Inertial Velocity and Attitude Estimation for Quadrotors: Supplementary Material

James B. Svacha Jr
University of Pennsylvania, jsvacha@seas.upenn.edu
Kartik Mohta
University of Pennsylvania, kmohta@seas.upenn.edu
Michael Watterson
University of Pennsylvania, wami@seas.upenn.edu
Giuseppe Loianno
University of Pennsylvania, loiannog@seas.upenn.edu
Vijay Kumar
University of Pennsylvania, kumar@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/ese_papers
Part of the Electrical and Computer Engineering Commons, and the Systems Engineering Commons

Recommended Citation

James B. Svacha Jr, Kartik Mohta, Michael Watterson, Giuseppe Loianno, and Vijay Kumar, "Inertial Velocity and Attitude Estimation for Quadrotors: Supplementary Material", . October 2018.

Inertial Velocity and Attitude Estimation for Quadrotors: Supplementary Material

Disciplines

Electrical and Computer Engineering | Engineering | Systems Engineering

Inertial Velocity and Attitude Estimation for Quadrotors: Supplementary Material

James Svacha ${ }^{1}$, Kartik Mohta ${ }^{1}$, Michael Watterson ${ }^{1}$, Giuseppe Loianno ${ }^{2}$, and Vijay Kumar ${ }^{1}$

I. Parallel Transport on S^{2}

We now demonstrate that the parallel transport on S^{2} with the Levi-Civita connection corresponding to the metric induced by \mathbb{R}^{3} is equivalent to eq. (19) of the parent document, assuming the vector is transported along the geodesic from p to q. Without loss of generality, we will assume p is the north pole (i.e., the point $\left[\begin{array}{ccc}0 & 0 & 1\end{array}\right]^{\top}$ when the sphere is naturally embedded in \mathbb{R}^{3}) of the 2-sphere, since this manifold is symmetric under rotation.

Parallel transport is a linear operation on vectors because the covariant derivative is linear [1]

$$
\begin{align*}
& \nabla_{X}(Y+Z)=\nabla_{X} Y+\nabla_{X} Z, \tag{1}\\
& \nabla_{X}(f Y)=f \nabla_{X} Y+\nabla_{f X} \cdot Y . \tag{2}
\end{align*}
$$

If f is a constant, $\nabla_{f X}=0$, and thus for constants a and b :

$$
\begin{equation*}
\nabla_{X}(a Y+b Z)=a \nabla_{X} Y+b \nabla_{X} Z \tag{3}
\end{equation*}
$$

If we denote the parallel transport of a vector $\mathbf{u}=a \mathbf{v}+$ $b \mathbf{w}$ from the tangent space at p to the tangent space at q through the geodesic from p to q by $\tau_{p q}(\mathbf{u})$, we have

$$
\begin{equation*}
\tau_{p q}(\mathbf{u})=a \tau_{p q}(\mathbf{v})+b \tau_{p q}(\mathbf{w}) \tag{4}
\end{equation*}
$$

for $a, b \in \mathbb{R}$ and vectors \mathbf{v} and \mathbf{w} in the tangent space at p.

Hence, if we can show that, for some basis vectors $\mathbf{v}_{\|}$and \mathbf{v}_{\perp} in the tangent space $\mathrm{T}_{p} S^{2}$,

$$
\begin{equation*}
\tau_{p q}\left(\mathbf{v}_{\|}\right)=R_{q p} \mathbf{v}_{\|}, \quad \tau_{p q}\left(\mathbf{v}_{\perp}\right)=R_{q p} \mathbf{v}_{\perp} \tag{5}
\end{equation*}
$$

then we have shown that eq. (19) of the parent document is true for any vector \mathbf{v}_{p} in the tangent space at p. We

[^0]will show this by first constructing differential equations from the parallel transport equation, then by showing that they are satisfied by the components of tangent vectors $\mathbf{v}_{\|}$and \mathbf{v}_{\perp} moving according to eq. (19) of the parent document. We use stereographic coordinates during this process.

