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Abstract
In this paper, we present a new framework of bi-level unconstrained minimization
for development of accelerated methods in Convex Programming. These methods
use approximations of the high-order proximal points, which are solutions of some
auxiliary parametric optimization problems. For computing these points, we can use
different methods, and, in particular, the lower-order schemes. This opens a possibility
for the latter methods to overpass traditional limits of the Complexity Theory. As an
example, we obtain a new second-order method with the convergence rate O

(
k−4

)
,

where k is the iteration counter. This rate is better than the maximal possible rate of
convergence for this type ofmethods, as applied to functionswith Lipschitz continuous
Hessian.Wealso present newmethodswith the exact auxiliary searchprocedure,which
have the rate of convergence O

(
k−(3p+1)/2

)
, where p ≥ 1 is the order of the proximal

operator. The auxiliary problem at each iteration of these schemes is convex.

Keywords Convex optimization · Tensor methods · Proximal-point operator · Lower
complexity bounds · Optimal methods

Mathematics Subject Classification 90C25

1 Introduction

Motivation In the last decade, in Convex Optimization we can observe a high activity
in the development of the accelerated high-order methods and proving for them the
lower complexity bounds. (see [1,2,5,9,12]). At this moment, for methods of any order
there exists a natural problem class, for which we know the accelerated methods. For
example, functions with Lipschitz continuous gradients, can be naturally minimized
by the first-order schemes, which can demonstrate in this case an unimprovable con-
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vergence rate of the order O
(
k−2

)
, where k is the iteration counter. For functions with

Lipschits continuous Hessians, we can apply the second-order methods with the rate
of convergence going up to O

(
k−7/2

)
, etc.

This one-to-one correspondence between the type of the methods and the particular
problem class allows us to speak about optimal methods of certain order, which have
unimprovable convergence rate. However, recently in [21] there were presented new
results which break down this peaceful picture. It was shown that the special superfast
second-order methods can converge with the rate O

(
k−4

)
, which is faster than the

lower bound O
(
k−7/2

)
for these type of schemes. Of course, there is no contradiction

with the Complexity Theory. The classical lower bound for the second-order schemes
was obtained for functions with Lipschitz continuous Hessian, and in [21] we worked
with the functions having Lipschitz continuous third derivative. In any case, this is
the first example of successful expansion of the lower-order methods at the territory
traditionally reserved for the higher-order schemes. In this paper, we are trying to
analyze and explain this phenomena in some general framework.

At each iteration of the superfast methods from [21], we need to solve a serious
auxiliary problem requiring additional calls of oracle (the number of these calls is
bounded by the logarithm of accuracy). Therefore, in our developments we decided to
employ one of the most expensive operations of Convex Optimization, the proximal-
point iteration.

The proximal approximation of function f (·), defined by

ϕλ(x) = min
y

{
f (y) + 1

2λ‖y − x‖2
}
, λ > 0, (1)

was introduced by Moreau [15]. Later on, Martinet [14] proposed the first proximal-
point method based on this operation. The importance of this construction for
computational practice was questionable up to the developments of Rockafellar [25],
who used the proximal-point iteration in the dual space for justifying the Augmented
Lagrangians. This dual scheme was accelerated by Güller [10], who introduced in this
method some elements of the Fast Gradient Method from [16]. Some attempts were
made by Teboulle and others [11,26] in studying the proximal-point iteration with
non-quadratic non-Euclidean kernel. However, during decades this idea was mainly
considered as a theoretical achievement which hardly can be used in the efficient
optimization algorithms.

In this paper, we come back to this old idea, having in mind another type of kernel
functions. Our goal is the development of accelerated methods for Unconstrained
Convex Optimization. Therefore, we suggest to replace ‖y − x‖2 in (1) by ‖ · ‖p+1,
with p ≥ 1. We call the corresponding proximal step the pth-order proximal-point
operation. This terminology is justified by two facts.

Firstly, in Sect. 2, we show that the corresponding simple proximal-point method
converges as O

(
k−p

)
. The rate of convergence of the accelerated version of this

method is O
(
k−(p+1)

)
. In both cases, we can use appropriate approximations of the

proximal point.
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Secondly, in Sect. 3, we show that this approximation can be computed by one
step of the pth order tensor method provided that the pth derivative of the objective
function is Lipschitz continuous.

Ourmain results are presented in Sect. 4. In this section,we introduce the framework
of bi-level unconstrained minimization (BLUM), which can be used for development
of new and efficient optimization methods. In this framework, we can choose indepen-
dently the order of the upper-level proximal-point tensor method and the lower-level
method for computing an appropriate approximation to the proximal point. It appears
that this strategy opens a possibility for the lower-order methods to overpass the lim-
its given by the traditional Complexity Theory. Note that a similar phenomena was
already observed in the framework of non-convex optimization [7,8]. For example,
in the latter paper, zero- and first-order oracles were proposed for a smoother C

2-
problems with Lipschitz-continuous Hessian, that recover the complexity bounds of
methods using second derivatives. However, for Convex Optimization such a situation
is new.

For illustrating the above phenomena, we analyze efficiency of the second-order
method in approximating the third-order proximal point.Using the relative smoothness
condition [4,13], we develop a very efficient second-order method for computing this
approximation. The global rate of convergence of our upper-level method is O

(
k−4

)
,

and the complexity of the lower-level scheme depends logarithmically on the accuracy
parameters. The new second-order method can be applied to functions with Lipschitz
continuous third derivative.

In the next Sect. 5, we introduce even more powerful operation, the proximal-point
iterationwith line search. As comparedwith (1) it has onemore variable in the auxiliary
convex minimization problem. We prove that under assumption of the exact search,
the corresponding accelerated method converges as O

(
k−(3p+1)/2

)
. Our approach has

the same near-optimal complexity bound as [6]. However, its search procedures are
based on convex auxiliary problems and therefore they are easier to implement.

In the last Sect. 6, we discuss our results and directions for future developments.
Notation and generalities In what follows, we denote by E a finite-dimensional real
vector space, and by E

∗ its dual space composed by linear functions on E. For such a
function s ∈ E

∗, we denote by 〈s, x〉 its value at x ∈ E.
Let us measure distances in E and E

∗ in a Euclidean norm. For that, using a self-
adjoint positive-definite operator B : E → E

∗ (notation B = B∗ 	 0), we define

‖x‖ = 〈Bx, x〉1/2, x ∈ E, ‖g‖∗ = 〈g, B−1g〉1/2, g ∈ E∗.

