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Inertial Vibration Control Using
a Shunted Electromagnetic Transducer

Andrew J. Fleming, Member, IEEE, and S. O. Reza Moheimani, Senior Member, IEEE

Abstract—Inertial drives and passive tuned-mass dampers uti-
lize a suspended mass to reduce the vibration experienced by a
host structure. Active vibration control systems typically include
a voice coil type electromagnetic actuator to develop the required
reaction forces. In this paper, the technique of sensorless active
shunt control is applied to inertial vibration absorption. An elec-
trical impedance is designed and connected to an electromagnetic
coil with a view to minimizing structural vibration. Standard op-
timal control tools can be applied to design the required shunt
impedance. This technique requires no additional feedback sen-
sors. Vibration in an experimental structure is heavily attenuated
by the application of an active shunt impedance.

Index Terms—Control, electromagnetic, inertial, proof mass,
senorless, shunt damping, vibration.

I. INTRODUCTION

T
UNED mass dampers, or inertial drives, are commonly

used for mechanical vibration control [1], [2]. Passive

tuned mass absorbers utilize an inertial mass and tuned sup-

port to introduce additional dynamics and mitigate vibration

over a certain frequency range. Inertial drives, comprising an

electromagnetic transducer and suspended inertial mass, are

used in active feedback control systems to regulate measured

acceleration.

Electromagnetic transducers can be used as sensors, actua-

tors, or both [3]–[8]. A simple technique for mitigation of me-

chanical vibration is known as passive electromagnetic shunt

damping [9]. Analogous to the well-known technique of piezo-

electric shunt damping [10], an electrical impedance, designed

to reduced vibration, is connected to the terminals of an elec-

tromagnetic transducer. A great variety of piezoelectric shunt

circuit designs, reviewed in [11], have been proposed for reduc-

ing structural vibration. A subset of these techniques has been

adapted for use with electromagnetic transducers [9]. Unfortu-

nately, such techniques find limited application, as the control

objective offered by piezoelectric shunt damping circuits is not

valid in the context of electromagnetic vibration control. Piezo-

electric shunt damping circuits result in the reduction of strain

under the transducer [11]; analogously, their adapted electro-

magnetic equivalents mitigate the relative velocity experienced
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by the coil and magnetic field [9]. Practical vibration control

applications utilizing electromagnetic transducers can be cate-

gorized almost universally as: inertial mass systems, isolation

systems, or suspension systems. In each application, minimizing

the relative velocity experienced by the transducer is contradic-

tory to the respective performance objective. For this reason,

previous results in the field of smart structures and piezoelectric

shunt damping cannot be applied directly.

A technique for the synthesis of active electromagnetic shunt

impedances was presented in [12]. Using active synthesis, per-

formance objectives other than minimization of the relative ve-

locity are possible. Active electromagnetic shunt control is po-

tentially applicable to vibration damping, isolation systems, and

suspension systems.

This paper considers vibration reduction using an electro-

magnetically actuated inertial drive. Both the passive and active

drive dynamics are considered when constructing a model of

the mated mechanical and inertial drive systems. In doing so,

the performance of a passive absorber can be augmented with

an active feedback system. A method is presented for the mod-

eling, design, and implementation of a shunt controlled electro-

magnetic inertial drive for vibration suppression. By viewing

the coil current and voltage as system inputs and outputs, the

task of impedance synthesis can be cast as a standard feed-

back design problem. Arbitrary objectives such as LQR, LQG,

or H2 goals are easily specified. In this work, displacement

is minimized subject to a penalty on the inertial mass travel

and applied terminal voltage. Using this technique, the need

for external sensors is eliminated, significantly reducing the

cost, complexity, and sensitivity to transducer failure that in

many applications may preclude the use of an active control

system.

Experiments are performed on a simple single-mode host

structure with integrated electromagnetic transducer and sus-

pended absorber mass. The combination of passive and active

control results in significant vibration suppression.

This paper is organized as follows. In Section II, we begin

with the modeling of mechanical and electromagnetic systems.

A method is then presented in Section III for the design of active

impedance and admittance controllers to minimize a specified

performance objective. The presented techniques are then ap-

plied to an experimental electromagnetic system in Section IV.

Finally, the paper is concluded in Section V.

II. MODELING

In this section, the dynamics of an electromagnetic and me-

chanical system are studied independently, then combined to re-

veal the dynamics of a shunted electromagnetic inertial actuator.

1083-4435/$20.00 © 2006 IEEE
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Fig. 1. A voice-coil-type electromagnetic transducer in (a) a velocity sensing
role and (b) force actuating role.