First, the vectorial representation \mathbf{q} of the point q on the sphere is represented as a function of the stereographic coordinates

$$
\mathbf{q}(t)=\frac{1}{1+s_{x}^{2}(t)+s_{y}^{2}(t)} \cdot\left[\begin{array}{c}
2 s_{x}(t) \tag{6}\\
2 s_{y}(t) \\
1-s_{x}^{2}(t)-s_{y}^{2}(t)
\end{array}\right]
$$

From now on, we suppress the dependence of $s_{x}(t)$ and $s_{y}(t)$ on t unless necessary. Differentiating this with respect to s_{x} and s_{y} gives us the tangent basis vectors, denoted \mathbf{e}_{x} and \mathbf{e}_{y}

$$
\begin{align*}
& \mathbf{e}_{x}=\frac{1}{\left(1+s_{x}^{2}+s_{y}^{2}\right)^{2}} \cdot\left[\begin{array}{c}
2\left(1-s_{x}^{2}+s_{y}^{2}\right) \\
-4 s_{x} s_{y} \\
-4 s_{x}
\end{array}\right], \tag{7}\\
& \mathbf{e}_{y}=\frac{1}{\left(1+s_{x}^{2}+s_{y}^{2}\right)^{2}} \cdot\left[\begin{array}{c}
-4 s_{x} s_{y} \\
2\left(1+s_{x}^{2}-s_{y}^{2}\right) \\
-4 s_{y}
\end{array}\right] \tag{8}
\end{align*}
$$

By taking the dot products of these vectors, we obtain the components of the induced metric tensor

$$
\begin{align*}
& g_{x x}=g_{y y}=\frac{4}{\left(1+s_{x}^{2}+s_{y}^{2}\right)^{2}} \tag{9}\\
& g_{x y}=g_{y x}=0 \tag{10}
\end{align*}
$$

The Christoffel symbols can be computed using the formula [2]

$$
\begin{equation*}
\Gamma_{i j}^{m}=\frac{1}{2} \sum_{k}\left\{\frac{\partial}{\partial s_{i}} g_{j k}+\frac{\partial}{\partial s_{j}} g_{k i}-\frac{\partial}{\partial s_{k}} g_{i j}\right\} g^{k m} \tag{11}
\end{equation*}
$$

where $i, j, k, m \in\{x, y\}$ and $g^{k m}$ are the components of the inverse of the metric tensor $g_{k m}$. The Christoffel symbols for the affine connection are

$$
\Gamma_{i j}^{k}=\frac{2}{1+s_{x}^{2}+s_{y}^{2}} \cdot \begin{cases}s_{k} & i=j \neq k \tag{12}\\ -s_{k} & i \neq j \text { or } i=j=k\end{cases}
$$

Any vector \mathbf{v} in the tangent space $\mathrm{T}_{p} S^{2}$ can be constructed

$$
\begin{equation*}
\mathbf{v}=v_{x} \mathbf{e}_{x}+v_{y} \mathbf{e}_{y} \tag{13}
\end{equation*}
$$

The parallel transport equations are obtained by setting the covariant derivative of \mathbf{v} to zero. This provides

$$
\begin{equation*}
\frac{d v_{k}}{d t}=-\sum_{i, j} \Gamma_{i j}^{k} v_{j} \frac{d s_{i}}{d t}, \quad k=1, \ldots, n \tag{14}
\end{equation*}
$$

or, after substituting the Christoffel Symbols,

$$
\begin{align*}
& \dot{v}_{x}=\frac{2\left(\left(s_{y} \dot{s}_{x}-s_{x} \dot{s}_{y}\right) v_{y}+\left(s_{x} \dot{s}_{x}+s_{y} \dot{s}_{y}\right) v_{x}\right)}{1+s_{x}^{2}+s_{y}^{2}} \tag{15}\\
& \dot{v}_{y}=\frac{2\left(\left(s_{x} \dot{s}_{y}-s_{y} \dot{s}_{x}\right) v_{x}+\left(s_{x} \dot{s}_{x}+s_{y} \dot{s}_{y}\right) v_{y}\right)}{1+s_{x}^{2}+s_{y}^{2}}
\end{align*}
$$

