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INEXACT INVERSE SUBSPACE ITERATION WITH
PRECONDITIONING APPLIED TO NON-HERMITIAN

EIGENVALUE PROBLEMS

MICKAËL ROBBÉ∗, MILOUD SADKANE∗ , AND ALASTAIR SPENCE †

Abstract. Convergence results are provided for inexact inverse subspace iteration applied to
the problem of finding the invariant subspace associated with a small number of eigenvalues of
a large sparse matrix. These results are illustrated by the use of block-GMRES as the iterative
solver. The costs of the inexact solves are measured by the number of inner iterations needed by the
iterative solver at each outer step of the algorithm. It is shown that for a decreasing tolerance the
number of inner iterations should not increase as the outer iteration proceeds, but it may increase for
preconditioned iterative solves. However, it is also shown that an appropriate small rank change to
the preconditioner can produce significant savings in costs, and in particular, can produce a situation
where there is no increase in the costs of the iterative solves even though the solve tolerances are
reducing. Numerical examples are provided to illustrate the theory.

Key words. Eigenvalue approximation, inverse subspace iteration, iterative methods, precon-
ditioning.

AMS subject classifications. 65F10, 65F15

1. Introduction. Inverse subspace iteration is a block version of the inverse
iteration. It computes an approximation of the invariant subspace of a large matrix
A ∈ Cn×n corresponding to the eigenvalues in an isolated cluster around a given shift
σ. The corresponding algorithm is very simple and can formally be written as

Xi = (A− σI)−1Xi−1, i = 1, 2, . . . , (1.1)

where X0 ∈ Cn×p is full rank with p ¿ n. As the iterations unfold, the invariant
subspace and hence the eigenvectors corresponding to eigenvalues near σ eventually
dominates Xi. The method is known to be reliable [17, 26, 20, 28] and, although its
convergence is linear, only a few iterations are needed to converge provided that the
target eigenvalues lie in a cluster well separated from the rest of the spectrum and p
is chosen as large as the number of eigenvalues in the cluster. The drawback of this
method is that each iteration necessitates the exact solution of a block linear system,
that is, a linear system with multiple right-hand sides of the form

(A− σI)Y = X, Y,X ∈ Cn×p, (1.2)

which is a challenge when n is large. The first aim of this paper is to analyze the con-
vergence of (1.1) when the underlying block linear systems (1.2) are solved inexactly
by an iterative method. The method obtained this way belongs to the wide class of
“inner-outer” iterative methods. The outer iteration is the inverse subspace iteration
and the inner iteration is the iterative solution of the block linear system (1.2). The
results in this paper extend the results in [14] and [11] on inexact inverse iteration to
inexact inverse subspace iteration.
The second aim of this paper is to discuss the performance of unpreconditioned and
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preconditioned block-GMRES as the inexact solver. If P denotes a preconditioner for
(A− σI), the (right) preconditioned form of (1.2) is

(A− σI)P−1Ỹ = X, Y = P−1Ỹ , (1.3)

with the aim that (1.3) is solved more efficiently than (1.2). For inexact inverse
iteration, [4, 6] consider the costs of the inner solves for Krylov solvers and analyse
cases where the number of inner iterations may remain approximately constant or
may increase as the outer iteration proceeds. In this paper we extend these results to
the block case. Moreover, we show how a rank-p modification of P gives a “tuned”
preconditioner which eliminates the increase in the number of inner iterations as the
outer iteration proceeds.

Recently, inexact inverse iteration has been discussed by [14], [11], and [5], and
for the symmetric case by [25] and [4]. The idea of tuning the preconditioner for
eigenvalue problems was introduced in [7, 8] for inexact inverse iteration. There is
considerable interest in inexact solves for subspace based methods, especially in rela-
tion to the Jacobi-Davidson method (JD) [24, 2], [16] and the Riccati-based methods
as developed in [18], [3], the latter may be viewed as the block analogue of JD and
are useful for computing invariant subspaces. Other useful methods which use inex-
act solves within inner outer iterations include the trace minimization [22] and the
inexact Raleigh quotient (IRQ) iteration [23]. A link between IRQ and the simplified
JD [15], i.e. the correction equation in JD without expanding the search space , has
been established in [23]. Other methods which use preconditioned iterative solves on
subspaces are LOBPCG [13] and the truncated-CG-base trust-region [1] which are
particularly successful for finding extremal eigenvalues of symmetric matrices. The
latter is also related to the simplified JD [1].

The tuned preconditioner developed in this paper is effectively suited for inexact
inverse subspace iteration. As such, it does not apply for example to JD. Tuning the
preconditioner for JD, not only for the simplified JD, would certainly produce a very
efficient eigensolver. This point will hopefully be treated in a future work.

In Section 2 we present the inexact inverse subspace iteration algorithm and some
preliminary results. In particular, we discuss some tools for measuring the closeness
between subspaces. Section 3 presents a convergence theory for the inexact (and
exact) inverse subspace iteration. We shall show that provided these linear systems
are solved to an appropriately chosen decreasing tolerance then the method attains a
linear rate of convergence just as in the case of exact solves (Theorem 3.1). In Section
3.1 we consider the use of block-GMRES as the (unpreconditioned) solver. We show
that for a decreasing tolerance the number of inner iterations should not increase as
the outer iteration converges. The case of preconditioned solves is discussed in Section
4. Our main result, presented in Section 4.2, is that if a standard preconditioner is
modified by a small rank change then there is again no increase in the number of
inner iterations as the outer iteration proceeds. We call the process of modifying
the preconditioner in this way “tuning”. In Section 5, numerical tests are given to
illustrate the theory. In particular, it is shown that significant savings are obtained
when a tuned preconditoner is used.

The main difference with the works in [14, 11, 4, 6, 7, 8] is that besides the
extension to block case, our convergence theory for inexact subspace iteration and for
bloc-GMRES works under rather weak assumptions; for example the matrix A can
be defective. Furthermore, we provide a rigorous proof that the tuned preconditioner
removes the dependence on the number of inner iterations.
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2. Inexact inverse subspace iteration. In this section we describe the inex-
act inverse subspace iteration algorithm, and in Section 2.1 revise some background
material, especially relating to the angle between two subspaces.

