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INEXACT INVERSE ITERATION WITH VARIABLE SHIFT FOR
NONSYMMETRIC GENERALIZED EIGENVALUE PROBLEMS∗

JÖRG BERNS-MÜLLER† AND ALASTAIR SPENCE‡

Abstract. In this paper we analyze inexact inverse iteration for the nonsymmetric general-
ized eigenvalue problem Ax = λMx, where M is symmetric positive definite and the problem is
diagonalizable. Our analysis is designed to apply to the case when A and M are large and sparse
and preconditioned iterative methods are used to solve shifted linear systems with coefficient matrix
A − σM. We prove a convergence result for the variable shift case (for example, where the shift is
the Rayleigh quotient) which extends current results for the case of a fixed shift. Additionally, we
consider the approach from [V. Simoncini and L. Eldén, BIT, 42 (2002), pp. 159–182] to modify the
right-hand side when using preconditioned solves. Several numerical experiments are presented that
illustrate the theory and provide a basis for the discussion of practical issues.

Key words. eigenvalue approximation, inverse iteration, iterative methods

AMS subject classifications. 65F10, 65F15

DOI. 10.1137/050623255

1. Introduction. Consider the generalized eigenvalue problem

Ax = λMx,(1.1)

where A is an n × n nonsymmetric matrix, and M is an n × n symmetric positive
definite matrix with x ∈ C

n, λ ∈ C. In our analysis we restrict ourselves to the case
where M−1A is diagonalizable; that is, (1.1) has a full set of eigenvectors. Here n is
large and A and M are assumed to be sparse.

Large-scale eigenvalue problems arise in many applications, such as the determi-
nation of linearized stability of a three-dimensional fluid flow. Typically only a few
eigenvalues are of interest to the user, and therefore iterative projection methods such
as Arnoldi’s method [1] and its modern variants [11, 7], or Davidson-type methods
[13, 22], and subspace iteration [8, 24, 12] are applied. However, to speed up the con-
vergence (see [2, section 3.3]), often these methods are applied to a “shift-invert” form
of (1.1) with the resulting large, sparse linear systems solved iteratively. To obtain a
reliable and efficient eigenvalue solver one requires a good understanding of the inter-
action between the iterative linear solver and the iterative eigenvalue solver. In this
paper we study inexact inverse iteration, the simplest inexact iterative method, as a
first step in helping to understand more sophisticated inexact eigenvalue techniques.

The classical inverse iteration algorithm to find a single eigenvalue of (1.1) is given
as follows.

Algorithm 1. inverse iteration.
Given x(0), then iterate:
(1) Choose σ(i).
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(2) Solve (A − σ(i)M)y(i) = Mx(i).
(3) Set x(i+1) = y(i)/ϕ(y(i)).

Here ϕ(y(i)) denotes a scalar normalizing function. Common choices for ϕ are
ϕ(y(i)) =‖y(i) ‖M and ϕ(y(i)) = zHy(i) for some fixed vector z. Often the choice
z = ek is made, where ek denotes the kth canonical unit vector and k corresponds
to a component of large modulus in the desired eigenvector. One can keep σ(i) fixed,
so that σ(i) = σ(0), to obtain a fixed shift method. Alternatively, one can obtain
a variable shift method by updating σ(i), typically by the Rayleigh quotient or by
σ(i+1) = σ(i) + 1/(zHMy(i)) if ϕ(y(i)) = zHMy(i); see [25, p. 637], [6]. An early
fundamental paper on Rayleigh quotient iteration for nonsymmetric problems with
exact solves is [16].

We consider the following inexact version of inverse iteration.

Algorithm 2. inexact inverse iteration.
Given x(0), then iterate:
(1) Choose σ(i) and τ (i).
(2) Find y(i) such that ‖(A − σ(i)M)y(i) − Mx(i)‖≤ τ (i).
(3) Set x(i+1) = y(i)/ϕ(y(i)).

Algorithm 2 is an example of an “inner-outer” iterative algorithm; see, for exam-
ple, [5]. Here the outer iteration being indexed by i is the standard step in inverse
iteration, and the inner iteration refers to the iterative solution of the linear sys-
tem (A − σ(i)M)y(i) = Mx(i) to a prescribed accuracy. Since most iterative linear
solvers have stopping conditions based on the residual we use the residual condition
‖(A− σ(i)M)y(i) −Mx(i)‖≤ τ (i). In practice there are various ways to formulate the
inner iteration stopping condition (usually as a relative condition). Here we use an
absolute stopping condition to simplify the analysis.

