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In general even in local theory the operator products at the same space-time point must 

be considered as a limit of non-local products. It is natural to confine non-locality on a 

space-like surface. In this case some operator products with three or more constituents 

possess an inevitable and purely quantum-mechanical surface dependence. Taking the pion

nucleon system as an example, we explicitly calculate in the order of g' this kind of the 

surface dependence of the interaction Hamiltonian. In order to obtain a consistent theory, 

this surface is required to be identified with the space-like surface in the Tomonaga-Schwinger 

equation. Then the interaction Hamiltonian needs an additional, non-canonical and surface

dependent term, which can be derived uniquely from the canonical Hamiltonian. The 

integrability of the Tomonaga-Schwinger equation is proved by taking account of this surface 

dependence together with the gradient term in the equal-time commutator. 

§ 1. Introduction and preliminaries 

In general, a product of three or more operators at the same space-time point, 

say 

A(x)B(x)C(x), (1·1) 

must be considered as the local limit of a non-local product such that 

lim A (x1) B (x2) C (xa) . (1·2) 
.Xj-+X 

This fact itself is well known and nothing new. The important thing which we 

want to point out in this paper is that, in some cases even in the limit, we cannot 

neglect the dependence of (1 · 2) on the surface passing through xh x 2 and x 3• 

If this is the case, the product cannot be specified by the constituents alone. 

The specification of the surface is indispensable. 

Now we note the following points. 

A) This surface dependence shows up only if (1 · 2) 1s singular in the local 

limit. 

B) The surface dependence, if it exists, is of course closely related to the 
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transformation property of the product under the Lorentz group. 

C) The transformation property is the one ·which should be determined m 

the process of studying the covariance of the theory. 

D) The covariance of the theory is guaranteed if and only if the interaction 

Hamiltonian satisfies the integrability condition1> of the Tomonaga-Schwinger equa
tion.*) 

Therefore, for our purpose, how to decide the interaction Hamiltonian is the 

first consideration. 

When we calculate a Feynman amplitude, which appears in some matrix ele

ments of the S-matrix or those of Heisenberg operators, we often encounter the 

fact that the correct amplitude is not obtained immediately from the formal and 

naive use of Feynman rules. To remedy such a situation, there are several 

method2J~;J which we call the regularization methods. The amplitude thus obtained 

does not depend on the choice of the regularization. 

At this stage, we want to note the following additional points: 

E) The naive use of Feynman rules may not give the correct answer only if 

the Feynman amplitude is singular in the sense that it contains the divergent 

subgraph. Then the naive amplitude involves the indefinite terms depending on 

the method of the manipulation. 

F) The indefinite terms never vanish. The regularized amplitude is the one 

obtained by subtracting these terms from the naive one. 

G) The existence of these terms violates the transformation properties under 

the Lorentz and/or the gauge group, as expected of the amplitude. Then, these 

terms are non-covariant and unphysical. 

H) The Feynman rules used in the naive manipulation for the amplitude 

are the calculation rules based on the canonical interaction Hamiltonian. 

I) The subtraction of some terms from the S-matrix is possible only through 

the introduction of new interaction Hamiltonian. 

Consider the case where the regularization is required in the evaluation of 

the S-matrix. Then, from A)~ I), we expect61 that the interaction Hamiltonian 

I-I which satisfies the integrability condition is not the canonical Hamiltonian I-I, 
but 

(1· 3) 

where HND is the new interaction Hamiltonian introduced to subtract the non

covariant terms. We have used the subscript ND since in our formulation it is 

normal dependent as will be seen later. 

It is already known that the above expectation is correct in the two-dimensional 

quantum electrodynamicsn and in the Thirring model. 8l In this paper we shall 

show by a direct calculation that the same is true in the four-dimensional 7r-1V 

system which is more realistic but involves divergences higher than those of the 

*1 Throughout this paper, we discuss in the interaction representation. 
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two-dimensional models. 

