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Abstract--This paper describes a framework for performing relational graph matching using genetic search. 
There are three novel ingredients to the work. Firstly, we cast the optimisation process into a Bayesian 
framework by exploiting the recently reported global consistency measure of Wilson and Hancock as a fitness 
measure. The second novel idea is to realise the crossover process at the level of subgraphs, rather than 
employing string-based or random crossover. Finally, we accelerate convergence by employing a deterministic 
hill-climbing process prior to selection. Since we adopt the Bayesian consistency measure as a fitness function, 
the basic measure of relational distance underpinning the technique is Hamming distance. Our standpoint is that 
genetic search provides a more attractive means of performing stochastic discrete optimisation on the global 
consistency measure than alternatives such as simulated annealing. Moreover, the action of the optimisation 
process is easily understood in terms of its action in the Hamming distance domain. We demonstrate empirically 
not only that the method possesses polynomial convergence time but also that the convergence rate is more rapid 
than simulated annealing. We provide some experimental evaluation of the method in the matching of aerial 
stereograms and evaluate its sensitivity on synthetically generated graphs. ~ 1997 Pattern Recognition Society. 
Published by Elsevier Science Ltd. 
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1. INTRODUCTION 

Discrete optimisation problems ~1-8) are of pivotal impor- 

tance in high and intermediate level vision where sym- 

bolic interpretations must be assigned to relational 

descriptions of image entities. ~9-13) Although the theory 

of continuous optimisation is mature, ~1) discrete or con- 

figurational optimisation is still in its infancy. ~2'4'6'7) The 

main difficulties stem from the fact that objective func- 

tions defined over a set of discontinuous states are prone 

to develop local optimaJ 3) It is for this reason that 

techniques such as simulated annealing, ~4'3'~4'~5) mean- 

field annealing t8) and most recently genetic search (2'6'7) 

have been developed to overcome some of the local 

convergence problems. 

Broadly speaking, discrete or configurational optimi- 

sation problems can be approached using two distinct 

methodologies. The first of these effectively corresponds 

to transforming the discrete optimisation problem into a 

continuous one. (~'5,s) In other words, the discrete sym- 

bolic assignments which are the goal of computation are 

replaced by a continuous representation. Algorithms 

falling into this category include mean-field annealing (8) 

and probabilistic relaxation. °)  One of the advantages of 

this form of optimisation process is that the continuous 

state-variables can in principle convey information con- 

ceming the degree of ambiguity associated with the final 

solution. (1) Whereas the mean-field technique (5'8) is cap- 

able of tracking the global optimum of the associated cost 

function under rescalings induced by a change in anneal- 

* Author to whom correspondence should be addressed. 

ing temperature, probabilistic relaxation is only guaran- 

teed to converge to a local optimum. ~1) The second class 

of algorithm retains the discrete assignment representa- 

tion, but avoids local optima by incorporating a stochas- 

tic element into the update process. (2-4"6'7A6) Perhaps the 

most popular algorithm falling into this category is the 

simulated annealing idea of Kirkpatrick, ~4) which has 

been exploited with seminal impact by Geman and Ge- 

man O) in the context of low-level vision. Gidas has 

addressed the problem of slow convergence by develop- 

ing a multi-resolution Markov model that efficiently 

tracks the optima of the cost function from coarse to 

fine detail in a resolution pyramid. ~14) A more recent 

addition to the family of stochastic optimisation methods 

is genetic search. (2'6'7) Rather than being motivated by 

the heat-bath analogy of simulated annealing, ~3'4'16) ge- 

netic search appeals to ideas concerning chromosomal 
evolution.Ca'17) 

Although genetic search is a new and imperfectly 

understood optimisation method, it offers certain attrac- 

tive computational features. Basic to genetic search is the 

idea of maintaining a population of alternative global 

solutions to the discrete optimisation problem in hand. 

The initial population may be generated in a number of 

different ways, but should in some sense uniformly 

sample the feasible solution space. Associated with each 

of the different solutions is a cost function which in 

keeping with the evolutionary analogy is termed the 

"fitness". (2) Genetic updates involve three distinct 

stages. Crossover involves selecting pairs of solutions 

randomly from the current population and interchanging 

the symbols at corresponding configuration sites with a 
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uniform probability. (6) Mutation aims to introduce new 

information into the population by randomly updating 

the component symbols for individual solutionsF ) The 

mutation process usually takes place with a uniform 

probability. The net effect of modifying the population 

in this way is to randomly sample the landscape of the 

fitness function. Configurations generated by crossover 

and mutation are subjected to a stochastic selection 

process in order to avoid convergence to a local opti- 

mum. (6) If roulette-wheel selection is used, then the 

probability that a modified configuration enters the 

population is computed on the basis of the relative fitness 
measure.(17) 

In many ways, genetic search provides an interesting 

compromise between the continuous transformation of 

the discrete optimisation problem (1'5'8) and its realisation 

by simulated annealing. (3"4'16) In the first instance, the 

roulette-wheel selection process is analogous to the 

Metropolis (16) algorithm employed in the sampling of 

Gibbs distributions in simulated annealing. Moreover, 

maintaining a population of solutions each with an 

associated fitness measure, naturally bridges the gap 

between the idea of having continuous optimisation 

variables and discrete ones. Provided diversity is sus- 

tained, the frequency of different solutions in the genetic 

population provides a discrete way of assessing ambi- 

guity. One of the unique features of genetic search is the 

possibility of crossover. This effectively provides a 

means of mixing existing solutions to produce new ones. 

In this way locally consistent subsolutions may be com- 

bined to generate a globally consistent solution. If effec- 

tively controlled, this feature can provide convergence 

advantages over simulated annealing. Finally, although 

the use of local optimisation with multiple random- 

starts(18,19) shares the feature of employing a population 

of alternative solutions, it is the crossover, mutation and 

selection operations that ensure global convergence. 

