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Abstract: This paper introduces an inexact, but ultra-low-power, computing architecture devoted to the 
embedded analysis of bio-signals. The platform operates at extremely low voltage supply levels to 
minimize energy consumption, especially in the memory subsystem, which accounts for a major part of it. 
However, a high reliability of memories cannot be guaranteed at ultra-low voltages, when using 
conventional 6-transistor SRAMs. While error correction codes and dedicated SRAM implementations can 
ensure correct operations in this near-threshold regime, they incur in significant area and energy overheads, 
and should be therefore employed judiciously. 
In this scenario, we propose a novel scheme to design inexact computing architectures that selectively 
protects memory regions based on their significance, i.e., their impact on the end-to-end quality of service, 
as dictated by the bio-signal application characteristics. Herein, we illustrate our scheme on an industrial 
benchmark application performing the Power Spectrum Analysis (PSA) of electrocardiograms. 
Experimental evidence showcases that a significance-based memory protection approach leads to a small 
degradation in the output quality, while resulting in substantial increase in energy efficiency for embedded 
signal processing, with respect to an exact computing implementation. This approach thereby augments 
ultra-low voltage scaling.  
 
Keywords: Ultra-Low Power, embedded systems, wearable health monitors, error tolerance, power 
spectral analysis. 
 

1. Introduction 

Modern society is witnessing changes in lifestyle more than ever before. Busy and unhealthy 

lifestyles are becoming common, resulting in a rise in the number of people developing or living with 

cardiovascular conditions. Moreover, a significant part of the world population is aging, and hence 

becoming in danger of contracting cardiac diseases. This scenario calls for increased levels of medical 

supervision and management, which are resulting in high costs, and traditional health care infrastructures 

are finding it increasingly difficult to cope with these demands [1]. 

Emerging Wireless Body Sensor Network [12] technologies can offer large-scale and cost-effective 

solutions to this problem. These wearable devices for bio-signal monitoring are bringing about a 

revolutionary change in healthcare systems by allowing long-term monitoring of chronic patients, while 

providing a low-cost and unobtrusive solution. Wireless Body Sensor Nodes (WBSNs) [28], represented 
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in Fig. 1, are the building blocks of such a network, being able to provide real-time and personalized 

monitoring of patients and coordinate with medical staff depending on the patients’ medical records. They 

are designed to monitor different organs of the human body, including the heart. Such devices involve 

sensing of bio-signals and then transmitting them wirelessly to receiver devices, for further analysis. The 

analysis of the received sensed data generally consists of labour-intensive manual inspection or offline 

execution on a server infrastructure.  

 

 
Fig 1. Schematic representation of a simple WBSN node 

Recently, however, a new generation of smart WBSNs has emerged which are able to perform 

digital signal processing (DSP) directly on-board to analyse the acquired bio-signals and extract clinically-

relevant features, in addition to data acquisition and transmission [13]. These devices pave the way for 

truly autonomous and versatile health monitoring devices. They run various bio-signal processing 

applications, which are useful for doctors for quick analysis of important signal data. A basic scheme of 

the digital processing unit of a state-of-the-art WBSN is depicted in Fig. 2, which typically comprises low 

power processors along with supporting memories. It is assumed that the system loads the instructions for 

processing into its instruction memory (typically an SRAM) from a non-volatile memory (NVM), like 

flash, etc., at start-up, or bootstrap phase. It can then autonomously run the required applications.  

 Energy efficiency is of paramount importance in these battery operated WBSNs, as they work 

under tight energy constraints defined by battery-based power supplies on the device. Performing on-chip 

signal analysis results in increased computation, thereby increasing the energy consumption. For this 

reason, there is an urgent need for efficient energy management in WBSNs, which has fuelled significant 

research interest. In this context, inexact computation or approximate computation is a new method to 

achieve higher energy efficiency in WBSNs. It involves trading off the accuracy of logic circuits in order 

to save energy, by applying techniques like voltage scaling [14] and circuit pruning [15], among others.  
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In this paper, we present an architecture that follows a paradigm shift in the processing of bio-signals 

from exact computation to an inexact one. Bio-signal processing applications normally acquire noisy input 

and produce qualitative outputs, thereby being error-resilient in nature. Also, they frequently involve 

storing data that is sparse in nature [25], with the memory components accounting for a key part of the 

energy consumed [18].  