In many applications interest centres on the invariant subspace corresponding to
the eigenvalues nearest zero, and from now on we shall choose the shift in (1.2) to be
zero. Much of what we say extends to the case of a nonzero fixed shift.

Inexact inverse subspace iteration is described in the following inner-outer algo-
rithm:

Algorithm 1 (Inexact Subspace Iteration).
Given δ ≥ 0 and X0 ∈ Cn×p with X∗

0X0 = I,
For i = 0, 1, . . .

1. Compute Li = X∗
i AXi,

2. Set Ri = AXi −XiLi and test the convergence,
3. Solve AYi = Xi inexactly, that is, compute Yi such that

Xi −AYi = ∆i with ‖∆i‖ ≤ τi = δ‖Ri‖,
4. Orthonormalize the columns of Yi into Xi+1.

End For i
In Algorithm 1 and throughout this paper, the symbol ‖ ‖ denotes the Euclidean

norm or its induced matrix norm.
In Section 3 we first analyse the convergence of Algorithm 1 with no particular

solver in mind, and in Section 3.1 we discuss the case when the block linear systems
in step 3 of Algorithm 1 are solved by block-GMRES. Note that if the block systems
are solved exactly, then the (exact) inverse subspace iteration (1.1) is recovered.

The next section gathers some technical details which will be used throughout
this paper.

2.1. Notation and preliminaries. We assume that the eigenvalues λ1, λ2, . . . , λn

of A are such that

0 < |λ1| ≤ . . . ≤ |λp| < |λp+1| ≤ . . . ≤ |λn|. (2.1)

By Schur’s theorem we may decompose the matrix A to upper triangular form
by a unitary matrix

(
V1 V ⊥

1

)
:

A =
(
V1 V ⊥

1

)(
T11 T12

0 T22

) (
V1 V ⊥

1

)∗
(2.2)

where V1 ∈ Cn×p, V ⊥
1 ∈ Cn×(n−p), T11 ∈ Cp×p and T22 ∈ C(n−p)×(n−p). The spectra

of T11 and T22 are respectively λ1, . . . λp and λp+1, . . . λn. Let Q ∈ Cp×(n−p) be the
unique solution of the Sylvester equation

QT22 − T11Q = T12. (2.3)

Then A can be block-diagonalized as follows (see e.g. [10]):

A =
(
V1 V ⊥

1

)(
I Q
0 I

)(
T11 0
0 T22

)(
I −Q
0 I

) (
V1 V ⊥

1

)∗
. (2.4)

Let

V2 =
(
V1Q + V ⊥

1

)
(I + Q∗Q)−

1
2 ,
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L = T11, M = (I + Q∗Q)−
1
2 T22 (I + Q∗Q)

1
2 .

Then the block-diagonalization in (2.4) can be written

A =
(

V1 V2

) (
L 0
0 M

) (
V1 V2

)−1
. (2.5)

Note that M and T22 have the same spectra and that V1 and V2 have orthonormal
columns. The subspaces V1 = R(V1) and V2 = R(V2) spanned by the columns of V1

and V2 are complementary invariant subspaces of A associated respectively with the
eigenvalues λ1, · · · , λp of L and λp+1, · · · , λn of M . Our main task in this paper is
to compute the invariant subspace Ṽ1 ⊂ V1 associated with the q ≤ p smallest (in
modulus) eigenvalues of A by Algorithm 1.

The smallest (largest) singular value of a matrix B is denoted by σmin(B) =
min‖x‖=1 ‖Bx‖ (σmax(B) = ‖B‖ = max‖x‖=1 ‖Bx‖). The separation sep(E, F ) be-
tween two matrices E ∈ Cp×p and F ∈ Cq×q is defined as (see [27]):

sep(E, F ) = min
‖X‖=1

‖EX −XF‖ .

It is known that sep(E,F ) > 0 if and only if E and F have disjoint spectra. Our
analysis will lead us to use either sep(T22, L) or sep(M, L). These quantities are
equivalent since (see [27]):

sep(T22, L)/κ ≤ sep(M, L) ≤ κ sep(T22, L)

where κ =
√

1+σ2
max(Q)

1+σ2
min(Q)

, with Q defined by (2.3).
Let

W1 = V1 − V ⊥
1 Q∗ and W2 = V ⊥

1 (I + Q∗Q)
1
2 . (2.6)

Then R(W1) and R(W2) are complementary invariant subspaces of A∗ corresponding
to the eigenvalues λ̄1, · · · , λ̄p of L∗ and λ̄p+1, · · · , λ̄n of M∗ and we have

(
W1 W2

)∗ =
(

V1 V2

)−1
. (2.7)

The spectral projection on V1 is defined by

P = V1W
∗
1 . (2.8)

Note that

‖P‖ = ‖W1‖ =
√

1 + ‖Q‖2. (2.9)

To understand the performance of Algorithm 1 we need to measure the deviation
of Xi from V1. This can be done by monitoring the angle between the subspaces V1

and Xi = R(Xi). One tool is the sine of the largest canonical angle between V1 and
Xi defined by (see [10, p.584]):

sin ∠(Xi,V1) =
∥∥(V ⊥

1 )∗Xi

∥∥ . (2.10)

We assume that the subspaces Xi and V1 have the same dimension. Then (see [10,
p.76])

sin ∠(Xi,V1) = sin ∠(V1,Xi) = ‖XiX
∗
i − V1V

∗
1 ‖ (2.11)

= min
Z∈Cp×p

‖Xi − V1Z‖ = min
Z∈Cp×p

‖V1 −XiZ‖. (2.12)
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We also assume that the matrix Xi can be decomposed as

Xi = V1Ci + V2Si with ‖Si‖ < 1. (2.13)

Using (2.7), we see that the matrices Ci and Si are given by

Ci = W ∗
1 Xi ∈ Cp×p, Si = W ∗

2 Xi ∈ C(n−p)×p. (2.14)

From (2.13), formula (2.10) becomes

sin∠(Xi,V1) = ‖(V ⊥
1 )∗V2Si‖, (2.15)

which shows that ‖Si‖ can also be used to measure the deviation between V1 and Xi.
In fact, we will cast our results in terms of the quantities

sin ∠(Xi,V1), ti =
∥∥SiC

−1
i

∥∥ or si = ti ‖Ci‖ .