It is for these reasons that we would like to exploit 

genetic search in this paper. Our principal interest is in 

the symbolic matching of relational graphs. (1°'11A3'2°) 

Here we aim for find a discrete matching configuration 

that optimises a measure of relational consistency. Sym- 

bolic approaches to the relational matching problem have 

proved of perennial popularity since Barrow and Pop- 

plestone's pioneering work which located consistent 

matches by searching for cliques of the association 

graph. (9) Difficulties associated with matching inexact 

relational structures representing imperfectly segmented 

or cluttered scenes soon became evident. (1°'11'2°) One 

way of circumventing these difficulties is to pose the 

matching process as one of minimising a relational 

distance measure. (~°'11'2°) This measure should be cap- 

able of gauging both matching inconsistencies and struc- 

tural errors. The idea of quantifying relational 

inexactness in this way has been pursued by Shapiro 

and Haralick (1°) who attempted to minimise the number 

of inconsistently matched cliques. Structural errors are 

accommodated by inserting dummy nodes into the rela- 

tional graphs without penalty. The structural edit opera- 

tions of Sanfeliu and Fu (11) are more complex. Separate 

heuristic costs are associated with the operations of node 

relabelling, node deletion and node reinsertions; there are 

additional costs for the analogous operations on edges. In 

each of these methods consistent matches are located by 

deterministic search and there is little scope for exploring 

the ambiguity structure of the interpretation. One of the 

few discrete relaxation algorithms that allows for the 

exploration of ambiguities is Waltz's (zl) classical con- 

straint filtering algorithm which has been exploited in the 

context of line labelling. 

Viewed from the perspective of relational matching, 

our genetic search process also has a number of novel 

features. Firstly, we gauge consistency using a matching 

probability defined over connected subgraphs of the 

relational structures. The development of this consis- 

tency measure commences from an objective Bayesian 

model of matching errors and has been extensively 

reported elsewhere by Wilson and Hancock. (12'13) Com- 

pared with this earlier work, the novelty of the work 

reported in this paper resides in the use of relational 

matching probability as a fitness measure in genetic 

search. By maintaining a population of matches, we 

potentially have a natural mechanism for simultaneously 

enumerating different ambiguous solutions. The second 

novel contribution of our work resides in the fact that 

rather than performing randomised crossover we realise 

the process at the level of subgraphs. In this way cross- 

over allows us to mix solutions from the population so as 

to combine consistent subgraphs to rapidly form a more 

globally consistent solution. This can offer accelerated 

convergence, since standard discrete relaxation algo- 

rithms only propagate constraints over a distance of 

one neighbourhood with each iteration. Prior to perform- 

ing selection we employ a hill-climbing process to locate 

the nearest local optimum of the fitness function for each 

solution residing in the genetic population. This further 

accelerates the convergence process and offers a third 

novel departure from standard genetic search. Integral to 

this hill-climbing process is the removal of structural 

errors by graph-edit operations (jl) aimed at increasing 

the fitness of match. Selection operations stochastically 

refine the population on the basis of probabilities derived 

from the Bayesian consistency measure. (~2'13) Finally, it 

is worth mentioning that since probabilistic selection is a 

critical stage in genetic optimisation, the availability of 

an objective Bayesian measure greatly simplifies the 

search procedure. Moreover, the population of solutions 

can be regarded as sampling the probability distribution 

for consistent relational matches. 

In other words, our genetic algorithm represents a 

variant of the canonical version described by Gold- 

berg. (17) The literature abounds with many algorithm 

variants which are in reality tailored to different aspects 

of the global optimisation problem. In fact, our ideas 

concerning hill climbing, subgraph crossover and the use 

of a probabilistic measure for selection all have identifi- 

able progenitors elsewhere in the literature. For instance, 

the hill-climbing idea is also central to Davis's (22) hybrid 

genetic search technique. Both Eshelman's (z3) CHC 

algorithm, and Louis and Rawlins (24) use Hamming 



Inexact graph matching using genetic search 955 

distance to control a non-uniform crossover process with 

the aim of sustaining population diversity. Although 

roulette-wheel selection is the most common means of 

converting an ad hoc fitness measure into a survival 

probability, there are several alternatives in the literature. 

For instance, Goldberg's "tournament selection" has 

many features in common with the use of our Bayesian 

consistency measure as a fitness function in the selection 

phase, d7) This idea of using genetic algorithms in con- 

junction with a Bayesian inference process has also been 

explored by Gelsema. (25) Finally, Pelillo et a/. (26) have 

explored the symbiosis of relaxation labelling and genet- 

ic search in developing a strategy for learning compat- 

ibility coefficients. None the less, the idea of using 

genetic search to realise relational graph matching using 

the Bayesian consistency measure (~2A3) is not only novel, 

but also represents a natural and powerful extension of 

the existing methodology. 

The outline of this paper is as follows. In Section 2 we 

review the basic ingredients of the Wilson and Hancock 

relational consistency measure.(12'13)Section 3 describes 

how the optimisation of this measure may be mapped 

onto a genetic search procedure. Section 4 provides some 

performance evaluation on synthetic data. Section 5 

shows the utility of the genetic matching procedure in 

the registration of aerial stereograms. Finally, Section 6 

offers some conclusions. 

2. FITNESS 

The first step in the development of our genetic search 

procedure is to formally review the Bayesian consistency 

measure recently reported by Wilson and Hancock. (12'13) 

The consistency measure generalises the label-error pro- 

cess originally developed by Hancock and Kittler (27) 

from regular lattice arrangements to the more demanding 

application of labelling relational graphs. Our aim in this 

paper is to exploit this consistency measure as a fitness 

function for performing relational matching by genetic 

search. Hitherto, the optimisation of the consistency 

measure has been confined to the use of the deterministic 

iterative discrete relaxation process developed by Han- 

cock and Kittler. (27) This hill-climbing algorithm is only 

guaranteed to locate the local MAP estimate and is in 

many ways analogous to Besag's (2s) iterative conditional 

modes algorithm. Genetic search not only provides a 

global optimisation strategy, but as we shall demonstrate 

in this paper, its architecture is also naturally suited to the 

Wilson and Hancock consistency measure. °2'~3) 

Central to this paper is the aim of matching relational 

graphs represented in terms of configurations of sym- 

bolic labels. We represent such a graph by G = (V, E), 

where V is the symbolic label-set assigned to the set of 

nodes and E C V × V is the set of edges between the 

nodes. In our genetic realisation of the matching process, 

we maintain a population of matches between a set of 

edited versions of a graph representing the data and a 

single model graph. These editing operations involve 

deleting nodes from the original data and recomputing 

the edge set. Suppose that a is an index which runs over 

the set of solutions in the population. Formally, we 

represent the matching of the nodes in the data graph 

indexed a in the population, i.e. Ga = (V~, E~) against 

those in the model graph G,, = (Vm,Em) by the function 

f~ : Va ---, Vm. In other words, the current state of match 

is denoted by the set of Cartesian pairs constituting the 

function f~ = {(i,f,~(i)), '7'i 6 Va} C Vc~ x Vm. 

In order to describe local interactions between the 

nodes at a manageable level, we will represent the graphs 

in terms of their clique structure. The clique associated 

with the node indexed j consists of those nodes that are 

connected by an edge of the graph, i.e. 