 
Fig 2. Block scheme of a typical WBSN's processing unit 

An efficient method to achieve large energy savings in the execution of these applications is voltage- 

scaling. However, at near-threshold voltage supplies, errors are introduced in the memory subsystem. But 

the noise-resilient properties of bio-signal processing applications motivate the application of voltage 

scaling. In this context, we introduce the concept of data significance, and we propose a significance-

based heterogeneous protection of the memory working at near-threshold supplies. We explore the effects 

of the proposed scheme on the energy savings obtained w.r.t protecting the whole memory subsystem, and 

the effect of errors introduced on the final output.  

To evaluate our proposed methodology, we selected the power spectral analysis (PSA) application of 

the heart rate variability (HRV) out of the many applications that have been proposed to predict heart 

diseases, which range from the automated detection of epileptic seizures [4], to the predictive risk 

assessment of atrial fibrillations [16]. This choice is based on the fact that PSA is one of the most widely 

used strategies for predicting cardiac failures, as it allows the monitoring of various health condition 

associated with the heart, as well as other organs [31] [17].  

The implementation of PSA on ultra-low power embedded devices requires a carefully tailored 

digital architecture. Lowering supply voltages might result in quadratic energy savings, but memory 

subsystems using conventional 6-transistor (6T) SRAM cells become unreliable in nanometre technologies 

[5]. Soft errors like bit-flips start occurring at near-threshold voltages, and their probability of occurrence 
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increases as the supply voltage is further lowered [21]. These issues regarding reliability of memories 

become more prominent with modern technology scaling, as we conceive transistors with smaller lengths. 

In this context, larger memory cells have been proposed in previous research work, which consist of 8- 

transistors (8T) or 10- transistors (10T), because they ensure reliable operation of the memories at much 

lower supply voltages compared to 6-transistor (6T) cells [6]. However, 8T and 10T cells come with a 

high area overhead, thus limiting the amount of memory space that can be included in the already area-

constrained WBSNs. It has been shown that the majority of the silicon real estate of typical WBSN 

processors is devoted to the memory subsystem, with this trend set to become even more emphatic in the 

near future, where memories are forecasted to occupy as much as 95% of the entire chip area [27]. Thus, 

the use of 6T cells over 8T or 10T cells is preferable in terms of area. Another proposed approach in the 

literature to deal with errors in memories is to use error correction code (ECC) [8], in the 6T SRAM 

memories. The negative aspect of this method is that they present significant area and energy overheads 

when all or large parts of the memories need to be protected. This fuels the need of an effective memory 

protection system at low supplies, which presents low area and energy overheads, and at the same time 

guarantees reliable operation of the system. 

 In this article we introduce a novel memory protection scheme which takes advantage of the 

sparsity of data in the targeted application. We advocate the application of inexact computation scheme 

based on significance of data rather than based just on significant bits, to achieve high energy savings, 

while binding the error introduced in the output of the application within permissible limits.  

 The main contributions of this paper are the following: 

1) We analyse the PSA application’s software code in order to explore its statistical properties. This 

includes analysis of the data elements in the intermediate steps of the application and the 

classification of the data into more significant and less significant, depending on their 

contribution to the output quality of the system. 

2) We introduce a novel hybrid memory protection scheme, which involves a significance-based 

protection in hardware of the data memory for the PSA system, using ECC bits. This enables us 

to explore a system-wide application of ultra-low voltage scaling. This is an extension of our 

previous research work [24], and includes the effects of voltage scaling in the instruction 

memory and the processor system, in addition to the data memory, as done before. Thus, in this 

paper we study the energy consumption of the whole of the WBSN’s processing system using 

our proposed scheme. 
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3) We estimate the effects of using voltage scaling with the proposed memory protection scheme on 

the performance of the PSA application and the energy savings that the scheme results in. 