A. Electromagnetic System

When an electrical conductor, in the form of a coil, moves in

a magnetic field as shown in Fig. 1(a), a voltage Ve proportional

to the velocity ν is induced and appears across the terminals of

the coil

Ve ∝ ν. (1)

Specifically,

Ve

ν
= Bl (2)

where B is the magnetic flux (in T), l is the length of the

conductor (in m), and ν is the velocity of the conductor relative

to the magnetic field (in ms−1). A permanent magnet is usually

the source of the magnetic field. In another configuration, the

coil is kept stationary and the magnet is free to move.

Assuming the coil is exposed to a field of constant flux density

and the relative displacement is small, (2) can be rewritten [1]

as

Ve

ν
=

Fe

Iz
= Bl = Ce (3)

where Fe denotes the force (in newtons) acting on the coil car-

rying a current Iz (in amperes), and Ce is the ideal electrome-

chanical coupling coefficient. When the coil is employed as a

force actuator, (3) relates the induced force to an applied current.

Electrodynamic shakers and acoustic speakers operate on this

principle. As shown in Fig. 2, the coil can be modeled as the

series connection of an inductor L, a resistor R, and a dependent

voltage source Ve [4]. When coupled to a mechanical system,

the induced electromotive force (EMF) and, hence, mechanical

velocity, can be determined from the open circuit coil terminal

voltage. The electrical and mechanical transducer dynamics are

summarized in Fig. 3. In response to a relative velocity ν and

terminal voltage Vz , the transducer E develops a force Fe and

current Iz . When short circuited; i.e., when Vz = 0, the trans-

ducer develops a force opposite in direction to the relative coil

velocity ν. This damping force is utilized in electrodynamic

braking systems and eddy-current dampers.

Fig. 2. (a) An electromagnetic transducer generating a force Fe in response
to the terminal current Iz . (b) The electrical equivalent model includes the coil
inductance L, the coil resistance R, and a voltage source Ve proportional to the
velocity between the coil and magnetic field.

Fig. 3. The electrical and mechanical dynamics of an electromagnetic trans-
ducer.

Fig. 4. A general mechanical system suitable for couping to an electromagnetic
transducer. In addition to a disturbance input w, the model also includes a force
input Fe and relative velocity output ν .

The following state-space representation of the coil admit-

tance Yc(s) = 1

Ls+R will be required as

Ay =

[

−R

L

]

By = [1] Cy =

[

1

L

]

. (4)

B. Mechanical System

The general model of a mechanical system is shown in Fig. 4.

In addition to various application-specific inputs and outputs,

in order to couple the system to an electromagnetic actuator,

the model requires a force input Fe and a relative velocity out-

put ν. In a typical scenario, the model would also describe the

influence of a specific disturbance input w. A single degree-

of-freedom tuned-mass, or inertial vibration control system, is

shown in Fig. 5. The reaction force Fe generated by an elec-

tromagnetic actuator is employed to minimize the vibration d2

resulting from a disturbance force Fd . The quantities denoted

M,k, b, and d represent the mass (in kg), the spring constant

(in N · m−1), the damping coefficient (in N · s · m−1), and the

displacement (in meters), respectively. The symbols ν̇ and ν are

used to represent acceleration and velocity, respectively.
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Fig. 5. A suspended mass M2 disturbed by a force Fd . The absorber mass
M1 is maneuvered by the reaction force Fe to reduce the displacement d2.

The equations of motion governing the system can be written

as

M1ν̇1 = −b1(ν1 − ν2) − k1(d1 − d2) + Fe (5)

M2ν̇2 = b1(ν1 − ν2) + k1(d1 − d2) − b2ν2

− k2d2 − Fe + Fd . (6)

By choosing the state variables ν1, d1, ν2, and d2, the system

can be cast in the following state-space form:

ẋp(t) = Apxp(t) + Bp

[

Fd(t)
Fe(t)

]

[

d2(t)
ν1 − ν2

]

= Cpxp(t) (7)

where the subscript p denotes the mechanical plant, and the

output ν1 − ν2 represents the relative velocity between the two

masses. The system matrices are

xp(t) =







ν1

d1

ν2

d2







Bp = [Bp1 Bp2] =







0 1

M1

0 0
−1

M2

1

M2

0 0






(8)

Ap =







−b1
M1

−k1

M1

b1
M1

k1

M1

1 0 0 0
b1
M2

k1

M2

−b1−b2
M2

−k1−k2

M2

0 0 1 0






(9)

Cp =

[

Cp1

Cp2

]

=

[

0 0 0 1
1 0 −1 0

]

. (10)

A block diagram of the mechanical system (7) is shown in

Fig. 6. As the system includes a control force input Fe and a

relative velocity output ν, the model is easily coupled to that of

an electromagnetic transducer.