It is not trivial to extend the two-dimensional case to the four-dimensional 

one. In the former, the non-canonical gradient term appears in some equal-time 

commutators and it has been necessary and sufficient to take it into account. In 

the latter, to take the gradient term into account is, of course, important but that 

alone is insufficient. We must also consider the surface dependence mentioned in 

the beginning of this section. 

In § 2 we shall see hovY this kind of the surface dependence appears and 

how the interaction Hamiltonian satisfies the integrability condition. In § 3 we 

shall briefly discuss the result of § 2. Appendices A, B and C will be devoted 

to the proofs of some equations presented in § 2. 

vVhen all the non-covariant terms in a matrix element of a Heisenberg operator 

cannot be subtracted by the new interaction Hamiltonian, the usual definition of 

the Heisenberg operator is inadequate. This problem will be discussed elsewhere. 

§ 2. Interaction Hamiltonian, surface dependence 

of some operator products and integrability 

The covariant system is described by the Tomonaga-Schwinger equation 

H{x,rJ(x)}U(rJ,rJ0)=i 0 U(rJ,rJ0 ), 

orJ(x) 
(2 ·1) 

where H{x, rJ(x)} is the interaction Hamiltonian density and rJ(x) IS a space-like 

surface passing through the point x. The Hamil toni an density depends on both 

the point x and the surface rJ (x). The consistency condition for (2 ·1) 1s 

[H {x, rJ(x)}' H {y, rJ(y)}] +ioH ~~,(~~x)}___ioH~~C;~y)} = 0, (2 ·2) 

which is the so-called integrability condition. 

Now we confine ourselves to the discussion of the TC-N system. The canonical 

interaction Hamiltonian IS 

Hc(x) =ig(/)(x)r,tj;(x)if;(x) (2. 3) 

which corresponds to (1 · 1) . 
product (2 · 3), we replace it 

sible redefinition of (2 · 3) in 

In order to clarify the definition of the operator 

by a limit of a non-local product like (1· 2). A pos

the limiting form is 

vvhere F(x; x 1 , Y1 , z 1 ) is a form factor describing the non-locality. In principle we 

can take any surface as rJ (x) on the right-hand side of (2 · 4). However, in order 

that the right-hand side is the part of the interaction Hamiltonian, rJ(x) should 

be identified with the space-like surface on which the Hamiltonian may depend. 

If vve apply (2 · 4) to the Feynman diagram having no divergence, it gives the 
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same results as (2 · 3) does. In the flat-surface limit, a simple example of (2 · 4) 

IS 

(2·5) 

with 

(2 ·6) 

H,(x, flat) thus defined is Hermitian. 

Now we are in a position to obtain the Hamiltonian, which should be added, 

in the sense of I) in § 1, to cancel the non-covariant terms in the S-matrix. The 

concrete calculation in Appendix A shows that it depends on the unit normal nP(x) 

at the point x on the surface rJ and has the form in the order of g', 

HND{x, n (x)} =-- (/j(x) r. (8 -8)¢ (x) + -¢ (x) 0¢ (x) if [ - - 2 
32n2 3 

(2. 7) *) 

As has been discussed in § 1, our next task is to prove that 

H{x, u(x)} =H,{x, u(x)} +HND{x, n(x)} (2·8) 

is the integrable interaction Hamiltonian. For simplicity, we prove (2·2) in the 

flat-surface limit. Then we examine 

[H,(x, flat), H,(y, flat)]o(x0 -Yo), (2·9) 

[ oH,{x,u(x)}J "'( _ )-( ) ------ u Xo Yo x~y au (y) flat 
(2 ·10) 

and 

[ OHND{x, n(x)}J -~ ( ) ( ) u Xo-Yo - x~y 

ou(y) flat 
(2 ·11) 

up to the order of g2 • 

As will be proved m Appendices B and C, the results for the expressions 

(2 · 9) and (2 ·10) are given by 

and 

[H, (x, flat), H, (y, flat)] o (xo- Y 0 ) 

=l[ifj(x)r4(8i-6i)¢(x)]8io4(x-y)- (x~y) 
12n2 

(2 ·12) 