The rest of the paper proceeds as follows. In Section 2, we introduce our proposed scheme of 

memory protection driven by data significance. Section 3 presents a case study where we have analysed 

the power spectral analysis application. In section 4 we explain our experimental setup, followed by the 

results we have obtained, before finally concluding the paper.  

2. Data-significance driven criticality approach in WBSNs 

The impact of adopting ultra-low voltage supplies is not homogeneous across architectural blocks. 

Combinational logic circuits such as Arithmetic Logic Units (ALU) are the least affected, because they are 

stateless and do not present internal feedback connections. Indeed, combinational circuits have been 

proposed operating at a supply voltage (Vdd) in the range of few hundreds of milliwatts [19]. Closely 

coupled with ALUs is the register file, which embodies the first level of the memory hierarchy. In a 

load/store architecture such as ARM, target of the present work, all instructions except explicit loads and 

stores operate with data residing in registers. The implementation of the register file (the Cortex M3 has 16 

architecturally-visible registers) is usually based on Standard Cell Memories (SCMEMs), which can 

reliably operate at extremely low-voltage levels [20]. From these two observations, we conclude that the 

computing core, integrating the ALU and the register file, is not the resiliency bottleneck of the system. 

Conversely, the Data and Instruction Memories (DM and IM, respectively) of WBSNs are 

commonly implemented as 6T Static RAMs (6T-SRAMs), which are more prone to random bit-flips when 

operated in the near-threshold regime. In [21], a non-negligible probability of error of 1.3e-5 is reported for 

a Vdd of 0.75 Volts, which rapidly escalates as the supply level drops. Including different voltage supply 

levels confirming the reliable usage of the processor and its associated registers on one hand and the 

instruction and data memories on the other could be seen as a simple solution to tackle reliability issues at 

low voltages. However, such an approach requires multiple voltage regulators, as well as voltage 

converters to maintain uniform voltage level for logic. This solution is thereby not efficient for ultra-low 

power platforms [18]. More complex cell structures employing dedicated read and write paths (8T- or 

10T- SRAMs) can reliably operate at a lower voltage supply, but at the cost of important area and energy 

overheads. In [18] and from the CACTI memory modelling tool [32], it is found that 8T cells occupy 30% 

more real-estate, and consume on average 25% more dynamic energy, than comparable 6T 

implementations at 40nm technology. An alternative path to ensure reliability is to detect and correct 

errors using redundant representations of the memory content, adding dedicated Error Correction Codes 

(ECCs) to transparently recover from bit-flips. Even in this case, area and power overheads have to be 
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accounted for, due to the dedicated memory cells required to store the redundant information and the logic 

required to recover from errors.  

Herein, we propose to minimize the above-mentioned overheads by imposing different reliability 

guarantees, depending on the criticality of the data. The IM content is highly susceptible towards errors, as 

a single bit-flip can lead to an unpredictable execution flow, or even to unrecoverable states (e.g.: if a jump 

to a random location is made). The impact of bit-flips in DM can instead be less pronounced. While 

control variables and address manipulations have indeed high criticality levels, a large portion of the DM 

in bio-signal analysis applications is employed to store windows of data containing inputs and outputs of 

the various stages of digital processing. Errors in these buffers do not lead to catastrophic failures, but can 

cause an inacceptable degradation of the output quality.  

Crucially, the loss in end-to-end quality of service, or in other words the net performance of the 

system, deriving from random errors, is dependent on the statistical properties of the stored data. Herein, 

this characteristic is leveraged to guide the design of heterogeneous protection schemes, which provide 

correction, detection or only a best-effort guarantee on different memory sections, maximizing the quality 

of service for a target energy budget. In our approach, we distinguish between two important cases, 

addressing sparse and non-sparse buffers. In the latter case, the magnitude of each entry in a buffer array 

is randomly distributed. For these arrays, each entry equally contributes to the overall correctness of the 

computation, so each stored word must expose the same reliability level. Protection of non-sparse buffer 

must be therefore performed at the bit-level, ensuring the correctness of high-order bits, while possibly 

allowing a degree of inexactness for low-order ones.  