An early paper on inexact inverse iteration for the standard symmetric eigenvalue
problem is [19]. More recently [23, 21, 14, 9, 3] various aspects of inexact inverse
iteration for the symmetric eigenvalue problem have been considered, usually with
the shift chosen as the Rayleigh quotient. It is known (see [10, 6]) that with a fixed
and not too accurate shift one needs to solve the shifted linear equations more and
more accurately. Additionally, for nonsymmetric generalized eigenvalue problems, the
analysis in [6] shows how the accuracy of the inner solves affects the convergence of
the outer iteration. Here we extend the convergence theory to the case of variable
shifts, for example, when the Rayleigh quotient is used. In this case we show that the
tolerance for the inexact solve need not decrease, provided the shift tends towards the
desired eigenvalue. The analysis in this paper will be independent of a specific linear
solver; we assume only that the residual of the inexact linear solve can be controlled.

The plan of the paper is as follows. Section 2 gives some basic results and no-
tation. Section 3 contains a convergence analysis for inexact inverse iteration. In
particular, if Rayleigh quotient shifts are chosen, we see how to regain the quadratic
convergence that is achieved using exact linear solves. Alternatively, we show that if
the linear systems are solved to a fixed tolerance, we can still achieve a convergent
method but with the rate of convergence being only linear. In section 4 we extend
the approach of [21] based on modifying the right-hand side of the standard inverse
iteration formulation with the aim of reducing the number of inner iterations needed
per outer iteration but maintaining the variable shift. This idea is motivated by the
work in [20] and has proven to be effective for the symmetric eigenvalue problem. We
give a convergence theory and compare it with more standard approaches. In the
paper several numerical examples are given to both illustrate the theory and aid the
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discussion.
Throughout this paper we use ‖ · ‖ for ‖ · ‖2; however, most results are norm

independent.

2. Some basic results. We restrict our attention to the case where the general-
ized eigenvalue problem Ax = λMx is diagonalizable; that is, there exist an invertible
matrix V and a diagonal matrix Λ (both possibly complex) such that

AV = MVΛ,(2.1)

and so the eigenvalues of A lie on the diagonal of Λ and the columns of V are the right
eigenvectors, that is, Avj = λjMvj , j = 1, . . . , n. The corresponding decomposition
in terms of the left eigenvectors is

UA = ΛUM,(2.2)

where U can be chosen as U = V−1M−1 and so UMV = I. Hence the rows of U
are the left eigenvectors, that is, uj = UTej with uT

j A = λju
T
j M, j = 1, . . . , n. Note

that for the theory we leave the scaling of the eigenvectors open, but we could ask
that ‖vj ‖= 1 or ‖vj ‖M= 1. In either case UMV = I provides the corresponding
scaling for uj .

Using the decomposition (2.1) and assuming that σ is not an eigenvalue of (1.1)
we can write

(A − σM)V = MV(Λ − σI)

⇔ V(Λ − σI)−1 = (A − σM)−1MV.(2.3)

Similarly we can use (2.2) to obtain

U(A − σM) = (Λ − σI)UM

⇔ (Λ − σI)−1U = UM(A − σM)−1.(2.4)

2.1. The generalized tangent. In order to analyze the convergence of inexact
inverse iteration described in Algorithm 2 we use the following splitting:

x(i) = α(i)(c(i)v1 + s(i)w(i)),(2.5)

where w(i) ∈ span(v2, . . . ,vn) and ‖ UMw(i) ‖= 1. The splitting implies that
V−1w(i) ∈ span(e2, . . . , en) and scaling implies that ‖V−1w(i) ‖=‖UMw(i) ‖= 1.
Defining

α(i) :=‖UMx(i)‖

gives |s(i)|2 + |c(i)|2= 1, since from (2.5) we have

UMx(i) = α(i)c(i)UMv1 + α(i)s(i)UMw(i),(2.6)

and so

1 =
‖UMx(i)‖

α(i)
= ‖c(i)e1 + s(i)UMw(i)‖

=
(
|c(i)|2 + |s(i)|2

) 1
2
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since e1 ⊥ UMw(i). Thus we interpret s(i) as a generalized sine and c(i) as a gener-
alized cosine, which is in the spirit of the orthogonal decomposition in [17] used for
the symmetric eigenvalue problem analysis. For convenience we introduce the matrix
F, defined by

F := (I − e1e
T
1 )UM = UM(I − v1u

T
1 M),(2.7)

and note that Fv1 = 0 and Fvj = ej , so that

(UM − F)x(i) = α(i)c(i)e1,(2.8)

and

Fx(i) = α(i)s(i)UMw(i).(2.9)

Hence ‖(UM−F)x(i)‖ measures the length of the component of x(i) in the direction
of v1 and Fx(i) picks out the second term in (2.6). So it is natural to introduce
as a measure for convergence of x(i) to span(v1) the generalized tangent (cf. [6,
section 2.1])

t(i) :=
|s(i)|
|c(i)|

=
‖Fx(i)‖

‖(UM − F)x(i)‖
.(2.10)

Clearly ‖ 1
c(i)α(i) x

(i) − v1 ‖= t(i) ‖ w(i) ‖, and so t(i) measures the quality of the

approximation of x(i) to v1. Note that t(i) is independent of the factor α(i) and that
in the inverse iteration algorithm x(i) is scaled so that ϕ(x(i)) = 1.