Note that in the case when A is Hermitian, then ti and ‖Si‖ represent respectively the
tangent and the sine of the largest angle between Xi and Vi. The following proposition
shows that all these quantities behave like ‖Si‖. So Xi → V1 if and only if ti → 0 or
si → 0 or ‖Si‖ → 0.

Proposition 2.1. Let Xi be partitioned as in (2.13). Then
1) Ci is nonsingular and therefore ti is well defined. Moreover, the singular

values of Ci satisfy

0 < 1− ‖Si‖ ≤ σk(Ci) ≤ 1 + ‖Si‖, k = 1, . . . , p, (2.16)

and Ci can be written

Ci = Ui + Υi (2.17)

where Ui is unitary and ‖Υi‖ ≤ ‖Si‖ < 1.
2) sin ∠(Xi,V1) ≤ ‖Si‖ ≤ si ≤ ‖Si‖ 1+‖Si‖

1−‖Si‖ .

3) sin ∠(Xi,V1) ≤ ti ≤ ‖Si‖
1−‖Si‖ .

4) ‖Si‖ ≤ ‖P‖ sin ∠(Xi,V1).
Proof.
1) Assume Ci is singular and let u be a nonzero vector such that Ciu = 0. Then

‖u‖ = ‖Xiu‖ = ‖V2Siu‖ ≤ ‖Si‖‖u‖ < ‖u‖,

a contradiction. Hence Ci is nonsingular. The kth singular values of Xi and
V1Ci satisfy (see [10, p. 428])

|σk(Xi)− σk(V1Ci)| ≤ ‖Xi − V1Ci‖ ≤ ‖Si‖,
and hence

|1− σk(Ci)| ≤ ‖Si‖.

Let Ci = W
(l)
i ΣiW

(r)
i be the singular value decomposition of Ci. Then Ci

can be written as in (2.17) with Ui = W
(l)
i W

(r)
i and Υi = W

(l)
i (Σi − I) W

(r)
i .

2) The first bound follows from (2.15) and the other ones from the definition of
si and (2.16).
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3)

sin∠(Xi,V1) = ‖(X⊥
i )∗V1‖ = ‖(X⊥

i )∗(V1 −XiC
−1
i )‖

≤ ‖V1 −XiC
−1
i ‖ = ‖V2SiC

−1
i ‖ = ti.

ti = ‖SiC
−1
i ‖ ≤ ‖Si‖

σmin(Ci)
≤ ‖Si‖

1− ‖Si‖ .

4)

‖Si‖ = ‖W ∗
2 Xi‖ =

∥∥∥(I + Q∗Q)
1
2 (V ⊥

1 )∗Xi

∥∥∥
≤ ‖P‖ sin∠(Xi,V1).

The following proposition gives bounds on the residual norm.
Proposition 2.2. The following inequalities hold:

sep(T22, Li) sin ∠(Xi,V1) ≤ ‖Ri‖ ≤ ||S||si.

where S is the Sylvester operator X → S(X) = MX −XL and

‖S|| = sup
‖X‖=1

‖S(X)‖.

Proof.

‖Ri‖ ≥ ‖(V ⊥
1 )∗Ri‖

= ‖(V ⊥
1 )∗AXi − (V ⊥

1 )∗XiLi‖.
From (2.2) we have (V ⊥

1 )∗A = T22(V ⊥
1 )∗. Then

‖Ri‖ ≥ ‖T22(V ⊥
1 )∗Xi − (V ⊥

1 )∗XiLi‖ ≥ sep(T22, Li) ‖(V ⊥
1 )∗Xi‖.

Also,

‖Ri‖ = min
Z∈Cp×p

‖AXi −XiZ‖ (see [27, Thm.1.15])

≤ ‖AXi −XiC
−1
i LCi‖

= ‖MSi − SiC
−1
i LCi‖

= ‖ (
MSiC

−1
i − SiC

−1
i L

)
Ci‖ ≤ ‖S‖ ‖SiC

−1
i ‖‖Ci‖.

3. Convergence analysis of Algorithm 1. In this section we analyze the
convergence of Algorithm 1 when the inner iterations are solved inexactly. First,
we make no assumption on the inexact solver except that step 3 in Algorithm 1 is
satisfied. Then, in Section 3.1, we assume that a block-GMRES method is the inexact
solver.

Theorem 3.1. (Convergence of Algorithm 1).
Assume that X0 is close to V1. If a tolerance of the form τi = δ‖Ri‖ is chosen with
small enough δ ( e.g. when δ <

(‖(C−1
i ‖‖P‖‖Ri‖

)−1
), then we have

ti+1 ≤ ‖M−1‖‖L‖ ti + αiτi

1− αiτi
, (3.1)
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with αi = ‖C−1
i ‖‖P‖ ≤ ‖P‖

1−‖Si‖ , and where M and L are defined in (2.5).
If, in addition, ‖M−1‖‖L‖ < 1, then Algorithm 1 converges linearly.