This strategy, however, becomes sub-optimal when the memory content is mostly centred on an 

expected value, with only few words significantly deviating from it, which is often the case in WBSN 

applications [7]. This sparsity property allows the adoption of a word-based, instead of bit-based, 

protection scheme, in which error correction is employed for the small subset of data, which is not close to 

the expected value (and we term this subset significant), while a much simpler error detection mechanism 

is used for the rest. In this way, correctness is ensured for significant words, while bit-flips in the non-

significant parts are only partially countered, by adopting the expected value of the data upon the detection 

of an error. 
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Fig 3. The proposed heterogeneous protection scheme applies varying exactness guarantees  

depending on the data criticality. 

 

We apply the above-mentioned considerations to the design of the target inexact architecture, whose 

block scheme is provided in Fig. 3. To increase reliability at low supply levels, the instruction memory is 

realized with 8T-SRAM cells. As for the data memory, energy- and area- efficient 6T-SRAMs are 

employed, coupled with heterogeneous error detection/protection features. This arrangement results in a 

simple implementation of the IM (which is protected in its entirety), while allowing a fine-grained tuning 

of the DM reliability, dependent on the criticality of the stored values. Scalar and control variables (non-

buffer data), as well as the highly significant portions of the buffer data, are fully protected with multi-bit 

error detection codes. Conversely, only error detection (implemented as a 1-bit parity code), but not 

correction, is employed for non-significant buffer data in sparse arrays. Finally, for the non-sparse arrays, 

errors in the most significant bits are corrected, while no detection or correction is performed for the least 

significant parts of each word.  

3. Data-significance analysis of the Power Spectral Analysis system 

3.1 Functionality of the PSA System 

 

In this paper, we use as a case study the power spectral analysis of the HRV, which is a powerful 

tool for evaluating the autonomic control of the heart rate and identifying various health conditions [22]. 

Fig. 4 shows the block scheme of the system. 
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Fig 4. Block scheme of the PSA application 

 

The PSA system is composed of 4 essential steps:  

1) In the first step, the time differences between consecutive heartbeats (known as RR intervals) are 

extracted from ECG recordings of patients. The RR intervals are non-periodic signals, and thus 

require to be processed by dedicated algorithms, such has the Fast Lomb periodogram method 

[23].    

2) In the next step, according to the Fast-Lomb method, the extracted RR intervals are extrapolated 

to a fixed size window (i.e. 512 samples). This procedure essentially converts the non-periodic 

signals into uniformly sampled ones. 

3) Then the uniformly-sampled data are processed to estimate the specific trigonometric functions 

required by Fast-Lomb. Traditionally, such an estimation is performed by applying a Fast-

Fourier Transform (FFT). Instead, and similarly to [23], in this paper we use a wavelet-based 

FFT (WFFT), which reduces substantially (up to 28% w.r.t the state-of-the-art) the complexity of 

the Fast-Lomb method [26] and tends to introduce sparsity in the bio-signals [30], especially in 

the heartbeats. In particular, the wavelet transform involved in the WFFT helps in revealing the 

sparse nature of bio-signals in the wavelet domain, exposing eventually the terms that are zero 

(or close to zero). Such close-to-zero terms and the following butterfly operations applied in the 

second stage of the WFFT can then be pruned, eventually reducing the computational 

complexity. 

4) Finally, the Lomb calculator combines the output data obtained from WFFT, estimating the real-

time power spectrum information. In clinical practice [23], the most used metric derived from 

PSA is the ratio between the power in low frequencies (LFP, defined as 0.04 – 0.15 Hz) and high 
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frequencies (HFP, 0.15 – 0.4 Hz), with LFHF Ratio=LFP/HFP. A deviation of the LFHF Ratio 

above or below normal values is indicative of various health issues [9].  