Now, we construct $\mathbf{v}_{\|}$and \mathbf{v}_{\perp} and see that their components, in terms of \mathbf{e}_{x} and \mathbf{e}_{y}, satisfy eq. (15). Let $\mathbf{r}(t)$ be the time-parameterized path on the geodesic from \mathbf{p} to \mathbf{q}. Define $\mathbf{v}_{\|}$as

$$
\begin{equation*}
\mathbf{v}_{\|}=\left.\frac{d \mathbf{r}}{d t}\right|_{t=0}=[\boldsymbol{\omega}]_{\times} \mathbf{p} \tag{16}
\end{equation*}
$$

where $\boldsymbol{\omega}$ is an angular velocity vector that is orthogonal to both \mathbf{p} and \mathbf{q}. If $\mathbf{v}_{\|}$is transported according to eq. (19) of the parent document, then

$$
\begin{align*}
\tau_{p q}\left(\mathbf{v}_{\|}\right) & =R_{q p} \mathbf{v}_{\|} \\
& =R_{q p}[\boldsymbol{\omega}]_{\times} \mathbf{p} \\
& =[\boldsymbol{\omega}]_{\times} R_{q p} \mathbf{p} \tag{17}\\
& =[\boldsymbol{\omega}]_{\times} \mathbf{q}
\end{align*}
$$

where we have used the fact that, since $R_{q p}=$ $\exp \left(\theta_{q p}[\boldsymbol{\omega}]_{\times}\right)$, it commutes with $[\boldsymbol{\omega}]_{\times}$. We also define \mathbf{v}_{\perp}

$$
\begin{equation*}
\mathbf{v}_{\perp}=[\mathbf{p}]_{\times} \mathbf{v}_{\|}=[\mathbf{p}]_{\times}[\boldsymbol{\omega}]_{\times} \mathbf{p} \tag{18}
\end{equation*}
$$

Then, as was the case with $\mathbf{v}_{\|}$, if the parallel transport of \mathbf{v}_{\perp} on the geodesic is described by eq. (19) of the parent document

$$
\begin{align*}
\tau_{p q}\left(\mathbf{v}_{\perp}\right) & =R_{q p} \mathbf{\mathbf { v } _ { \perp }} \\
& =R_{q p}[\mathbf{p}]_{\times}[\boldsymbol{\omega}]_{\times} \mathbf{p} \\
& =R_{q p}[\mathbf{p}]_{\times} R_{q p}^{\top} R_{q p}[\boldsymbol{\omega}]_{\times} \mathbf{p} \\
& =R_{q p}[\mathbf{p}]_{\times} R_{q}^{\top}[\boldsymbol{\omega}]_{\times} R_{q p}, \mathbf{p}, \tag{19}\\
& =R_{q p}[\mathbf{p}]_{\times} R_{q p}^{\top}[\boldsymbol{\omega}]_{\times} \mathbf{q} \\
& =\left[R_{q p} \mathbf{p}\right]_{\times}[\boldsymbol{\omega}]_{\times} \mathbf{q} \\
& =[\mathbf{q}]_{\times}[\boldsymbol{\omega}]_{\times} \mathbf{q}
\end{align*}
$$

where we used the identity that, for any rotation matrix $R \in \operatorname{SO}(3)$ and any vector $\mathbf{v} \in \mathbb{R}^{3}$,

$$
\begin{equation*}
[R \mathbf{v}]_{\times}=R[\mathbf{v}]_{\times} R^{\top} \tag{20}
\end{equation*}
$$

if $\boldsymbol{\omega}=\left[\begin{array}{lll}\omega_{1} & \omega_{2} & 0\end{array}\right]^{\top}$ (the third component is zero since $\boldsymbol{\omega}$ is orthogonal to \mathbf{p}, which is the north pole of the sphere), then, from (6) and (17)