Fig. 6. The mechanical system (7) shown with force disturbance and control
inputs Fd and Fe , a performance output d2, and the relative velocity output ν .

Fig. 7. A two-mass system with electromagnetic transducers to realize the
disturbance force Fd and control force Fe .

C. Shunted Composite Electromechanical System

As shown in Fig. 7, we now consider a mechanical system P
coupled to an impedance shunted electromagnetic transducer.

The force disturbance Fd is realized with the use of an auxiliary

transducer and current source

Fd = IdCe . (11)

Within the modeling framework introduced in Sections II-A

and II-B, i.e., by treating the mechanical plant and shunted

electromagnetic coil as shown in Figs. 6 and 3, the composite

plant is easily constructed as that shown in Fig. 8. In Fig. 8, the

impedance Z(s), appears analogous to a feedback controller for

the electromechanical system. By concatenating the mechanical

and electromagnetic systems, P and E, as shown in Fig. 9, the

composite system is cast as a typical regulation problem for

the abstracted system G. The state equation of the electrical

(4) and mechanical systems (7) can be collected to describe the

system G

ẋg (t) = Agxg (t) + Bg

[

Id(t)
Vz (t)

]

[

d2(t)
Iz (t)

]

= Cgxg (t) (12)
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Fig. 8. Mechanical system P coupled to an impedance shunted electromag-
netic transducer E .

Fig. 9. Composite system G comprising the mechanical and electromagnetic
subsystems.

where

@g (t) =

[

xp(t)
xy (t)

]

Ag =

[

Ap −CeBp2Cy

ByCp2Ce Ay

]

(13)

and

Bg =

[

Bp1Cd 0
0 −By

]

, Cg =

[

Cp1 0
0 Cy

]

. (14)

III. CONTROL DESIGN

As shown in Fig. 8, an impedance connected to a mechani-

cally coupled electromagnetic transducer can be viewed as pa-

rameterizing a velocity feedback controller for the mechanical

system P . Section III-A introduces a technique for the synthesis

of active impedance controllers designed to minimize structural

vibration.

Our design objective is to minimize the displacement d2 while

restraining both the magnitude of control voltage Vz and the ab-

sorber mass travel d1 − d2. As the reaction force Fe results in

an acceleration of the absorber, at low frequencies, the magni-

tude of available force is strictly limited by the maximum travel

d1 − d2. In a linear quadratic sense, our objective is to minimize

J =

∫ ∞

0

{

d2
2(t) + kvV 2

z (t) + kd(d1(t) − d2(t))
2
}

dt. (15)

where kv and kd represent weightings on the applied shunt

voltage Vz and the absorber mass travel d1 − d2, respectively.

By substituting the state solutions into d1(t) and d2(t), we obtain

J =

∫ ∞

0

{

x′
p(t)bfC ′

p1Cp1xp(t) + Vz (t)
′kvVz (t)

+x′
p(t)C

′
p3kdCp3xp(t)

}

dt.

(16)

where d1(t) − d2(t) = Cp3xp(t), and Cp3 = [0 − 1 0 1].
Restated in the standard LQR context,

J =

∫ ∞

0

{x′
g (t)Qxg (t) + u(t)′Ru(t)} dt (17)

where

Q = [bfCp1 0]′[Cp1 0] + kd [Cp3 0]′[Cp3 0] (18)

and

R = kv . (19)

Through the solution of an algebraic Ricatti equation [13],

a state feedback matrix K can be found that minimizes the

objective function J .

A. Observer Design

As the state variables of the system xg (t) are not available

directly, a linear observer is required.

For impedance design, the ad hoc pole placement approach

to linear observer design becomes difficult. Although an LQR

state-feedback regulator is guaranteed (if R is chosen diagonal)

to result in a phase margin of at least 60◦ at each plant input

channel [14], [15], it is well known that considerable degradation

of the stability margins is to be expected after inclusion of the

observer dynamics. A more automated choice in observer design

is the Kalman filter [16]. Here, as shown in Fig. 10, the controller

C(s) consists of an optimal state-feedback regulator K and

Kalman observer O. By the Certainty Equivalence Principle

or Separation Theorem [13], the two entities can be designed

independently. After first finding a K to minimize (17), we then

design a Kalman filter to minimize

Jk = lim
t→∞

E{[x(t) − x̃(t)][x(t) − x̃(t)]′}. (20)

By the Certainty Equivalence Principle, the optimal K and

O also result in minimization of the stochastic performance

objective

J = E

{

lim
T →∞

1

T

∫ T

0

{x′(t)Qx(t) + u(t)′Ru(t)}dt

}

. (21)



88 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 11, NO. 1, FEBRUARY 2006

Fig. 10. Composite plant G controlled by Z(s), an impedance consisting of
the optimal state-feedback regulator K and Kalman filter O.

