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ABSTRACT

It is essential to reveal the associations between var-
ious omics data for a comprehensive understanding
of the altered biological process in human wellness
and disease. To date, very few studies have focused
on collecting and exhibiting multi-omics associa-
tions in a single database. Here, we present iNetMod-
els, an interactive database and visualization plat-
form of Multi-Omics Biological Networks (MOBNs).
This platform describes the associations between
the clinical chemistry, anthropometric parameters,
plasma proteomics, plasma metabolomics, as well
as metagenomics for oral and gut microbiome ob-
tained from the same individuals. Moreover, iNet-
Models includes tissue- and cancer-specific Gene
Co-expression Networks (GCNs) for exploring the
connections between the specific genes. This plat-
form allows the user to interactively explore a sin-
gle feature’s association with other omics data and
customize its particular context (e.g. male/female
specific). The users can also register their data for
sharing and visualization of the MOBNs and GCNs.
Moreover, iNetModels allows users who do not have a
bioinformatics background to facilitate human well-

ness and disease research. iNetModels can be ac-
cessed freely at https://inetmodels.com without any
limitation.

GRAPHICAL ABSTRACT

INTRODUCTION

During the past decade, the development of high-
throughput technologies has dramatically decreased
the cost of generating large-scale multi-omics datasets (1).
This has opened up the possibilities to study human well-
ness and diseases systematically (2). Although analysis of
individual omics methodologies has been proven bene�cial
in different clinical applications, integrating multi-omics
data may offer novel insights and provide a more com-
prehensive understanding of biological functions in the
human body in health and disease (3). For instance, a recent
study integrated time series phenomics, metabolomics and
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�uxomics data from the subjects with various degrees of
liver fat and revealed that non-alcoholic fatty liver disease
(NAFLD) is associated with glycine and serine de�ciency
(4). Another longitudinal phenomics, transcriptomics,
metagenomics and metabolomics data have been generated
for 10 subjects during a two-week follow-up study. This
study has illustrated the rapid metabolic bene�ts of an
isocaloric carbohydrate-restricted diet on NAFLD patients
and revealed the molecular mechanisms associated with the
metabolic changes (5). Moreover, several other studies have
also demonstrated the bene�t of performing longitudinal
multi-omics data analysis in systematically capturing
human diseases’ dynamics (6–8).
To provide a better framework for facilitating these types

of investigations, we created iNetModels. This user-friendly
platform provides exploratory capabilities and interactive
and intuitive visualization of clinical chemistry, anthropo-
metric parameters, plasma proteins, plasma metabolites,
oral microbiome and gut microbiome associated with the
user-queried features (Figure 1A). The data in iNetModels
are obtained from recent studies, where large-scale Multi-
Omics Biological Networks (MOBNs) analyses have been
performed for individuals with different metabolic condi-
tions. Moreover, we retrieved data from The Genotype-
Tissue Expression (GTEx) Project andTheCancerGenome
Atlas (TCGA), created normal tissue- and cancer-speci�c
Gene Co-expression Networks (GCNs) and presented the
networks in the iNetModels (Figure 1A). The user can si-
multaneously query for 1–5 features, visualize the selected
features and their neighbouring features, download the as-
sociated network in both table and �gure format, and anal-
yse them using independent network analysis tools, includ-
ing Cytoscape (9) and iGraph (10). We also encourage users
to upload their networks into iNetModels and make those
networks accessible to a broader audience for creating an
open platform to share and visualize their networks. To our
knowledge, iNetModels is the �rst database that provides
associations between the multi-omics data obtained from
the same individuals in a physiological context rather than
using a text mining method.

PLATFORM DESCRIPTION AND FEATURES

iNetModels 2.0 is a web-based platform that includes two
main features: a database and an interactive visualization
of multi-omics network analysis (Figure 1B). It is an up-
dated and improved version of the previous work, TCSBN,
released in 2017 (11). First, we reconstructed the GCNs
presented in TCSBN based on more recent datasets and
expanded it to 85 different tissue- and cancer-speci�c net-
works. Second, we broadened the platform by adding 20
MOBNs frommultiple independent studies. Finally, we im-
proved the backend and frontend of the platform for a
better user experience. To our knowledge, this platform is
the only publicly available platform that enables the explo-
ration of MOBNs that were generated based on personal-
ized omics data.