Sometimes, it will be convenient to treat x ∈ E as a linear operator from R to E, and
x∗ as a linear operator from E

∗ to R. In this case, xx∗ is a linear operator from E
∗ to

E, acting as follows:

(xx∗)g = 〈g, x〉x ∈ E, g ∈ E
∗.
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For a smooth function f : E → R denote by ∇ f (x) its gradient, and by ∇2 f (x)
its Hessian evaluated at point x ∈ E. Note that

∇ f (x) ∈ E
∗, ∇2 f (x)h ∈ E

∗, x, h ∈ E.

Using the above norm, we can define the standard Euclidean prox-functions

dp+1(x) = 1
p+1‖x‖p+1, x ∈ E,

where p ≥ 1 is an integer parameter. These functions have the following derivatives:

∇dp+1(x) = ‖x‖p−1Bx, x ∈ E,

∇2dp+1(x) = ‖x‖p−1B + (p − 1)‖x‖p−3Bxx∗B � ‖x‖p−1B.

(2)

Note that function dp+1(·) is uniformly convex (see, for example, Lemma 4.2.3 in
[18]):

dp+1(y) ≥ dp+1(x) + 〈∇dp+1(x), y − x〉 + 1
p+1

( 1
2

)p−1 ‖y − x‖p+1, x, y ∈ E.

(3)

In what follows, we often work with directional derivatives. For p ≥ 1, denote by

Dp f (x)[h1, . . . , h p]

the directional derivative of function f at x along directions hi ∈ E, i = 1, . . . , p.
Note that Dp f (x)[·] is a symmetric p-linear form. Its norm is defined in a standard
way:

‖Dp f (x)‖ = max
h1,...,h p

{∣
∣∣Dp f (x)[h1, . . . , h p]

∣
∣∣ : ‖hi‖ ≤ 1, i = 1, . . . , p

}
. (4)

If all directions h1, . . . , h p are the same, we apply notation

Dp f (x)[h]p, h ∈ E.

Note that, in general, we have (see, for example, Appendix 1 in [23])

‖Dp f (x)‖ = max
h

{∣∣
∣Dp f (x)[h]p

∣∣
∣ : ‖h‖ ≤ 1

}
. (5)

In this paper, we work with functions from the problem classes Fp, which are
convex and p times continuously differentiable on E. Denote by Mp( f ) the uniform
upper bound for the pth derivative:

Mp( f ) = sup
x∈E

‖Dp f (x)‖. (6)
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One of our main results is based on the following relation between the second, third
and fourth derivatives of convex function (see Lemma 3 in [20]):

D3 f (x̄)[h]  1
ξ
∇2 f (x̄) + ξ

2M4( f )‖h‖2B, x̄, h ∈ E, (7)

where ξ is an arbitrary positive number.

2 Inexact high-order proximal-point steps

Consider the following optimization problem:

min
x∈E f (x), (8)

where f (·) is a differentiable closed convex function. Denote by x∗ one of its optimal
solutions and let f ∗ = f (x∗).

All methods presented in this paper are based on the pth-order proximal-point
operators, defined as follows:

proxpf /H (x̄) = argmin
x∈E

{
f px̄,H (x)

def= f (x) + Hdp+1(x − x̄)
}
, (9)

where H > 0 and p ≥ 1. The properties of the standard first-order proximal-point
operator

prox f /H (x̄) = argmin
x∈E

{
f (x) + H

2 ‖x − x̄‖2
}

are studied very well in the literature (e.g. [24]). However, we will see that the high-
order proximal-point methods converge much faster. The main goal of this paper is
to establish the global rate of convergence of these methods in accelerated and non-
accelerated forms and complement this information by the complexity of computing
an appropriate inexact proximal-point step (9).

Indeed, very often, the proximal-point operator (9) cannot be computed in a closed
form. Instead, we have to use an approximate solution of this problem obtained by an
auxiliary optimization procedure. Let us introduce the set of acceptable solutions to
problem (9), that is

Ap
H (x̄, β) =

{
x ∈ E : ‖∇ f px̄,H (x)‖∗ ≤ β‖∇ f (x)‖∗

}
, (10)

where β ∈ [0, 1) is a tolerance parameter. Note that proxpf /H (x̄) ∈ Ap
H (x̄, β). How-

ever, since ∇ f px̄,H (x̄) = ∇ f (x̄), we see that x̄ /∈ Ap
H (x̄, β) unless x̄ = x∗.
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Lemma 1 Let T ∈ Ap
H (x̄, β). Then

(1 − β)‖∇ f (T )‖∗ ≤ H‖T − x̄‖p ≤ (1 + β)‖∇ f (T )‖∗, (11)

〈∇ f (T ), x̄ − T 〉 ≥ H

1 + β
‖T − x̄‖p+1. (12)

Moreover, if β ≤ 1
p , then

〈∇ f (T ), x̄ − T 〉 ≥
[
1−β
H

] 1
p ‖∇ f (T )‖

p+1
p∗ . (13)

Proof Indeed, inequality (11) follows from representation

∇ f px̄,H (T )
(2)= ∇ f (T ) + H‖T − x̄‖p−1B(T − x̄). (14)

Further, denote r = ‖T − x̄‖. Then, squaring both parts in inequality (10), we have

‖∇ f (T )‖2∗ + 2Hr p−1〈∇ f (T ), T − x̄〉 + H2r2p
(14)≤ β2‖∇ f (T )‖2∗.

This inequality can be rewritten as follows:

〈∇ f (T ), x̄ − T 〉 ≥ κ(r)
def= 1−β2

2Hr p−1 ‖∇ f (T )‖2∗ + H
2 r

p+1

(11)≥ 1−β2

2Hr p−1 · H2r2p

(1+β)2
+ H

2 r
p+1 = Hr p+1

1+β
,

(15)

and this is inequality (12). Let us compute the derivative of κ(·):

κ ′(τ ) = −(p − 1) 1−β2

2Hτ p ‖∇ f (T )‖2∗ + (p + 1) H2 τ p, τ > 0.

Note that r
(11)≥ r̂

def=
[
1−β
H ‖∇ f (T )‖∗

] 1
p
. Since

κ ′(r̂) = −(p − 1) (1−β2)H
2H(1−β)

‖∇ f (T )‖∗ + (p + 1) H2 · 1−β
H ‖∇ f (T )‖∗

= ‖∇ f (T )‖∗
[
1−β
2 (p + 1) − 1+β

2 (p − 1)
]

= ‖∇ f (T )‖∗ [1 − β p] ≥ 0,

we have 〈∇ f (T ), x̄ − T 〉 ≥ κ(r) ≥ κ(r̂)+ κ ′(r̂)(r − r̂) ≥ κ(r̂), and this is inequality
(13). ��
The following corollary is a trivial consequence of convexity of f (·) and inequality
(13).
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Corollary 1 Let T ∈ Ap
H (x̄, β) and β ≤ 1

p . Then

f (x̄) − f (T ) ≥
[
1−β
H

] 1
p ‖∇ f (T )‖

p+1
p∗ . (16)

Let us justify now the rate of convergence of the basic inexact high-order proximal-
point method:

xk+1 ∈ Ap
H (xk, β) , k ≥ 0. (17)

For analyzing this scheme, we need the following Lemma A.1 from [19].