In this scenario, we are referring to the original state-space sys-

tem (12) with zero-mean uncorrelated Gaussian process models

for the disturbance Id and additive measurement noise η. With

the inclusion of measurement noise, the system representation

(12) becomes

ẋg = Agxg + Bg

[

Id

Vz

]

(22)

[

d2

Iz

]

= Cgxg +

[

0
η

]

where Id and η satisfy

E{IdI
′
d} = Qn

E{ηη′} = Rn . (23)

Based on Qn and Rn , a Kalman observer that minimizes

(20) can be found through the solution of an algebraic Ricatti

equation [13]. The ratio of Qn to Rn essentially represents the

confidence in the measured variable Iz and plant model G. In

this work, Qn ,Rn , and ku are not quantified and are simply

treated as design parameters influencing the closed-loop pole

locations, damping performance, and closed-loop stability.

IV. EXPERIMENTAL RESULTS

To verify the modeling and design techniques presented in

the preceding sections, each method has been applied to an

experimental electromechanical system.

A. Experimental Apparatus

A photograph of the experimental apparatus showing the rigid

body, flexible end supports, mounting plate, and coils is pro-

vided in Fig. 11. As shown in Fig. 12, the apparatus comprises

two electromagnetic transducers mounted vertically. While the

lower magnet and flexure is fixed, the two connected transducer

cases are free to vibrate and represent the mass M2. The upper

magnet forms the absorber mass M1. Each transducer is essen-

Fig. 11. Experimental apparatus.

Fig. 12. Cross section of the experiment apparatus shown in Fig. 11.

TABLE I
ELECTROMECHANICAL SYSTEM PARAMETERS

tially a translational solenoid with two identical coils connected

in series; the dashed line identifies the flux path generated by

the permanent magnets. The physical parameters of the electro-

magnetic and mechanical systems are summarized in Table I.

The main mass velocity d2 is measured using a PSV-300

Polytec Scanning Laser Vibrometer.

B. Power Amplifier and Instrumentation

In order to implement an arbitrary shunt impedance, a power

amplifier was developed capable of driving differential terminal
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Fig. 13. Simplified schematic of a voltage source with current instrumentation.
The load impedance ZL (s) represents the electromagnetic coil.

Fig. 14. Practical implementation of a voltage amplifier with current instru-
mentation.

voltages with load current instrumentation. The simplified

schematic of a circuit realizing this function is shown in Fig. 13.

A practical implementation of the amplifier is shown in Fig. 14.

The device is capable of ±200 V operation at a maximum dc

current of 32 A. Further analysis and a more detailed discussion

of the implementation can be found in [17]. A dSpace 1005

based system is used to implement the required impedance and

admittance transfer functions.

C. Impedance Synthesis

Fig. 15 shows the instrumentation and driver gains associated

with the underlying electromechanical system. The voltages

V1–V4 represent the signals applied to, or measured from, the

power amplifiers and instrumentation, respectively. The gain

and units associated with each signal can be found in Table II.

The actual electrical shunt impedance presented to the coil is

related to the controller through the gains a3 and a4; specifically,

Z(s) =
Vz (s)

Iz (s)
= a3C(s)a4. (24)

To assess the accuracy of the analytic model (discussed in

Section II-C), the simulated frequency response is compared to

that measured directly from the experimental system. A multi-

Fig. 15. External gains associated with the amplifier and instrumentation.

TABLE II
EXTERNAL GAINS ASSOCIATED WITH THE EXPERIMENTAL SYSTEM

Fig. 16. Simulated (—) and experimental (- -) magnitude frequency
response.

variable frequency response is measured successively from each

input to output pair. During the component SISO frequency re-

sponse measurements, the residual input is set to zero. The mag-

nitude and phase frequency responses are shown, respectively,

in Figs. 16 and 17. In the frequency domain, a good correla-

tion can be observed between the analytic model and measured

system.

1) LQR Impedance Synthesis: As discussed in Section III, a

linear quadratic regulator can be designed to command the shunt

terminal voltage Vz with a view to minimizing the vibration d2.

An observer is required to estimate the system states from the

measured shunt current Iz .