Data sources

The tissue- and cancer-speci�c GCNs were constructed us-
ingGTEx (v8) and TCGA (v27.0-�x) primary tumour data,

respectively. We retrieved the gene transcripts per million
(TPM) from GTEx Portal and the fragment per kilobase
of transcript per million mapped reads (FPKM) �les of
the TCGA program from the Genomics Data Commons
(GDC) portal.
MOBNs were generated as the consensus of clini-

cal variables, plasma proteomics, plasma metabolomics
and metagenomics data based on from three indepen-
dent longitudinal wellness pro�ling studies: (i) SCAPIS-
SciLifeLab Wellness Pro�ling study (12): clinical variables,
metabolomics, proteomics and gutmetagenomics data from
4 visits over a year from 101 individuals (50–65 years old),
(ii) P100 study (13): clinical variables, metabolomics and
proteomics data collected from three visits of 108 individ-
uals (21–89+ years old) in over 9 months, (iii) Integra-
tive Personal Omics (14): clinical variables, metabolomics
and proteomics data from three visits over weight gain
and loss period (97 days) from 10 insulin-sensitive (IS) and
13 insulin-resistance (IR) overweight individuals. More-
over, we generated MOBNs for two different clinical tri-
als where combined metabolic activators (CMA) admin-
istered to NAFLD and COVID-19 patients: (i) NAFLD
CMAadministration: clinical variables, metabolomics, pro-
teomics and metagenomics data for the oral and gut micro-
biome of 31NAFLDpatients from three visits over 70 days,
and (ii) COVID-19CMAadministration: Clinical variables,
metabolomics and proteomics data collected 93 COVID-19
patients from two visits over 14 days.

Network generations

Each dataset was pre-processed independently before the
network generation. The gene expression data were �ltered
to remove lowly expressed genes (TPM < 1 or FPKM < 1)
in each tissue or cancer type to avoid bias. For the multi-
omics data, we corrected them by removing the effects of
age (in all networks) and sex (in the non-gender-speci�c
networks) using trimmed mean robust regression (13). We
combined the data from each omics into a matrix to gener-
ate a network and analysed it using the Spearman correla-
tion function from the SciPy package. Each data source was
processed independently. After �ltering for striking corre-
lations between the pairs, we �ltered the pairs with FDR
<0.05. Furthermore, we performed community detection
analysis using the Leiden algorithm (15) in the iGraph pack-
age to identify sub-network clusters for downstream analy-
sis.
Moreover, in the longitudinal wellness pro�ling stud-

ies, we calculated both cross-sectional and delta networks.
These networks are generated based on the methodology
presented in the P100 wellness study (13). Cross-sectional
networks were calculated by correlating data from all vis-
its to represent correlations in the context of individual-
ized variation. Meanwhile, delta networks were calculated
by correlating the analyte changes between visits to allow
users to investigate features that co-vary within the same
time intervals.
The number of the nodes and edges in the generated net-

works varying between 5673 (liver cancer)––12 581 (testis)
nodes and 63 292 (endocervix)––132 223 286 (testis) edges
in GCNs, whereas 279 (Delta IS)––1042 (NAFLD CMAs)
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A

B

Figure 1. (A) Summary of multi-omics data presented in iNetModels (B) Working page of iNetModels.

nodes and 1034 (Delta IS)––566 390 (SCAPIS––SciLifeLab
Longitudinal Male) edges in MOBNs (Supplementary Ta-
ble S1).