Proof. Note first that

ti+1 =
∥∥Si+1C

−1
i+1

∥∥ =
∥∥(W ∗

2 Xi+1)(W ∗
1 Xi+1)−1

∥∥ =
∥∥(W ∗

2 Xi+1K)(W ∗
1 Xi+1K)−1

∥∥

where K ∈ Cp×p is an arbitrary nonsingular matrix. In particular ti+1 = ‖(W ∗
2 Yi)(W ∗

1 Yi)−1‖
and therefore

ti+1 =
∥∥∥W ∗

2 A−1(Xi −∆i)
(
W ∗

1 A−1(Xi −∆i)
)−1

∥∥∥

=
∥∥∥M−1W ∗

2 (Xi −∆i)
(
L−1W ∗

1 (Xi −∆i)
)−1

∥∥∥

≤ ‖M−1‖‖L‖
∥∥∥W ∗

2 (Xi −∆i) (W ∗
1 (Xi −∆i))

−1
∥∥∥

≤ ‖M−1‖‖L‖
∥∥∥W ∗

2 (Xi −∆i)C−1
i

(
I − (W ∗

1 ∆i)C−1
i

)−1
∥∥∥

≤ ‖M−1‖‖L‖ ti + ‖W ∗
2 ∆i‖‖C−1

i ‖
1− ‖W ∗

1 ∆i‖‖C−1
i ‖ ,

The condition on δ ensures that ‖(W ∗
1 ∆i)C−1

i ‖ < 1. Thus

ti+1 ≤ ‖M−1‖‖L‖ ti + ‖W ∗
2 ∆i‖‖C−1

i ‖
1− ‖W ∗

1 ∆i‖‖C−1
i ‖ .

Note that ‖W ∗
2 ∆i‖ ≤ ‖W2‖τi. From (2.6) and (2.9) we have ‖W2‖ = ‖P‖, and from

Proposition 2.2, ‖C−1
i ‖ ≤ 1/(1 − ‖Si‖) . The expression ‖W ∗

1 ∆i‖ is bounded in a
similar way, and (3.1) is obtained. Since τi ≤ δ‖Ri‖ ≤ δ‖S‖‖Ci‖ti, linear convergence
is established for small δ and ‖M−1‖‖L‖ < 1.

When A is Hermitian, ‖M−1‖‖L‖ = |λp|/|λp+1| < 1, so the condition ‖M−1‖‖L‖ <
1 is automatically satisfied, moreover, in this case Q = 0 in (2.4) and ‖P‖ = 1 (see
(2.9)), ‖C−1

i ‖ = 1/ cos∠(Xi,V1) and ‖W ∗
1 ∆i‖ = ‖W ∗

2 ∆i‖ = ‖∆i‖. Thus (3.1) be-
comes

tan ∠(Xi+1,V1) ≤ |λp|
|λp+1|

sin ∠(Xi,V1) + τi

cos∠(Xi,V1)− τi
. (3.2)

If we now take δ = 0 in Theorems 3.1, then we recover two convergence results
for the exact solves case (see [20, Thm. 5.2] and [28, p. 383]). This point is clarified
in the next corollaries.

Corollary 3.2. If the block systems in step 3 of Algorithm 1 are solved exactly,
i.e. τi = 0, then

ti ≤ ‖M−1‖‖L‖ti−1,

and

ti ≤ ‖M−i‖‖Li‖t0 ≤
( |λp|
|λp+1| + ηi

)i

t0,

with limi→∞ ηi = 0.
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Proof. The first inequality follows directly from Theorem 3.1. For the second one,
we have

ti =
∥∥∥
(
W ∗

2 A−1Xi

) (
W ∗

1 A−1Xi

)−1
∥∥∥

=
∥∥∥
(
W ∗

2 A−iX0

) (
W ∗

1 A−iX0

)−1
∥∥∥

= ‖ (
M−iS0

) (
L−iC0

)−1 ‖ ≤ ‖M−i‖‖Li‖t0.

Now, using the fact that for any square matrix E, ‖Ei‖ ≤
(
ρ(E) + η

(i)
E

)i

, where ρ(E)

is the spectral radius of E and limi→∞ η
(i)
E = 0, we obtain with obvious notation

‖M−i‖‖Li‖ ≤
(
ρ(M−1) + η

(i)
M−1

)i (
ρ(L) + η

(i)
L

)i

=
( |λp|
|λp+1| + ηi

)i

with

ηi = η
(i)
M−1 |λp|+ η

(i)
L /|λp+1|+ η

(i)
M−1η

(i)
L → 0 as i →∞.

In a practice, the block size p is chosen to enable the computation of invariant
subspaces corresponding to close/multiple/complex pairs of eigenvalues. Therefore,
to speed up the convergence, it is desirable to choose p larger than the dimension
of the sought invariant subspace. Thus an estimate of the angle between Xi and a
subspace Ṽ1 ⊂ V1 is needed. Corollary 3.2 does not give such an estimate because ti
relates Xi to V1 not to a subspace Ṽ1 ⊂ V1. The following corollary treats this point.

Corollary 3.3. Assume that the block systems in step 3 of Algorithm 1 are

solved exactly and that V1 =
(

Ṽ1
˜̃
V 1

)
with Ṽ1 ∈ Cn×q, q ≤ p and Ṽ1 := R(Ṽ1) span

an invariant subspace of A associated with the eigenvalues λ1, . . . , λq. Then

sin ∠(Ṽ1,Xi) ≤
( |λq|
|λp+1| + ηi

)i ∥∥∥(I − P)X̃0

∥∥∥

with limi→∞ ηi = 0 and X̃0 = X0C
−1
0

(
Iq

0

)
.

Proof. From the proof of Corollary 3.2, we have
∥∥∥∥SiC

−1
i

(
Iq

0

)∥∥∥∥ =
∥∥∥∥
(
M−iS0

) (
L−iC0

)−1
(

Iq

0

)∥∥∥∥

=
∥∥∥∥M−i

(
S0C

−1
0

)
Li

(
Iq

0

)∥∥∥∥ .

Since L is upper triangular, Li

(
Iq

0

)
=

(
Iq

0

)
(L1:q,1:q)

i
. Then

∥∥∥∥SiC
−1
i

(
Iq

0

)∥∥∥∥ ≤ ‖M−i‖‖ (L1:q,1:q)
i ‖

∥∥∥∥S0C
−1
0

(
Iq

0

)∥∥∥∥

≤
( |λq|
|λp+1| + ηi

)i ∥∥∥∥S0C
−1
0

(
Iq

0

)∥∥∥∥ as in Corollary 3.2.
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The proof is completed by noting that

sin ∠(Ṽ1,Xi) =
∥∥∥(I −XiX

∗
i )Ṽ1

∥∥∥

≤
∥∥∥∥Ṽ1 −XiC

−1
i

(
Iq

0

)∥∥∥∥ =
∥∥∥∥SiC

−1
i

(
Iq

0

)∥∥∥∥ ,

and that
∥∥∥∥S0C

−1
0

(
Iq

0

)∥∥∥∥ =
∥∥∥∥X0C

−1
0

(
Iq

0

)
− Ṽ1

∥∥∥∥ =
∥∥∥(I − P)X̃0

∥∥∥ .