For future reference we recall that for x ∈ C
n the Rayleigh quotient for (1.1) is

defined by

�(x) :=
xHAx

xHMx
(2.11)

and that

�(x(i)) − λ1 =
(x(i))H(A − λ1M)x(i)

(x(i))HMx(i)
= O(|s(i)|)(2.12)

since (A−λ1M)x(i) = α(i)s(i)(A−λ1M)w(i), using (2.5). Thus, the Rayleigh quotient
converges linearly in |s(i)| to λ1. Also, since

(A − �(x(i))M)x(i) = (A − λ1M)x(i) + (λ1 − �(x(i)))Mx(i)(2.13)

we have that the eigenvalue residual r(i) defined by

r(i) :=
(
A − �(x(i))M

)
x(i)(2.14)

satisfies

‖r(i)‖ = O(|s(i)|).(2.15)

Note that while both (2.12) and (2.15) indicate that convergence is linear in |s(i)|, it
is often the case that convergence to an eigenvalue is faster than convergence to the
corresponding eigenvalue residual.
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3. Convergence of inexact inverse iteration. In this section we provide
the convergence analysis for inexact inverse iteration using a variable shift strategy.
In section 3.1 we provide a lemma which gives a bound on the generalized tangent
t(i+1). This bound is then used in the convergence theorem in section 3.2. Numerical
experiments are presented to illustrate the theory.

Practical choices for σ(i) are the update technique

σ(i+1) = σ(i) + 1/ϕ(y(i)),(3.1)

the Rayleigh quotient given by (2.11), or the related

σ(i) =
zHAx(i)

zHMx(i)
,(3.2)

where z is some fixed vector chosen to maximize |zHMx(i)|. For M = I it is common
to take z = ek, where k corresponds to the component of maximum modulus of x(i)

(for example, see [18]). If the choice ϕ(y(i)) = zHMy(i) is made, then for exact solves
it is easily shown that

σ(i+1) = σ(i) +
1

zHMy(i)
=

zHAx(i+1)

zHMx(i+1)
,(3.3)

so that (3.1) and (3.2) are equivalent. For inexact solves we use (3.2), and it is easily
shown that λ1 − σ(i) = O(t(i)) (cf. (2.12)).

3.1. One step bound. Let us assume that the sought eigenvalue, say λ1, is
simple and well separated. Next, we assume the starting vector x(0) is neither the
solution itself nor is it deficient in the sought eigendirection, that is, 0 <|s(i) |< 1.
Further, we assume that the shift σ(i) satisfies

|λ1 − σ(i)| ≤ 1

2
|λ2 − λ1| ∀i,(3.4)

where |λ2 − λ1|= minj �=1 |λj − λ1|. Hence |λ1 − σ(i)|<|λ2 − σ(i)|.
Now consider step (2) of inexact inverse iteration, given by Algorithm 2, and

define

d(i) := Mx(i) − (A − σ(i)M)y(i).(3.5)

Rearranging this equation and using the scaling of x(i+1) from step (3) in Algorithm 2
together with the fact that A − σ(i)M is invertible we obtain the update equation

ϕ(y(i))x(i+1) = (A − σ(i)M)−1(Mx(i) − d(i)).(3.6)

This is the equation on which the following analysis is based.
Lemma 3.1. Assume the shifts satisfy (3.4) and that the bound on the residual

τ (i) in Algorithm 2 satisfies

‖d(i)‖ ≤ τ (i) < β |uT
1 Mx(i)| / ‖u1‖(3.7)

for some β ∈ (0, 1). Then

t(i+1) ≤ |λ1 − σ(i)|
|λ2 − σ(i)|

|α(i)s(i)| + ‖Ud(i)‖
(1 − β) |uT

1 Mx(i)|
.(3.8)
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Proof. Recall that uT
1 Mx(i+1) = α(i+1)c(i+1), and uT

1 = eT1 U. Hence premulti-
plying the update equation (3.6) by uT

1 M and using UM(A−σ(i)M)−1 = (Λ−σ(i)I)U
(see (2.4)), we obtain

ϕ(y(i))α(i+1)c(i+1) = eT1 (Λ − σ(i)I)−1U(Mx(i) − d(i))

= (λ1 − σ(i))−1uT
1 (Mx(i) − d(i)).(3.9)

Further, using (3.7)

|uT
1 Mx(i)| − |uT

1 d(i)| ≥ (1 − β) |uT
1 Mx(i)| .(3.10)

