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Abstract

We present the approach followed by INESC-
ID in the SemEval 2015 Twitter Sentiment
Analysis challenge, subtask E. The goal was
to determine the strength of the association of
Twitter terms with positive sentiment. Using
two labeled lexicons, we trained a regression
model to predict the sentiment polarity and in-
tensity of words and phrases. Terms were rep-
resented as word embeddings induced in an
unsupervised fashion from a corpus of tweets.
Our system attained the top ranking submis-
sion, attesting the general adequacy of the pro-
posed approach.

1 Introduction

Sentiment lexicons are one of the key resources for
the automatic analysis of opinions, emotive and sub-
jective text (Liu, 2012). They compile words an-
notated with their prior polarity of sentiment, re-
gardless of the context. For instance, words such as
beautiful or amazing tend to express a positive sen-
timent, whereas words like boring or ugly are con-
sidered negative. Most sentiment analysis systems
use either word count methods, based on sentiment
lexicons, or rely on text classifiers. In the former,
the polarity of a message is estimated by computing
the ratio of (positive and negative) sentiment bear-
ing words. Despite its simplicity, this method has
been widely used (O’Connor et al., 2010; Bollen and
Mao, 2011; Mitchell et al., 2013). Even more so-
phisticated systems, based on supervised classifica-
tion, can be greatly improved with features derived
from lexicons (Kiritchenko et al., 2014). However,

manually created sentiment lexicons consist of few
carefully selected words. Consequently, they fail to
capture the use of non-conventional word spelling
and slang, commonly found in social media.

This problem motivated the creation of a task in
the SemEval 2015 Twitter Sentiment Analysis chal-
lenge. This task (subtask E), intended to evaluate au-
tomatic methods of generating Twitter specific sen-
timent lexicons. Given a set of words or phrases,
the goal was to assign a score between 0 and 1, re-
flecting the intensity and polarity of sentiment these
terms express. Participants were asked to submit a
list, with the candidate terms ranked according to
sentiment score. This list was then compared to a
ranked list obtained from human annotations and
the submissions were evaluated using the Kendall
(1938) Tau rank correlation metric.

In this paper, we describe a system developed for
this challenge, based on a novel method to create
large scale, domain-specific sentiment lexicons. The
task is addressed as a regression problem, in which
terms are represented as word embeddings, induced
from a corpus of 52 million tweets. Then, using
manually annotated lexicons, a regression model
was trained to predict the polarity and intensity of
sentiment of any word or phrase from that corpus.
We found this approach to be effective for the pro-
posed problem.

The rest of the paper proceeds as follows: we re-
view the work related to lexicon expansion in Sec-
tion 2 and describe the methods used to derive word
embeddings in Section 3. Our approach and the ex-
perimental results are presented in Sections 5 and 6,
respectively. We conclude in Section 7.
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2 Related Work

Most of the literature on automatic lexicon expan-
sion consists of dictionary-based or corpora-based
approaches. In the former, the main idea is to use a
dictionary, such as WordNet, to extract semantic re-
lations between words. Kim and Hovy (2006) sim-
ply assign the same polarity to synonyms and the op-
posite polarity to antonyms, of known words. Oth-
ers, create a graph from the semantic relationships,
to find new sentiment words and their polarity. Us-
ing the seed words, new terms are classified using a
distance measure (Kamps et al., 2004), or propagat-
ing the labels along the edges of the graph (Rao and
Ravichandran, 2009). However, given that dictio-
naries mostly describe conventional language, these
methods are unsuited for social media.

Corpora based approaches follow the assumption
that the polarity of new words can be inferred from
co-occurrence patterns with known words. Hatzi-
vassiloglou and McKeown (1997) discovered new
polar adjectives by looking at conjunctions found in
a corpus. The adjectives connected with and got the
same polarity, whereas adjectives connected with
but were assigned opposing polarities. Turney and
Littman (2003) created two small sets of prototypi-
cal polar words, one containing positive and another
containing negative examples. The polarity of a new
term was computed using the point-wise mutual in-
formation between that word and each of the proto-
typical sets (Lin, 1998). The same method was used
by Kiritchenko et al. (2014), to create large scale
sentiment lexicons for Twitter.

A recently proposed alternative is to learn word
embeddings specific for Twitter sentiment analysis,
using distant supervision (Tang et al., 2014). The
resulting features are then used in a supervised clas-
sifier to predict the polarity of phrases. This work is
the most related to our approach, but it differs in the
sense that we use general word embeddings, learned
from unlabeled data, and predict both polarity and
intensity of sentiment.

3 Unsupervised Word Embeddings

In recent years, several models have been pro-
posed, to derive word embeddings from large cor-
pora. These are essentially, dense vector repre-
sentations that implicitly capture syntactic and se-

mantic properties of words (Collobert et al., 2011;
Mikolov et al., 2013a; Pennington et al., 2014).
Moreover, a notion of semantic similarity, as well
as other linguistic regularities seem to be encoded
in the embedding space (Mikolov et al., 2013b). In
word2vec, Mikolov et al. (2013a) induce word
vectors with two simple neural network architec-
tures, CBOW and skip-gram. These models esti-
mate the optimal word embeddings by maximizing
the probability that, words within a given window
size are predicted correctly.