 
 

3.2 Analysis of the PSA System 

 

The application of our scheme requires the identification of the statistical characteristics of the 

target application for identifying blocks of data where it can be applied. To this end, we have analysed the 

PSA system and estimated the data distribution in the various stages, by performing several experiments 

with the ECG recordings. Fig. 5 focuses on the distribution of the data in the two memory buffers used in 

the system: the Extr_buffer is used to store the output of the extrapolation on the input data and the 

DWT_buffer is used to store the DWT outputs, as indicated in Fig. 4. 

 
Fig 5. Histogram of data values in Extr_buffer and DWT_buffer (normalized), distributed in 20 bins.  

a. Extr_buffer presents a non-sparse distribution 

b. DWT_buffer presents a sparse distribution 

 We can observe in these two figures that the elements of the DWT_buffer (Fig. 5b) are mostly 

centred on zero, justified by their sparse nature, while the elements of the Extr_buffer (Fig. 5a) have a 

non-sparse distribution. 

      The different data distribution patterns indicate that different protection approaches against 

memory faults can be applied for limiting the overhead. Intuitively, for taking advantage of the error 

resiliency of such an application we apply a scheme in which the most significant bits (MSBs) of every 

word in the Extr_buffer are protected with a state-of-the-art mechanism such as ECC, whereas the 

least significant bits (LSBs) are not protected against memory faults by any specific mechanism, as 

depicted in Fig. 6.   
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Fig 6. A memory word in the Extr_buffer 

 

On the other hand, in case of the DWT_buffer, the distribution of the stored data allows us to 

apply a more elaborate protection scheme. In particular, rather than protecting groups of bits, here we can 

protect complete words, distinguishing between significant and less significant ones. In fact, in case of the 

less significant data, as most of the values are close to zero, it is possible to replace them with their 

expected value (zero) if an error occurs in a word. This ensures that the impact of such an error will not 

drastically affect the expected data, since a flipped bit within each of the close-to-zero data can alter 

completely the magnitude of the stored value. Error detection is supported by a single parity bit per word, 

resulting in a small overhead with respect to error correction.  

 
 

Fig 7. Block diagram of the DWT_buffer 
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For the significant data, which has magnitudes much larger than zero, a more expensive error 

correction scheme must be applied for ensuring their correct storage. In the PSA application, such 

elements reside in the low-frequency outputs of the DWT. In this case, we considered SECDED (Single 

Error Correction, Double Error Detection) ECC (Fig. 7). Six ECC bits are required to protect a 32-bit word, 

as used in the data memories.  

Note that the partition between significant and less significant words can be selected statically, i.e. 

independently from the particular window of inputs being processed. Identification of sparse and non-

sparse data can be done by making an off-line analysis of the application, and thereby does not need any 

run-time overhead. In case of the Fast Lomb (FDWT), the data are distinguished based on the inherent 

properties of the DWT, resulting in the separation of the processed data into high and low frequencies. 

High frequencies (close to zero data) are termed as non- significant, whereas low frequencies are termed as 

significant. 

4. Experimental setup 

 To evaluate the application of the heterogeneous scheme in the PSA application, we retrieved the 

input ECG signals from real-world recordings, available in the Physionet PAF prediction database [2]. 

This database includes 300 recordings, each of 30 minutes. Each recording consists of data acquired from 

two simultaneously operating ECG sensors, and the root mean squared (RMS) value of the data from the 

two sensors. We have considered time windows of 6 minutes, with an overlap of 5 minutes, for processing 

the input data. As a result we obtained 25 time windows for each of the 30-minute long recordings. The 

data from each window in each recording were independently processed by the application to retrieve their 

LFHF ratio. 

To estimate the power consumption of the proposed system, we developed high-level models of its 

different components, including the processor, the data and the instruction memory, whose 

implementation is detailed as follows. 