Cj = {i ~ V,l(i,j) c E,~}. The labelling or mapping of 

this clique onto the nodes of the graph Gm is denoted by 

Fj = {f(i) c Vm, Vi c C)}. Suppose that we have access 

to a set of patterns that represent feasible relational 

mappings between the cliques of graph G,~ and those 

of graph Gin. Typically, these relational mappings would 

be configurations of consistent clique labellings which 

we want to recover from an initial inconsistent state of the 

matched graph G~. Assume that there are Zj relational 

mappings for the clique C i which we denote by 

A" = {A~ C Vm, Vi C Cj}, where # E {1 ,2 , . . .  , ~ }  is 

a pattern index. According to this notation A~i ~ C Vm is the 

match onto graph Gm assigned to the node iEV, of graph 

G,  by the izth relational mapping. The complete set of 

legal relational mappings for the clique Cj is stored in a 

dictionary which we denote by Oj = {A#[# = l , Z j } .  

The discrete relaxation procedure is based on max- 

imising the joint probability of the matched label con- 

figuration, i.e. P(Fj). It is therefore necessary to find a 

way of enumerating P(Fj) when the label configuration is 

highly inconsistent, i.e. when there are no dictionary 

items for which the Hamming distance is zero. The 

approach is to adopt a Bayesian viewpoint in which it 

is assumed that only consistent labellings in the diction- 

ary are legal and have uniform non-zero a priori prob- 

abilities of occurrence, i.e. P ( M ' ) = Z j  1. Other 

configurations do not occur a priori but are the corrupted 

realisations of the dictionary items. This idea is realised 

by applying the axiomatic property of joint probability to 

expand P(Fj) over the space of consistent configurations 

z; 

P(Uj) = ~P(FjIA")P(A~').  (l) 
I~ 1 

Further development of a useful objective function for 

discrete relaxation requires a model of the label corrup- 

tion process, that is of the conditional probabilities of the 

potentially inconsistent configurations given each of the 

Zj feasible relational mappings P(FjlA~ ). We adopt a 

very simple viewpoint; matching errors are assumed to be 

memoryless and to occur with uniform probability p. 

The first consequence of the assumed absence of 

memory is that the errors are independent. As a result 

we can factorise the conditional probabilities over the 

individual nodes in the graph, i.e. 

P(Fj IA u) = H P(fo (i)IA/u). (2) 
i~Cj 
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Our next step is to propose a model for the label 

corruption mechanism at each node in the graph. Again, 

taking recourse to the memoryless assumption, the prob- 

ability of label errors on individual objects is independent 

of the class of label. This leads us to the following 

assignment of probability 

p0c(i)lA~) = { 1  - p  if f~(i) = A~, 
otherwise. (3) 

As a result of this distribution rule, the conditional 

matching probabilities depend on the Hamming distance 

Hu between the matched configuration Fj and the in- 

dividual dictionary items A ~, i.e. 

P(FjlA u) = (1 - p)ICjI-H, pI4,, (4) 

where the Hamming distance H,, is defined to be 

H#=Y~ieqll-~f,(i),v, ). The mo~del components gi- 

ven in equations (2i-(4i naturally lead to the following 

expression for P(Fj) in terms of the set of Hamming 

distances to the consistent labellings residing in the 

dictionary: 

P(Fj) = ~j u~l exp(-kH~), (5) 

where bj = (1 - p)lC/I and k = ln[(1 - p)/p]. According 

to our picture of discrete relaxation, Hamming distance is 

the basic measure of consistency. Systematic softening of 

the constraints residing in the dictionary is controlled by 

the parameter p. It is tempting to draw analogies between 

the exponentials appearing in equation (5) and the Boltz- 

mann distribution. The quantity k clearly plays the role of 

inverse temperature while Hu is related to the Gibbsian 

potential. 

The configurational probability P(Fj) is the basic 

ingredient of our genetic search procedure. It represents 

the probability of a particular matching configuration 

evaluated over the state-space of feasible possibilities 

(i.e. the dictionary). We use as our global measure of 

consistency the sum of clique configurational probabil- 

ities, i.e. 

,~ l S ' P ( F , ) .  PG= V, (6) 

In Section 3 we will describe how this average con- 

sistency measure can be utilised as a fitness measure in 

the genetic search for relational matches. However, it is 

worth commenting on the relationship between our idea 

of using a compound exponential function of Hamming 

distance as a fitness measure and other attempts at 

exploiting Hamming distance reported elsewhere in 

the literature on genetic search. There are two contribu- 

tions which merit mention. Eshelman (23) has used Ham- 

ming distance to control crossover and mutation 

operations to reintroduce diversity into an otherwise 

degenerate population. Louis and Rawlins (24) realised 

the same goal by adding a proportion of bit-complement 

patterns to the genetic pool. However, in neither case is 

the Hamming distance used to construct a fitness mea- 

sure for use in selection. 

3. G E N E T I C  S E A R C H  

Genetic search <2'6'7) provides a very natural way of 

locating the global optimum of the global consistency 

measure described in Section 2. In essence, the approach 

relies on generating a population of random global 

matching configurations. These undergo crossover, mu- 

tation and selection to locate the match that optimises a 

fitness measure. Mutation operations ensure that the 

fitness landscape is uniformly sampled. Crossover intro- 

duces diversity by mixing partially consistent solutions; 

if effectively controlled this can accelerate the merging 

of consistent subgraphs. Selection stochastically selects 

from the population so as to locate the solution of 

optimum fitness in a manner analogous to the Metropolis 

algorithm. (16) However, since the algorithm commences 

from a set of random matches, accurate initialisation is 

not an issue of critical importance. One of the novel 

features of our genetic search process is the incorporation 

of a deterministic hill-climbing stage. This additional 

step is applied to the fitness measure once mutations have 

occurred and is used to accelerate convergence to the 

nearest optimum of the average consistency measure. In 

this way suboptimal solutions may be rapidly rejected by 

the selection process. It is interesting to compare the idea 

of maintaining a population of alternative solutions 

which is central to genetic search using multiple starting 

configurations employed by Beveridge e t  al. (18't9'29) 

Whereas the final solutions located with multiple starts 

effectively sample the local optima of the fitness land- 

scape, it is the mutation, crossover and selection steps 

which ensure that genetic search converges to a global 

optimum• 

Genetic search was originally inspired by an analogy 

with chromosomal evolution. ~lv) In consequence the 

algorithm is of a largely heuristic nature. Because of 

its effectiveness and its attractive computational proper- 

ties, the technique has recently attracted attempts to 

provide a more rigorous theoretical understanding. For 

instance Qi and Palmieri (6'7) have provided a statistical 

analysis of the various components of genetic search. 