Features

The iNetModels platform provides users with a vast num-
ber of pre-computed biological networks. Usersmay choose
the suitable networks from tissue- or cancer-speci�c GCNs

to gender or IR/IS-speci�c MOBNs based on their study’s
focus. To search within a speci�c network (Figure 1B, Sup-
plementary Figure S1), �rstly, users need to select the spe-
ci�c network category (GCNs or MOBNs), then select the
speci�c network type (normal tissue, cancer, or multi-omics
study), and subsequently select the speci�c network. Fol-
lowing that, users need to input the commonly known
names of analytes (gene, protein, metabolite name etc.) of
interests using the free text and/or drop-list. Optionally,
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A

B

C

Figure 2. (A) Validation of the hypothesis about the supplementation of L-Serine that was associated with the decrease in the plasma triglycerides levels
and liver enzyme (ALAT) in the SCAPIS-SciLifeLab Wellness Pro�ling study. (LINK). (B) The two main components of the supplementation (L-cysteine
and L-serine) and their neighbouring analytes are presented based on multi-omics biological networks analysis (LINK). (C) The two main components
of the supplementation (L-cysteine and L-serine) and their associations with the species in the gut microbiome are presented (LINK). All networks in this
�gure were taken from the cross-sectional overall SCAPIS-SciLifeLab Wellness Pro�ling study.

users can �lter the network based on the analyte types (in
multi-omics networks) and statistical properties, e.g. FDR
and Spearman correlation ranking (positive, negative, or
both correlations). In the web interface, the number of
neighbouring nodes is limited to a maximum of 50 neigh-
bours per-queried nodes to avoid browser unresponsive-
ness. Furthermore, in the ‘additional options’ box, users can
choose to include neighbours’ connections in the networks

and disable network visualization when only network tables
are needed.
Once the network is generated, the users can interac-

tively explore the network, download the network as a �g-
ure and its content in a table format for further exploration
and downstream analysis. All information about each an-
alyte (network nodes) and related associations (network
edges) is shown in the table area: the analyte name, short
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description, unit, correlation and the P-value of the sig-
ni�cant associations etc. Besides, wherever possible, ana-
lytes are linked with external databases such as KEGG (16),
Human Protein Atlas (17–19), Uniprot (20) and HMDB
(21) to facilitate further biological interpretation and in-
vestigation. All of this information can be downloaded
directly and is compatible with other network analysis
tools and software, such as Cytoscape or iGraph package
in Python and R. By using these tools, users can merge
multiple networks and perform additional downstream
analysis.
Moreover, in the iNetModels 2.0, we implemented pro-

grammatic access to the database using an in-house-built
Python package that can be found under the ‘API’ section.
With the API, users can retrieve more extensive networks
(>50 neighbours per-queried nodes) programmatically. We
currently limit the query to one query per second.

Case study related to administration of CMA in NAFLD

One of our platform’s unique features and superior
strengths is that iNetModels 2.0 is the �rst and only plat-
form supporting the exploration of MOBNs based on per-
sonalized data. This is a great advantage to avoid bias since
all data were analysed in a paired manner.
In our recent study (22), we tested a potential therapeu-

tic strategy for NAFLD patients through CMA adminis-
tration. We provided CMA to 10 subjects involved in the
trial and collected plasma samples during the day to gen-
erated proteomics and metabolomics data. The data gener-
ated in the clinical trial were analysed using metabolic mod-
elling. The results of the analysis were validated by perform-
ing animal experiments, where L-serine was supplemented
to mouse and a reduction in the liver triglycerides (TG)
and markers of liver tissue functions, e.g. ALAT, ASAT,
and ALP was observed. We validated these results in two
independent MOBNs in iNetModels 2.0 (Figure 2A, Sup-
plementary Figure S2A). Our analysis revealed that two
metabolic activators, including L-serine and L-cysteine are
positively associated with metabolites related to branched
amino-acid metabolism (i.e. L-valine, L-isoleucine and L-
leucine) and negatively associated with plasma glucose
level, supporting the main �ndings of the study (Figure 2B).
The MOBNs also showed that L-serine is associated nega-
tively with cholesterol-related clinical variables (ApoB, TG)
and several other in�ammation markers (hsCRP, IL1RN
and CD300C).
Based on the same network, we can �lter to show only