Hence

|ϕ(y(i))||α(i+1)c(i+1)| ≥ |uT
1 Mx(i)| − |uT

1 d(i)|
|λ1 − σ(i)|

≥ (1 − β)
|uT

1 Mx(i)|
|λ1 − σ(i)|

.(3.11)

To obtain an upper bound on |s(i+1) | we apply F, defined by (2.7), to (3.6) to
obtain

ϕ(y(i))Fx(i+1) = (I − e1e
T
1 )UM(A − σ(i)M)−1(Mx(i) − d(i))(3.12)

and using (2.4),

ϕ(y(i))Fx(i+1) = (I − e1e
T
1 )(Λ − σ(i)I)−1U(Mx(i) − d(i))

= (Λ − σ(i)I)−1(I − e1e
T
1 )U(Mx(i) − d(i)).(3.13)

Taking norms we obtain

‖ϕ(y(i))Fx(i+1)‖ = ‖(Λ − σ(i)I)−1(I − e1e
T
1 )U(Mx(i) − d(i))‖

≤ ‖(Λ − σ(i)I)−1(I − e1e
T
1 )‖ ‖(I − e1e

T
1 )U(Mx(i) − d(i))‖

≤ 1

|λ2 − σ(i)|

(
|α(i)s(i)| + ‖(I − e1e

T
1 )Ud(i)‖

)
.(3.14)

With t(i+1) defined by (2.9), and using (2.8), we have

t(i+1) =
‖ϕ(y(i))Fx(i+1)‖

‖ϕ(y(i))(UM − F)x(i+1)‖

≤ ‖ϕ(y(i))Fx(i+1)‖
|ϕ(y(i))α(i+1)c(i+1)|

.

Hence, using (3.10), (3.11), and (3.14),

t(i+1) ≤ |λ1 − σ(i)|
|λ2 − σ(i)|

|α(i)s(i)| + ‖(I − e1e
T
1 )Ud(i)‖

|uT
1 Mx(i)| − |uT

1 d(i)|
.

This result is similar to results in [23, 21, 3] in the symmetric case and [6, 15] in
the unsymmetric case. One advantage of our approach over that in [6, 15] is that it
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can be applied to both fixed and variable shift strategies, though here we concentrate
on the variable shift analysis.

Condition (3.7) asks that τ (i) be bounded in terms of |uT
1 Mx(i) |= α(i) | c(i) |

which is related to the cosine of the angle between v1 and x(i), the exact and the
approximate eigenvectors. In Algorithm 2 we used an absolute tolerance criteria for
the inexact solves involving τ (i). Now Lemma 3.1 shows that this constraint naturally
should be relative to the scaling of x(i).

In the case where d(i) = 0, we can take β = 0 in (3.7), and (3.8) reduces to

t(i+1) ≤ |λ1−σ(i)

λ2−σ(i) |t(i), the familiar expression when exact solves are employed. If (3.4)

holds and ‖d(i)‖≤ τ (i) ≤ C |s(i)|, as is the case if the solve tolerance is bounded by
‖r(i)‖ defined in (2.14), then (3.8) indicates that we can expect Algorithm 2 to achieve
quadratic convergence, the same asymptotic rate of convergence as the exact solves
case. However, if (3.4) holds and ‖d(i)‖≤ τ (i) ≤ constant, then we would expect a
reduced rate of convergence in Algorithm 2. These expectations about the (outer)
convergence rate of Algorithm 2 are made precise in the following section.

3.2. Convergence theorem for variable shifts. The following theorem pro-
vides sufficient conditions under which an inexact inverse iteration algorithm with
linearly converging shifts achieves linear convergence, even if the residual tolerance is
fixed.

Theorem 3.2. Given A, M ∈ R
n×n with M symmetric positive definite. Let

the generalized eigenvalue problem Ax = λMx be diagonalizable and have simple
eigenpair (λ1,v1). Further let x(i) = α(i)(c(i)v1 + s(i)w(i)) with |s(0)|< 1 and let the
shift updates satisfy

|λ1 − σ(i)| ≤ |λ1 − λ2|
2

|s(i)| ∀i.(3.15)

Assume that, for d(i) defined by (3.5), ‖d(i)‖≤ τ (i) with

τ (i) < α(i)βc(i)/ ‖U‖,(3.16)

where

0 ≤ β <
1− |s(0)|

2
.(3.17)

Then inexact inverse iteration as given in Algorithm 2 using a variable shift converges
(at least) linearly, t(i+1) ≤ qt(i) ≤ qi+1t(0), where

q :=
|s(0)| +β

1 − β
< 1.(3.18)

Proof. With |λ1 − σ(i)|≤ 1
2 |λ1 − λ2| |s(i)| and hence |λ2 − σ(i)|> 1

2 |λ2 − λ1|, we
have

|λ1 − σ(i)|
|λ2 − σ(i)|

< |s(i)| .(3.19)

Thus, from (3.8),
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t(i+1) ≤ |s(i)| |α(i)s(i)| + ‖U‖ τ (i)

(1 − β) |α(i)c(i)|

≤ t(i)
|s(i)| +β |c(i)|

1 − β

≤ t(i)
|s(0)| +β

1 − β
.(3.20)

Set q = (|s(0)| +β)/(1 − β). If β satisfies (3.17), then q < 1, and linear convergence
is proved by induction.