Skip-gram and Structured Skip-gram
Central to the skip-gram is a log-linear model of

word prediction. Given the i-th word from a sen-
tence wi, the skip-gram estimates the probability of
each word at a distance p from wi as:

p(wi+p|wi;Cp,E) ∝ exp (Cp ·E ·wi) (1)

Here, wi ∈ {1, 0}v×1 is a one-hot representa-
tion of the word, i.e., a sparse column vector of
the size of the vocabulary v with a 1 on the po-
sition corresponding to that word. The model is
parametrized by two matrices: E ∈ Re×v is the
embedding matrix, transforming the one-hot sparse
representation into a compact real valued space of
size e; Cp ∈ Rv×e is a matrix mapping the real-
valued representation to a vector with the size of
the vocabulary v. A distribution over all possible
words is then attained by exponentiating and nor-
malizing over the v possible options. In practice, due
to the large value of v, various techniques are used
to avoid having to normalize over the whole vocab-
ulary (Mikolov et al., 2013a). In the particular case
of the structured skip-gram model, the matrix Cp

depends only of the relative position between words
p (Ling et al., 2015).

After training, the low dimensional embedding E·
wi ∈ Re×1 encapsulates the information about each
word and its surrounding contexts.

CBOW
The CBOW model defines a different objective

function, that predicts a word at position i given the
window of context i − d, where d is the size of the
context window. The probability of the word wi is
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(a) Phrases as the sum of embeddings (b) Phrases as the mean of embeddings

Figure 1: Performance of the different embeddings and phrase representations, as function of vector size.

defined as:

p(wi|wi−d, ..., wi+d;C,E) ∝ exp(C · Si+d
i−d) (2)

where Si+d
i−d is the point wise sum of the embed-

dings of all context words starting at E · wi−d to
E · wi+d, excluding the index wi, and once again
C ∈ Re×v is a matrix mapping the embedding space
into the output vocabulary space v.

GloVe
The models discussed above rely on different as-

sumptions about the relations between words within
a context window. The Global Vector model, re-
ferred as GloVe (Pennington et al., 2014), combines
this approach with ideas drawn from matrix factor-
ization methods, such as LSA (Deerwester et al.,
1990). The embeddings are derived with an objec-
tive function that combines context window infor-
mation, with corpus statistics computed efficiently
from a global term co-occurrence matrix.

4 Labeled Data

The evaluation of the shared task was performed
on a labeled test set, consisting of 1315 words and
phrases. To support the development of the systems,
the organizers released a trial set with 200 exam-
ples. The terms are representative of the informal
style of Twitter text, containing hashtags, slang, ab-
breviations and misspelled words. Negated expres-
sions were also included. We show a sample of the

words and phrases in Table 1. For more details on
these datasets, see (Kiritchenko et al., 2014).

Given the small size of the trial set, we used an ad-
ditional labeled lexicon: the Language Assessment
by Mechanical Turk (LabMT) lexicon (Dodds et al.,
2011). It consists of 10,000 words collected from
different sources. Words were rated on a scale of 1
(sad) to 9 (happy), by users of Amazon’s Mechan-
ical Turk service, resulting in a measure of average
happiness for each given word. Note that LabMT
contains annotations for happiness but our goal is
to label words in terms of sentiment polarity. We
rely on the fact that some emotions are correlated
with sentiment, namely, joy/happiness are associ-
ated with positivity, while sadness/disgust relate to
negativity (Liu, 2012).

This complementary dataset was used for two pur-
poses: first, as the development set to evaluate and
tune our system, and second, as additional training
data for the candidate submission.

Type Sample words
words sweetest, giggle, sleazy, broken
slang bday, lmao, kewl, pics
negations can’t cope, don’t think, no probs
interjections weee, yays, woooo, eww
emphasized gooooood, loveeee, cuteeee, excitedddd
hashtags #gorgeous, #smelly, #fake, #classless
multiword hashtag #goodvibes, #everyonelikesitbutme
emoticons :o ): -.- :’) <33

Table 1: A sample of the different types of terms.
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5 Proposed Approach

We addressed the task of inducing large scale sen-
timent lexicons for Twitter as a regression problem.
Each term wi was represented with an embedding
E ·wi ∈ Re×1, with e ∈ {50, 200, 400, 600, 12501}
as discussed in Section 3. Then, the manually anno-
tated lexicons were used to train a model that, given
a new term wj , predicts a score y ∈ [0, 1] reflecting
the polarity and intensity of sentiment it conveys.

Note that the embeddings represent words, so to
deal with phrases we leveraged on the compositional
properties of word vectors (Mikolov et al., 2013b).
Given that algebraic operations in the embedding
space preserve meaning, we represented phrases as
the sum or mean of individual word vectors.