Moreover, each of the algorithmic components have been 
• (2) subject to various refinements and extensions. In this 

section we therefore describe the main components of 

our genetic relational matching algorithm. We also pro- 

vide some rationale for the search process from the 

viewpoint of our relational consistency measure de- 

scribed in Section 2. 

3.1. Initial population generation 

Key to genetic search is the idea of maintaining a 

population of alternative solutions, each with a computed 

fitness value. The initial choice of the trial solutions 

which undergo genetic refinement may be made in a 

number of ways. Here we choose the initial matching 

configurations so as to uniformly sample the feasible 
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search space. From the perspective of structural match- 

ing, this has a number of advantages. Firstly, it means that 

we obviate the need for accurate initialisation, which has 

proved to be a perennial problem in the application of 

iterative labelling schemes. Secondly, it means that our 

matching scheme is purely symbolic. An alternative to 

selecting a uniformly distributed initial population is to 

adopt a bias towards the matches suggested by unary 

measurements. 

The choice of population size determines the rate of 

convergence for genetic search. There is a trade-off 

between the sampling, the fitness landscape with a fine 

granularity and the computational overheads associated 

with maintaining a large population of solutions. Since 

Hamming distance is the basic ingredient of our consis- 

tency model, we have appealed to a simple pattern space- 

model (3°~ to select the population size. We have de- 

manded that the spacing of the initial solutions is less 

than the average Hamming distance between random 

graph pairs. For a uniformly distributed population of 

initial configurations, the distribution of inter-pattern 

Hamming distance is binomial with mean 

IV~l[1 - (1/Iwml)].  This  means that the population size 

is approximately equal to the number of nodes in the data 

graph. 

3.2, Crossover 

Crossover is the process which mixes the pool of 

solutions to produce new ones. If effectively controlled, 

the process can be used to combine pairs of suboptimal or 

partially consistent matches to produce one of improved 

global consistency. Typically, deterministic updating of 

the match will propagate constraints only over the dis- 

tance of one neighbourhood with each iteration. Cross- 

over can accelerate this process by combining 

disconnected yet internally consistent subgraphs from 

the individual solutions in the pool. 

The standard crossover procedure involves select- 

ing at random pairs of global matching configu- 

rations from the current population. Random matches 

at corresponding sites in the match are then inter- 

changed with uniform probability ½; we term this as 

probabilistic crossover. However, this crossover 

mechanism will not necessarily facilitate the merging 

of locally consistent subgraphs. Moreover, the process 

also ignores the underlying structure of the graphs. 

A better strategy is to combine the solutions by 

physically dividing the graphs into two disjoint 

subgraphs. In this way internally consistent portions of 

the individual solutions may be exchanged at the 

structural level. As we will demonstrate in Section 4, 

this idea of geometric crossover offers certain advantages 

over the canonical process in terms of convergence 

speed. 

In our experimental evaluation of the genetic search 

procedure we will confine our attention to Delaunay 

graphs. Here the nodes of the graphs are points on the 

image plane. Each node is used to seed a Voronoi cell. 

Edges in the Delaunay graph indicate region adjacency of 

the Voronoi polygons. In this case, the subgraph cross- 

over process is easily implemented by dividing the 

original image plane with a random line. This has the 

effect of partitioning the set of data graph nodes into two 

subsets v(a) and V(f), where V~ = V (a) U V (b). New 

solutions may be constructed by interchanging the 

matches of the two partitions between pairs of matched 

graphs in the genetic population. Suppose that the two 

solutions undergoing crossover are denoted by the 

matches f~ = {(i,fc~(i)), Vi E V~} and f~ -- {(i,f~(i)),  

Vi E V~}. The new solutions produced by the crossover 

process are f~ = {(i,f,~(i)), Vi E V (a)} U {(i,f~(i)),  

Vi E V(~ b) } and f6 {(i,f~(i)),  Vi E V~ a)} u {(i,f,~(i)), 
vi 

If the two solutions are defined over the same sets of 

nodes, i.e. V~ ~ V~, then the partitioning of the data 

graph by randomly dividing the image plane has no effect 

on the triangulation, i.e. the edge-set of the graph. In 

Section 3.4.2 we will describe our strategy for control- 

ling extraneous clutter in the matching process. This 

involves a graph-editing process which centres around 

removing nodes from the point-set and recomputing the 

Delaunay graph. This means that different solutions in 

the genetic population may in principle be defined over 

dissimilar sets of data graph nodes. When this is the case, 

the crossover process not only involves exchanging 

matches, it must also include retriangulation. For Delau- 

nay graphs this is a straightforward process. The Voronoi 

seeds falling into the two partitions of the image plane are 

exchanged in the usual way and two new Delaunay 

triangulations are computed. This process is illustrated 

in Fig. 1. 

It is a straightforward matter to show that crossover 

operations result in no net change in the average Ham- 

s ing  distance. It is only the selection process that results 

in a modification in the Hamming distance distribution 

by removing members of the population on the basis of 

their fitness value. In the case of our fitness function 

given in equation (6), the net effect of selection opera- 

tions will be to reduce both the mean and average 

Hamming distance, by incrementally removing the high 

Hamming distance tail of the distribution. In other words, 

at later epochs, when the genetic population is dominated 

by a few ambiguous solutions, the principal mode of 

the step-size distribution will be at zero Hamming 

distance with a number of submodes corresponding to 

the distance between different solutions. In reality, how- 

ever, the population becomes swamped by a single 

solution and the Hamming distance variance approaches 

zero. For instance Lois and Rawlins (24) overcome this 

collapse in diversity towards a degenerate population by 

complementing the solutions in such a way as to maintain 

a non-zero Hamming distance variance. This is also 

the motivation behind both Eshelman's (23) CNC 

algorithm and the multi-niche crowding algorithm of 

Cedeno et al. (3b However, since our objective in this 

paper is the rapid location of a maximally fit solution, 

rather than exhaustively tracking ambiguities, maintain- 

ing population diversity is not an issue of central im- 
portance. 
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Fig. 1. Subgraph crossover (the figure illustrates how new graphs are generated in the crossover process 
through subgraph exchange). 

3.3. Mutation 

A further randomisation stage is applied to the indi- 

vidual matches to introduce new information into the 

population of global matches through a process of muta- 

tion. This is effected by randomly swapping the matches 

on individual sites with a uniform probability. In other 

words we randomly reassign a fixed-fraction the matches 

f~(i) with random labels selected from the set Vm. In order 

to sample the probability distribution for relational 

matches in equation (5), we perform mutations with 

probability p, i.e. the prevailing value of the label-error 

probability. In this way mutation operations effectively 

sample probability distribution specified in equation (3). 