*l We denote the four-dimensional scalar product by a·b or a"b", whereas the three-dimensional 

scalar product by a,b,. Thus, a·b=a"b"=a,b,-a,bo. 
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Inevitable Surface Dependence of Some Operator Products 291 

iU1 (x0,oo) [oH, {x, 15 (x)} - (x~y)] i5 (xo- Yo) U (xo, - 00 ) 

015 (y) fiat 

(2 ·13) 

The reason why we consider the quantities sandwiched in between Ut (x0 , oo) and 

U(x0, - oo) in (2 ·13) is that (2 · 2) is the operator equation in the Hilbert space 

spanned by the physical states. In fact, such quantities appear directly in the 

consistency condition of (2·1). For (2·12), the consideration of sandwiching gives 

no effect since the commutator is already of the order of g". 

The left-hand side of (2 ·12) vanishes if we calculate it naively. However, 

the rigorous estimation gives us purely quantum-mechanical*l gradient terms written 

down on the right-hand side. This is just like the Schwinger term in the com

mutator between the components of a vector. The left-hand side of (2 ·13) also 

vanishes if we calculate it naively. Again the rigorous estimation gives us the 

purely quantum-mechanical *J gradient terms written down on the right-hand side. 

These come from the surface dependence due to the definition of the product 

discussed in § 1. 
The right-hand side of (2 ·13) does not contain the term with the higher 

derivatives of o4 (x-y) so that H,{x, IJ(x)} (2·4) is independent of the curvature 

of IJ(x). 
The expression (2 ·11) can be evaluated by using (2 · 7) and 

The result 1s 

i[iJHND{x,n(x)} (x~y)] o(xo-Yo) 
015 (y) fiat 

g2 - ~ - - +-
= --[¢ (x) {rica. -84) + r4 (8; -8;) }¢(x) 

32n2 

(2 ·14) 

(2 ·15) 

In (2 ·15), again we have no problem of sandwiching by U1 and U since l-IND is 

of the order of g2 • 

Thus the integrability condition (2 · 2) 1s established 111 the flat-surface limit, 

smce 

*' If we write h explicitly, the right-hand side is proportional to h'. 
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(2.12) + (2.13) + (2.15) 

=L[q;{co+ 1-1)ric84-84) + (~- ~ -1 \r4 c8i- 8J}¢ 
32n2 3 3 ) 

+(0+!- !)¢a48i¢}M4(x-y)- (x07y) 

=0. (2 ·16) 

§ 3. Discussion 

In the preceding section, vve have studied how the interaction Hamiltonian in 

the quantum theory should be constructed from the canonical and classical Hamilton

Ian. At that time we faced the problem of the definition of the products of the 

operators at the same space-time point. This problem is peculiar to the quantum 

theory. To solve this, we have assumed that the local product is the limit of a 

non-local product spread over a space-like surface. 

As a result of this limiting procedure, non-commutativity arises between some 

operator products and surface dependence appears in some operator products. On 

the other hand, the Hamiltonian itself is by nature surface dependent. Then, 

vve have two surfaces; the surface appearing in the definition of the operator 

product and the surface necessary to specify the Hamiltonian. It is our assertion 

that these two surfaces should be identical. Consequently we have been able to 

construct the consistent quantum theory uniquely for the given classical theory by 

taking the non-commutativity and the surface dependence into account. 

This is a support for our standpoint that the interaction Hamiltonian is the 

limit from the space-like direction of the non-local product of the constituent operators. 

Since the operators are separated space-likely, they commute with each other. 

Therefore, when we construct quantum field theory, the problem with respect to 

the order of the operators does not arise. Furthermore in our theory there is 

no ambiguity to obtain quantum-mechanical results from the given classical theory. 

These are the characteristic features which should be required for the correct 

theory, because we kno·w that the quantum-mechanical results can be obtained 

without ambiguity by Feynman rules with the regularization. 