5.1 Learning the Word Embeddings

The first step of our approach, requires a corpus of
tweets to support the unsupervised learning of the
embedding matrix E. We resorted to the corpus of
52 million tweets used by Owoputi et al. (2013) and
the tokenizer described in the same work.

The CBOW and skip-gram embeddings were in-
duced using the word2vec2 tool, while we used
our own implementation of the structured skip-
gram. The default values in word2vec were em-
ployed for most of the parameters, but we set the
negative sampling rate to 25 words (Goldberg and
Levy, 2014). For the GloVe model, we used the
available implementation3 with the default param-
eters. In all the models, words occurring less than
100 times in the corpus were discarded, resulting in
a vocabulary of around 210,000 tokens.

Finally, embeddings of different sizes were built,
with 50, 200, 400 and 600 dimensions.

Hyperparameter Optimization and Model
Selection

Regarding the choice of learning algorithm, sev-
eral linear regression models were considered: least
squares and regularized variants, namely, the lasso,
ridge and elastic net regressors. We also experi-
mented with Support Vectors Regression (SVR) us-
ing non-linear kernels, namely, polynomial, sigmoid

1corresponds to the concatenation of all the embeddings
2https://code.google.com/p/word2vec/
3http://nlp.stanford.edu/projects/GloVe/

and Radial Basis Function (RBF). Most of these
models have hyperparameters, thus the combination
of possible algorithms and parameters represents a
huge configuration space. A brute force approach to
find the optimal model would be cumbersome and
time consuming. Instead, for each parameter, we de-
fined meaningful distributions and ranges of values.
Then, a hyperparameter optimization algorithm was
used to find the best combination of model and pa-
rameters, by sampling from the specified configura-
tion pool. The Tree of Parzen Estimators algorithm,
as implemented in HyperOpt4, was used (Bergstra
et al., 2013).

6 Experiments

Learning word embeddings from large corpora al-
lowed us to derive representations for a considerable
number of words. Thus, we were able to find embed-
dings for 94% of the candidate terms. Using simple
normalization steps, we could find embeddings for
the remaining terms. However, we found that this
improvement in recall had almost no impact in the
performance of the system.

After mapping terms to their respective embed-
dings, we performed experiments to find the best re-
gression model and respective hyperparameters. For
this purpose, the LabMT lexicon was employed as
the development set and the trial data as a valida-
tion set, against which different configurations were
evaluated. After 1000 trials, the SVR model with
RBF kernel was selected. Finally, we performed
detailed experiments to compare word embedding
models and vectors of different dimensions.

6.1 Submitted System

The evaluation on the trial data indicated that several
configurations of embedding model and size could
achieve the optimal results. Therefore, our candi-
date system was based on structured skip-gram em-
beddings with 600 dimensions, and SVR with RBF
kernel. The hyperparameters were set to C = 50,
ε = 0.05 and γ = 0.01 and the system was trained
using the trial data and the LabMT lexicon.

4http://hyperopt.github.io/hyperopt/
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(a) Results of the top 4 ranking systems (b) Comparing word embedding models under vari-
ous training and test data regimes

Figure 2: Evaluation of the INESC-ID system.

6.2 Results

The experiments showed that all the word embed-
dings have comparable capabilities. In Figure 1, we
compare the results of different embeddings with the
same regression model. Regarding the representa-
tion of phrases, the skip-gram and structured skip-
gram embeddings performed better when averaged.
However, the GloVe and CBOW seemed to be more
effective when summing the individual word vec-
tors. These results were consistent across all the ex-
periments. In terms of embedding size, we observed
that smaller vectors tend to perform worse and, in
general, concatenating vectors of different dimen-
sionality improved performance. The CBOW rep-
resentations were the only exception. This suggests
that embeddings of different size capture different
aspects of words.

Our final method, attained the highest ranking re-
sult of the competition, with 0.63 rank correlation.
Figure 2a shows the results of the top 4 submissions
to SemEval. Further experiments were conducted
after the release of the test set labels. We found
that the concatenation of GloVe embeddings outper-
forms our previous choice of features on the test set.
Surprisingly, these embeddings obtained the worst
results on the trial data, but are much better than the
others in the test set, achieving a rank correlation of
0.67. At this point, it is still not clear why this is the
case.

Figure 2b shows the performance of each embed-

ding model, under different combinations of train-
ing and test data. We can see that the proposed ap-
proach is effective, and our models outperform the
other systems with as few as 200 training examples.

7 Conclusions

We described the approach followed by INESC-ID
for subtask E of SemEval 2015 Twitter Sentiment
Analysis challenge. This work presents the first
steps towards a general method to extract large-scale
lexicons with fine-grained annotations from Twitter
data. Although the results are encouraging, further
investigation is required to shed light on some un-
expected outcomes (e.g., the inconsistent behavior
of the GloVe features on the trial and test sets). It
should nonetheless be noted that, given the small
size of the labeled sets, it is hard to draw defini-
tive conclusions about the soundness of any method.
Furthermore, the merit of a sentiment lexicon should
be assessed in terms of its impact on the perfor-
mance of concrete sentiment analysis applications.
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