This theorem shows that for a close enough starting guess, namely |s(0)|< 1− 2β,
and for a shift converging linearly, say using (3.2) or (2.11), then we obtain a linearly
converging method, provided the inner iteration is solved to a strict enough tolerance
(which itself does not tend to zero).

Not surprisingly, if we ask that the bound on the tolerances τ (i) is linear in
|s(i) | instead of being held fixed as allowed by (3.16), then one achieves quadratic
convergence. This is stated in the following corollary.

Corollary 3.3. Assume the conditions of Theorem 3.2 are satisfied but that
(3.16) is replaced by

τ (i) ≤ α(i) min(βc(0)/‖U‖, γ |s(i)|)(3.21)

for some constant γ ≥ 0; then the convergence is (at least quadratic), that is, t(i+1) →
0 (monotonically) with t(i+1) ≤ q(t(i))2 for some q > 0.

Conditions (3.16), (3.17), and (3.18) make precise statements such as “τ (i) is small
enough” and “x(0) is close enough to v1.” Those are unlikely to be of any quantitative
use since they are probably too restrictive and contain quantities that are unknown
(for example ‖U‖ and |λ2 − λ1|). Of course, the conditions (3.16), (3.18), and (3.21)
are not necessary, and in our experiments considerably larger values for τ (i) have been
used successfully. Condition (3.15) is easily satisfied if σ(i) is given by (3.2) and if z is
sufficiently close to the left eigenvector u1. However, this is a theoretically sufficient
condition, and as is the case in many practical situations convergence occurs without
this condition being fulfilled.

We now present some numerical results to illustrate the theory given in Theo-
rem 3.2 and Corollary 3.3. In our experiments different choices of shift produced no
significant changes in the results, so we present numerical results for the Rayleigh
quotient shift only.

Example 1. Consider A and M derived by discretizing

−Δu + 5ux + 5uy = λu in D := [0, 1] × [0, 1],

u = 0 on Γ := ∂D,

using the Galerkin FEM on regular triangular elements with piecewise linear functions.
This eigenvalue problem is also discussed in [6]. Here we use a 32 by 32 grid which
leads to 961 degrees of freedom. For the discrete eigenvalue problem it is known that
λ1 ≈ 32.2 and λ2 ≈ 61.7 with all other eigenvalues satisfying Re(λj) > 61.8. Note that
the eigenvalue residual r(i) defined by (2.14) is proportional to |s(i) | (using (2.15)),
and so this provides a practical way to implement a decreasing tolerance. As inexact
linear solver we use preconditioned full GMRES (that is, without restarts), where
the preconditioner P ≈ A is obtained by an incomplete modified LU decomposition
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Table 3.1

Generalized tangent t(i) and number of inner iterations k(i) for RQIf (a) and (b) and RQId
(c). In (a) τ0 = 0.1, in (b) τ0 = 0.001, and in (c) τ0 = 0.2 and τ1 = 0.5.

(a) (b) (c)

t(i) k(i−1) t(i) k(i−1) t(i) k(i−1)

0 5.0e-02 5.0e-02 5.0e-02
1 9.0e-03 11 4.4e-04 23 1.6e-02 13
2 2.4e-04 19 8.0e-08 36 2.8e-05 35
3 4.6e-06 29 7.7e-12 51 2.9e-10 54
4 2.6e-08 37 6.8e-12 51
5 4.7e-11 47
6 1.0e-11 52∑
k(i−1) 195 110 153

with drop tolerance = 0.1. In Table 3.1 we present numerical results obtained when
calculating λ1. Each row in Table 3.1 provides the generalized tangent, t(i) (calculated
knowing the exact solution v1), and k(i−1) the number of inner iterations used by
preconditioned GMRES to satisfy the residual condition. We use the following two
versions of Algorithm 2.

RQIf, Rayleigh quotient iteration with fixed tolerance, that is, σ(i) = �(x(i)) and
τ (i) = τ0‖Mx(i)‖.

RQId, Rayleigh quotient iteration with decreasing tolerance, that is, σ(i) = �(x(i))
and τ (i) = min{τ0, τ1‖r(i)‖/σ(i)}‖Mx(i)‖.