We considered a technology node of 40 nm as a realistic example for next-generation WBSN nodes 

(which are currently 65nm and 90nm), and an ambient temperature of 300 degrees Kelvin (27º C). To 

obtain the static energy from static power figures, we assumed a working frequency of 168 MHz and 

measured the run-time of the PSA application on all input windows on the target Cortex-M3 processor, 

which corresponds to 2.23 seconds. The dynamic energy consumption of the processor was calculated 

from the values reported in its datasheet [3]. Its leakage energy was derived by considering the leakage 

power values of the processor while in standby mode, with the clock inactive. Both static and leakage 

energy figures were scaled according to the target supply voltage.  
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The instruction memory, which always needs to operate reliably, is implemented by using 8T SRAM 

cells. The energy consumption for loading the instructions into it from an NVM during start-up can be 

neglected, as the time spent for it (a few milliseconds) is in orders of magnitude smaller than the actual 

run-time of the application, which is typically from hours to days. Smart allocation policies have been 

proposed, which avoid full shadowing, and thus reduce the required on-chip SRAM sizes [29]. But this 

approach involves a careful integration with ultra-low power applications, as NVMs consume much higher 

energy per access with respect to SRAMs. Therefore they have not been considered in our proposed 

scheme. Novel NVMs have been presented which have much higher energy efficiency when compared to 

traditional flash memories [11]. Although in the future the static power consumption SRAMs will become 

more relevant, in the considered technology, NVMs still trail the energy efficiency of SRAMs, justifying 

the usage of the latter for implementing the instruction memory. The static power and dynamic energy 

figures of the IM were obtained from [32], adapting them to the target 40nm technology. To calculate the 

IM dynamic read energy, we considered a worst-case scenario in which an instruction is fetched every 

clock cycle. Conversely, for write energy, we assumed that the IM is written only once at the beginning of 

execution, as shown in Fig. 2. 

The data memory, realized with 6T SRAMs, is itself divided in two sections. The first one comprises 

the part outside the Extr_buffer and DWT_buffer, which must also operate without errors 

irrespective of the supply voltage. It is therefore entirely protected by SECDED codes. The non-buffer 

data memory (DM_Rest) was modelled using CACTI [32] to retrieve the dynamic energy (read and write) 

per access, while the total number of accesses was estimated using software counters. The leakage power 

reported by CACTI was adopted to compute the leakage energy, considering the application run time. 

The second data-memory section is composed of the data buffers (Extr_buffer and 

DWT_buffer), abbreviated as DM_Buff, and target of our approach of data-driven inexact scheme. For 

our experiments, we have considered a maximum of one error occurring in a memory word. In the case of 

the sparse DWT_buffer, we have employed 6 ECC bits for the protection of the most significant words, 

and one parity bit for detecting errors in the less significant words. To simulate this heterogeneous 

memory structure, two separate CACTI models were used as a starting point, either employing 6-bit ECC 

or 1-bit parity for the whole memory content. To derive the dynamic energy per read access of 

intermediate configurations, corresponding to the partial protection schemes, we employed the formula as 

described in (1). 

 

Et = p * Ep + (1 - p) * Eu       (1) 



13 

 

 

where Ep is the read energy per access in the protected memory, and Eu is the read energy per access 

in the unprotected memory. Also, p is the percentage of considered significant words. Et is the net read 

energy per access in the heterogeneous memory. The write energy per access and the leakage power of the 

hybrid memory were also calculated in the same manner. For the memories having ECC protection, 

CACTI reports the total energy per access taking into account the cost of access only for the additional 

check bits. It also accounts for the leakage incurred due to these additional bits. In our work, we aim to 

enforce significant data based protection for the major part of the data memory, and discard ECC bits for 

that part by including a simple parity check to detect error. The energy dissipated per access to the 

memory in the logic associated to ECC bits is thus an overkill in this context, especially when operating at 

ultra-low voltages when it is very low compared to the total energy dissipated in ECC-protected memories, 

and hence is not reported.   