Note that this corollary generalizes [21, Thm. 5.2] in the sense that the estimate
on sin ∠(Ṽ1,Xi) deals with invariant subspaces rather than eigenvectors.

3.1. Use of block-GMRES as inner iteration. In this section we restrict
attention to the use of block-GMRES as inner solver in Algorithm 1. Block-GMRES
belongs to the family of block Krylov subspace methods (see [21]), and it is attractive
for large (sparse) linear systems with multiple right-hand sides, as in the case of
interest.

Assume that block-GMRES is used to solve a linear system with multiple right-
hand sides of the form

AZ = B, B ∈ Cn×p, (3.3)

and that B can be decomposed as

B = V1B1 + V2B2, (3.4)

with V1 and V2 given in (2.5), B1 ∈ Cp×p nonsingular and B2 ∈ C(n−p)×p. Then we
have the following theorem:

Theorem 3.4. The residual B − AZk associated with the approximate solution
Zk of (3.3) obtained with k iterations of block-GMRES starting with Z0 = 0 is such
that

‖B −AZk‖ ≤ min
p∈P̄k−1

‖p(M)‖‖S‖‖L−1‖‖B2B
−1
1 ‖‖B1‖, (3.5)

where P̄l is the set of complex polynomials pl of degree at most l such that pl(0) = 1
and S is the Sylvester operator defined in Proposition 2.2.

Proof. Since Zk ∈ R
(
B AB . . . Ak−1B

)
and block-GMRES minimizes the resid-

ual, we have

‖B −AZk‖ = min
G1,...,Gk∈Cp×p

∥∥∥∥∥B +
k∑

i=1

AiBGi

∥∥∥∥∥ .

Let f1, . . . , fk−1 ∈ C. Set F = B−1
1 L−1B1 and choose

G1 = f1I − F, Gi = fiI − fi−1F, i = 2, . . . , k − 1 and Gk = −fk−1F.

Then

‖B −AZk‖ ≤ min
f1,...,fk−1∈C

∥∥∥∥∥B −ABF +
k−1∑

i=1

fiA
i(B −ABF )

∥∥∥∥∥ .
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Now observe that the decomposition (3.4) yields

B −ABF = V2 (B2 −MB2F )
= V2

(
B2B

−1
1 L−MB2B

−1
1

)
L−1B1

= −V2S(B2B
−1
1 ) L−1B1

and therefore

‖B −AZk‖ ≤ min
f1,...,fk−1∈C

∥∥∥∥∥

(
I +

k−1∑

i=1

fiM
i

)
S(B2B

−1
1 ) L−1B1

∥∥∥∥∥ .

The proof is completed by noting that

min
f1,...,fp∈C

∥∥∥∥∥I +
k−1∑

i=1

fiM
i

∥∥∥∥∥ = min
p∈P̄k−1

‖p(M)‖

and that
∥∥S(B2B

−1
1 ) L−1B1

∥∥ ≤ ‖S‖‖B2B
−1
1 ‖‖L−1‖‖B1‖.

Note that the minimum in (3.5) is taken with respect to the matrix M and not
A as in the usual theory. Also note that according to Proposition 2.1 the quantity
‖B2B

−1
1 ‖‖B1‖ behaves like the sine of the largest canonical angle between V1 and

R(B).
To estimate minp∈P̄k−1

‖p(M)‖ we use the following lemma whose proof can be,
for example, read off from that of [12, Lemma 1].

Proposition 3.5. Let E be a convex, closed bounded set in the complex plane,
and let φ be the conformal mapping from the exterior of E onto the exterior of the unit
disk such that φ(∞) = ∞ and φ′(∞) > 0. If the numerical range of M is contained
in E and 0 /∈ E, then

min
p∈P̄k−1

‖p(M)‖ ≤ N

(
1

|φ(0)|
)k−1

, (3.6)

with N = 3 l(∂E)
2πd(∂E) where l(∂E) is the length of the boundary curve ∂E of E and d(∂E)

is the minimal distance between the numerical range of M and ∂E.
An immediate corollary is as follows.
Corollary 3.6. Let M be perturbed to M + δM , where ‖δM‖ < d(∂E), then

min
p∈P̄k−1

‖p(M + δM)‖ ≤ Nδ

(
1

|φ(0)|
)k−1

, (3.7)

with Nδ = 3 l(∂E)
2π(d(∂E)−‖δM‖) .

A favorable situation for the bound in Proposition 3.5 is when the numerical
range of M is well separated from 0. Then |φ(0)| À 1 and minp∈P̄k−1

‖p(M)‖ goes to
0 quickly as k increases.

Proposition 3.5 remains valid if the numerical range of M is replaced by the
ε−pseudospectrum of M defined, for ε > 0, by

Λε(M) = {λ ∈ C : σmin(λI −M) ≤ ε}.
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Then the constant N in (3.6) should be replaced by the larger one N = 3 l(∂E)
2π ε (see

[12]). The advantage here is that the set Λε(M) is generally smaller than the numerical
range of M (see [29]). Thus the set E can be chosen far from 0 which leads to the
favorable condition |φ(0)| À 1. For the perturbed case a similar change is needed in
(3.7).

A combination of Theorem 3.4 and Proposition 3.5 gives the following result.
Theorem 3.7. Let Zk be the approximate solution of (3.3) obtained with k iter-

ations of block-GMRES starting with Z0 = 0. Under the assumptions of Proposition
3.5, if

k ≥ 1 +
1

log |φ(0)|
(

log
(
N‖S‖‖L−1‖) + log

‖B2B
−1
1 ‖‖B1‖
τ

)
(3.8)

then ‖B −AZk‖ ≤ τ .
Note that the bound in (3.8) is only a sufficient condition which guarantees that

the norm of the residual be less than τ . It is clear that the required accuracy may be
reached for k smaller than the bound (3.8) suggests.