$$
\tau_{p q}\left(\mathbf{v}_{\|}\right)=\frac{1}{1+s_{x}^{2}+s_{y}^{2}} \cdot\left[\begin{array}{c}
-\omega_{2}\left(s_{x}^{2}+s_{y}^{2}-1\right) \tag{21}\\
\omega_{1}\left(s_{x}^{2}+s_{y}^{2}-1\right) \\
2\left(\omega_{1} s_{y}-\omega_{2} s_{x}\right)
\end{array}\right]
$$

and, if $\tau_{p q}\left(\mathbf{v}_{\|}\right)=v_{\| x} \mathbf{e}_{x}+v_{\| y} \mathbf{e}_{y}$, then, from (8), we can verify

$$
\begin{align*}
v_{\| x} & =\frac{1}{2} \omega_{2}\left(1+s_{x}^{2}-s_{y}^{2}\right)-\omega_{1} s_{x} s_{y} \tag{22}\\
v_{\| y} & =\frac{1}{2} \omega_{1}\left(s_{x}^{2}-s_{y}^{2}-1\right)-\omega_{2} s_{x} s_{y}
\end{align*}
$$

If we substitute (22) into (15) and simplify, we obtain

$$
\begin{align*}
& \frac{\left(\omega_{1} s_{x}+\omega_{2} s_{y}\right) \dot{s}_{y}}{1+s_{x}^{2}+s_{y}^{2}}=0 \\
& \frac{\left(\omega_{1} s_{x}+\omega_{2} s_{y}\right) \dot{s}_{x}}{1+s_{x}^{2}+s_{y}^{2}}=0 \tag{23}
\end{align*}
$$

But we know that $\boldsymbol{\omega}$ is orthogonal to \mathbf{q}. Hence, from (6), we have $\omega_{1} s_{x}+\omega_{2} s_{y}=0$. Thus, eq.s 15 are satisfied by (22).

Now, consider \mathbf{v}_{\perp}. We have from (6) and (19)

$$
\tau_{p q}\left(\mathbf{v}_{\perp}\right)=\left[\begin{array}{c}
\omega_{1}-\frac{4 s_{x}\left(\omega_{1} s_{x}+\omega_{2} s_{y}\right)}{\left(1+s_{x}^{2}+s_{y}^{2}\right)^{2}} \tag{24}\\
\omega_{2}-\frac{4 s_{y}\left(\omega_{1} s_{x}+\omega_{2} s_{y}\right)}{\left(1+s_{x}^{x}+s_{y}^{2}\right)^{2}} \\
\frac{2\left(\omega_{1} s_{x}+\omega_{2} s_{y}\right)\left(s_{x}^{2}+s_{y}^{2}-1\right)}{\left(1+s_{x}^{2}+s_{y}^{2}\right)^{2}}
\end{array}\right]
$$

Again, one can verify that, if $\tau_{p q}\left(\mathbf{v}_{\perp}\right)=v_{\perp x} \mathbf{e}_{x}+v_{\perp y} \mathbf{e}_{y}$, then we have

$$
\begin{align*}
& v_{\perp x}=\frac{1}{2} \omega_{1}\left(1-s_{x}^{2}+s_{y}^{2}\right)-\omega_{2} s_{x} s_{y} \\
& v_{\perp y}=\frac{1}{2} \omega_{2}\left(1+s_{x}^{2}-s_{y}^{2}\right)-\omega_{1} s_{x} s_{y} \tag{25}
\end{align*}
$$

Substituting (25) into (15) and simplifying yields

$$
\begin{align*}
& \frac{\left(\omega_{1} s_{x}+\omega_{2} s_{y}\right) \dot{s}_{x}}{1+s_{x}^{2}+s_{y}^{2}}=0 \tag{26}\\
& \frac{\left(\omega_{1} s_{x}+\omega_{2} s_{y}\right) \dot{s}_{y}}{1+s_{x}^{2}+s_{y}^{2}}=0
\end{align*}
$$

Again, since $\boldsymbol{\omega}$ is orthogonal to \mathbf{q}, then $\omega_{1} s_{x}+\omega_{2} s_{y}=0$ and these equations are satisfied.