To evaluate the impact of errors in unreliable memories, binary error masks were randomly generated 

for each buffer.  We considered single bit-flip errors with probabilities of 0.07% and 0.22%, relative to the 

behaviour of a 6T SRAM cell working with supply voltages of 0.65V and 0.6V, respectively [21]. These 

masks were of the same size as the buffers corresponding to which they were created. A ‘1’ in a mask 

position indicates a bit-flip error in the same position in the buffer, while a ‘0’ indicates no error. The 

corresponding value in the buffer was accordingly modified by considering a bit-flip at the indicated error 

position. If that value belonged to the part of the memory that is protected, then the value remained 

unchanged. We have considered a maximum of one error per memory word as the probability of multiple 

bit-flips are extremely low, and even in the rare cases that they occur, they can be managed at the software 

level. In case more complex ECC protection is employed to correct multiple errors, it would result in 

higher area and energy overheads, thus underscoring the benefit of our approach of selectively protecting 

the significant part of the memory. The impact of these errors on the quality of the output of the PSA 

application, under the different protection schemes, was then measured by comparing the obtained LFHF 

ratio with respect to an error-free execution. 

We compared our inexact architecture against two different baselines:  

1) High Vdd: In the first case we considered a high supply voltage (1.1V), which does not impact 

the reliability of the system. All memories in this case were implemented as 6T SRAMs, whose 

energy values were computed by modelling them in CACTI.  

2) Low Vdd and total ECC protection: In the second case we have considered exact operations at 

low supply voltage levels (0.65V).  This requires the implementation of the instruction memory 
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with 8-transistor SRAMs, while all of the data memory (buffer and non-buffer) is completely 

protected by SECDED ECC codes.  

5. Experiment Results 

We evaluated our system in three parts. Firstly, we analysed the performance degradation of the PSA 

system in calculating the LFHF ratio, under the different configurations of the heterogeneous memory 

scheme. Next, we studied the energy savings achieved by using the proposed configurations. Finally, we 

reported the energy-performance trade-offs for the different protection schemes. 

 

   5.1 Analysis of Error Introduced 

 

The results of the error simulations have been achieved by averaging individual results obtained by 

processing of data in each time window for each ECG recording. Figs. 8a and 8b show the percentage of 

error in the computation of the LFHF ratio by the PSA application, when compared to an error-free 

version of the same, under the different test-points of the proposed heterogeneous memory scheme at 

supply voltages of 0.65V and 0.6V, respectively.  

Our obtained results show that selective protection of a small fraction of words (the significant ones) 

in the sparse buffers can still guarantee high-quality performance of the system, with respect to an error-

free version. This shows the error-tolerance capabilities of WBSN applications. As an example, 1.3% 

relative error is incurred in the LFHF ratio by protecting 11 MSBs in the Extr_buffer and 15% 

significant words in the DWT_buffer (Fig. 8a).  It is very low in comparison to the fact that 2 or 3 

significant bits are needed to represent it, as reported in [9] and that it is dependent on multiple factors 

including, but not limited to, the age, race and gender of the patient [10]. This shows that bio-signal 

processing applications are tolerant to errors. However, the percentage of error in the LFHF ratio obtained 

by protecting only 4 MSBs in the Extr_buffer exceeded 20% in the case of full protection of the 

DWT_buffer. This high error-rate is not acceptable in bio-signal processing and thus we have excluded 

the condition of protecting only 4 MSBs in the Extr_buffer from the following sections of this paper.  

In the case of 32 MSBs protected in the Extr_buffer and 15% of significant words protected in 

the DWT_buffer, the relative error is less than 1%. This figure is bound below 4% even when we 

consider the worst-case protection from our experimental setup (11 MSBs protected in the 

Extr_buffer and 5% of significant words protected in the DWT_buffer). 
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Fig 8. Percentage of error in the calculation of the LFHF ratio under the different protection schemes 

a. At 0.65V supply 

b. At 0.6V supply 

 
The percentage error in the LFHF ratio for a supply voltage of 0.6V is shown in Fig. 8b. The same 

trends as in Fig. 8a are noticed also in this case, but with higher relative error with respect to operation at 

0.65V supply voltage. This is due to the much higher number of bit-flip errors in the memories at 0.6V 

supply, when compared to 0.65V. Interestingly, even in this case, the error in the LFHF ratio, with respect 

to a fault-free execution, can be limited to 5% by allowing errors in the 21 LSBs of Extr_buffer and 

only checking (but not correcting) errors in 90% of DWT_buffer.  