In other words, random label updates are generated 

according to our imposed model of the label-error pro- 

cess. 

The effect of mutation operations can again be under- 

stood by reference to our simplistic pattern-space model. 

The distribution of Hamming distance associated with 

uniform mutation will again be binomial. The mean 

Hamming distance step size is IV~lp while the variance 

is ]Va Lo(1 - p). In other words, 1/p is the average number 

of mutation steps required to transform the different 

initial solutions into one another. 

3.4. Population refinement 

The crossover and mutation stages of genetic search 

take place without reference to the value of the fitness 

measure; they simply mix and diversify a population of 

matches for further refinement. In our matching process 

the refinement process is effected using both hill-climb- 

ing and selection operations. Both stages of the algorithm 

are aimed at optimising the global configurational prob- 

ability measure P~. 

3.4.1. Hill climbing. The aim in performing hill- 

climbing operations is to restore consistency to graphs 

modified by the crossover and mutation operations. 

Although this can be effected by stochastic means, it is 

time consuming. The hill-climbing stage involves 

iteratively reconfiguring the graphs modified by 

crossover or mutation to maximise the value of P~. 

Formally, this corresponds to a parallel iterative 

application of the following decision rule: 

f , ( i )  = arg max P~. (7) 
vm 

This application of this rule has the effect of locating the 

nearest local optima of the global consistency measure. 

It therefore redistributes the population of solutions to 

reside at the modes of this fitness measure. Suboptimal 

modes become increasingly unlikely as they are 

removed from the population by the stochastic 

selection operations. This process not only accelerates 

convergence, it also diminishes the requirements for a 

large population of graphs. 

It is worth commenting that the idea of employing hill- 

climbing to accelerate convergence is also central to 

Davis's hybrid genetic search algorithm. ~22) 

3.4.2. Unmatchable nodes. One of the critical 

ingredients in effective relational matching is the way 

in which unmatchab le  ent i t ies  or c lut ter  are 

accommodated. Conventionally, there are two principal 

ways in which the effect of clutter can be neutralised. 

The first of these is to retain clutter nodes as an integral 

part of the graphs, but to explicitly label them as null- 

matched. ~12) The alternative is to follow a graph-edit 

phi losophy and to remove the c lut ter  nodes,  

recomputing the edge-set of the graph if necessary. ~11) 

The main advantage of graph-edit operations is that if 

effectively controlled, they can overcome relational 

fragmentation due to severe levels of clutter. In an 

extensive comparative sensitivity analysis Wilson 

and Hancock ~32) have demonstrated that although 

effective when subgraph matching is being attempted, 

the null-labelling technique has a greater susceptibility 

to noise. 
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Fig. 2. An example of a graph-edit process in a Delaunay triangulation (the figure illustrates the effect of 
deleting a single node on the edge-set of a Delaunay graph). 

We therefore choose to control clutter using a graph- 

edit process which allows nodes to be deleted and 

reinstated. This process is incorporated into the hill- 

climbing stage in the following way. Each node in turn 

is deleted from the graph and the edge-set recomputed. 

For our experimental evaluation of the method, we have 

chosen to use Delaunay graphs representing Voronoi 

tessellations of the image plane. Here the node deletion 

process corresponds to removing a particular Voronoi 

cell and growing adjacent cells to fill the vacated space. 

This process effectively modifies the edge-set of the 

associated Delaunay graph. By adopting the Delaunay 

representation we simplify the graph-editing process by 

lifting the requirement for an explicit set of edge-edit 

operations of the sort employed by Sanfeliu and Fu. (1 ~) 

Our decision concerning node deletion or reinsertion is 

based on the value of P~. If the value of P~ increases due 

to the deletion process, then the node is edited from the 

graph. If, on the other hand, the value of P~ increases as a 

result of node reinsertion at a later stage, then it is 

reinstated. This process is illustrated in Fig. 2. 

In a recent paper, Wilson and Hancock (33) have shown 

how this operation of active graph reconfiguration can be 

realised as an optimisation process. Details of the deriva- 

tion are outside the scope of this paper. The basic idea is 

to gauge the net effect of deleting a node by examining 

those contributions to the consistency measure that arise 

from modification of the super-cliques containing the 

node in question. Suppose we are considering deleting 

node u E V,~ from the data graph G,~ to produce a new 

graph G.~ = (V~, E;~). Here the two node-sets are related 

by V / =  V,~ - {u} and the edge set E~ is computed by 

retriangulating the modified node-set V;, At the clique 

level the change in the consistency measure is monitored 

identifying those nodes that form a clique with node u in 

graph G,, i.e. C, {u}, and determining their counter- 

part cliques in the reconfigured graph G/3. Let X + denote 

the clique set of object u in graph G~ and X, denote the 

corresponding clique set in the reconfigured graph Gf~. 

With this notation the change in the consistency criterion 

caused by the deletion of the node u is proportional to 

b~ Z, 
A; Z ~ Z exp(-kH,,). (8) 

j ~ ,  # = 1  

By contrast, when considering the change in the MAP 

criterion caused by reinsertion of the node u it is the 

super-clique set X + to which we turn our attention. The u 

corresponding change to the consistency criterion is 

proportional to 
bjz~ 

A~+ = ~ ~ Z exp(-kH,) .  <9) 

The decision criteria for node deletion or reinsertion 

are as follows. We delete node u provided A+ < A ;  and 

reinstate it provided A~ > A~. This graph-editing pro- 

cedure is applied at each of the solutions in turn as part of 

the hill-climbing process. The set of nodes 

constituting the reconfigured graph is therefore 

vj = {~ + V,,fA+ > a~ }. 

3.4.3. Selection. The hill-climbing and node deletion 

operations are purely deterministic processes which 

effectively bring about local improvements in matching 

consistency. These operations would otherwise prove 

time consuming if pursued by stochastic means. The 

final stochastic element of genetic search is the selection 

process. The aim here is to randomly admit the 

configurations refined by the hill-climbing process to 

the population on the basis of their fitness measure. 

The probability distribution defined in equation (5) 

lends itself naturally to the definition of a population 

membership probability. By normalising the sum of 

clique configuration probabilities over the population 

of matches, we arrive at the following probability for 

randomly admitting the solution indexed o to the pool of 

graphs :3: 

p~ - P~ 



960 A.D.J .  CROSS et al. 

With this survival probability in hand, population selec- 

tion can be facilitated by a straightforward application of 

the roulette-wheel algorithm. (17) The final optimal match 

is located by selecting the graph for which ~ is max- 

imum. Provided that population diversity can be main- 

tained, f23"24'31) the idea of maintaining a population of 

alternative weighted matching configurations effectively 

bridges the conceptual gap between classical discrete 

relaxation methods (27) and continuous labelling algo- 

rithms such as probabilistic relaxation (I) or mean-field 

annealing. (8) 

4. ALGORITHM EVALUATION 

Our aim in this section is to evaluate the behaviour of 

the genetic search procedure on synthetic data sets with 

known ground truth. The synthetic graphs used in this 

study have been constructed by generating random-dot 

patterns and constructing the associated Delaunay 

graphs. Structural corruption has been generated by 

adding random noise dots and retriangulating. The main 

issues here in our algorithm evaluation are convergence 

properties, computational efficiency and parameter sen- 

sitivity. 

