , , ,i i1 1 1 2 2= ⋂ ( ) ∩ ( ) ≠ ∅=
∞ . Let x x C,0 1 ∈ withC C1 = , and let

xn{ } be a sequence generated as follows:















�

w x θ x x

u T I γ A I T A w

z α u α y y P u

C p C z p x p θ x p x x θ x x

x P x n

,

,

, ,

: 2 , ,

, ,

n n n n n

n r
F ϕ

n r
F ϕ

n

n n n i

n
n i n i n i S n

n n n n n n n n n n n

n C

1

, ,

,0 1 , , ,

1
2 2

1
2

1
2

1 1

n n

i

n

1 1 2 2

1

( ( ) )

{ }
∑

= + ( − )
= − −

= + ∈

= ∈ ∥ − ∥ ≤ ∥ − ∥ − − − + ∥ − ∥
= ∈

−
( ) ∗ ( )

=

+ − −

+ +

(44)









γ

τ I T Aw

A I T Aw
if Aw T Aw

γ otherwise γ being any nonnegative real number

,

,

n

n r
F ϕ

n

r
F ϕ

n

n r
F ϕ

n

, 2

, 2

,n

n

n

2 2

2 2

2 2
( )
( )=
∥ − ∥
∥ − ∥

≠

( )

( )

∗ ( )
( )

where a τ b0 1n< ≤ ≤ < , �θn{ } ⊂ , α 0, 1n i,{ } ⊂ ( ), such that α 1i
n

n i0 ,∑ == , and r 0,n{ } ⊂ ( ∞). Suppose that the

following conditions hold:

(C1) rlim inf 0n n >→∞ ,

(C2) the limits αlim 0, 1n n i, ∈ ( )→∞ exist for all i 0≥ .

Then the sequence xn{ } generated by (44), converges strongly to P xΩ 1.
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Proof. Since PSi satisfies the common endpoint condition and F S F Pi Si( )( ) = for each �i ∈ , then the result

follows from Theorem 3.1. □

4 Applications

In this section, we apply our results to approximate solutions of some important optimization problems.

4.1 Split mixed variational inequality and fixed point problems

Let H be a real Hilbert space and C be a nonempty closed convex subset of H . Let B H H: → be a single-

valued mapping and �ϕ C C: × → be a bifunction. The mixed variational inequality problem (MVIP) is

defined as follows:

x C y x Bx ϕ x y y CFind such that , , 0, .∈ − + ( ) ≥ ∀ ∈∗ ∗ ∗ ∗ (45)

We denote the set of solutions of MVIP by C B ϕMVI , ,( ). If we take ϕ 0= in (45), then the MVIP reduces to

the VIP, which is to find a point x C∈∗ such that y x Bx y C, 0,− ≥ ∀ ∈∗ ∗ . The solution set of the VIP is

denoted by C BVI ,( ). Variational inequality was first introduced independently by Fichera [48] and Stam-

pacchia [49]. The VIP is a useful mathematical model that unifies many important concepts in applied

mathematics, such as necessary optimality conditions, complementarity problems, network EPs, and sys-

tems of nonlinear equations (see [3,50,51]). Several methods have been proposed and analyzed for solving

VIP and related OPs, see [5,37,52,53] and references therein.

Here, we apply our result to study the following SMVIP:

x F S x x B x ϕ x x x CFind such that , , 0,
i

i

1

1 1⋂∈ ( ) − + ( ) ≥ ∀ ∈∗

=

∞
∗ ∗ ∗ (46)

and such that

y Ax Q y y B y ϕ y y y Qsolves , , 0, ,2 2= ∈ − + ( ) ≥ ∀ ∈∗ ∗ ∗ ∗ ∗ (47)

whereC andQ are nonempty closed and convex subsets of real Hilbert spaces H1 and H2, respectively, Si{ } is
a countable family of nonexpansive multivalued mappings ofC intoCB C A H H, : 1 2( ) → is a bounded linear

operator,B C H B Q H: , :1 1 2 2→ → aremonotonemappings, and � �ϕ C C ϕ Q Q: , :1 2× → × → are bifunc-

tions satisfying Assumptions (A5)–(A7). Moreover, ϕ ϕ,1 2 are monotone with ϕ1 being upper hemicontinuous

andϕ2 upper semicontinuous in the first argument. We denote the solution set of problems (46)–(47) byΩ and

assume thatΩ ≠ ∅. By taking F x y y x B x j, , , 1, 2j j( ) ≔ − = , then the SMVIP (46)–(47) becomes the problem

of finding a solution of the SGEP (2)–(3), which is also a solution of the countable family of nonexpansive

multivalued mappings Si{ }. In addition, all the conditions of Theorem 3.1 are satisfied. Hence, Theorem 3.1

provides a strong convergence theorem for approximating a common solution of SMVIP and fixed point of

a countable family of nonexpansive multivalued mappings.