Lemma 2 Let the sequence of positive numbers {ξk}k≥0 satisfy the following condi-
tion:

ξk − ξk+1 ≥ ξ1+α
k+1 , k ≥ 0, (18)

where α ∈ (0, 1]. Then for any k ≥ 0 we have

ξk ≤ ξ0(
1+ αk

1+α
ln(1+ξα

0 )
)1/α ≤ [(

1 + 1
α

)
(1 + ξα

0 ) · 1
k

] 1
α . (19)

Denote by D0 = max
x∈E {‖x − x∗‖ : f (x) ≤ f (x0)} the radius of the initial level set

of the objective function in problem (8).

Theorem 1 Let the sequence {xk}k≥0 be generated by method (17). Then for any k ≥ 0
we have

f (xk) − f ∗ ≤ 1
2

(
1

1−β
HDp+1

0 + f (x0) − f ∗
)

·
(
2p+2
k

)p
, k ≥ 1. (20)

Proof Indeed, in view of Corollary 1, for any k ≥ 0 we have

f (xk) − f (xk+1) ≥
[
1−β
H

] 1
p ‖∇ f (xk+1)‖

p+1
p∗ ≥

[
1−β
H

] 1
p
(

f (xk+1)− f ∗
D0

) p+1
p

.

Denoting now ξk = 1−β

HDp+1
0

( f (xk) − f ∗) and α = 1
p , we get the condition (18) valid

for all k ≥ 0. Hence, in view of Lemma 2, we have

ξk ≤ [(
1 + 1

α

)
(1 + ξα

0 ) · 1
k

] 1
α ≤ (

1 + 1
α

) 1
α 2

1−α
α (1 + ξ0) · ( 1

k

) 1
α .

And this is inequality (20). ��
Note that the rate of convergence (20) ofmethod (17) does not depend on the properties
of function f (·). This means that the actual complexity of problem (8) for this method
is reflected somehow in the complexity of finding the point xk+1 ∈ Ap

H (xk, β). We
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will discuss this issue in the remaining part of this paper. To conclude this section, let
us present an accelerated variant of the Inexact Proximal-Point Method.

Our presentation is very similar to the justification of Accelerated Tensor Methods
in Section 2 in [21]. Therefore we omit some technical details. Denote

c(p) =
[
1−β
H

] 1
p
. (21)

And let us choose β ∈ [0, 1
p ]. Then, for any T ∈ Ap

H (x̄, β), we have

f (x̄) − f (T )
(16)≥ c(p)‖∇ f (T )‖

p+1
p∗ . (22)

Define now the sequence of scaling coefficients

Ak = ( 1
2c(p)

)p (
k

p+1

)p+1 (21)= 2(1−β)
H

(
k

2p+2

)p+1
,

ak+1
def= Ak+1 − Ak, k ≥ 0.

(23)

Note that k p+1 ≥ (k+1)p+1+(p+1)(k+1)p ·(−1). This inequality can be rewritten
in the following form:

a
p+1
p

k+1 ≤ 1
2c(p)Ak+1, k ≥ 0. (24)

Consider the following high-order proximal method.

Inexact Accelerated pth-Order Proximal-Point Method

Initialization. Choose x0 ∈ E, β ∈ [0, 1
p ], andH > 0. Define

coefficients Ak by (23) and function ψ0(x) = dp+1(x − x0).

Iteration k ≥ 0.

1. Compute vk = argmin
x∈E ψk(x) and choose yk = Ak

Ak+1
xk + ak+1

Ak+1
vk .

2. Compute Tk ∈ Ap
H (yk, β) and update

ψk+1(x) = ψk(x) + ak+1[ f (Tk) + 〈∇ f (Tk), x − Tk〉].

3. Choose xk+1 with f (xk+1) ≤ f (Tk).

(25)
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Note that computation of point vk at Step 1 can be done in a closed form.

Theorem 2 Let sequence {xk}k≥0 be generated by method (25). Then, for any k ≥ 1,
we have

f (xk) − f ∗ ≤ H
2(p+1)(1−β)

(
2p+2
k

)p+1 ‖x0 − x∗‖p+1. (26)

Moreover, ‖vk − x∗‖p+1 ≤ 2p−1‖x0 − x∗‖p+1.

Proof First of all, note that by induction it is easy to see that

ψk(x) ≤ Ak f (x) + dp+1(x − x0), x ∈ E. (27)

In particular, for ψ∗
k

def= min
x∈E ψk(x) and all x ∈ E, we have

Ak f (x) + dp+1(x − x0)
(27)≥ ψk(x)

(3)≥ ψ∗
k + 1

p+1

( 1
2

)p−1 ‖x − vk‖p+1. (28)

Let us prove by induction the following relation:

ψ∗
k ≥ Ak f (xk), k ≥ 0. (29)

For k = 0, we have ψ∗
0 = 0 and A0 = 0. Hence, (29) is valid. Assume it is valid for

some k ≥ 0. Then

ψ∗
k+1 = min

x∈E

{
ψk(x) + ak+1[ f (Tk) + 〈∇ f (Tk), x − Tk〉]

}

(28)≥ min
x∈E

{
ψ∗
k + 1

p + 1

(
1

2

)p−1

‖x − vk‖p+1 + ak+1[ f (Tk) + 〈∇ f (Tk), x − Tk〉]
}
.

Note that

ψ∗
k + ak+1[ f (Tk) + 〈∇ f (Tk), x − Tk〉]
(29)≥ Ak f (xk) + ak+1[ f (Tk) + 〈∇ f (Tk), x − Tk〉]
≥ Ak+1 f (Tk) + 〈∇ f (Tk), ak+1(x − Tk) + Ak(xk − Tk)〉
= Ak+1 f (Tk) + 〈∇ f (Tk), ak+1(x − vk) + Ak+1(yk − Tk)〉,

where the last equality follows from the relation Akxk = Ak+1yk − ak+1vk .
Further, for all x ∈ E we have (see, for example, Lemma 2 in [17])

1

p + 1

(
1

2

)p−1

‖x − vk‖p+1 + ak+1〈∇ f (Tk), x − vk〉

≥ − p

p + 1
2

p−1
p

(
ak+1‖∇ f (Tk)‖∗

) p+1
p

.
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Finally, since Tk ∈ Ap
H (yk, β), we get

〈∇ f (Tk), yk − Tk〉
(12)≥ c(p)‖∇ f (Tk)‖

p+1
p∗ .