As ‖r(i)‖ / |�(i)| is proportional to |s(i)| and ‖Mx(i)‖ is proportional to α(i) we expect
according to Theorem 3.2 linear convergence for RQIf and according to Corollary 3.3
quadratic convergence for RQId.

In Table 3.1, cases (a) and (b) illustrate the behavior of RQIf with τ0 = 0.1 and
0.001, respectively. Case (c) gives results for RQId, that is, Rayleigh quotient shifts
and a decreasing tolerance based on the eigenvalue residual (2.14). We present results
for the approximation of (λ1,v1) and stop the entire calculation once the relative
eigenvalue residual ‖r(i)‖ /�(i) is smaller than τouter = 10−14.

Discussion of results. Case (a) shows that the Rayleigh quotient iteration with
fixed tolerance τ0 = 0.1 achieves linear convergence (indeed, in this experiment, super-
linear convergence). Case (c) shows that the Rayleigh quotient iteration with linearly
decreasing tolerance based on the eigenvalue residual achieves quadratic convergence
as predicted by Corollary 3.3. Thus we recover the convergence rate attained for
nonsymmetric problems if the Rayleigh quotient iteration is used with exact solves.
We point out that the last iteration in (c) is stopped due to the fact that the relative
outer tolerance condition is satisfied within GMRES, and so quadratic convergence
is lost in the final step. Case (b) shows results obtained using the Rayleigh quotient
iteration with a small fixed tolerance. First, we note that since τ0 is small the method
behaves very similarly to the exact solves case. Further, case (b) exhibits initially
quadratic convergence as the s(i) dominates τ (i) in the numerator of (3.8). However,
this quadratic convergence is lost when the tangent, t(i), has reduced to the order of
the stopping tolerance, and then τ (i) dominates s(i).

4. Modified right-hand side. In this section we analyze a variation of inexact
inverse iteration where the right-hand side is altered with the aim of improving the
performance of the preconditioned iterative solver at the risk of slowing down the
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outer convergence rate. This idea has been used in [20] and [21]. Instead of solving

(A − σM)y(i) = Mx(i)(4.1)

[20] used the system

(A − σM)y(i) = x(i)(4.2)

with no theoretical justification but with the remark that computational time is saved
with the modified right-hand side. Also, for the solution of the standard symmetric
eigenvalue problem Ax = λx using a preconditioner P ≈ (A − σI), Simoncini and
Eldén [21] solve

P−1(A − σI)y(i) = x(i)(4.3)

rather than the obvious system

P−1(A − σI)y(i) = P−1x(i).(4.4)

The motivation for this alteration is that in (4.3) the right-hand side x(i) is both close
to a null vector of P−1(A − σI) and close to a scaled version of the solution. The
vector P−1x(i) has neither of these properties. Here we combine the two ideas. Let
P ≈ (A − σM) be a preconditioner for use within GMRES. Given an approximate
eigenvector x(i) to obtain an improved eigendirection using preconditioned GMRES
we solve

P−1(A − σ(i)M)y(i) = x(i)(4.5)

rather than the obvious P−1(A−σ(i)M)y(i) = P−1Mx(i). As we shall show below, by
changing the right-hand side from P−1Mx(i) to x(i) the convergence theory changes.
The expected gain is that (4.5) will prove to be significantly cheaper to solve in terms
of inner iterations. For the standard symmetric eigenvalue problem where the shift
was chosen as the Rayleigh quotient this was indeed the case. We shall see that
for nonsymmetric problems the situation is not so clear-cut. In this paper we shall
concentrate on the outer convergence theory. The algorithm derived from solving
(4.5) which uses the Rayleigh quotient shift is defined as follows.

Algorithm 3. inexact inverse iteration with modified right-hand side.
Given x(0), then iterate:
(1) Choose τ (i), and set σ(i) = �(x(i)).
(2) Find y(i) such that ‖x(i) − P−1(A − σ(i)M)y(i)‖ ≤ τ (i).
(3) Set x(i+1) = y(i)/ϕ(y(i)).

Note that we use a standard residual condition rather than the stopping condition
used in [21, section 7]. We define the residual obtained by solving (4.5) approximately
as

d(i) := x(i) − P−1(A − σ(i)M)y(i)(4.6)

so that the inexact solve step can be written as

(A − σ(i)M)y(i) = Px(i) − Pd(i),(4.7)

which should be compared with the inexact solve step

(A − σ(i)M)y(i) = Mx(i) − d(i)(4.8)
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in section 3. From (4.8) we obtain

ϕ(y(i))x(i+1) = (A − σ(i)M)−1P(x(i) − d(i))(4.9)

