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Abstract
In this work, we propose a free derivative quasi-Newtonmethod for solving large-scale
nonlinear systems of equation. We introduce a two-stage linear search direction and
develop its global convergence theory. Besides, we prove that themethod enjoys super-
linear convergence rate. Finally, numerical experiments illustrate that the proposed
method is competitive with respect to Newton-Krylov methods and other well-known
methods for solving large-scale nonlinear systems of equations.
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1 Introduction

Let F : Rn → R
n be a nonlinear continuously differentiable function, we are inter-

ested in solving the problem
F(x) = 0, (1)

especially when n is considerably large.
The most popular method for solving (1) is the Newton method [1, 2]. This method

has very good convergence properties, but its greatest difficulty is having to calculate
the Jacobian matrix of F, F ′, and evaluate it in each iteration which is, computation-
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ally, very expensive. One strategy to avoid this calculus and the evaluations is to use an
approximation to F ′(x) which entails to a variety of methods known as quasi-Newton
methods [3–8].

However, both Newton and quasi-Newton methods need to solve a linear system
of equations in their routines; thus, if n is large, even quasi-Newton methods are
expensive. It is important to say that although many quasi-Newton methods admit
a cheap formula for updating the inverse of Bk, generally these formulas depend
on a term that involves a fraction whose denominator could be zero or a very small
quantity so in practice this could lead to an ill-conditioned matrix. To counter this,
iterative Krylov methods [9–11] were introduced to Newtonian algorithms, which
contributed to decrease the computational cost on these algorithms. This strategy
consists of finding approximately the search direction, so the mentioned linear system
will solve with some tolerable error.

For Newton-Krylov methods, fast convergence properties have been proved
whereas, for quasi-Newton-Krylov methods, have been proved fast convergence prop-
erties if the Krylov method is the conjugate gradient method [12–15] or employed a
Jacobian restart strategy [16]. The greatest difficulty of inexact quasi-Newtonmethods
is that so far it has not been possible to prove that inexact quasi-Newton direction are
descent directions for the associated merit function to (1).

Several studies are concerned with solving (1). In [17, 18], the authors proposed a
different approach to solve (1). They proposed a nonmonotone spectral free derivative
method. This was an ingenious proposal based on spectral gradient method and sys-
tematically uses ±F(xk) as a search direction. Due to the simplicity of this method,
the computational cost is very low and although global convergence has been proved,
linear or superlinear convergence has not yet been proved.

In this paper, we establish a global inexact quasi-Newton method, which is of low
computational cost to solve (1). We propose a two-stage linear search procedure for
obtaining descent direction and we ensure the global convergence without falling
into infinite cycles. Also, under reasonable conditions, we prove fast convergence
properties for the method.

This paper is organized as follows. In Section 2 we introduce the new algorithm
and make some remarks. In Section 3 we develop the convergence theory of the algo-
rithm introduced previously. Besides, we prove global convergence of the method and
the linear and superlinear convergence rate. In Section 4 we present some numerical
experiments that show the robustness and competitiveness of the new algorithm. Fur-
thermore, we compare the performance of our algorithmwith respect to the algorithms
proposed in [17, 18]. Finally, we make some remarks in Section 5.

2 Algorithm

In this section, we describe the inexact free derivative quasi-Newton method (IFDQ)
that we propose in this work.
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Taking into account that one of our interests is to purpose a global algorithm to
solve (1), we considered the following minimization problem to this.

minimize f (x) (2)

x ∈ R
n

where f (x) = 1
2‖F(x)‖2 is the associated merit function to (1) and ‖ · ‖ is the

Euclidean norm in R
n .

Below we show the IFDQ algorithm which main innovation is the two-stage linear
search procedure

Algorithm 1 IFDQ.

Require: x0 ∈ R
n , λ ∈

(
0, 1

3

)
, β ∈ (0, 1), θ ∈ (0, 1) and a nonsingular B0 ∈ R

n×n .