Putting all these inequalities together, we obtain

ψ∗
k+1 ≥ Ak+1 f (Tk) − p

p+12
p−1
p

(
ak+1‖∇ f (Tk)‖∗

) p+1
p + Ak+1c(p)‖∇ f (Tk)‖

p+1
p∗

= Ak+1 f (Tk) + ‖∇ f (Tk)‖
p+1
p∗

(
Ak+1c(p) − p

p+12
p−1
p a

p+1
p

k+1

)

≥ Ak+1 f (Tk) + ‖∇ f (Tk)‖
p+1
p∗

(
Ak+1c(p) − 2a

p+1
p

k+1

)

(24)≥ Ak+1 f (Tk) ≥ Ak+1 f (xk+1).

It remains to note that in view of relations (27) and (29), we have

f (xk) − f ∗ ≤ 1
Ak
dp+1(x∗ − x0)

(23)= H
2(1−β)

(
2p+2
k

)p+1 · 1
p+1‖x∗ − x0‖p+1.

In order to get the remaining bound for vk , we need to apply inequalities (28)
and (29) with x = x∗. ��
We can see that method (25) is much faster than the basic method (17). Its rate of
convergence is also independent on the properties of the objective function. Hence,
in order to evaluate its actual performance, we need to investigate the complexity of
finding a point T ∈ Ap

H (x̄, β). This will be done in the remaining sections of the
paper.

3 Approximating proximal-point operator by tensor step

Let us show that with appropriate values of parameters, the inclusion T ∈ Ap
H (x̄, β)

can be ensured by a single step of the Basic Tensor Method of degree p. Firstly, recall
some simple facts from the theory of tensor methods.

For function f (·), let us assume that Mp+1( f ) < +∞. Define its Taylor approxi-
mation at point x ∈ E:

Ωx,p(y) = f (x) +
p∑

k=1

1
k! D

k f (x)[y − x]k .

Then

‖∇ f (y) − ∇Ωx,p(y)‖∗ ≤ Mp+1( f )
p! ‖y − x‖p, y ∈ E. (30)
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Define now the augmented Taylor polynomial

Ω̂x,p,M (y) = Ωx,p(y) + M
(p+1)! ‖y − x‖p+1.

If M ≥ Mp+1( f ) then this function provides us with a uniform upper bound for
the objective. Moreover, if M ≥ pMp+1( f ), then function Ω̂x,p,M (·) is convex (see
Theorem 1 in [20]). Therefore, we are able to compute the tensor step

Tp,M (x) = argmin
y∈E Ω̂x,p,M (y).

Let us allow some inexactness in computation of this point. Namely, we assume
that we can compute a point T satisfying the following condition:

‖∇Ω̂x,p,M (T )‖∗ ≤ γ
1+γ

‖∇Ωx,p(T )‖∗, (31)

where γ ∈
[
0, β

1+β

)
is the tolerance parameter. Thus,

γ
1+γ

‖∇Ωx,p(T )‖∗ ≥ ‖∇Ω̂x,p,M (T )‖∗ ≥ ‖∇Ωx,p(T )‖∗ − M
p! ‖T − x‖p.

Therefore, ‖∇Ωx,p(T )‖∗ ≤ (1 + γ )Mp! ‖T − x‖p. (This inequality was used as a
termination criterion in [5].)

Let us prove the following simple result.

Lemma 3 Let M > 1
1−γ

Mp+1( f ). Then for point T satisfying (31), we have

‖∇ f (T ) + M
p! ∇dp+1(T − x)‖∗ ≤ Mp+1( f )+γ M

(1−γ )M−Mp+1( f )
‖∇ f (T )‖∗. (32)

Proof Denote r = ‖T − x‖. Then

Mp+1( f )r p

p!
(30)≥ ‖∇ f (T ) − ∇Ωx,p(T )‖∗

= ‖∇ f (T ) − ∇Ω̂x,p,M (T ) + M
p! ∇dp+1(T − x)‖∗

(31)≥ ‖∇ f (T ) + M
p! ∇dp+1(T − x)‖∗ − γ

1+γ
‖∇Ωx,p(T )‖∗

≥ ‖∇ f (T ) + M
p! ∇dp+1(T − x)‖∗ − γ Mr p

p! .

Thus,

Mp+1( f ) + γ M

p! r p ≥ ‖∇ f (T ) + M

p! ∇dp+1(T − x)‖∗

≥ M

p! ‖∇dp+1(T − x)‖∗ − ‖∇ f (T )‖∗
(2)= Mr p

p! − ‖∇ f (T )‖∗.
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Thus, r p
p! ≤ 1

(1−γ )M−Mp+1( f )
‖∇ f (T )‖∗, and we obtain (32). ��

Let us define now M = 1+β
β(1−γ )−γ

Mp+1( f ) and H = M
p! . Then the inequality (32)

can be rewritten as follows:

‖∇ f (T ) + H∇dp+1(T − x)‖∗ ≤ β‖∇ f (T )‖∗.

In other words, these values of parameters ensure the inclusion T ∈ Ap
H (x, β). For

such M , the convexity condition M ≥ pMp+1( f ) is satisfied with β ≤ 1
p−1 .

Thus, the accelerated and non-accelerated tensor methods from [20] can be seen
as particular implementations of inexact high-order proximal-point methods. Their
efficiency bounds can be obtained by Theorems 1 and 2.

4 Bi-level unconstrainedminimization

In solving problem (8) by inexact high-order proximal-point methods from Sect. 2, we
have two degrees of freedom. Firstly, we need to decide on the order p of the proximal-
point method. This defines the rate of convergence for the upper-level process. Note
that for obtaining the rates (20) or (26),wedonot need any assumption on the properties
of the objective function.

After that, we have to choose the lower-level method for computing a point

T ∈ Ap
H (x, β). (33)

For analyzing efficiency of the latter method, we do need to assume something on the
objective function. Thus, the overall complexity of this bi-level scheme depends on
efficiency bounds of both processes. Note that the objective function in the auxiliary
problem (9) has some structure (composite form, uniform convexity), which can help
to increase efficiency of the lower-level method.

We call this framework Bi-level unconstrained minimization (BLUM). Let us show
that it opens new horizons in the development of very efficient optimization methods.

Indeed, as we have seen in Sect. 3, the condition (33) can be satisfied by one step of
tensor method. This strategy does not require additional calls of the oracle. However,
the high-order tensor methods need computations of the high-order derivatives and
therefore quite often they are impractical. In this case, it is reasonable to solve the
auxiliary problem in (9) by a cheaper method, based on the derivatives of a smaller
degree than the order of the underlying proximal-point scheme.