In step 3 of Algorithm 1, the system to be solved by block-GMRES is AYi = Xi.
The right-hand side Xi decomposes as in (2.13) which is of the same form as (3.4).
In this context, Theorem 3.7 tells us that the residual obtained with ki iterations of
block-GMRES starting with 0 is less than τi = δ‖Ri‖ if

ki ≥ 1 +
1

log |φ(0)|
(

log
(
N‖S‖‖L−1‖) + log

‖SiC
−1
i ‖‖Ci‖
τi

)

= 1 +
1

log |φ(0)|
(

log
(
N‖S‖‖L−1‖) + log

si

δ‖Ri‖
)

. (3.9)

The next proposition shows that as Xi starts to approximate V1, the ratio si/‖Ri‖
is bounded independent of i, and thus, the number of inner iterations needed by
block-GMRES is bounded independent of i.

Proposition 3.8. Let Xi be decomposed as

Xi = V1Ci + V2Si with ‖Si‖ < ε. (3.10)

If 0 ≤ ε < min
(
1,− 1

2 + 1
2

√
1 + sep(T22, L)/‖A‖

)
, then

si

‖Ri‖ ≤
1 + ε

1− ε

‖P‖
sep(T22, L)− 4‖A‖ε(ε + 1)

. (3.11)

Hence the number of inner iterations needed by block-GMRES to satisfy the tolerance
in step 3 of Algorithm 1 is bounded independent of i.

Proof. Note first that the condition on ε ensures that sep(T22, L)−4‖A‖ε(ε+1) >
0.
Using Propositions 2.1 and 2.2, we have

si ≤ ‖Si‖ 1 + ‖Si‖
1− ‖Si‖ ≤ ‖P‖ sin ∠(Xi,V1)

1 + ε

1− ε
,

‖Ri‖ ≥ sep (T22, Li) sin ∠(Xi,V1).
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Then

si

‖Ri‖ ≤
1 + ε

1− ε

‖P‖
sep(T22, Li)

.

As in Proposition 2.1, the decomposition (3.10) allows us to write Ci = Ui + Υi with
Ui unitary and ‖Υi‖ < ε. Then

sep(T22, Li) = sep (T22, U
∗
i LiUi)

≥ sep(T22, L)− ‖L− U∗
i LiUi‖ (see [27, p.234]).

Using the decomposition of Xi in Li = X∗
i AXi and the expression of Ci given above,

we obtain the bound

‖L− U∗
i LiUi‖ ≤ 4‖A‖ε(1 + ε),

from which (3.11) is obtained.
This proposition is illustrated in Figure 3.1 on a convection diffusion problem (see

Example 1 in Section 5 for the details) where after an initial increase in ki, the number
of inner iterations needed at each outer iteration settles down to an approximately
constant value.
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Fig. 3.1. Outer iterations against inner iterations (Example 1)

Our aim in the next section is to see if the nice property that ki is bounded
independent of i holds when the system (3.3) is preconditioned.

4. Preconditioning the inexact inverse subspace iteration. A good pre-
conditioner helps to accelerate the computations in step 3 of Algorithm 1 and hence
the convergence of this algorithm. A standard way to accomplish this task is to find
an approximation P of A such that the systems with the matrix P are cheap to solve.
Then the matrix Yi in step 3 of Algorithm 1 is obtained by applying block-GMRES
to the preconditioned block system

AP−1Zi = Xi, Yi = P−1Zi. (4.1)

Let us denote by Zki the approximation of Zi obtained at iteration ki of block-GMRES
and satisfying

∥∥Xi −AP−1Zki

∥∥ ≤ τi = δ ‖Ri‖ , (4.2)
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and so, with Yki
= P−1Zki

, step 3 in Algorithm 1 is satisfied. The natural ques-
tion is whether ki can be bounded independent of i as Xi approaches V1, as for the
unpreconditioned case in Proposition 3.8.

To answer this question, we attempt to repeat the analysis in the previous section.
So, analogously to (2.5), assume that AP−1 is block-diagonalized as

AP−1 =
(

U1 U2

) (
K1 0
0 K2

) (
U1 U2

)−1
, with U∗

i Ui = I, i = 1, 2 (4.3)

where K1 and K2 have disjoint spectra. Assume further that Xi is decomposed as

Xi = U1C̃i + U2S̃i with ‖S̃i‖ < 1, (4.4)

and that analogous hypotheses of Proposition 3.5 and Theorem 3.7 hold. Let

s̃i = ‖S̃iC̃
−1
i ‖‖S̃i‖.

The question now is: can the ratio s̃i/‖Ri‖ be bounded independent of i as Xi ap-
proaches V1? The a priori answer is ‘no’, as the following analysis shows.

From Proposition 2.1 and (2.13) and (4.4) we have

s̃i + si ≥ ‖S̃i‖+ ‖Si‖ ≥ ‖U2S̃i − V2Si‖ = ‖U1C̃i − V1Ci‖

and

‖U1C̃i − V1Ci‖ ≥ ‖U1C̃iC
−1
i − V1‖ σmin(Ci).

Denoting U1 = R(U1) and using (2.12) and (2.16), we obtain

‖U1C̃i − V1Ci‖ ≥ (1− si) sin ∠(U1,V1).

Therefore

s̃i ≥ sin ∠(U1,V1)− si (1 + sin ∠(U1,V1)) .

As Xi → V1, si → 0, but there is no reason why s̃i → 0. In fact, s̃i/‖Ri‖ may increase
as sin ∠(U1,V1)/‖Ri‖ leading to a corresponding increase in ki given by (3.9). Such
an increase is shown in Figures 5.1 and 5.5, where an ILU preconditioner is applied
to two different examples. The above analysis shows that we do not have a result like
(3.11) for preconditioned solves. It also shows that as Xi → V1, a necessary (but not
sufficient) condition for a bound similar to (3.11) to hold for preconditioned solves is
sin ∠(U1,V1) ≈ 0, that is, V1 is almost an invariant subspace of AP−1, or equivalently,
that V1 is almost an invariant subspace of P .