(cf. (3.6)), which is used in the following analysis. First, assume the residual d(i)

satisfies the bound

‖d(i)‖ ≤ τ (i) ≤ β′ |uT
1 Px(i)| / ‖UP‖(4.10)

for some β′ ∈ ([0, 1) (cf. (3.7)), and hence it is easily shown that

|uT
1 Px(i)| − |uT

1 Pd(i)| ≥ (1 − β′) |uT
1 Px(i)| .(4.11)

Next, we introduce the expression

TP (z) :=
‖(I − e1e

T
1 )UPz‖

|uT
1 Pz|

,(4.12)

where z ∈ C
n. By analogy with (2.7) and (2.10), TP (z) looks like a generalized

tangent with respect to P rather than M. However, for a general preconditioner
TP (v1) �= 0. In fact, TP (v1) measures the effect of P on the eigenvector v1, and we
shall see in Theorem 4.2 that large values of TP (v1) will slow down or possibly destroy
the convergence of Algorithm 3. Note that, under (4.11),

TP (x(i) − d(i)) ≤ 1

1 − β′

(
TP (x(i)) +

‖UPd(i)‖
|uT

1 Px(i)|

)
.(4.13)

Now we give a one step bound for Algorithm 3 using a variable shift σ(i).
Lemma 4.1. Assume σ(i) satisfies (3.4) and (3.15). Further assume that (4.11)

holds. Then

t(i+1) ≤ |λ1 − σ(i)|
|λ2 − σ(i)|

TP (x(i) − d(i))

≤ |s(i)| TP (x(i) − d(i)),(4.14)

where TP (·) is given by (4.12).
Proof. With the notation in sections 2 and 3 we have

t(i+1) =
‖Fϕ(y(i))x(i+1)‖

‖(UM − F)ϕ(y(i))x(i+1)‖

=
‖F(A − σ(i)M)−1(Px(i) − Pd(i))‖

‖(UM − F)(A − σ(i)M)−1(Px(i) − Pd(i))‖

=
‖(I − e1e

T
1 )UM(A − σ(i)M)−1(Px(i) − Pd(i))‖

|eT1 UM(A − σ(i)M)−1(Px(i) − Pd(i))|

=
‖(I − e1e

T
1 )(Λ − σ(i)I)−1U(Px(i) − Pd(i))‖

|eT1 (Λ − σ(i)I)−1U(Px(i) − Pd(i))|

≤ |λ1 − σ(i)|
|λ2 − σ(i)|

‖(I − e1e
T
1 )UP(x(i) − d(i))‖

|eT1 UP(x(i) − d(i))|
,
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Table 4.1

Generalized tangent t(i) and number of inner iterations k(i) for RQIf (a) and RQImodrhs
(b) with τ0 = 0.05 for both methods.

(a) (b)

t(i) k(i−1) t(i) k(i−1)

0 2.0e-02 2.0e-02
1 1.6e-02 30 1.6e-02 30
2 2.9e-05 41 1.2e-04 37
3 4.7e-08 47 9.8e-07 37
4 2.0e-08 47 4.4e-08 36
5 1.7e-08 24∑
k(i−1) 165 164

from which the required result follows.
Clearly a formal statement of the convergence of Algorithm 3 merely requires con-

ditions that ensure the second term on the right-hand side of (4.14) remains bounded
below 1 for all i. For completeness we present such a theorem.

Theorem 4.2. Assume that the conditions of Lemma 4.1 hold, and let τ (i) satisfy
(4.10) with β′ ∈ [0, 1). Assume that TP (v1) �= 0 and

q :=
1

1 − β′ (2TP (v1) + β′) < 1.(4.15)

Then, for x(0) close enough to v1, Algorithm 3 converges linearly with t(i+1) ≤ qt(i).
Proof. Due to the condition on τ (i), (4.10), we can use (4.13) and (4.10) (again)

to give TP (x(i) + d(i)) ≤ (1 − β′)−1(TP (x(i)) + β′). Hence it remains to show that
TP (x(i)) ≤ 2TP (v1), which is valid for x(0) close enough to v1 as TP (v1) �= 0.

Lemma 4.1 and Theorem 4.2 show that the quantity TP (v1) plays an important
role in the convergence of Algorithm 3, and ideally TP (v1) should be small. In practi-
cal situations we will have little knowledge of the effect of P on v1, but it is clear that
if uT

1 Pv1 is small, and hence TP (v1) is large; then Algorithm 3 may converge slowly
or may possibly fail to converge. Note that we ignore the unlikely case TP (v1) = 0
in Theorem 4.2, though in this case one could recover quadratic convergence using
a decreasing tolerance. We present numerical values for TP (v1) in Table 4.2. First,
we compare the performance of Algorithm 3 with the variable shift method RQIf
discussed in Example 1.