speci�c analyte types (Figure 2C, Supplementary Figure
S2B–D). For example, we used the same network to show
the association of L-cysteine and L-serine with only the gut
microbiome (Figure 2C), as dysbiosis in the gutmicrobiome
has been associatedwithNAFLD (23,24).We observed that
L-cysteine had a positive correlation with the abundance of
Lachnospiraceae and a negative correlation with the abun-
dance of the Enterococcaceae family. Independent studies
have shown that the abundance of Lachnospiraceae was in-
creased in cirrhosis (25,26), whereas the abundance of Ente-
rococcaceae was decreased in cirrhosis (25). We also found
that the levels of both L-serine and L-cysteine were nega-
tively correlated with the abundance of the Desulfovibri-

onaceae family, which was increased with the severity of
NAFLD (27).

CONCLUSION

iNetModels is a unique platform that gathers a broad
spectrum of biological networks, from tissue- and cancer-
speci�c GCNs toMOBNs based on personalized data. This
platform may help researchers to perform exploration and
validation experiments, identify functional relationships be-
tween the analytes, and most importantly, provide new in-
sights into the biological experiments and ultimately iden-
tify potential drug targets and biomarkers. The case study
about the supplementation of CMA in NAFLD patients
has shown the ef�cient usage of this platform in testing and
validating hypotheses as well as con�rming results from ex-
periments or clinical trials. This platform is designed in a
user-friendly way and it is freely accessible to a wide range
of users, including bench scientists with limited or no for-
mal bioinformatics background. We also envisage that this
platformwill be a key resource for computational biologists
working in omics data integration, network science, systems
biology and systems medicine. In this context, we expect
iNetModels to be an essential resource for more in-depth
multi-omics analysis that may reveal novel molecular mech-
anisms underlying human wellness and disease.
In the future, in addition to the inclusion of more stud-

ies, we are planning to expand the functionalities of the
platform. First, with the increasing number of personalized
wellness pro�ling study, we plan to develop a method to
build a consensus MOBN based on various studies to in-
crease the robustness of the �ndings generated from this
platform. Second, we plan to add a functional analysis fea-
ture to show the enriched pathways or biological processes
by integrating the selected network information to other
databases, such as KEGG (16) or Metabolic Atlas (28). Fi-
nally, we will add integration with users’ quantitative omics
data or statistical inference results to identify the signi�-
cantly altered nodes in various perturbations.

DATA AVAILABILITY

iNetModels can be accessed freely by everyone at https:
//inetmodels.com without any limitation. All codes used to
generate the network and the network data are available un-
der the ‘API’ and ‘Help’ section of the website.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We appreciate the data sharing from dbGaP. This work
was supported in part by the Robert Wood Johnson Foun-
dation, the M.J. Murdock Charitable Trust, NIH grants
2P50GM076547, ES017885, RC2HG005805, and Arivale.
The Genotype-Tissue Expression (GTEx) Project was sup-
ported by the Common Fund of the Of�ce of the Director
of the National Institutes of Health, and by NCI, NHGRI,
NHLBI,NIDA,NIMH, andNINDS. The data used for the

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
9
/W

1
/W

2
7
1
/6

2
2
5
2
3
0
 b

y
 C

h
a
lm

e
rs

 U
n
iv

e
rs

ity
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 2

9
 J

u
ly

 2
0
2
1

https://inetmodels.com
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkab254#supplementary-data


W276 Nucleic Acids Research, 2021, Vol. 49, Web Server issue

analyses described in this manuscript were obtained from
the GTEx Portal on 10/21/20. The results shown here are
in part based upon data generated by the TCGA Research
Network: https://www.cancer.gov/tcga. The computations
and data handling were enabled by resources provided by
the SwedishNational Infrastructure for Computing (SNIC)
at UPPMAX, partially funded by the Swedish Research
Council through grant agreement no. 2018-05973.

FUNDING

Knut and Alice Wallenberg Foundation; Bash Biotech
Inc., San Diego, CA, USA. Funding for open access
charge: Knut and Alice Wallenberg Foundation; Bash
Biotech Inc, San Diego, CA, USA.
Con�ict of interest statement.CemGüngör, Buğra Çakmak,
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