4.1. An ‘Ideal’ Preconditioner. In this subsection we discuss the theoretical
case of U1 = V1. We shall see that a preconditioner which satisfies U1 = V1 is

P = AV1V
∗
1 + P (I − V1V

∗
1 ), (4.5)

which we call an ‘ideal’ preconditioner. First, it is easy to see that PV1 = AV1 =
V1L. Thus, V1 is an invariant subspace of both A and P. Moreover, the following
proposition shows that if P is a good approximation of A then the spectrum of AP−1

should be clustered near 1.
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Proposition 4.1. Let P be given by (4.5) and assume A has the Schur decom-
position (2.2). Then the matrix AP−1 has the same eigenvalues as the matrix

(
I V ∗

1 AP−1V ⊥
1

0 T22((V ⊥
1 )∗PV ⊥

1 )−1

)
.

Proof. We have

(
V1 V ⊥

1

)∗
AP−1

(
V1 V ⊥

1

)
=

(
V ∗

1 AP−1V1 V ∗
1 AP−1V ⊥

1

(V ⊥
1 )∗AP−1V1 (V ⊥

1 )∗AP−1V ⊥
1

)
.

Now observe that AP−1V1 = V1 and (V ⊥
1 )∗A = T22(V ⊥

1 )∗. Then

(
V1 V ⊥

1

)∗
AP−1

(
V1 V ⊥

1

)
=

(
I V ∗

1 AP−1V ⊥
1

0 T22(V ⊥
1 )∗P−1V ⊥

1

)
.

Finally, since PV ⊥
1 = PV ⊥

1 , we have

(
(V ⊥

1 )∗P−1V ⊥
1

) (
(V ⊥

1 )∗PV ⊥
1

)
=

(
(V ⊥

1 )∗P−1V ⊥
1

) (
(V ⊥

1 )∗PV ⊥
1

)

= (V ⊥
1 )∗P−1(I − V1V

∗
1 )PV ⊥

1 = I.

Hence,
(
V ⊥

1 )∗P−1V ⊥
1

)
=

(
(V ⊥

1 )∗PV ⊥
1

)−1
.

If P is a good approximation of A, then (V ⊥
1 )∗PV ⊥

1 will be a good approximation
of T22, and hence the eigenvalues of AP−1 should be clustered around 1.

Now, assume that V1 is a simple invariant subspace of AP−1. This ensures the
existence of a block-diagonalization of the form

AP−1 =
(

V1 U
) (

I 0
0 K

) (
V1 U

)−1 with U∗U = I, sep(I,K) > 0. (4.6)

Assume also that Xi can decomposed, for all i ≥ 0, in the form

Xi = V1C̃i + US̃i with ε̃i := ‖S̃i‖ < 1. (4.7)

Multiplying (2.13) and (4.7) on the left by W ∗
2 gives Si = W ∗

2 US̃i. It is easy to see
that W ∗

2 U is nonsingular and therefore that S̃i = (W ∗
2 U)−1

Si. Assume Xi → V1, so
that ε̃i → 0 and there exists ε̃ < 1 such that ε̃i ≤ ε̃, ∀i ≥ 0. Then, from Proposition
2.1, we have

s̃i ≤ 1 + ‖S̃i‖
1− ‖S̃i‖

‖S̃i‖

≤ 1 + ε̃

1− ε̃
‖(W ∗

2 U)−1‖ si.

Now a proof similar to that of Proposition 3.8 shows that si/‖Ri‖, and therefore
that s̃i/‖Ri‖, is bounded independent of i. This analysis shows that if the ideal
preconditioner were available, then we would be able to show that the iterations used
by block-GMRES should be independent of i as in Proposition 3.8.
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4.2. The ‘Tuned’ Preconditioner. Of course, the ideal preconditioner cannot
be used in practice since V1 is unknown, so we replace P by the “tuned” preconditioner

Pi = AXiX
∗
i + P (I −XiX

∗
i ), (4.8)

where the V1 in (4.5) is replaced by Xi computed by Algorithm 1. This preconditioner
satisfies the tuning condition

PiXi = AXi.

This is a generalisation of the condition proposed in [8] and [7] in the context of inexact
inverse iteration, but the motivation given here is different. Note that the tuned
preconditioner changes at each iteration i of Algorithm 1 and its quality improves
with that of Xi. Since PiXi = AXi = XiLi + Ri. We see that as Xi → V1, Ri → 0,
and so, in the limit, Pi has V1 as a invariant subspace. Also, the tuning condition
can be written

AP−1
i (AXi) = AXi, (4.9)

which means that AXi is an invariant subspace of AP−1
i corresponding to the eigen-

value 1, which is a property shared with the ideal preconditioner given by (4.5). So
the tuned preconditioner also has the nice property of clustering around 1 at least a
part of the spectrum of AP−1

i . Asymptotically, that is, when Xi → V1, the tuned
preconditioner Pi will behave like the ideal preconditioner.

We now prove a result for the tuned preconditioner corresponding to that given
by Proposition 3.8 for unpreconditioned solves, namely, that the number of inner
iterations needed to achieve (4.2) will be independent of i. This is to be expected
given the closeness of AP−1

i to AP−1, and is exactly what is observed in the numerical
examples discussed in Section 5.

Assume that Xi decomposes as

Xi = V1Ci + V2Si with ‖Si‖ → 0 as i →∞ (4.10)

and define εi by

εi = max
j≥i

‖Sj‖. (4.11)

Note that the sequence εi is decreasing.
In order to prove a result similar to that of Proposition 3.8 for the tuned precon-

ditioned system, i.e. system (4.1) with Pi as preconditioner, we need the following
three lemmas.

Lemma 4.2. We have

XiX
∗
i = V1V

∗
1 + Ei, with ‖Ei‖ ≤ ‖Si‖ ≤ εi, (4.12)

and for εi small enough, there exist two positive constants α and β independent of i
such that

α sin ∠(AXi,Xi) ≤ ‖Ri‖, (4.13)
‖AP−1 −AP−1

i ‖ ≤ β εi. (4.14)
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Proof. We use the same notation as in the proof of Proposition 3.8. The property
(4.12) is a consequence of Proposition 2.1 and the fact that ‖Ei‖ = sin ∠(Xi,V1) (see
(2.11)).