4.2 Split minimization and fixed point problems

Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively. Let

�f C: → , �g Q: → be two operators and A H H: 1 2→ be a bounded linear operator, then the SMP is

defined as follows:

x C f x f x x CFind such that ,∈ ( ) ≤ ( ) ∀ ∈∗ ∗ (48)
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and such that

y Ax Q g y g y y Qsolves , .= ∈ ( ) ≤ ( ) ∀ ∈∗ ∗ ∗ (49)

We denote the solution set of SMP (48)–(49) by Φ and assume that Φ ≠ ∅. For some recent results on

iterative algorithms for solving MP, see [54,55] and references therein. Let F x y f y f x,1( ) ≔ ( ) − ( ) for all

x y C, ∈ and F u v f v f u,2( ) ≔ ( ) − ( ) for all u v Q, ∈ , and taking ϕ ϕ 01 2= = in the SGEP (2)–(3). Then, F x y,1( )
and F u v,2( ) satisfy Assumptions (A1)–(A4) provided f and g are convex and lower semi-continuous on C

and Q, respectively. Clearly, ϕ1 and ϕ2 satisfy Assumptions (A5)–(A7). Therefore, from Theorem 3.1, we

obtain a strong convergence theorem for approximating a common solution of SMP and fixed point problem

for a countable family of nonexpansive multivalued mappings in real Hilbert spaces.

5 Numerical experiments

In this section, we present some numerical experiments to illustrate the performance of our algorithm as

well as comparing it with Algorithm 9 in the literature. All numerical computations were carried out using

Matlab version R2019(b).

We define the sequences αn i,{ } as follows for each �i 0∈ ∪ { } and �n ∈ :



























α

b

n

n
n i

n

n b
n i

n i

1

1
, ,

1
1

1
, ,

0, ,

n i

i

k

n

k

,

1

1
∑=
+

>

−
+

=

<

+

=
(50)

where b 1> .

Example 5.1. Let �H H1 2= = andC Q 0, 10= = [ ]. Let A H H: 1 2→ be defined by Ax
x

3
= for all x H1∈ . Then,

we have that A y
y

3
=∗ for all y H2∈ . For �x C i,∈ ∈ , we define the multivalued mappings S C CB C:i → ( ) as

follows:







�S x
x

i
i0,

10
, .i( ) = ∀ ∈ (51)

It can easily be checked that Si is nonexpansive for all �i S, 0 0i∈ ( ) = { }, and F S 0i i1⋂ ( ) = { }=
∞ . We define

the bifunctions �F ϕ C C, :1 1 × → by F x y y xy x, 3 41
2 2( ) = + − and ϕ x y y x,1

2 2( ) = − for x y C, ∈ , and

F ϕ, :2 2 �Q Q× → by F w v v wv w, 2 32
2 2( ) = + − andϕ w v w v,2( ) = − forw v Q, ∈ . Choose r θ, 0.8n

n

n n
3

2
= =−
+ ,

and τ 0.7n = . It can easily be verified that all the conditions of Theorem 3.1 are satisfied with Ω 0= { }. Now, we
compute T xr

F ϕ,1 1 ( )( )
. We find u C∈ such that for all z C∈

F u z ϕ u z
r

z u u x

z uz u
r

z u u x

rz ruz ru z u u x

rz ruz ru uz xz u ux

rz ru u x z ru u ux

0 , ,
1

,

2 3 5
1

,

0 2 3 5

2 3 5

2 3 5 .

1 1

2 2

2 2

2 2 2

2 2 2

≤ ( ) + ( ) + − −

= + − + − −
⇔
≤ + − + ( − )( − )
= + − + − − +
= + ( + − ) + (− − + )

Let h z rz ru u x z ru u ux2 3 52 2 2( ) = + ( + − ) + (− − + ). Then, h z( ) is a quadratic function of z with coefficients

a r b ru u x2 , 3= = + − , and c ru u ux5 2 2= − − + . We determine the discriminant Δ of h z( ) as follows:
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ru u x r ru u ux

r u ru rux u ux x

r u x

Δ 3 4 2 5

49 14 14 2

7 1 .