Now, we have shown that eq. (19) of the parent document satisfies eq. (15) for the basis vectors of the tangent space at $p, \mathbf{v}_{\|}$and \mathbf{v}_{\perp}. Hence, this is how we parallel transport any vector on the 2 -sphere.

```
Algorithm 1 Riemannian UKF on \(S^{2}\)
    procedure \(\operatorname{UKF}\left(\hat{\mathbf{x}}_{k-1}, \hat{P}_{k-1}, \mathbf{u}_{k-1}, \mathbf{y}_{k}, T_{k-1}\right)\)
        \(\hat{\mathbf{s}}_{k-1} \leftarrow \hat{\mathbf{x}}_{k-1}[0: 1]\)
        \(\hat{\mathbf{s}}_{k-1}^{\prime} \leftarrow \hat{\mathbf{x}}_{k-1}[2: 10]\)
        \(L_{k-1} \leftarrow \sqrt{(n+\lambda) \hat{P}_{k-1}}\)
        \(\mathcal{X}_{0, k-1} \leftarrow \hat{\mathbf{x}}_{k-1}\)
        for \(i=1, \ldots, n\) do
            \(\boldsymbol{\delta}_{i, k-1} \leftarrow L_{k-1}[0: 1, i]\)
            \(\boldsymbol{\delta}_{i, k-1}^{\prime} \leftarrow L_{k-1}[2: 10, i]\)
            \(\mathcal{X}_{i, k-1} \leftarrow\left[\begin{array}{c}\exp _{\hat{\mathbf{s}}_{k-1}}\left(T \boldsymbol{\delta}_{i, k-1}\right) \\ \hat{\mathbf{s}}_{i, k-1}+\boldsymbol{\delta}_{i, k-1}^{\prime}\end{array}\right]\)
            \(\mathcal{X}_{n+i, k-1} \leftarrow\left[\begin{array}{c}\exp _{\hat{\mathbf{s}}_{k-1}}\left(-T \boldsymbol{\delta}_{i, k-1}\right) \\ \hat{\mathbf{s}}_{i, k-1}-\boldsymbol{\delta}_{i, k-1}^{\prime}\end{array}\right]\)
        end for
        for \(i=0, \ldots, 2 n\) do
            \(\mathcal{X}_{i, k}^{-} \leftarrow \mathbf{f}\left(\mathcal{X}_{i, k-1}, \mathbf{u}_{k-1}\right)\)
            \(\mathcal{S}_{i, k} \leftarrow \mathcal{X}_{i, k}^{-}[0: 1, i]\)
            \(\mathcal{S}_{i, k}^{\prime} \leftarrow \mathcal{X}_{i, k}^{-}[2: 10, i]\)
        end for
        \(\hat{\mathbf{s}}_{k}^{-} \leftarrow\) WeightedAvgSphere \(\left(\mathcal{S}_{0, k}, \ldots, \mathcal{S}_{2 n, k}\right)\)
        \(\hat{\mathbf{s}}_{k}^{\prime-} \leftarrow \sum_{i=0}^{2 n} w_{i} \mathcal{S}_{i, k}^{\prime}\)
        \(\hat{\mathbf{x}}_{k}^{-} \leftarrow\left[\begin{array}{ll}\hat{\mathbf{s}}_{k}^{-\top} & \hat{\mathbf{s}}_{k}^{\prime-\top}\end{array}\right]^{\top}\)
        \(T_{k}^{-} \leftarrow \operatorname{ParaLLELTRanSPORT}\left(T_{k-1}, \hat{\mathbf{s}}_{k-1}, \hat{\mathbf{s}}_{k}^{-}\right)\)