In this section, we present an example when this strategy works very well. We are
going to consider a third-order proximal-point method, which is implemented by a
second-order scheme. The first confirmation that this is possible was obtained in [21],
using the approximations of third derivative along two vectors by the finite differences
of gradients. In the remaining part of this section, we discuss a simpler approach, based
on a direct application of the relative non-degeneracy condition [4,13] to the auxiliary
problem (9).
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Let us consider the following unconstrained minimization problem:

min
y∈E

{
fx̄,H (y)

def= f (y) + Hd4(y − x̄)
}

, (34)

with constant H > 0 and central point x̄ ∈ E. As compared with notation (9), we drop
the index p since in this section we always have p = 3. In what follows, we assume
that the fourth derivative of function f (·) is bounded on E by constant M4.

Our main tool for solving the problem (34) is the gradient method based on rela-
tive non-degeneracy condition. This condition is formulated in terms of the Bregman
distance. Recall that this is a (non-symmetric) distance function between two points x
and y from E, which is computed with respect to some convex scaling function ρ(·).
It is defined as follows:

βρ(x, y) = ρ(y) − ρ(x) − 〈∇ρ(x), y − x〉, x, y ∈ E. (35)

We say that the function ϕ(·) is relatively non-degenerate on E with respect to the
scaling function ρ(·) if there exist two constants 0 < μ ≤ L such that

μβρ(x, y) ≤ βϕ(x, y) ≤ Lβρ(x, y), x, y ∈ E. (36)

The value κ = μ
L is called the condition number of function ϕ(·) with respect to ρ(·).

Recall that there exists a convenient sufficient condition for relations (36), this is

μ∇2ρ(x)  ∇2ϕ(x)  L∇2ρ(x), x ∈ E. (37)

It appears that for function fx̄,H (·) in the problem (34), we can point out a simple
scaling function, ensuring validity of the condition (36) with a good value of κ.

Theorem 3 Let H ≥ M4( f ). Then, the scaling function

ρx̄,H (x) = 1
2 〈∇2 f (x̄)(x − x̄), x − x̄〉 + Hd4(x − x̄), (38)

and function fx̄,H (·) satisfy the condition (37) on E with constants

μ = 1 − 1
ξ
, L = 1 + 1

ξ
, κ = ξ−1

ξ+1 , (39)

where ξ ≥ 1 is the unique solution of the following quadratic equation:

ξ(1 + ξ) = 2H
M4( f )

. (40)
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Proof For the sake of notation, denote M4 = M4( f ) and assume that x̄ = 0 ∈ E.
Then, for any x ∈ E, we have

∇2 f (x) = ∇2 f (0) + D3 f (0)[x] +
1∫

0
(1 − τ)D4 f (τ x)[x]2dτ

(4) ∇2 f (0) + D3 f (0)[x] + 1
2M4‖x‖2B

(7)
(
1 + 1

ξ

)
∇2 f (0) + 1

2M4‖x‖2 (1 + ξ) B

(2)
(
1 + 1

ξ

)
∇2 f (0) + 1

2M4 (1 + ξ)∇2d4(x).

Therefore,

∇2 f0,H (x)
(40)

(
1 + 1

ξ

)
∇2 f (0) +

[
ξ(1+ξ)

2 M4 + 1
2M4 (1 + ξ)

]
∇2d4(x)

=
(
1 + 1

ξ

)
∇2ρ0,ξ (x).

Similarly, using again (4), we have

∇2 f (x)
(7)�

(
1 − 1

ξ

)
∇2 f (0) − 1

2M4‖x‖2 (1 + ξ) B

(2)�
(
1 − 1

ξ

)
∇2 f (0) − 1

2M4 (1 + ξ)∇2d4(x).

Hence,

∇2 f0,H (x)
(40)�

(
1 − 1

ξ

)
∇2 f (0) +

[
ξ(1+ξ)

2 M4 − 1
2M4 (1 + ξ)

]
∇2d4(x)

=
(
1 − 1

ξ

)
∇2ρ0,ξ (x). �

��
From now on, we fix the following values for our parameters:

ξ = 2, H = 3M4( f ), μ = 1
2 , L = 3

2 , κ = 1
3 . (41)

Note that these values satisfy relations (39) and (40). Consequently, we can use a
simpler notation for the corresponding scaling function:

ρx̄ (y)
def= 1

2 〈∇2 f (x̄)(y − x̄), y − x̄〉 + 3M4( f )d4(y − x̄). (42)
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Let us present now an optimization method for solving efficiently the problem (34).
For our goals, the most appropriate variant of this method can be found in [19].

Choose x̄ ∈ E and H = 3M4( f ). Set x0 = x̄ .

For k ≥ 0, iterate:

xk+1 = arg min
x∈domE

{
〈∇ fx̄,H (xk), x − xk〉 + Lβρx̄ (xk, x)

}
.

(43)

Note that this is a first-order method for solving the problem (34) provided that the
Hessian ∇2 f (xk) is represented in an appropriate basis (this can be done before the
iterations start). It forms a sequence of points {xk}k≥0 with monotonically decreasing
values of the objective function.

Applying now Lemma 3 in [19], we come to the following result.

Lemma 4 Let sequence {xk}k≥0 be generated by method (43). Then, for any k ≥ 1
and any x ∈ domψ we have

βρx̄ (xk, x) ≤ (1 − κ)k βρx̄ (x0, x) + 1
L [ fx̄,H (x) − fx̄,H (xk)]. (44)

Let us show how this method can be used on the lower level of the proximal-
point method (25) with p = 3. Our optimization problem (8) is characterized by the
following parameters:

M4( f ) < +∞, R0 = ‖x0 − x∗‖, M2( f ) < +∞,

D0 = max
x∈E {‖x − x∗‖ : f (x) ≤ f (x0)} < +∞. (45)

For our analysis, parameters M4( f ) and R0 are critical. The remaining parameters
M2( f ) and D0 appear in the efficiency bounds only inside the logarithms. Using the
constant M2( f ), we can bound the variation of the objective function as follows:

f (y) − f ∗ ≤ 1
2M2( f )‖y − x∗‖2, y ∈ E. (46)

Let us write down the full version of the combination of method (25) with (43). We
choose β = 1

p = 1
3 and other parameters by (41).

Define the following sequences:

Ak = 4
9M4( f )

( k
8

)4
, ak+1 = Ak+1 − Ak, k ≥ 0. (47)
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Inexact Accelerated 3rd-Order Proximal-Point Method

Initialization. Choose x0 ∈ E. Define function ψ0(x) = d4(x − x0).

Iteration k ≥ 0.

1. Compute vk = argmin
x∈E ψk(x) and choose yk = Ak

Ak+1
xk + ak+1

Ak+1
vk .

2. Compute xk,i∗k ∈ A3
3M4( f )

(
yk,

1
3

)
by the following procedure.