Step 1: Find dk such that
‖Bkdk + F(xk )‖ ≤ θk ‖F(xk )‖ , θk ∈ (0, θ). (3)

Step 2: Two stages linear search procedure: Set αk = 1.
1. if ‖F(xk + αkdk )‖ < (1 − λαk ) ‖F(xk )‖ then
2. xk+1 = xk + αkdk and go to Step 3.
3. else if ‖F(xk − αkdk )‖ < (1 − λαk ) ‖F(xk )‖ then
4. xk+1 = xk − αkdk and go to Step 3.
5. else

, set αk = βαk . If αk ≥ λ, go to line 1 in the two stages linear search and repeat the procedure,
else, break.

6. end if
Step 3: Update Bk such that Bk+1 let be a nonsingular matrix.

Remark 1 So far it has not been possible to prove, in general, that the inexact quasi-
Newton direction, obtained in Step 1 is a descent direction for the merit function f
given in (2). For this reason, it is necessary to try both dk and −dk directions in the
line search procedure.

Remark 2 In Step 2we set two trial directions, dk and−dk . Note that unless∇ f T dk =
0, at least one of the trial directions will be a descent direction, hence, the two-stage
linear search procedure will not fall in an infinite cycle.

Remark 3 In the linear search procedure we seek a sufficient decrease of the merit
function f but if the step length αk is too small then the algorithm breaks down,
avoiding small steps with a poor decrease. Note that the lower bound for the step
length is set by the user and can be as small as desired. So to prevent either, many
breaks of the algorithm and small steps with a poor decrease we recommend to take
λ = 10−4. Whit this value, the algorithm showed a good performance.
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3 Convergence theory

In this section, we present the main theoretical results obtained for IFDQ algorithm.
In the following lemmas and theorems we show that, under reasonable assumptions,
the algorithm converges to a solution of the problem (1) and locally enjoys good
convergence properties: full inexact quasi-Newton step is accepted and it can even has
until superlinear converge.

The hypotheses under which we develop the convergence theory of the proposed
algorithm are:

H1. There exist x∗ ∈ R
n such that F(x∗) = 0.

H2. There exists T > 0 such that ‖B−1
k ‖ < T for all k ≥ 0.

H3. F ′(x) is a Lipschitz function, i.e., there exist L > 0 such that

‖F ′(x) − F ′( y)‖ ≤ L‖x − y‖ ∀x, y ∈ R
n .

H4. {Bk} is a sequence such that

lim
k→∞

‖(Bk − F ′(xk))dk‖
‖dk‖ = 0. (4)

Previous hypotheses are classical hypotheses for quasi-Newton methods. Hypothe-
ses H1 and H3 depend on the problem to be solved whereas H2 and H4 depends on
the approximations to F ′(xk).

An immediate consequence of H3 is that for all x, y ∈ R
n,

‖F(x) − F( y) − F ′( y)(x − y)‖ ≤ L

2
‖x − y‖2. (5)

It is important to mention that (4) in H4 is known as Dennis-Moré condition.
The first lemma of our theoretical development ensures that if the IFDQ algorithm

does not break down then, it generates a sequence such that its images converge to
zero.

Lemma 1 If {xk} is a sequence generated by IFDQalgorithm then lim
k→∞ ‖F(xk)‖ = 0.

Proof Let {xk} be a sequence given by IFDQ algorithm, it follows that

‖F(xk+1)‖ ≤ (1 − αkλ) ‖F(xk)‖
≤ (1 − λ2) ‖F(xk)‖
≤ (1 − λ2)k+1 ‖F(x0)‖ .

By recalling that 1 − λ2 < 1, the result is established. �
The next result is immediate since F is a continuous function.

Corollary 1 If {xk} is a sequence generated by IFDQ algorithm and x∗ is a cluster
point of {xk} then x∗ is a solution of (1).
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The following theorem ensures the convergence of the sequence generated by IFDQ
algorithm under the assumption of non-singularity of the Jacobian matrix F ′ in the
solution of the problem.

Theorem 1 Assume H2. Let {xk} be a sequence generated by IFDQ algorithm. If
x∗ ∈ R

n is a cluster point of {xk} such that F ′(x∗) is nonsingular then F(x∗) = 0
and lim

k→∞xk = x∗.