        for \(i=0, \ldots, 2 n\) do
            \(\boldsymbol{\delta}_{i, k}^{-} \leftarrow T_{k}^{-\top} \log _{\hat{\mathbf{s}}_{k}^{-}} \mathcal{S}_{i, k}\)
            \(\boldsymbol{\delta}_{i, k}^{\prime-} \leftarrow \mathcal{S}_{i, k}^{\prime}-\hat{\mathbf{s}}_{k}^{\prime-}\)
        end for
        \(\hat{P}_{k}^{-} \leftarrow \sum_{i=0}^{2 n} w_{i}\left[\begin{array}{l}\boldsymbol{\delta}_{i, k}^{-} \\ \boldsymbol{\delta}_{i, k}^{\prime-}\end{array}\right]\left[\begin{array}{ll}\boldsymbol{\delta}_{i, k}^{-\top} & \boldsymbol{\delta}_{i, k}^{\prime-\top}\end{array}\right]+Q\)
        for \(i=0, \ldots, 2 n\) do
            \(\mathcal{Y}_{i, k} \leftarrow \mathbf{h}\left(\mathcal{X}_{i, k}^{-}\right)\)
        end for
        \(\hat{\mathbf{y}}_{k} \leftarrow \sum_{i=0}^{2 n} w_{i} \mathcal{Y}_{i, k}\)
        \(\hat{P}_{y y, k} \leftarrow \sum_{i=0}^{2 n} w_{i}\left(\mathcal{Y}_{i, k}-\hat{\mathbf{y}}_{k}\right)\left(\mathcal{Y}_{i, k}-\hat{\mathbf{y}}_{k}\right)^{\top}+R\)
        \(\hat{P}_{x y, k} \leftarrow \sum_{i=0}^{2 n} w_{i}\left[\begin{array}{l}\boldsymbol{\delta}_{i, k}^{-} \\ \boldsymbol{\delta}_{i, k}^{\prime-}\end{array}\right]\left(\mathcal{Y}_{i, k}-\hat{\mathbf{y}}_{k}\right)^{\top}\)
        \(K_{k} \leftarrow \hat{P}_{x y, k} \hat{P}_{y y, k}^{-1}\)
        \(\Delta_{x, k} \leftarrow K_{k}\left(\mathbf{y}_{k}-\hat{\mathbf{y}}_{k}\right)\)
        \(\Delta_{s, k} \leftarrow \Delta_{x, k}[0: 1]\)
        \(\Delta_{s^{\prime}, k} \leftarrow \Delta_{x, k}[2: 10]\)
        \(\hat{\mathbf{s}}_{k} \leftarrow \exp _{\hat{\mathbf{s}}_{k}^{-}}\left(T_{k}^{-} \Delta_{s, k}\right)\)
        \(\hat{\mathbf{s}}_{k}^{\prime} \leftarrow \hat{\mathbf{s}}_{k}^{\prime-}+\Delta_{s^{\prime}, k}\)
        \(\hat{\mathbf{x}}_{k} \leftarrow\left[\begin{array}{ll}\hat{\mathbf{s}}_{k}^{\top} & \hat{\mathbf{s}}_{k}^{\prime \top}\end{array}\right]^{\top}\)
        \(\hat{P}_{k} \leftarrow \hat{P}_{k}^{-}-K_{k} P_{y y, k} K_{k}^{\top}\)
        \(T_{k} \leftarrow \operatorname{ParallelTranSPORT}\left(T_{k}^{-}, \hat{\mathbf{s}}_{k}^{-}, \hat{\mathbf{s}}_{k}\right)\)
    end procedure
```