• Define functions ϕk(x) = f (x) + 3M4( f )d4(x − yk)

and ρk(x) = 1
2 〈∇2 f (yk)(x − yk), x − yk〉 + 3M4( f )d4(x − yk).

• Set xk,0 = yk . For i ≥ 0, iterate

xk,i+1 = argmin
x∈E

{
〈∇ϕk(xk,i ), x − xk,i 〉 + 3

2βρk (xk,i , x)
}

up to the first iteration i∗k with ‖∇ϕk(xk,i∗k )‖∗ ≤ 1
3‖∇ f (xk,i∗k )‖∗.

3. Update ψk+1(x) = ψk(x) + ak+1[ f (xk,i∗k ) + 〈∇ f (xk,i∗k ), x − xk,i∗k 〉].

4. Define xk+1 = argmin
x

{
f (x) : x ∈ {xk, xk,i∗k }

}
.

(48)

Themajor difference of thismethod from the earlier tensormethods [20,21] consists
in the necessity to call oracle of the objective function at each iteration of the internal
loop.

Clearly, this is a second-order method, which implements the inexact third-order
proximal-point method (25). Let us assume for a moment, that at each upper-level
iteration of this scheme, the numbers i∗k are well defined. Then by Theorem 2, we get
the following rate of convergence:

f (xk) − f ∗ ≤ 9M4( f )
( 4
k

)4
R4
0, k ≥ 1. (49)

Thus, it remains to find an upper bound for the numbers i∗k . For that, we need to get an
upper bound for the size of points xk,i .Wewill do this under the following assumption:

f (xk,i ) − f ∗ ≥ ε, 0 ≤ i ≤ i∗k , k ≥ 0, (50)
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where ε > 0 is the desired accuracy of the solution to problem (8). Note that we need
this assumption only for estimating the number of steps, which are necessary to violate
it.

Assume that at some iteration k ≥ 0 the points xk and vk are well defined. Since
f (xk) ≤ f (x0), in view of Theorem 2 we have

‖yk − x∗‖ ≤ max{‖xk − x∗‖, ‖vk − x∗‖} ≤ max
{
D0,

√
2R0

}
.

At the same time, since ϕk(xk,i ) ≤ ϕk(xi,0) = f (yk), we get

3
4M4( f )‖xk,i − yk‖4 ≤ f (yk) − f (xk,i )

(46)≤ 1
2M2( f )D2

0 .

Therefore, ‖xk,i − yk‖ ≤ D1
def=

[
2M2( f )
3M4( f )

D2
0

] 1
4
and

‖xk,i − x∗‖ ≤ D2
def= D1 + max

{
D0,

√
2R0

}
.

Hence,

‖∇ f (xk,i )‖∗ ≥ f (xk,i )− f ∗
D2

(50)≥ ε
D2

. (51)

However, in view of Lemma 4, ϕk(xk,i ) → min
x∈E ϕk(x) as i → ∞. This implies

‖∇ϕk(xk,i )‖∗ → 0,

ensuring that the auxiliary minimization process at iteration k is finite and xk+1 and
vk+1 are well defined. Let us estimate its length.

In view of Lemma 3.2 in [21], for all u ∈ E with ‖u‖ ≤ D, we have

βd4(u, v) ≤ 5
2D

2‖v − u‖2 + 1
2‖v − u‖4, v ∈ E.

Therefore,

βρk (x, y) ≤ 1
2M2( f )‖y − x‖2 + 3M4( f )βd4(x − yk, y − yk)

≤ 1
2M2( f )‖y − x‖2 + 3M4( f )

[
5
2D

2
1‖y − x‖2 + 1

2‖y − x‖4
]

= 1
2

[
M2( f ) + 15M4( f )D2

1

] ‖y − x‖2 + 3
2M4( f )‖y − x‖4

def= θ(‖y − x‖).
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for all x with ‖x − yk‖ ≤ D1 and y ∈ E. At the same time, in view of Lemma 3.3 in
[21], the last bound and Theorem 3 imply

Lθ∗( 1
L ‖∇ϕk(xk,i )‖∗) ≤ ϕk(xk,i ) − ϕk(x∗

k ).

Hence,

Lθ∗( 1
L ‖∇ϕk(xk,i )‖∗) ≤ ϕk(xk,i ) − ϕk(x∗

k )
(44)≤ L

( 2
3

)i
βρk (yk, x

∗
k )

≤ L
( 2
3

)i [ 1
2M2( f )‖x∗

k − yk‖2 + 3
4M4‖x∗

k − yk‖4
]

(52)

where x∗
k = argmin

x∈E ϕk(x) and θ∗(λ) = max
τ

[λτ − θ(τ )]. Since ‖x∗
k − yk‖ ≤ D1, we

can get an upper bound for i∗k from the following inequality:

( 2
3

)i [ 1
2M2( f )D2

1 + 3
4M4D4

1

] (51)≤ θ∗
(

ε
LD2

)
.

Using Lemma 7 in [21], we can estimate for function θ(τ ) = a
2 τ 2 + b

4τ
4 its dual

function as follows:

θ∗(λ) ≥ λ2

2[a+b1/3λ2/3] .

In our case, a = M2( f ) + 15M4( f )D2
1 and b = 6M4( f ). Therefore,

θ∗(λ) ≥ λ2

2[M2( f )+15M4( f )D2
1 ]+[6M4( f )]1/3λ2/3 .

Thus, we can see that all values i∗k are bounded by O(ln 1
ε
). A similar reasoning shows

that the length of the last iteration, stopped at the moment when the condition (50) be
violated, is also bounded by O(ln 1

ε
). Hence, we have proved the following theorem.

Theorem 4 The second-order method (48) finds an ε-solution of problem (8) in

4
(
9M4( f )

ε

) 1
4
R0

iterations. At each iteration, it calls the second-order oracle once and the first-order
oracle O

(
ln 1

ε

)
times at most.

Let us discuss now the implementationdetails ofmethod (48).At each inner iteration
of this scheme, it is necessary to solve an auxiliary optimization problem for finding the
point xk,i+1 ∈ R

n . For doing this efficiently, it is reasonable to start with computation
of the tri-diagonal factorization of matrix ∇2 f (yk):

∇2 f (yk) = Uk�kUT
k ,
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whereUk ∈ R
n×n is an orthogonal matrix and �k ∈ R

n×n is a symmetric tri-diagonal
matrix. Then we can change variables:

x = yk +Ukw, w ∈ R
n,

and minimize the function ϕ̂k(w) = ϕk(yk +Ukw). The advantage of this formulation
is that in the new variables the scaling function ρk(·) becomes very simple:

ρk(x) = ρ̂k(w) = 1
2 〈�kw,w〉 + 3

4M4( f )‖w‖4(2),

where ‖ · ‖(2) is the standard Euclidean norm in R
n . Thus, the computation of the

new point wk,i+1 = UT
k (xk,i+1 − yk) can be done in a linear time. Therefore, the

total complexity of each iteration of the inner method will be quadratic in n (plus one
computation of the first-order oracle).