Proof Let {xk j } be a subsequence of {xk} such that xk j → x∗ as k j → ∞. By
recalling that F is a continuous function and Lemma 1, we have that F(x∗) = 0.

On the other hand, let K = ∥∥F ′(x∗)−1
∥∥ and δ > 0 small enough such that for any

y ∈ B(x∗, δ) we have that
i F ′( y)−1 there exists.
ii

∥∥F ′( y)−1
∥∥ < 2K .

iii
∥∥F( y) − F(x∗) − F ′(x∗)( y − x∗)

∥∥ ≤ 1
2K ‖ y − x∗‖ .

The existence of δ can be guaranteed thanks to Lemmas 1.1 and 1.2 in [15]. Observe
that if y ∈ B(x∗, δ) then

‖F( y)‖ = ‖F ′(x∗)( y − x∗) + F( y) − F(x∗) − F ′(x∗)( y − x∗)‖
≥ ‖F ′(x∗)( y − x∗)‖ − ‖F( y) − F(x∗) − F ′(x∗)( y − x∗)‖
≥ ‖F ′(x∗)( y − x∗)‖ − 1

2K
‖ y − x∗‖

and

∥∥ y − x∗∥∥ =
∥∥∥F ′(x∗)−1F ′(x∗)( y − x∗)

∥∥∥ ≤ K
∥∥F ′(x∗)( y − x∗)

∥∥ .

By combining the two last inequalities we can infer that

∥∥ y − x∗∥∥ ≤ 2K ‖F( y)‖ , ∀ y ∈ B(x∗, δ). (6)

On the other hand, let ε ∈ (0, δ/4). Since x∗ is a cluster point of {xk} and F(x∗) = 0
then, there exist k large enough such that

xk ∈ Sε := {
y ∈ R

n : y ∈ B(x∗, δ/2), M(1 + θ) ‖F( y)‖ < ε
}
,

where M = max{K , T } and T is the constant of hypothesis H2. Hence, we obtain

‖dk‖ =
∥∥∥B−1

k [−F(xk) + F(xk) + Bkdk]
∥∥∥

≤
∥∥∥B−1

k

∥∥∥ (‖F(xk)‖ + ‖F(xk) + Bkdk‖)
≤ T (‖F(xk)‖ + θk ‖F(xk)‖)
≤ T (1 + θk) ‖F(xk)‖ (7)

< M(1 + θk) ‖F(xk)‖ .
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Now, since xk ∈ Sε then ‖dk‖ < ε. Moreover, we have that

∥∥xk+1 − x∗∥∥ = ∥∥xk + αkdk − x∗∥∥
≤ ∥∥xk − x∗∥∥ + |αk | ‖dk‖
< δ.

Thus, we conclude xk+1 ∈ B(x∗, δ). On the other hand, since IFDQ attempts for a
monotone decrease and xk ∈ Sε then

‖F(xk+1)‖ ≤ ‖F(xk)‖ ≤ ε

M(1 + θ)
. (8)

So, from (6) and using the last inequality we can infer that

∥∥xk+1 − x∗∥∥ ≤ 2K ε

M(1 + θ)

≤ 2ε

(1 + θ)
(9)

≤ 2ε.

Finally, from (8) and (9) we have that xk+1 ∈ Sε, with which we prove that xk ∈ Sε

for all k large enough, and since ‖F(xk)‖ → 0 then, from (6), xk → x∗ as k → ∞.

�
In the next lemma, we show that the trial directions in Step 1 remain bounded for all
k.

Lemma 2 Assume H2. Let {xk} be a sequence generated by IFDQ algorithm then,
‖dk‖ ≤ 2T ‖F(xk)‖ and lim

k→∞ ‖xk+1 − xk‖ = 0.

Proof The first part of this lemma follows from (7) and the fact that θk ∈ (0, 1).
On the other side, observe that

‖xk+1 − xk‖ = ‖xk + αkdk − xk‖
= αk‖dk‖
≤ 2T ‖F(xk)‖.