Next we want to remark on inevitability of the surface dependence. Clearly 

this dependence arises as a consequence of the limiting procedure on the special 

surface. If the limit is the symmetrized one in the four-dimensional space-time, 

this dependence disappears. However, in this case the Hamiltonian has the non

locality in the time direction. Furthermore the unique separation of the indefinite 

term stated in E) in § 1 is not easy. It seems to us that the symmetrized limit 

formulation is impossible. Then we conclude that the surface dependence is inevita

hle. 

In extracting the surface dependence it is essential to consider the quantity 
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Inevitable Surface Dependence of Some Operator Products 293 

sandwiched by U' and U. Then, U in mu theory is not unitary. This is the 

outcome of taking all the limits in IIr simultaneously. The meaning of the limit 

in II, should be understood in this wa,·. The spirit of the simultaneous limit 

corresponds exactly to that of the dimensional regularization,4 ) where the number 

of dimensions in all quantities is brought simultaneously to four after all calcula

tions are done. This correspondence is clearer in the previous work.') The prob

lem of non-unitary U may not arise in the formulation with the independent limit. 

However, in our opinion. the independent limit formulation is impossible for the 

singular case such as the 1:-~V system. If possible, we should have a corresponding 

regularization method. 

The non-cm·ariant terms discussed in this paper are ail in one-loop level. 

Ne\\. non-covariant terms do not exist. For example, although the vertex correc·· 

tion diverges, it is free from the non-covariant term. The interaction Hamiltonian 

(2 · 8) with (2 · 7) is correct in the one-loop level, namely up to the order of g2• 

Appendix A 

--Sejhzration of indefinite terms and determination of HNn--

As stated in D) in § L the indefinite, non-covariant and unphysical terms 

appear only if the Feynm<m diagram contains the divergent subgraph. In order to 

obtain these terms up to the order of (] 2, 've examine the second-order corrections 

to the nucleon and the pion propagators. 

The correction to the nucleon propagator clue to the interaction Hamiltonian 

(2 · 5) in the flat surface is given by 

Then, 

where 

l =.d+J'' 

JJ' -=n (1-- a) P2 + (1- a) m 2 + ct/12 • 

(A·l) 

(A·2) 

(A <3) 

(A·4l 

By ,-irtue of the exponential factor, \Ye can carry out k-integrations without any 

ambiguity by using the integration formulas in the Appendix of our preYious \York."' 

Omitting the terms which vanish in the local limit and using 
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(A·5) 

(A·6) 

we have 

:L,;<2l (p) = - _![___ lim f d 3 L1 d 3 Ll' f (L1 2) f (L1' 2) 
8n2 Jaat 

X [ fda(icq·P+m)log r~IJI 

ig2 
- 16n•riPi, (A·7) 

where r=l.781 is the Euler constant. 

In our formulation, the indefinite and non-covariant term never contains the 

time-component. This is the natural consequence of the limiting procedure from 

the space direction. We can uniquely separate the term composed of only the 

space-components and having wrong transformation property. Thus only the last 

term of (A· 7) is indefinite and non-covariant. More detailed discussion has been 

done in the earlier studies. 51 ' 91 

Similarly, for the correction to the pion propagator, 

JI<Z) (p) o'(p-p') = - ig2 lim r d3 L1 d3 L1 If (J2) f (LI '2) Sd'x d•y 
16n4 Jaat 

X Tr [r5SF{ (y- Ll') - (x + J) }r5SF{ (x- Ll) - (y + J')}] eip·x-ip'·v 

= _ _![___lim f d 3LI d 3 Ll' f(LI 2)j(L1'2) [ ~ - m 2 _ _1!_ 
4n2 Jaat L1 2 6 

+2 fda{m 2 +3P2a(l-a)}log rM'Ill]o'(p-p') 

+ 2~~2p/i]' (p-p')' (A·8) 

where 

M'"=m"+P2a(l-a). (A·9) 

The last term is non-covariant. 
The normal dependent Hamiltonian to cancel out the non-covariant terms in 

(A·7) and (A·8) is 

Sd 3xHNn(x, flat) =___S[__ S d 3x[CfJ(x)rJ)d;(x) +_l¢(x)8/¢(x)J. (A·lO) 
16n2 3 
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Inevitable Surface Dependence of Some Operator Products 295 

From this, we obtain 

(A·ll) 

as the simplest Hermitian form. In the curved surface this becomes (2 · 7). 