Note that in the method (48) we have a possibility of computing the lower bounds
for the optimal value of the objective function, provided that we have an upper bound
for the distance to the minimum:

‖x0 − x∗‖ ≤ R.

Then, for k ≥ 1, we can compute the value

�∗
k = 1

Ak
min
x

{
k−1∑

j=0
a j+1[ f (x j,i∗j ) + 〈∇ f (x j,i∗j ), x − x j,i∗j 〉] : ‖x − x0‖ ≤ R

}

≤ f (x∗),

and use it in the termination criterion. Note that with this value the inequality (49) is
valid if we replace f ∗ by �∗

k and R0 by R. If the bound R is not known, we can update
the initial guess dynamically using the observed distance between xk and x0.

5 High-order proximal-point methods with line search

In this section, we consider new methods for solving the problem (8), which are based
on pth-order proximal-point operatorwith line search (p ≥ 1). It is defined as follows:

proxpf /H (x̄, u) = arg min
x∈E,
τ∈R

{
f (x) + Hdp+1(x − x̄ − τu)

}
∈ E × R, (53)

where the point x̄ and direction u belong to E and the proximal coefficient H is
positive. Note that the value of this operator is a solution of a convex optimization
problem. As compared with operation (9), we increased the dimension of the search
variable by one. Hence, it should not create a significant additional complexity. In this
paper, we will analyze only the exact computation in (53).

Let us mention the main properties of operator (53).
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Lemma 5 Let (T , τ ) = proxpf /H (x̄, u). Denote y = x̄ + τu and r = ‖T − y‖. Then

∇ f (T ) + Hr p−1B(T − y) = 0, (54)

‖∇ f (T )‖∗ = Hr p, 〈∇ f (T ), y − T 〉 = Hr p+1, (55)

〈B(T − y), u〉 = 0, 〈∇ f (T ), u〉 = 0. (56)

Moreover, f (x̄) − f (T ) ≥ H
p+1r

p+1.

Proof Equation (54) and the first equation in (56) are the first-order optimality condi-
tions for the objective function in the problem (53). The first equation in (55) follows
from (54), and we get the second one by multiplying (54) by y − T . Second equation
in (56) follows from the first one in view of (54).

Finally, for proving the remaining inequality,we choose in the optimization problem
in (53) x = x̄ and τ = 0. ��
Clearly, the smaller H is, the better is the result of (53). However, the small values of H
make this computation more difficult. Thus, a reasonable choice of H must be dictated
by the problem class and the auxiliary methods, which will be used for solving (53)
approximately. We keep the detailed analysis of different possibilities for the future
research.

Consider the following optimization scheme.

pth-Order Proximal-Point Method With Line Search

Initialization. Choose x0 ∈ E, H > 0, andψ0(x) = 1
2‖x − x0‖2.

Iteration k ≥ 0.

1. Compute vk = argmin
x∈E ψk(x).

2. Compute (xk+1, τk) = proxpf /H (xk, vk − xk).

3. Define yk = xk + τk(vk − xk) and rk = ‖xk+1 − yk‖.

4. Define ak+1 by equation
a2k+1
Ak+1

= 1
Hr p−1

k

with Ak+1 = Ak + ak+1.

5. Set ψk+1(x) = ψk(x) + ak+1[ f (xk+1) + 〈∇ f (xk+1), x − xk+1〉].

(57)

Let B0 = 0 and denote Bk = H
2

∑k
i=1 Air

p+1
i−1 for k ≥ 1. Let us prove the following

result.
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Lemma 6 Let the sequence {xk}k≥0 be generated by method (57). Then for all k ≥ 0
and x ∈ E we have

Ak f (xk) + Bk ≤ ψ∗
k = min

x∈E ψk(x). (58)

Proof Let us prove this relation by induction. For k = 0, we have A0 = 0, B0 = 0,
and ψ0(x) = 1

2‖x − x0‖. Thus, in this case inequality (58) is valid.
Let us assume that it is valid for some k ≥ 0. Then

ψ∗
k+1 = min

x∈E

{
ψk(x) + ak+1[ f (xk+1) + 〈∇ f (xk+1), x − xk+1〉]

}

≥ min
x∈E

{
ψ∗
k + 1

2
‖x − vk‖2 + ak+1[ f (xk+1) + 〈∇ f (xk+1), x − xk+1〉]

}

≥ min
x∈E

{
Ak f (xk) + Bk + 1

2
‖x − vk‖2

+ak+1[ f (xk+1) + 〈∇ f (xk+1), x − xk+1〉]
}

≥ min
x∈E

{
Ak+1 f (xk+1) + Bk + 1

2
‖x − vk‖2

+〈∇ f (xk+1), ak+1(x − xk+1) + Ak(xk − xk+1)〉
}

(56)= min
x∈E

{
Ak+1 f (xk+1) + Bk + 1

2
‖x − vk‖2

+〈∇ f (xk+1), ak+1(x − vk) + Ak+1(yk − xk+1)〉
}

= Ak+1 f (xk+1) + Bk − 1

2
a2k+1‖∇ f (xk+1)‖2∗

+Ak+1〈∇ f (xk+1), yk − xk+1〉

(55)= Ak+1 f (xk+1) + Bk − 1

2
a2k+1H

2r2pk + Ak+1Hr p+1
k

= Ak+1 f (xk+1) + Bk + 1

2
Ak+1Hr p+1

k = Ak+1 f (xk+1) + Bk+1.�

��
Let us prove now the main result of this section. In the proof, we closely follow the
arguments justifying Lemma 4.3.5 in [18].
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Theorem 5 For any k ≥ 1, we have

f (xk) − f ∗ ≤ 2pH Rp+1
0

(
1+ 2(k−1)

p+1

) 3p+1
2

. (59)

Proof Note that

√
Ak+1 − √

Ak = ak+1√
Ak+1+√

Ak
=

√
Ak+1

(
√
Ak+1+√

Ak )H1/2r
p−1
2

k

≥ 1

2
√
Hr p−1

k

.

Thus, denoting ξk = 2
√
Hr p−1

k , we get Ak ≥
(
k−1∑

i=0

1
ξi

)2

. For p = 1 this proves that

Ak ≥ k2
4H . So, let us assume that p > 1.

On the other hand, in view of Lemma 6, we have

Ak f (xk) + Bk ≤ ψ∗
k ≤ f (x∗) + 1

2 R
2
0,

where R0 = ‖x0 − x∗‖. Therefore,

1
2 R

2
0 ≥ H

2

k−1∑

i=0
Ai+1r

p+1
i = H

2

k−1∑

i=0
Ai+1

[
ξ2i
4H

] p+1
p−1

.