Thus, by Lemma 1 and the last inequality, we have the desired result. �
The next theorem ensures convergence of the sequence generated by IFDQ algorithm
without non-singularity condition of F ′(x∗).

Theorem 2 Let {xk} be a sequence generated by the algorithm. If x∗ is an isolated
cluster point of the sequence then, lim

k→∞xk = x∗.

Proof Taking into account Lemmas 1 and 2, this proof follows the same ideas of the
proof of theorem 3 in [18] �
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The next theorem ensures that, at least locally, the IFDQ algorithm shows good per-
formance in the sense that the full quasi-Newton step will be accepted in the two-stage
linear search procedure. In the proof we assume a weaker hypothesis than the Dennis-
Moré condition. This hypothesis is related with the bounded deterioration property
and ensures that at least, for all k large enough, the approximation Bk to the jacobian
matrix F ′(xk) is bounded above by a constant.

As in the proof of Theorem 1, let M = max{K , T } where T is the constant in
H2.

Theorem 3 Assume hypothesesH1,H2 andH3. Let {xk} be a sequence generated by
IFDQ algorithm and x∗ be a cluster point of the sequence. If F ′(x∗) is nonsingular
and for all k large enough θk < 1

3 − λ and ‖F ′(xk) − Bk‖ < 1
24M3 then dk and

αk = 1 will be accepted, in the two-stage linear search procedure.

Proof Observe that

F(xk + dk) = F(xk) +
∫ 1

0
F ′(xk + tdk)dk dt

= F(xk) + F ′(xk)dk + Bkdk − Bkdk

+
∫ 1

0

[
F ′(xk + tdk)dk − F ′(xk)dk

]
dt .

Thus,

‖F(xk + dk)‖ ≤ ‖F(xk) + Bkdk‖ + ∥∥(F ′(xk) − Bk)dk
∥∥

+
∫ 1

0

∥∥F ′(xk + tdk) − F ′(xk)
∥∥ ‖dk‖ dt

≤ θk ‖F(xk)‖ + ∥∥F ′(xk) − Bk
∥∥ ‖dk‖ +

∫ 1

0
L ‖tdk‖ ‖dk‖ dt

so, from Lemma 2 and taking into account that for all k large enough

‖F ′(xk) − Bk‖ <
1

24M3 <
1

6T

we have that

‖F(xk + dk)‖ ≤ θk ‖F(xk)‖ + 1

3
‖F(xk)‖ + L

2
‖dk‖2

≤ θk ‖F(xk)‖ + 1

3
‖F(xk)‖ + 2T 2L ‖F(xk)‖2

=
(

θk + 1

3
+ 2T 2L ‖F(xk)‖

)
‖F(xk)‖ . (10)
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Now, since ‖F(xk)‖ converges to zero then, for all k large enough

‖F(xk)‖ <
1

6T 2L
. (11)

Hence, by (10), (11) and since θk < 1
3 − λ then, for all k large enough

‖F(xk + dk)‖ ≤ (1 − λ) ‖F(xk)‖

thus αk = 1 and dk will be accepted. �

The following theorem is the first theorem in which we show good convergence prop-
erties of the IFDQ algorithm. For this purpose, we assume that F ′(x∗) is nonsingular,
that ‖F ′(x∗)−1‖ = K and that M = max{K , T } where T is the constant in H2.

Theorem 4 Under the same hypotheses of the previous theorem. If in addition

θk < min

{
1

12M2 ,
1

3
− λ

}

then xk → x∗ linearly.