Appendix B 

--Proof of (2·12)--

Using the canonical commutation relation 

we have 

[He (:z:, flat), He (y, flat)] 0 (:z:o --Yo) 

(B·l) 

=lim f d 3A d 3A' f(A 2)f(A' 2) g2 [ip (:z: + A)r.¢ (y- A') 04 { (.r- A) - (y +A')} 
Jflat 

- ip(y + A')r4¢(.r- A)o4 { (.r+ A)- (y- A')} ]¢(.r)¢(y). (B ·2) 

The right-hand side has nonvanishing contribution only from the singular part of 

the operator products. Since the singularities of ip (.r) r.t/J (y) and ¢ (.r) ¢ (y) are 

ip(.r)r4t/J(y)o(.ro-Yo)=O, 

1 1 
¢ (.r) ¢ (y) 0 (.ro- Yo)=- 0 (.ro- Yo) 

4n-2 (.r-y)2 

at x=y, (B·2) becomes 

92
2 lim f d 8A d8A'f(A 2)f(A'2)~ip(.r)r.[ -1+li(8i-8;)]¢(.r) 

4n- Jflat A 2 

xli2M4 (.r-y)- (.r~y) 

(B-3) 

(B·4) 

(B·5) 

with l (A· 3). By applying (A· 5) and (A· 6) to (B · 5) we obtain (2 ·12). 

Appendix C 

--Proof of (2·13)--

The canonical interaction Hamiltonian, considered as a local limit of a non

local product, may have a surface dependence as is seen in (2 · 4). Assuming that 

this surface is identical to the space-like surface appearing in the Tomonaga

Schwinger equation, we have 

·[oHc{.r,IJ(.r)} ( >] I>( ) t - .r~y u X 0 -Yo 
OIJ (y) flat 

= -ig lim f d 3Af(A2) [ip(.r+ A)8.r5¢(.r-A)¢(.r)o4 (.r+ A -y) 
Jflat 
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(C ·1) 

Using the free field equations of cf; and (/) in (C ·1). we obtain, up to the 

order of g2 

iUt (xo, 00) [ oHco~C:)(x)}- (xBy)l} (xo- Yo) U(xo, -00) 

=ig2 lim r d3L1 d3Ll'f(LJ2)J(LJ'2) sd4z 
Jaat 

X [ {(/J(x+ J) (y;8i-m!r4r5SF(x-z-l)r5L1F(x-z)<J;(z- .:1') 

+ (/J(z+ f1')r5SF(Z -x-Lf) (- yi8i- m)r4y5.:JF(z -x) <j; (x- .:1)} 04 (.r + .:J- y) 

+ {(/) (x+ .:J)r5r4 (y;{}; + m) SF (x- z ---l)r5L1F(x -- z) <J; (:::: -- .:J') 

+ (/J(z+ Ll')r5SF(z -x -l)r5r4 Cr/J; + m) <J; (x- .:1) L1F(z -x)} o4 (x- .:1- y) 

- Tr{r4r5SF(x-z -l)r5SF(z-x -l) (- ri8i- m)} rP (x) rP (z) 04 (.r + .:1-- y) 

- Tr{r5r4 CrJJi + m) SF(x -z-l) r5SF(z -x -l)} rP (x) rP (z) o4 (x- .:1- y) J 
- (xBy) (C ·2) 

with l (A· 3), where G; is the differentiation with respect to the argument of 

the nearest propagator or operator. There is a one-loop diagram in each term 

of (C · 2). We can perform the integration on the loop momentum by the standard 

manner as in Appendix A. 

Noting that only the linear and higher singularities on l contribute to (C·2), 

neglecting the term which vanishes in the limit and using (A· 5) and (A· 6), we 

get (2·13). 
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