In other words, we have the following bound:

k−1∑

i=0
Ai+1ξ

2(p+1)
p−1

i ≤ D
def= (2p+1H)

2
p−1 R2

0 . (60)

We need to minimize now the sum
k−1∑

i=0

1
ξi

subject to this bound. Since the bound is

active, we can introduce for it a Lagrange multiplier λ > 0 and find the optimal ξi
from the equation

λ

ξ2i
= Ai+1ξ

p+3
p−1
i , i = 0, . . . , k − 1.

Thus, ξi =
[

λ
Ai+1

] p−1
3p+1

. Substituting these values in the constraint (60),we get equation

for optimal λ:

D =
k−1∑

i=0
Ai+1

[
λ

Ai+1

] 2(p+1)
3p+1 = λ

2(p+1)
3p+1

k−1∑

i=0
A

p−1
3p+1
i+1 .
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Therefore,

k−1∑

i=0

1
ξi

≥ ( 1
λ

) p−1
3p+1

k−1∑

i=0
A

p−1
3p+1
i+1 = ( 1

D

) p−1
2(p+1)

(
k−1∑

i=0
A

p−1
3p+1
i+1

) 3p+1
2(p+1)

.

This means that we have proved the following inequality:

Ak ≥ ( 1
D

) p−1
p+1

(
k−1∑

i=0
A

p−1
3p+1
i+1

) 3p+1
p+1

. (61)

Denote Ck =
(

k∑

i=1
A

p−1
3p+1
i

) 2
p+1

and θ = ( 1
D

) p−1
p+1 . Then inequality (61) can be written

as follows:

C
p+1
2

k+1 − C
p+1
2

k = A
p−1
3p+1
k+1 ≥ θ

p−1
3p+1

(
k+1∑

i=1
A

p−1
3p+1
i

) p−1
p+1

= θ
p−1
3p+1C

p−1
2

k+1 .

Denoting γ = θ
p−1
3p+1 , we see that C1 ≥ γ . Moreover, since τ

p+1
2 with τ ≥ 0 is a

convex function, we have τ
p+1
2+ − τ

p+1
2 ≤ p+1

2 τ
p−1
2+ (τ+ − τ). Therefore,

γC
p−1
2

k+1 ≤ C
p+1
2

k+1 − C
p+1
2

k ≤ p+1
2 C

p−1
2

k+1 (Ck+1 − Ck).

Consequently, Ck+1 ≥ Ck + 2γ
p+1 and we conclude that Ck ≥ γ + 2γ (k−1)

p+1 , k ≥ 1.
Substituting this bound in (61), we get

Ak ≥ θC
3p+1
2

k ≥ θ
(
γ + 2γ (k−1)

p+1

) 3p+1
2 = ( 1

D

) p−1
2

(
1 + 2(k−1)

p+1

) 3p+1
2

.

It remains to note that in view of inequality (58), we have

f (xk) − f ∗ ≤ 1
2Ak

R2
0 ≤ D

p−1
2 R2

0

2
(
1+ 2(k−1)

p+1

) 3p+1
2

= 2pH Rp+1
0

(
1+ 2(k−1)

p+1

) 3p+1
2

.

��

6 Conclusion

In this paper we present a new framework BLUM, where the development of the
accelerated minimization scheme consists of two steps. Firstly, we choose the order of
the proximal-point iteration. At this moment, we are not restricted by any properties of
the objective function except its differentiability (which can be dropped) and convexity.
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These properties play a crucial role at the second step, where we decide on the type
of the scheme we use for approximating the proximal point. The overall complexity of
the method can be computed then as the product of the number of steps of the upper-
level process and the estimate for the number of steps in the lower level process.

In this way, we managed to justify a second-order scheme, which uses only the
second-order information for an approximate computation of the third-order proximal
point. It is interesting that the overall complexity bound of ourmethod is essentially the
same as the bound for the number of iterations of the accelerated third-order methods
[3,20]. At the same time, these bounds overpass the limits for the maximal efficiency
established for the second-order methods by functions with bounded third derivative
(see [1,2] and Section 4.3.1 in [18]).

It is interesting to understand why this improvement was possible. One of the
reasons is that in this paper we are working with a subclass of functions with Lipschitz
continuous third derivative. Indeed, in view of Lemma 4 in [21],

M3( f ) ≤ √
2M2( f )M4( f ).

Therefore, the lower bounds of [1,2] are not valid anymore.
Another question is if it is possible to improve the rate of convergence of the

lower-order methods in the framework of BLUM. We are not ready to give now a
comprehensive answer to this question. However, let us look at the worst-case func-
tions, which justify the lower complexity bound for the tensor methods. In accordance
to [20], for pth-order methods they have the form

f p(x) = |x (1)|p+1 +
n−1∑

i=1
|x (i+1) − x (i)|p+1, x ∈ R

n .

This function justifies the maximal rate of convergence O(k−2) for the first order
methods (e.g. [18]).

Note that, for p = 1 this is a quadratic function. Hence, all its derivatives Ds f1(·)
of the order s with s ≥ 3 are equal to zero. Therefore, we cannot expect for the first-
order methods any improvements from any assumptions on the boundedness of these
derivatives.

The situation with the second-order methods is different. Their worst-case func-
tion f2(·) has discontinuous third derivative. Hence, the corresponding lower bound
O(k−7/2) may be not valid if we assume the existence and boundedness of the forth
derivative. And the results of Sect. 4 show that this is indeed the case. Our second order
method (48) has the rate of convergence O(k−4), and the results of Sect. 5 gives us a
hope that there exist the second-order methods with the rate of convergence O(k−5)

(this is the maximal rate of convergence for the third-order methods).
Another consequence of the above observation is that we cannot speak anymore

about the pth-order optimal methods. Instead, we should switch to speaking about
the optimal methods for different problem classes. Indeed, we have seen that for the
same problem class we can have methods of different order, which have the same rate
of convergence. In this situation, it is natural to agree that the lower-order method is
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better. Thismeans, that our complexity scale, instead being one-dimensional, should be
two-dimensional at least. But of course all these questions need further investigations.

We hope that our results create interesting directions of research related to further
increase of the efficiency of the lower-order methods as applied to the problem classes
which were traditionally out of their scope. During the time, which was necessary
for accepting this paper by Mathematical Programming, we managed to advance in
this direction. The interested reader can consult our next publication [22], where we
present a second-order scheme for minimizing functions with Lipschitz-continuous
third derivative, which has the convergence rate of the upper level of the order O( 1

k5
),

keeping the logarithmic complexity of the lower-level process.
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