4.1. Convergence 

As we indicated in Section 3, there are a number of 

ways in which the crossover process can be realised. One 

of the anticipated shortcomings of randomly selecting 

nodes in the crossover process is the slow convergence. 

Figure 3 illustrates this point. Here we show the max- 

imum value of the global fitness function P~ for the pool 

of graphs as a function of iteration number for both 

geometric crossover and probabilistic crossover. 

Although the probabilistic crossover has more rapid 

initial convergence, its subsequent behaviour is much 

slower. In other words, there appear to be distinct ad- 

vantages in using disjoint subgraphs as structural units in 

the crossover process. 

In addition to the maximum fitness, it is also interest- 

ing to study how the distribution of the fitness value over 

the pool of graphs evolves with iteration number. This is 

illustrated in Fig. 4(a). Initially P~ is concentrated close 

to the origin. As the genetic search proceeds, the mode of 

the histogram slowly moves to larger value of P~. 

However, of greater importance to the genetic search 

procedure, the largest fitness value increases at a more 

rapid rate. In fact, the rightmost column of Fig. 3 illus- 

trates how the frequency of the fittest match increases 

with iteration number. The ground-truth solution is in fact 

first encountered in the third iteration and has saturated 

the genetic population by the 10th iteration. Finally, it is 

interesting to note that the mode of the histogram corre- 

sponds in a statistical sense to the typical results achiev- 

able by virtue of deterministic search. Figure 3 therefore 

underlines some of the convergence advantages of ge- 

netic search over its deterministic counterpart. 

To underline some of the points made in Section 3, we 

have plotted the distribution of Hamming distance be- 

tween the ground-truth solution and the individual mem- 

bers of the population of graphs. Figure 4(b) shows the 

Hamming distance distribution as a function of iteration 

number for the 40-node problem studied in Figs 3 and 

4(a). Initially, the minimum Hamming distance is 36, 

while the mode occurs at 39. As the genetic search 

process iterates, the modal Hamming distance moves 

towards zero as the correct solution saturates the popula- 

tion. 

Finally, we demonstrate that the mutation, crossover 

and selection stages of our genetic search procedure offer 

advantages in terms of the global quality of match. We 

meet this goal by offering some comparison with multi- 

ple random starts. Commencing from a population of 
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Fig, 3. A comparison of different crossover schemes. The maximum fitness in the population is plotted as a 
function of iteration number; the solid curve shows the result of geometric or subgraph crossover, while the 

dashed curve is the result of applying probabilistic crossover. 
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Fig. 4. (a) Cost function distribution as a function of iteration number. (b) Hamming distance distribution as 
a function of iteration number. 

random initial matching configurations we apply only the 

hill-climbing and graph-editing steps described in Sec- 

tions 3.4.1 and 3.4.2. In other words, we omit the muta- 

tion, crossover and selection stages of our genetic search 

algorithm. Figure 5 shows a histogram of P c  for multiple 

random starts and genetic search at various iterative 

epochs commencing from identical initial conditions. 

The solid line shows the initial Pc  distribution that is 

common to both algorithms. The dashed curve is the 

result of multiple random starts at convergence. The 

short-dashed and dotted curves are the corresponding 

distributions from two and four iterations of genetic 

search. Initially, the distribution is concentrated at the 

origin. After two iterations of genetic search the distribu- 

tion is almost identical to that for multiple random starts. 

However, in the case of multiple random starts the 

maximum fitness value is only 70% of the maximum 

value obtained by genetic search. After tour iterations of 

genetic search the mean value of the fitness is more than 

twice that obtained with multiple random starts. More- 

over, some 20% of the solutions are in the maximum 

fitness bin. Given identical population size and initial 

conditions, genetic search is therefore capable of locating 

better quality solutions. 

4.2. Comparison with ahernative optimisation 

strategies 

To provide some indication as to the relative conver- 

gence performance of our genetic search procedure, we 

have undertaken some comparison with deterministic hill 

climbing and simulated annealing. The deterministic 

process is based on locating the optimum value of P~ 

by parallel iterative updates along the lines suggested by 

Wilson and HancockJ ]2]3) The simulated annealing 

method is more involved and requires the specification 

100 / i i i = i 
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Fig. ft. Result of using multiple starts. The plot shows the distribution of fitness in the population for both 
genetic search and multiple starts. The solid curve is the initial fitness distribution which is common to both 
algorithms. The dashed curve is the result of multiple random starts at convergence. The short-dashed and 

dotted curves are the corresponding distributions from two and four iterations of genetic search. 
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of Gibbs potentials for the super-clique matching con- 

figurations. Details are beyond the scope of this paper. 

Suffice to say that the apparatus of statistical physics (5"8> 

can be applied to P(Fj) to compute a corresponding Gibbs 

potential U(Ei). The starting point is the following 

relationship which draws on the assumption that P(EJ) 

can be regarded as a local partition function for the 

dictionary. (34) 

1 0 P ( F j )  (11) 
u(r ; ) -  p(p;) ok 

Upon substituting for P(Fi) from equation (5), 

U(rj ) ~ f '  l H;,exp(-kH;,) 
= (12) 

z;tZ;=l exp(kH;,) 

In other words, the effective potential for a particular 

label configuration is just a weighted sum of Hamming 

distances over the different dictionary items. We perform 

simulated annealing on the sum of the configurational 

clique potentials, i .e .  

UG = Z U(Fi). (13) 
jCV .  

Using the Metropolis algorithm, (3"16) we randomly select 

both nodes and potential updates. The update is accepted 

if it leads to a reduction in the global configurational 

potential UG. If this is not the case, then the random 

update is accepted with probability 

P~ exp [ - k  ~iccj U(Fi)] (14) 

~ r ,  exp [ - k  ~]i~C: U(Fi)] " 

To illustrate the relative convergence performance for 

the three optimisation strategies, Fig. 6 shows a plot of 

P~ as a function of iteration number. In the case of the 

genetic algorithm the value plotted is the maxi- 

mum configurational probability evaluated over the 

population of matches. Although deterministic hill 

climbing has rapid and uniform convergence, the final 

value of P~} is suboptimal when compared to the alter- 

natives. Simulated annealing, on the other hand, con- 

verges to a larger value of P~, but is slow and non- 

uniform. Genetic search converges rapidly and uniformly 

to the maximum value of P~,. By contrast, the determi- 

nistic update process remains trapped at the mode of the 

P~'; histogram. 