2 2 2

2 2 2 2 2

2

= ( + − ) − ( )(− − + )
= + − + − +
= (( + ) − )

(52)

By Lemma 2.10,Tr
F ϕ,1 1( )

is single-valued. Hence, it follows that h z( ) has at most one solution in� . Therefore,

from (52), we have that u
x

r7 1
= + . This implies that T xr

F ϕ x

r

,

7 1
1 1 ( ) =( )

+ . Similarly, we compute T vr
F ϕ,2 2 ( )( )

. Find

w Q∈ such that for all d Q∈

T v w Q F w d ϕ w d
s

d w w v d Q: , ,
1

, 0, .s
F ϕ,

2 2
2 2 { }( ) = ∈ ( ) + ( ) + − − ≥ ∀ ∈( )

By following similar procedure as above, we obtain w
v s

s5 1
= ++ . This implies that T vs

F ϕ v s

s

,

5 1
2 2 ( ) =( ) +

+ . We take

yn i
u

i, 10

n= for all �i ∈ . Then, Algorithm (15) becomes















 �

w x θ x x

u
w

r
γ

w r w r

r r

z α u α
u

i

C p C z p x p θ x p x x θ x x

x P x n

,

7 1

15 2 3

9 7 1 5 1
,

10
,

: 2 , ,

, ,

n n n n n

n
n

n
n

n n n n

n n

n n n i

n
n i

n

n n n n n n n n n n n

n C

1

,0 1 ,

1
2 2

1
2

1
2

1 1n 1

{ }
∑

= + ( − )

=
+
− + −
( + )( + )

= +

= ∈ ∥ − ∥ ≤ ∥ − ∥ − − − + ∥ − ∥
= ∈

−

=

+ − −

+ +

where









γ

τ I T Aw

A I T Aw
Aw T Aw

γ γ

if ,

otherwise being any nonnegative real number .

n

n r
F ϕ

n

r
F ϕ

n

n r
F ϕ

n

, 2

, 2

,n

n

n

2 2

2 2

2 2
( )
( )=
∥ − ∥
∥ − ∥

≠

( )

( )

∗ ( )
( )

In this example, we set the parameter b on αn i,{ } in (50) to be b 50= , and we choose different initial values as

follows:

Case Ia: x x,0
11

2 1
2

5
= = ;

Case Ib: x x8, 10 1= = ;

Case Ic: x x5,0 1
7

10
= = ;

Case Id: x x6,0 1
4

5
= = .

We compare the performance of our Algorithm (15) with Algorithm (9). The stopping criterion used for

our computation is x x 10n n1
4∣ − ∣ <+ − . We plot the graphs of errors against the number of iterations in each

case. The numerical results are reported in Figure 1 and Table 1.

Example 5.2. Let H H L 0, 11 2 2= = ([ ]) with the inner product defined as

x y x t y t t x y L, d , , 0, 1 .

0

1

2∫⟨ ⟩ = ( ) ( ) ∀ ∈ ([ ])

Let

C x H a x d: , ,1≔ { ∈ ⟨ ⟩ = }

where a t2 2= and d 0≥ . Here, we have

P x x
d a x

a
a

,
.C 2

( ) = + − ⟨ ⟩
∥ ∥

Also, let

Q x H c x e: , ,2≔ { ∈ ⟨ ⟩ ≤ }
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where c
t

3
= and e 1= , we get









P x x
e c x

c
cmax 0,

,
.Q 2

( ) = + − ⟨ ⟩
∥ ∥

We define �F C C:1 × → and �F Q Q:2 × → by F x y L x y x, ,1 1( ) = − and F x y L x y x, ,2 2( ) = − , where

L x t
x t

1 2
( ) = ( ) and L x t

x t
2 5
( ) = ( ) . It can easily be verified that F1 and F2 satisfy Conditions (A1)–(A4). Also, take

ϕ ϕ 01 2= = . Moreover, let A L L: 0, 1 0, 12 2([ ]) → ([ ]) be defined by Ax t
x t

2
( ) = ( ) and A y t

y t

2
( ) =∗ ( )

. Then, A is a

bounded linear operator. We consider the case for which the countable family of nonexpansive multivalued
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Figure 1: Top left: Case Ia; top right: Case Ib; bottom left: Case Ic; and bottom right: Case Id.