Proof By using Theorem 3, we can ensure that the full quasi-Newton step will be
accepted for all k large enough and by Theorem 1, xk → x∗ , so for all k large
enough, F ′(xk)−1 there exist and ‖F ′(xk)−1‖ ≤ 2M hence,

‖xk+1 − x∗‖ = ‖xk + dk − x∗ + F ′(xk)−1F(xk) − F ′(xk)−1F(xk)‖
≤ ‖xk − x∗ − F ′(xk)−1F(xk)‖ + ‖F ′(xk)−1(F(xk) + F ′(xk)dk)‖
≤ ‖F ′(xk)−1[F(x∗) − F(xk) − F ′(xk)(x∗ − xk)]‖ +

‖F ′(xk)−1‖‖F(xk) + F ′(xk)dk + Bkdk − Bkdk‖
≤ 2M‖F(x∗) − F(xk) − F ′(xk)(x∗ − xk)‖ + 2M[‖F(xk) + Bkdk‖

+‖F ′(xk)dk − Bkdk‖]

by (5) and Step 1 in the algorithm we have that

‖xk+1 − x∗‖ ≤ ML‖xk − x∗‖2 + 2M[θk‖F(xk)‖ + ‖F ′(xk) − Bk‖‖dk‖].(12)

Thus, by Lemma 2,

‖xk+1 − x∗‖ ≤ ML‖xk − x∗‖2 + 2M

[
θk + 1

12M2

]
‖F(xk)‖

= ML‖xk − x∗‖2 + 2M

[
θk + 1

12M2

]
‖F(xk) − F(x∗)‖.
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So, by the mean value theorem,

‖xk+1 − x∗‖ ≤ ML‖xk − x∗‖2 + 4M2
[
θk + 1

12M2

]
‖xk − x∗‖

=
[
ML‖xk − x∗‖ + 4M2

(
θk + 1

12M2

)]
‖xk − x∗‖ (13)

thereby, for k large enough such that

‖xk − x∗‖ <
1

3ML
,

since θk < 1
12M2 , we can conclude that

‖xk+1 − x∗‖ < R‖xk − x∗‖

where 0 < R < 1, which completes the proof. �
Finally, to complete our theoretical development, the next theorem ensures, under
reasonable assumptions, superlinear convergence of the IFDQ algorithm.

Theorem 5 AssumeH1,H2,H3 andH4. Let {xk} be a sequence generated by IFDQ
algorithm and x∗ be a cluster point of the sequence. If F ′(x∗) is nonsingular and
θk → 0 then xk → x∗ superlinearly.

Proof From (12) we can infer that

‖xk+1 − x∗‖ ≤ ML‖xk − x∗‖2 + 2M

[
θk‖F(xk)‖ + ‖F ′(xk) − Bk‖‖dk‖

‖dk‖
]

.

By Lemma 2 and the Mean Value Theorem,

‖xk+1 − x∗‖ ≤ ML‖xk − x∗‖2 + 2M

[
θk + 2M

‖F ′(xk) − Bk‖
‖dk‖

]
‖F(xk)‖

= ML‖xk − x∗‖2+2M

[
θk+2M

‖F ′(xk) − Bk‖
‖dk‖

]
‖F(xk) − F(x∗)‖

≤ ML‖xk − x∗‖2 + 2M

[
θk + 2M

‖F ′(xk) − Bk‖
‖dk‖

]
‖xk − x∗‖

=
[
ML‖xk − x∗‖ + 2M

(
θk + 2M

‖F ′(xk) − Bk‖
‖dk‖

)]
‖xk − x∗‖

The desired result follows from hypothesisH4 and the fact that xk → x∗ and θk → 0
as k → ∞. �
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4 Numerical experiments

In this section we report the numerical results of the IFDQ algorithm when solving
twenty problems. Sixteen of the problemswere taken from [17] and references therein,
the rest of the problems were taken from [19–21]. It is important to say that we did not
take into account problems 13, 14, 15 and 18 of [17]. First, problems 13 and 14 include
many random parameters that difficult the reproduction of the experiments. Second,
the poor performance of the algorithms with problems 15 and 18 did not allow us to
draw relevant conclusions.

The experiments were carried out in Matlab� using an Intel Core2T M laptop
with a RAM of 4GB. To evaluate the performance of the IFDQ algorithm, we ran
experiments and compared the results with four more algorithms: SANE [17], DF-
SANE [18], Ac-DFSANE [22] and NITSOL [23].