 

 

5.2 Analysis of Energy Consumption 

 

Figs. 9 and 10 compare the energy consumption of the different system components, at the first and 

second baselines considered (high Vdd and low Vdd with complete protection, respectively). It can be 

seen that at low supply voltage, the system already shows substantial energy savings when compared to 

operation at high supply voltage. Moreover, at low Vdd, it can be observed that data memory accounts for 

a major part of the energy budget and that the targeted buffers account for most of the energy consumed by 

the data memory (Fig. 10). This justifies the application of the proposed memory protection scheme to 

save even more energy in these buffers, thereby further enabling energy benefits at low-voltage operating 

points. 
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Fig 9. Energy Consumptions at Baseline 1(high Vdd) 
 

 
 Fig 10. Energy Consumptions at Baseline 2 (low Vdd) 

 

Fig. 11 shows the total energy consumption of the targeted memory buffers under the different 

protection schemes. We can observe from it that by using our proposed scheme with the condition where 

we protect 11 MSBs in the Extr_buffer and 10% significant words in the DWT_buffer 

(corresponding to a relatively low error of 2.6% in the LFHF ratio as in Fig. 8a), we were able to save 

about 18% of the energy in the buffers compared to the second baseline. 

It can be further observed from Fig. 11 that by using the proposed heterogeneous memory protection 

scheme we could achieve almost 20% of savings in energy in the targeted buffers in the most energy-

efficient case of protection considered (11 MSBs in Extr_buffer and 5% of significant words in 

DWT_buffer), over a scheme which involves protecting the buffers completely with SECDED codes. 
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Fig 11. Total energy consumption by the targeted memory buffers at 0.65V supply under different memory protection schemes 

for an execution time ≈ 2.23s 

 
5.3 Energy / Performance Trade-off Analysis 

 

 
Fig 12. Percentage error in LFHF ratio and the corresponding energy consumption under different memory protection schemes 

at 0.65V. Numbers beside the points represent the % of DWT_buffer protected 
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Combining the results obtained in the previous sections, we can investigate the trade-offs between 

relative error in LFHF ratio and the energy consumed. This enables the selection of the optimum memory 

architecture considering both energy consumption and the performance degradation. The total energy 

consumed by the targeted buffers under the different protection schemes are plotted against the percentage 

error in the computation of the LFHF ratio at 0.65V, as shown in Fig. 12.  

It shows that protection schemes with lesser energy consumption result in higher performance 

degradation. As an example for selecting the optimum protection scheme, for a maximum tolerable error 

of 3%, a solution with 11 MSBs protected in the Extr_buffer and just 10% of the most significant 

words in the DWT_buffer is the best one in terms of energy efficiency. On the other hand, for an energy 

budget of 61.5 µJ, the smallest percentage error can be achieved by protecting just 11 MSBs in the 

Extr_buffer and 10% of the DWT_buffer.  

6. Conclusions  

In this study we have introduced a novel heterogeneous memory architecture to increase the power 

efficiency of WBSNs by selectively protecting data with high criticality. Our experiments show that, by 

guaranteeing different amount of reliability in the bits and words of varying significance, the energy 

required by the considered PSA bio-signal processing application can be reduced beyond the levels 

attainable by voltage/frequency scaling alone, with a minimal degradation in the quality of service.   

The results of our experiments have shown that by applying the resulting heterogeneous protection 

scheme, we were able to reduce approximately 20% of the energy budget of the data memory used in the 

intermediate data buffers in prospective real-life wearable ECG monitoring systems. Moreover, our 

approach is able to tolerate the high error rates incurred at ultra-low voltage supply levels. This supports 

scaling to ultra-low operating voltages, which itself has substantial energy benefits compared to high 

voltage operation. 

 Our framework is applicable in various health-monitoring applications beyond the PSA, as they share 

similar characteristics of acquiring noisy inputs, proving a statistical or qualitative output, and consisting 

of intermediate buffers, which show sparse data distribution.  
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