Table 1: Numerical results for Example 5.1

Alg. 9 Alg. 15

Case Ia CPU time (s) 2.1794 0.1722

No of iter. 13 3

Case Ib CPU time (s) 2.2136 0.1514

No. of iter. 14 3

Case Ic CPU time (s) 2.2338 0.1517

No of iter. 14 3

Case Id CPU time (s) 2.1757 0.1495

No of iter. 14 3
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mappings Si{ } are singled-valued. Define a countable family of nonexpansive mappings S L: 0, 1i
2([ ]) →

L 0, 12([ ]) by

S x t t x s s td for all 0, 1 .i
i

0

1

∫( )( ) = ( ) ∈ [ ]

Observe that Si is nonexpansive for each �i ∈ . Choose θ τ r0.9, 0.8,n n n
n

n 1
= = = + . It can easily be checked

that all the conditions on the control sequences in Theorem 3.1 are satisfied. Next, we compute T xr
F ϕ,1 1 ( )( )

.

We find z C∈ such that for all y C∈

F z y ϕ z y
r

y z z x

z
y z

r
y z z x

z
y z

r
y z z x

y z rz z x

y z r z x

, ,
1

, 0

2
,

1
, 0

2

1
0

2 0

2 2 0.

1 1( ) + ( ) + − − ≥

⇔ − + − − ≥

⇔ ( − ) + ( − )( − ) ≥

⇔ ( − )[ + ( − )] ≥
⇔ ( − )[( + ) − ] ≥

(53)

According to Lemma 2.10,









T x z C F z y ϕ z y
r
y z z x y C: , ,

1
, 0,r

F ϕ,
1 1

1 1 ( ) = ∈ ( ) + ( ) + − − ≥ ∀ ∈( )

is single-valued for all x H1∈ . Hence, from (53) we have that z
x

r

2

2
= + . This implies that T xr

F ϕ x

r

, 2

2
1 1 ( ) =( )

+ .

Similarly, we compute T vr
F ϕ,2 2 ( )( )

. We find w Q∈ such that for all d Q∈









T v w Q F w d ϕ w d
s
d w w v d Q: , ,

1
, 0, .s

F ϕ,
2 2

2 2 ( ) = ∈ ( ) + ( ) + − − ≥ ∀ ∈( )

Following similar procedure as above, we obtain w
v

s

5

5
= + . This implies that T vs

F ϕ v
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, 5

5
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+ . Then,

Algorithm (15) becomes
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Here, we set the parameter b on αn i,{ } in (50) to be b 2= , and we choose different initial values as follows:

Case Ia: x t x t t,0
3

1
2 4= = + ;

Case Ib: x t t t x t,0
2 6 8

1
3= + + = ;

Case Ic: x t t t x t,0
5 9 11

1
5= + + = ;

Case Id: x t t t t x t t,0
2 4 6

1
2 7= + + + = + .

We compare the performance of our Algorithm (15) with Algorithm (9). The stopping criterion used for

our computation is x x 10n n1
4∥ − ∥ <+ − . We plot the graphs of errors against the number of iterations in each

case. The numerical results are reported in Figure 2 and Table 2.
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6 Conclusion

In this article, we proposed a new inertial shrinking projection algorithm with self-adaptive step size for

approximating a common solution of SGMEP and FPP for a countable family of nonexpansive multivalued

mappings.Weproved strong convergence results for the consideredproblemswithout a prior knowledge of the

operator norm. Finally, we applied our results to solve some other important OPs and presented some numer-

ical experiments to demonstrate the efficiency of our proposed method in comparison with other existing

methods. Our results extend and improve several existing results in this direction in the current literature.
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Figure 2: Top left: Case Ia; top right: Case Ib; bottom left: Case Ic; and bottom right: Case Id.

Table 2: Numerical results for Example 5.2

Alg. 9 Alg. 15

Case Ia CPU time (s) 2.2241 1.3724

No. of iter. 23 19

Case Ib CPU time (s) 2.2247 1.2772

No. of iter. 23 18

Case Ic CPU time (s) 2.1359 1.3056

No of iter. 22 18

Case Id CPU time (s) 2.3458 1.4506

No of iter. 25 20
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