4.3. Algorithm efficiency 

One of the attractive features of genetic search is that 

much of the computation concerned with optimising the 

different solutions and evaluating their associated fitness 

can take place in parallel. Although no real theoretical 

bounds exist lbr convergence, we can provide some 

empirical measurements which illustrate how the com- 

putational overheads grow with the increasing size of the 

graphs. To evaluate the computational cost associated 

with our genetic search procedure, we will count the 

number of Hamming distances needed to locate the 

correct solution. We will first concern ourselves with 

the problem of locating graph isomorphisms. The nor- 

malisation point in this study is the number of Hamming 

distances needed to locate a consistent graph isomorph- 

ism for a 10-node matching problem. Figure 7(a) shows 

the cost as a function of the number of nodes in the graphs 

under match. Fitting a polynomial to this graph, the 

number of Hamming distance computations increases 

as 0.00711*N 213. In other words, there is empirical 

evidence that the genetic search process can locate graph 

isomorphisms in polynomial time. In fact it is interesting 

to compare this polynomial growth with the results 

reported by Beveridge (19) and by Grimson. (35) Grimson's 
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Fig. 6. Comparison of convergence rates for different optimisation schemes. The plot shows a plot of P~ as 
a function of iteration number. The solid curve is the result obtained with genetic hill climbing. The dotted 
curve is the result of applying deterministic hill climbing. The dashed curve is the result of applying 

simulated annealing. 
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Fig. 7. (a) Number of computations to convergence as a function of the number of nodes in the graphs. (b) 
Number of computations to convergence as a function of graph corruption. 

theoretical analysis suggests that the complexity of ob- 

ject recognition should rise as N 2 while Beveridge 

shows empirically that for random starts the com- 

plexity increases to N 25. In other words, the empirical 

bounds on the complexity of our genetic search proce- 

dure are within both the theoretical and empirical limits 

for deterministic search algorithms. It is also interesting 

to note that there exist deterministic heuristic search 

algorithms that return subgraph isomorphisms in poly- 

nomial time. °~'~ 

Obviously, the task becomes more difficult if we 

are dealing with inexact matches. Figure 7(b) shows 

the number of Hamming distance computations required 

when controlled number of nodes are added to and 

deleted from the graphs. A positive number of corrupt 

nodes represents the addition of noise to G,, while a 

negative number represents noise addition to G,,. It is 

interesting to note that the values are not symmetric about 

the zero corruption case; the number of Hamming 

distance computations to convergence increases 

more rapidly when noise is added to the model graph. 

In other words, although the empirical complexity in- 

creases as we move from the case of graph isomorphism 

to subgraph isomorphism, the increase is at worst poly- 

nomial. 

4.4. Parameter sensitivity 

There are two parameters that control the genetic 

search procedure. The first of these is the population 

size, while the second is the mutation probability. Our 

aim in this subsection is to investigate the sensitivity of 

the convergence rate to systematic variation of these two 

parameters. Figure 8(a) shows the number of iterations to 

convergence as a function of population size for a graph 

of 40 nodes. The main feature of this graph is the 

existence of a critical population size. Once the popula- 

tion size exceeds 20 graphs, convergence takes place 

within five iterations. These convergence results are 

many orders of magnitude faster than those obtained if 

we omit the hill-climbing stage or adopt a probabilistic 

rather than geometric crossover strategy. 

The second parameter of the optimisation scheme is 

the mutation probability. Normally, this is taken to be the 

label-error probability p used in the computation of 

global fitness P~. Figure 8(b) shows the number of 

iterations to convergence when this constraint on the 

mutation probability is relaxed. Provided that p<0.6, the 

algorithm appears to be completely insensitive to the 

mutation probability. In fact, we find that mutation is a 

relatively insignificant component of the algorithm. Most 

(a) ~! 

I 
l 

] /°!° /] 

I I /' ] 

I ,' i 

/ / /  i 

j / "  [ 

20 40 60 8~ 100 120 140 160 ~80 200 01 02 03 04 05 06 07 08 
Populal~n Size Mutatron Probabil~y 
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Fig. 9. (a) An initial guess. (b) The recovered solution. 

of the effectiveness of the algorithm is derived from the 

crossover, hill-climbing and selection stages. 

4.5. Matching examples 

Figure 9(a) and (b) illustrates some typical matching 

results on synthetic graphs. Figure 9(a) shows a repre- 

sentative solution from the initial population. The left- 

hand graph is the model while the right-hand graph is the 

data; lines between the two graphs indicate matches. The 

data graph has been obtained by adding random clutter to 

the model and perturbing the nodes with Gaussian posi- 

tion errors. The original model graph contains 20 nodes 

while the corrupted data graph contains 40 nodes. Figure 

9(b) shows the fittest match from the genetic population 

after three iterations. There are two features worth not- 

ing. Firstly, the overall consistency of match has im- 

proved. The lines connecting the nodes in the data and 

model graphs are no longer randomly distributed. Sec- 

ondly, the added clutter nodes have all been correctly 

identified and deleted from the data graph; they appear as 

disjoint points on the right-hand image of Fig. 9(b). The 

overall accuracy of match in this example is 100%. 

The example described above is typical of the problem 

of matching a relational description that is subsumed in 

noise or clutter. Another common problem in computer 

vision is to match scenes containing multiple objects. 

Under particularly severe imaging conditions these ob- 

jects may be significantly overlapped. The following two 

examples illustrate the capacity of our genetic search 

procedure to match under these two sets of conditions. It 

should be noted that these results have been obtained 

using a more complex fitness measure than that described 

in Section 2 which draws more heavily on attribute 

information. Full details can be found in the recent paper 

of Cross and Hancock. (3v) 

The simplest example involves the matching of multi- 

ple non-overlapping models. Figure 10(a) shows the 

fittest initial match while Fig. 10(b) shows the final 

match. The data graph, on the left-hand side of Fig. 10(a) 

and (b), is a non-overlapping union of the three models on 

the right-hand side of the figures. Here the genetic search 

algorithm correctly partitions the data graph into three 

disjoint subgraphs. As indicated by the lines between the 

data and model, each of the subgraphs is correctly 

matched. 