Example 2. Again we consider the convection diffusion problem of Example 1;
however, now we seek the interior eigenvalue λ20 = 337.7. Here we use preconditioned
full GMRES with multigrid as preconditioner to solve the linear systems that arise.
The preconditioner consists of one V-cycle and uses 3 Jacobi iterations for both pre-
and postsmoothing on each grid. In case (a) of Table 4.1 we use RQIf with τ0 = 0.05
and in (b) we use RQImodrhs with τ0 = 0.05.

RQImodrhs, Algorithm 3 with σ(i) = �(x(i)) and tolerance τ (i) = τ0 ‖Px(i)‖.
We present numerical results for calculating λ20 up to a relative outer tolerance of
τouter = 10−10 in Table 4.1.

Discussion of results. From case (a) we observe that the number of inner itera-
tions k(i) increases as the outer process proceeds. This effect was already observed
when calculating the eigenvalue λ1 of the same example; see Table 3.1. However,
the rate of increase here is not as substantial due to the fact that the multigrid
preconditioner is a much better preconditioner than the one constructed by the in-
complete LU decomposition. Case (b) shows that even though the right-hand side
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Table 4.2

Generalized tangent t(i) for RQImodrhs with τ0 = 0.01 using two different preconditioners.
In (a) milu(A, 0.1), where TP (v1) = 0.34, and in (b) milu(A−320M, 10−4), where TP (v1) = 0.045.

(a) (b)

t(i) t(i)

0 2.0e-02 2.0e-02
1 3.1e-04 1.9e-04
2 4.7e-05 5.8e-07
3 2.6e-06 1.5e-09
4 1.3e-07
5 1.1e-08

has been modified RQImodrhs still provides a linearly converging method as stated
in Theorem 4.2. Further, the number of inner iterations used at each outer iteration
by RQImodrhs does not increase with i, which leads to an efficient iteration pro-
cess. (The link between the outer convergence and the cost of the inner solves using
GMRES is discussed further in [4].) We also observe, however, that RQImodrhs
requires more outer iterations. This is to be expected from the convergence theory
because of the nonzero term TP (v1) in (4.15) and is observed in other experiments;
see Table 8.6 in [4]. Note that the choices for τ0 in Example 2 are not optimal for
either method. For RQImodrhs the optimal value (that is, the value producing the
smallest total number of inner iterations) is τ0 = 0.1, and for RQIf the optimal value
is τ0 = 0.001. However, there was little difference in the performance of the methods.
In both cases the total number of inner iterations was around 130.

We remark that in our experience with several different examples for the gen-
eralized nonsymmetric eigenvalue problem the choice of the constant τ0 as used in
the bound on the tolerance is important for both the convergence and efficiency of
Algorithm 3. This is in contrast to the standard symmetric eigenvalue problem where
the corresponding algorithms are less sensitive to the choice of τ0, as reported in [3].

Next, we provide an example to demonstrate the effect of TP (v1) on the rate of
convergence.

Example 3. Again we consider the convection diffusion problem discussed in
Example 2, and we seek the interior eigenvalue λ20 = 337.7. To demonstrate the
effect of TP (v1) on the convergence of RQImodrhs we consider two different pre-
conditioner. In case (a) of Table 4.2 we use a modified incomplete LU decomposition
constructed from the unshifted system A using a drop tolerance of 0.1; we denote
this by milu(A, 0.1). The other preconditioner, which we use in case (b), is also
a modified incomplete LU decomposition constructed now from the shifted system
A − 320M using a drop tolerance of 10−4 (milu(A − 320M, 10−4)). In Table 4.2 we
present numerical results obtained using RQImodrhs with τ0 = 0.01 using in (a) the
“unshifted” preconditioner which has for this example TP (v1) = 0.34 and in (b) the
“shifted” preconditioner which has TP (v1) = 0.045.

Note that in our experience parameter values for τ0 smaller than 0.01 did not
alter the outer convergence. This is not surprising since τ0 � TP (v1), and hence
according to Theorem 4.2 the effect of the inexact solves on the rate of convergence
should not be significant.

Discussion of results. From Table 4.2 we observe that the outer convergence in
case (a) is linear with a rate t(i+1)/t(i) ≈ 0.05. Comparing this with the results
for case (b) we observe a significant improvement in the outer rate of convergence,
which results in a reduced number of outer iterations. In Algorithms 1 and 2 the
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preconditioner merely makes the solution of the linear system more efficient, whereas
in Algorithm 3 the preconditioner also affects the outer convergence rate, as seen by
the presence of TP (v1) term on the right-hand side in (4.15).

5. Conclusion. In this paper we provided a convergence theory for inexact in-
verse iteration with varying shifts applied to the nonsymmetric generalized eigenvalue
problem. Additionally we extended the approach from [21] of modifying the right-
hand side to the nonsymmetric generalized eigenvalue problem, presented a conver-
gence theory, and showed that the preconditioner affects the outer convergence rate.
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