SANEandDF-SANEare spectral free derivative algorithms. The descent trial direc-
tion at each iteration of these methods is ±F(xk) and the main difference between
them is the linear search.

Ac-DFSANE is an accelerated version, proposed recently, for the DF-SANE algo-
rithm. This chooses in a very ingenious way the new iterate improving in many times
the descent achieved in the linear search.

Finally, NITSOL is a practical and efficient implementation of the classical inexact
Newton method with GMRES procedure to find the descent direction. This algorithm
approximates derivatives by finite differences when these are not available.

For all algorithms we used ‖F(xk)‖ < 10−6 and k < 300 as stop criteria. For
IFDQ algorithm we took B0 = In as initial approximation to F ′(x0); θk = 1

k+2 as
inexact parameter in Step 1 and λ = 10−4 and β = 0.5 for the two-stage linear
search procedure in Step 2. To find dk in Step 1, we used GMRES procedure.

In the same way, in Step 3 we used the “good” Broyden update [24]. It is important
to say that this update is a least change secant update, thus satisfying the well-known
property of bounded deterioration [2, 25] with which Dennis and Schnabel in [2]
showed that the sequence of matrices {Bk} satisfies the Dennis-Moré condition (4),
i.e., the sequence of matrices {Bk} satisfies hypothesis H4.

On the other hand, SANE, DF-SANE, Ac-DFSANE and NITSOL algorithms were
carried out with the same parameters as in respective references given above.

In Table 1, we show the complete list of problems with which we ran our experi-
ments. Starting points were the same as in the respective references.

In Tables 2 and 3 we report the results obtained using the following conventions:

F : functions of Table 1.
Method: algorithm used to solve the problems.

n : size of the problem to solve.
k : number of iterations required for the algorithms to solve each problem.

Feval : number of evaluation of function at each problem.
t : cpu time, given in seconds.

∗∗ : means nonconverge of the algorithm because it infringes the stop criteria.

The results in Tables 2 and 3 showed good performance of the IFDQ algorithm. First
because IFDQ algorithm required the same or fewer iterations than its counterparts
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Table 1 List of problems

Problem Reference

1. Exponential function 1 [17]

2. Exponential function 2 [17]

3. Exponential function 3 [17]

4. Diagonal function premultiplied by a quasi-orthogonal matrix [17, 26]

5. Extended Rosenbrock function [17, 26]

6. Chandrasekhar’s H-equation [17]

7. Badly scaled augmented Powell’s function [17, 26]

8. Trigonometric function [17]

9. Singular function [17]

10. Logarithmic function [17]

11. Broyden tridiagonal function [17, 27]

12. Trigexp function [17, 27]

13. Strictly function 1 [17, 28]

14. Strictly function 2 [17, 28]

15. Zero Jacobian function [17]

16. Geometric programming function [17]

17. Extended Wood function [19]

18. Brent function [19]

19. Yamamura function [20]

20. Zhou function [21], Problem 2.

in 17.5% of the problems. Second, our algorithm converged on thirty-eight of the
problems, that is, IFDQ algorithm converged on 95% of the experiments carried out.

It is important to mention that although in general when SANE, DF-SANE, Ac-
DFSANE and NITSOL converged, they were faster, in terms of CPU time, than IFDQ,
but in most cases, that difference was only for a few seconds. This behavior is due to
the fact that SANE, DF-SANE and Ac-DFSANE used ±F(xk) as trial directions, so
they do not have to solve a linear system of equation like (3) or make matrix vector
products as products made for IFDQ to update Bk . On the other side, NITSOLmakes
a single linear search, so generally requires less evaluations of function than IFDQ.
In the same way, NITSOL approximate derivatives by finite differences when these
are not available nevertheless we think that this could be affecting the convergence of
the method since this was the one with the lowest success rate. For the above, IFDQ
seems to be a competitive algorithm.