The more complex case in which the three graphs are 

overlapped is illustrated in Fig. 1 l(a) and (b). Here our 

genetic matching technique is again capable not only of 

correctly partitioning the nodes of the data graph into the 

three disjoint subgraphs but also of locating the consis- 

tent matches. In fact these results indicate that our 

t ' (b) % 
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Fig. 10. (a) An initial guess• (b) Recovered solution. 
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Fig. 11. (a) An initial guess. (b) Recovered solution. 

matching technique has considerable potential as a tool 

for extracting relational clusters from highly overlapped 

data. 

4.6. Performance comparison 

In order to illustrate the effectiveness of the genetic 

search technique, we have compared its performance 

with deterministic hill climbing. The deterministic algo- 

rithm aims to optimise the global cost function given in 

equation (6) by gradient ascent; in other words, the label 

update that results in the greatest increase in P~ is always 

accepted at a particular node. The comparison has been 

performed under conditions of controlled structural cor- 

ruption. We have generated random graphs and added a 

controlled fraction of spurious noise. Figure 12 shows the 

fraction of the graph correctly recovered and matched as 

a function of the fraction of added noise nodes. The lower 

curve is the result obtained by iterating the deterministic 

method to convergence. The intermediate curve is the 

result after performing one iteration of genetic search 

with a population size of 100 graphs. After two iterations 

of genetic search the upper curve is obtained. The main 

conclusion from this study is that once the corruption 

level exceeds 20%, the gradient ascent technique is likely 

to become trapped in a local minimum. By exploring a 

much greater fraction of the search-space, genetic search 

is capable of finding good results even at very severe 

corruption levels. In other words, when combined with 

the probabilistic cost function, genetic search can recover 

significantly better results than its deterministic counter- 

part. 
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Fig. 12. The effect of controlled structural corruption. 
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Fig. 13. Aerial 

5. MATCHING EXPERIMENTS WITH AERIAL 

STEREOGRAMS 

Our experimental vehicle is provided by the matching 

of aerial stereograms of suburban areas. A typical image 

pair is shown in Fig. 13. The image registration problem 

is posed as one of matching rooftops. In this section we 

briefly review the image processing operations required 

so that we can abstract the registration process in terms of 

genetic graph matching, before proceeding to detail 

algorithm performance. 

5.1. Extracting relational graphs from aerial 

stereograms 

To commence we must localise the rooftop features 

to be matched. Here we adopt a matched filtering 

technique. Details of the algorithm are outside the 

stereograms. 

scope of this paper. Suffice to say that we use a 

Wiener-filtering technique, which exploits the Fourier 

duality between convolution in the spatial domain 

and multiplication in the frequency domain to deter- 

mine the coefficients of the matched filter over a set 

of training examples. The training examples are chosen 

on the basis of their orientation, size and shape. Once the 

matched filter is in hand, we can attempt to identify 

typical rooftop structures by locating maxima of the 

image convolution. We localise significant rooftop re- 

sponses by applying a simple thresholding technique to 

the convolution output and locating the centroids of the 

associated connected components. A neighbourhood 

structure is established by computing the Voronoi tes- 

sellation of the centroids. The Delaunay triangulation of 

the Voronoi regions provides us with a relational struc- 

ture for matching. 
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Fig. 14. (a) Training image. (b) Convolution response for the training data. 
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Fig. 15. (a) Matched filter applied to the right stereo image. (b) Houses detected. 
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Fig. 16. Initial matching results (popsize=100). 

This simple processing chain is illustrated in Figs 14 

and 15. Figure 14(a) shows the training image used to 

compute the matched filter coefficients. Figure 14(b) 

shows the result of reapplying the convolution filters 

to the training data. Figure 13 shows the aerial stereo- 

grams under match. The result of applying the convolu- 

tion filters to one of these images is shown in Fig. 15(a). 

Figure 15 (b) shows the original data with the centroids of 

the thresholded connected components superimposed. 

Finally, Fig. 16 shows the extracted Delaunay triangula- 

tions for the left and right stereograms. 

5.2. Results 

The lines between the two graphs in Figs 16 and 17 

and 18 represent the current state of matches between the 

two graphs. This sequence of figures shows various 

stages in the iterative matching process. Figure 16 is 

the fittest match from the initial population, while Fig. 19 

is the final match. Figures 17 and 18 show intermediate 

solutions which are partially consistent. We present them 

to show how the subgraph crossover can combine par- 

tially consistent solutions to form more globally consis- 

tent solutions of the type shown in Fig. 19. It is important 

to stress that only one hill-climbing and crossover epoch 

has elapsed between the results shown in Figs 17 and 18 

and those shown in Fig. 19. 

This example represents a less demanding test than the 

synthetic matching experiment in Figs 9-11. There 

is only one spurious node, which appears in the 

left-hand image, due to thresholding errors in the cen- 

troid location process. This node is correctly identified as 
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Fig. 18. Intermediate matching results (popsize 100). 

clutter and is deleted. The remaining nodes are all 

correctly matched. Although the segmental input to this 

matching problem is good, the regularity of the graphs 

poses potential problems of ambiguity. The genetic 

search process is effective in overcoming these and 

locates a solution of maximum global consistency. 

6. C O N C L U S I O N S  

To conclude, we have shown how the optimisation of 

the relational consistency measure of Wilson and Han- 

cock~2,~3) naturally maps onto genetic search. Moreover, 

the physical variable underpinning this consistency mea- 

sure, namely Hamming distance, allows us to picture the 

action of the various stages of the search process in an 

intuitive way. Based on an extensive simulation study, we 

evaluate the performance of the resulting optimisation 

process. This yields a number of interesting results. 

Empirical results suggest that the number of computa- 

tions required to locate a consistent solution rises in a 

polynomial manner with graph size. Moreover, despite 

being stochastic in nature the convergence is more rapid 

than simulated annealing. It is also interesting to note that 

the method requires a population size which is approxi- 

mately equal to the number of nodes in the graphs under 

match. In addition to the population size the only para- 

meter of the method is the mutation probability. Again, 

convergence is not critically dependent upon the choice 

of parameter. 

The genetic search procedure therefore represents a 

relatively effective stochastic optimisation process that is 

not sensitive to the choice of parameters. One intriguing 
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Fig. 19. Final matching results (popsize 100). 

possibility not explored in this paper is to exploit  the 

genetic population to maintain equivalent ambiguous 

interpretations of  the same graphs. This topic has not 

been extensively studied in the relaxation literature since 

the work of  Faugeras and B e n h o d J  t) We are currently 

extending the work reported in this paper by conduct ing a 

study of  the classical toy triangle and other ambiguous 

labelling problems.  The results will be reported in due 
course.( 3(k38--4o 
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