Based on the physical model that was validated perviously,

and referring to the notation introduced in Section III, an LQR
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Fig. 17. Simulated (—) and experimental (- -) phase frequency response.

Fig. 18. Magnitude and phase response of the LQG impedance (—) and neg-
ative coil impedance (- -).

gain matrix was designed to minimize the performance function

J =

∫ ∞

−∞

{

d2
2(t) + kvV 2

z (t) + kd(d1(t) − d2(t))
2
}

dt (25)

where the factors kd = 1 and kv = 1 × 10−7. A Kalman ob-

server was designed to estimate the system state xg (t) utilizing

the measured shunt transducer current Iz and control signal Vz .

Referring to Section III-A, the disturbance and output noise pro-

cess covariance matrices Qn and Rn were chosen to be 100 and

0.1, respectively. Such a weighting, although not quantitative,

expresses a moderate confidence in the fidelity of the measured

variable Iz .

Fig. 19. Pole–zero map of the LQG impedance.

Fig. 20. Open (×) and shunted (⋆) pole locations. Note that one pair of
high-frequency observer poles are not visible within the scope of this plot.

By concatenating the LQR gain matrix and Kalman observer,

and compensating for the system gains a3 and a4, the actual

impedance presented to the shunt transducer can be determined.

In Fig. 18, the complex impedance of the resulting controller

is plotted together with that of the negated coil impedance. A

negative coil impedance connected to the true coil impedance

effectively removes the source impedance from the transducer.

The LQG impedance has a tendency to mimic this impedance

over a certain frequency range. The pole–zero map of the LQG

controller is shown in Fig. 19.

After examining the open- and closed-loop pole locations

shown in Fig. 20, it can be appreciated that the controller is

clearly acting to increase the system damping. Corresponding

mitigation of the transfer function from an applied disturbance

to the measured vibration can be seen in both the frequency
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Fig. 21. Single-mass (- -), two-mass (—), experimental shunted (—), and
simulated shunted (- -) magnitude frequency response d2(s)/Id (s).

Fig. 22. Single-mass. (a) Two-mass. (b) Shunted two-mass. (c) Velocity re-
sponse to a 1-A step in Id .

domain, Fig. 21, and time domain, Fig. 22. The action of the

additional mass and electromagnetic shunt acts to reduce the

single-mass resonant peak by a minimum of 23.2 dB. The

shunted electromagnetic transducer reduces the two-mass first

and second resonant peaks by 18.7 and 23.6 dB, respectively.

The reader may note additional dynamics at 20 and 60 Hz in

Fig. 21. These dynamics are due to pivot modes of the structure

about the base fixture. The stiffening effect of the controller has

a tendency to increase the frequency of low-profile pivot and

sway modes. Such modes would be absent in a more rigidly

supported inertial drive.

V. CONCLUSION

A technique has been presented for the control of vibration

using an electromagnetically actuated inertial drive. By view-

ing the coil current and voltage as system inputs and outputs,

standard synthesis techniques were applied to minimize dis-

placement subject to a penalty on the inertial mass travel and

applied terminal voltage. Electromagnetic shunt control requires

no external sensors, and thus significantly reduces the cost, com-

plexity, and sensitivity to transducer failure of active vibration

control systems.

Experiments were performed on a simple apparatus repre-

senting a scenario where the vibration experienced by a host

structure is controlled with a suspended absorber mass and elec-

tromagnetic coil. In practice, the mass of the absorber is usually

limited to about one tenth the host structure. In this regard, the

experiment is somewhat unrealistic, as the mass of the absorber

is only slightly less than that of the host mass. The available

control authority is directly related to both the size of the mass

and the available travel.

After adding the absorber mass, the passive dynamics split

the original resonant mode into two lightly damped secondary

peaks. Then, by designing a suitable control impedance and pre-

senting it to the terminals of the electromagnetic coil, further

vibration reduction is achieved by augmenting the passive damp-

ing of the secondary modes. As the control design penalizes the

absorber mass travel, which increases at low frequencies, the

impedance suppresses higher frequency vibration more heavily.

The combination of passive and active dynamics reduces the

displacement response to a force input by up to 38 dB at the

frequency of the original resonance.

Future work includes design for multimode host structures,

coupled multidrive multidimensional systems, and restricted

impedance design. The LQG impedance design contains nega-

tive reactive components and is unstable in a systems perspec-

tive. Although the connection of the coil and control impedance

is stable, an inherently stable controller is desirable. It is

presently unclear whether an unstable controller is necessary

to result in effective vibration reduction.
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