II. Algorithms

The following algorithms summarize the implementation of the UKF on the sphere.

```
Algorithm 2 Weighted average of points \(p_{1}, \ldots, p_{n}\) on
a sphere
    procedure WEIGHTEDAVGSPHERE \(\left(p_{1}, \ldots, p_{n}\right)\)
        \(\overline{\mathbf{p}} \leftarrow \sum_{i=1}^{n} w_{i} \cdot \operatorname{PointToVector}\left(p_{i}\right)\)
        \(\bar{p} \leftarrow \operatorname{VectorToPoint}(\overline{\mathbf{p}})\)
        \(\Delta_{p} \leftarrow \sum_{i=1}^{n} w_{i} \log _{\bar{p}} p_{i}\)
        while \(\left\|\Delta_{p}\right\|>\epsilon\) do
            \(\bar{p} \leftarrow \exp _{\bar{p}} \Delta_{p}\)
            \(\Delta_{p} \leftarrow \sum_{i=1}^{n} w_{i} \log _{\bar{p}} p_{i}\)
        end while
        \(\bar{p} \leftarrow \exp _{\bar{p}} \Delta_{p}\)
    return \(\bar{p}\)
    end procedure
```

```
Algorithm 3 Parallel transport of the tangent basis \(T\)
on the sphere from point \(p_{1}\) to point \(p_{2}\)
    procedure Paralleltransport \(\left(T, p_{1}, p_{2}\right)\)
        \(\mathbf{p}_{1} \leftarrow \operatorname{PointToVector}\left(p_{1}\right)\)
        \(\mathbf{p}_{2} \leftarrow \operatorname{PointToVector}\left(p_{2}\right)\)
        \(\theta \leftarrow \cos ^{-1}\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)\)
        \(\mathbf{u} \leftarrow\left(\mathbf{p}_{1} \times \mathbf{p}_{2}\right) /\left\|\mathbf{p}_{1} \times \mathbf{p}_{2}\right\|\)
        \(R=I+\sin \theta[\mathbf{u}]_{\times}+(1-\cos \theta)[\mathbf{u}]_{\times}^{2}\)
    return \(R T\)
    end procedure
```

```
Algorithm 4 Conversion of a point \(s\) on the sphere to
a unit vector in \(\mathbb{R}^{3}\)
    procedure PointToVector \((s)\)
        \(s_{x} \leftarrow s[0]\)
        \(s_{y} \leftarrow s[1]\)
        \(x \leftarrow 2 s_{x} /\left(1+s_{x}^{2}+s_{y}^{2}\right)\)
        \(y \leftarrow 2 s_{y} /\left(1+s_{x}^{2}+s_{y}^{2}\right)\)
        \(z \leftarrow\left(1-s_{x}^{2}-s_{y}^{2}\right) /\left(1+s_{x}^{2}+s_{y}^{2}\right)\)
    return \(\left[\begin{array}{lll}x & y & z\end{array}\right]^{\top}\)
    end procedure
```

```
Algorithm 5 Conversion of a unit vector \(\mathbf{p}\) in \(\mathbb{R}^{3}\) to a
point on the sphere in stereographic coordinates
procedure VECTORTOPOINT(p)
        \(x \leftarrow \mathbf{p}[0]\)
        \(y \leftarrow \mathbf{p}[1]\)
        \(z \leftarrow \mathbf{p}[2]\)
        \(s_{x} \leftarrow x /(1+z)\)
        \(s_{y} \leftarrow y /(1+z)\)
    return \(\left[\begin{array}{ll}s_{x} & s_{y}\end{array}\right]\)
    end procedure
```


REFERENCES

[1] W. Kühnel, Differential Geometry: Curves - Surfaces - Manifolds, ser. Student mathematical library. American Mathematical Society, 2006. [Online]. Available: https://books.google.com/books?id=TyqUnlyV4Y4C
[2] M. P. D. Carmo, Riemannian Geometry. Boston, MA: Birkhuser, 1992.

[^0]: This work was supported by the ARL grants W911NF-08-2-0004, W911NF-17-2-0181, ONR grants N00014-07-1-0829, N00014-14-10510, ARO grant W911NF-13-1-0350, NSF grants IIS-1426840, IIS1138847, DARPA grants HR001151626, HR0011516850.
 ${ }^{1}$ The authors are with the GRASP Lab, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA 19104, USA. email: \{jsvacha, kmohta, wami, kumar\}@seas.upenn.edu.
 ${ }^{2}$ The author is with the New York University, Tandon School of Engineering, 6 MetroTech Center, 11201 Brooklyn NY, USA. email: \{loiannog\}@nyu.edu.