In the second and third columns of Table 4 we show the percentage of experiments
in which each algorithm won in terms of CPU time and number of iterations. In last
column of this table we show the percentage of success of each algorithm with the
experiments. The results show the IFDQ algorithm as an equilibrated method since
it was the most successful without requiring a large number of iterations or CPU time
compared to the other algorithms.
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Table 4 Global convergence Method CPU time Iterations Success

IFDQ 12.5% 17.5% 95%

SANE 22.5% 12.5% 82.5%

DF-SANE 57.5% 15% 75%

Ac-DFSANE 27.5% 32.5% 85%

NITSOL 5% 60% 70%

To test the global convergence of the IFDQ algorithm, we experimented with some
of the problems by randomly varying the starting point. In all cases, we ran the algo-
rithm with 500 starting points, whose components were uniformly distributed in the
interval [−100, 100]. In Table 5 we show, for each experiment, the problem, the size
of the problem and the success rate of the method. The success rate of the algorithm
on selected problems shows us a robust method; thus, it would be a good option for
solving large-scale nonlinear system of equations.

Tofinish our experiments,wewant to show the inner behavior of the IFDQalgorithm
when solving the problem given by the Extended Rosenbrock function.

In Table 6, we show the behavior of the most important parameters in the algorithm
when solving the above-mentioned problem. In this table,

RelRes = ‖xk+1 − x∗‖
‖xk − x∗‖

it helps us to analyze the rate convergence of the algorithm. As we can see in Table
6, RelRes converge to zero when θk converge to zero, which suppose a superlinear
convergence of the algorithm, as we proved in Theorem 5. On the other hand, αk = 1
for k > 18 just as we proved in Theorem 3.

5 Final remarks

In this work we proposed a new free derivative method for solving, especially,
large-scale nonlinear systems of equations. This method takes inexact quasi-Newton

Table 5 Global convergence F n Success rate

6 1000 100%

7 399 98%

13 1000 97%

15 500 100%

16 50 94%

17 2000 98.4%

19 1000 97.8%
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Table 6 Inner behavior k αk θk Rel Res

1 0.2500 0.3334 0.5590

2 0.2500 0.2500 1.3503

3 0.0313 0.2000 0.9887

4 0.1250 0.1667 0.9713

5 0.0625 0.1429 0.9841

6 0.0625 0.1250 0.9807

7 0.0625 0.1111 0.9782

8 0.0313 0.1000 0.9878

9 0.0625 0.0909 0.9732

10 0.0625 0.0833 0.9717

11 0.0625 0.0769 0.9697

12 0.0625 0.0714 0.9675

13 0.0625 0.0667 0.9652

14 0.1250 0.0625 0.9263

15 0.1250 0.0588 0.9225

16 0.1250 0.0556 0.9158

17 0.2500 0.0526 0.8185

18 0.5000 0.0500 0.6142

19 1.0000 0.0476 0.1404

20 1.0000 0.0455 0.1022

21 1.0000 0.0435 0.0801

22 1.0000 0.0417 0.0748

23 1.0000 0.0400 0

directions to build the new iterate and, taking into account that so far it has not been
possible to demonstrate that this is a descent direction and seeking to establish global
convergence we proposed a two-stage linear search procedure.

For this new method, we show that it enjoys good convergence properties, this is,
IFDQ method locally performs very well and, under reasonable hypotheses, has until
superlinear convergence.

Numerical experiments showed that IFDQhad a performance according to expected
and that this is a competitive method for solving large-scale nonlinear systems of
equations.
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16. Birgin, E., Krejić, N., Martínez, J.M.: Globally convergent inexact quasi-Newton methods for
solving nonlinear systems. Numer Algorithms. 32, 249–260 (2003). https://doi.org/10.1023/A:
1024013824524

17. La Cruz,W., Raydan, M.: Nonmonotone Spectral Methods for Large- Scale Nonlinear Systems. Optim
Method Softw. 18(5), 583–599 (2003). https://doi.org/10.1080/10556780310001610493

18. La Cruz, W., Martínez, J.M., Raydan, M.: Spectral residual method without gradient information for
solving large-scale nonlinear systems of equations. Math Comput. 75(255), 1429–1448 (2006). https://
doi.org/10.1090/S0025-5718-06-01840-0
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