The columns of AXi (L∗i Li + R∗i Ri)
− 1

2 form an orthonormal basis of AXi. There-
fore

sin ∠(AXi,Xi) = ‖(I −XiX
∗
i )AXi (L∗i Li + R∗i Ri)

− 1
2 ‖

= ‖Ri (L∗i Li + R∗i Ri)
− 1

2 ‖
≤ ‖Ri‖/σmin(Li),

and as in Proposition 3.8,

σmin(Li) ≥ σmin(L)− 4‖A‖εi(1 + εi).

Then since εi is decreasing, there exists α > 0 independent of i, such that for εi small
enough

σmin(L)− 4‖A‖εi(1 + εi) ≥ α

and then

sin ∠(AXi,Xi) ≤ ‖Ri‖/α.

From (4.5), (4.8) and (4.12) we have Pi = P + (A− P )Ei. Then

AP−1 −AP−1
i = AP−1 (Pi −P)P−1

i

= AP−1 (A− P ) Ei (P + (A− P )Ei)
−1

‖AP−1 −AP−1
i ‖ ≤ ‖AP−1‖‖A− P‖‖Ei‖‖P−1‖

∥∥∥
(
I + P−1(A− P )Ei

)−1
∥∥∥

≤ ‖AP−1‖‖A− P‖‖P−1‖
1− ‖P−1(A− P )‖ ‖Ei‖‖Ei‖

and the same argument used for α shows the existence of β independent of i such that

‖AP−1‖‖A− P‖‖P−1‖
1− ‖P−1(A− P )‖ ‖Ei‖ ≤

‖AP−1‖‖A− P‖‖P−1‖
1− ‖P−1(A− P )‖ εi

≤ β.

The following lemma shows that under some natural hypotheses, AP−1
i will have

a block-diagonalization close to that of AP−1 given in (4.6).
Lemma 4.3. Assume that V1 is a simple invariant subspace of AP−1. Then for

εi small enough, AP−1
i can be block-diagonalized as

AP−1
i =

(
Ũi Ui

) (
I 0
0 Ki

) (
Ũi Ui

)−1

(4.15)

with Ũ∗
i Ũi = I and U∗

i Ui = I and

‖K −Ki‖ ≤ c1εi,

sin ∠(U ,Ui) ≤ c2εi (U = R(U) and Ui = R(Ui)),

sin ∠(V1, Ũi) ≤ c3εi (Ũi = R(Ũi) = AXi)
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where c1, c2 and c3 are positive constants independent of i.
Proof. Since V1 is a simple invariant subspace, we know that the block-diagonalization

(4.6) exists and [27, Thm. 2.8] and Lemma 4.2 can be used to compare the invariant
subspaces of AP−1 and AP−1

i . Thus for εi sufficiently small, there exist matrices Ui

and Ki such that

AP−1
i Ui = UiKi with U∗

i Ui = I

and positive constants c1 and c2 independent of i such that

‖K −Ki‖ ≤ c1εi,

sin ∠(U ,Ui) ≤ c2εi.

From (4.9) it is clear that

Ũi = AXi

(
(AXi)

∗ (AXi)
)−1/2

satisfies AP−1
i Ũi = Ũi and Ũ∗

i Ũi = I. Moreover, there exists c3 independent of i such
that, for εi sufficiently small,

sin ∠(V1, Ũi) ≡ sin ∠(V1, AXi) ≤ c3εi,

because sin ∠(V1, AXi) ≤ sin ∠(V1,Xi) + sin ∠(Xi, AXi) ≤ εi + ‖Ri‖/α, using(4.13),
and

‖Ri‖ = ‖(I −XiX
∗
i )AXi‖ ≤ ‖M‖‖Si‖+ ‖Ei‖‖A‖ ≤ 2‖A‖εi.

Since 1 is not an eigenvalue of K, then for εi sufficiently small 1 cannot be an eigenvalue
of Ki. This shows the existence of the decomposition (4.15).

The next lemma shows the continuous dependence of a spectral projection on the
matrix.

Lemma 4.4. Let B and C be two matrices of the same size and Pγ(B) and
Pγ(C) the spectral projections onto the invariant subspaces of B and C corresponding
to the eigenvalues inside a closed contour γ. Assume that ‖B − C‖ ≤ ξ and let
mγ(B) = maxλ∈γ ‖(λI −B)−1‖. If ξmγ(B) < 1 then

‖Pγ(B)− Pγ(C)‖ ≤ 1
2π

lγ
ξm2

γ(B)
1− ξmγ(B)

where lγ is the length of γ.
Proof. see e.g. [9, §8.2].
We are now in a position to state and prove the key result in this paper.
Theorem 4.5. Let Xi be decomposed as in (4.10)-(4.11) where εi is also defined.

Assume that V1 is a simple invariant subspace of AP−1 and that the numerical range
of the matrix K in (4.6) satisfies the assumptions of Proposition 3.5.

Then, for small enough εi, the number ki of inner iterations used by block-GMRES
to compute Zki satisfying the stopping criterion

∥∥Xi −AP−1
i Zki

∥∥ ≤ τi = δ ‖Ri‖ , (4.16)

is bounded independent of i.
Proof. Let φ and E be given by Proposition 3.5 applied to K (instead of M).
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For small enough εi, Lemma 4.3 shows that the decomposition (4.15) holds and
Corollary 3.6 can be used with Ki to obtain a constant N̂ independent of i such that

min
p∈P̄k−1

‖p(Ki)‖ ≤ N̂

(
1

|φ(0)|
)k−1

.

Decompose Xi in R
(
Ũi Ui

)
as

Xi = ŨiĈi + UiŜi

and, for εi small enough, define ŝi by ŝi = ‖ŜiĈ
−1
i ‖‖Ĉi‖.

It is a simple task to show that the residual obtained with ki iterations of block-
GMRES starting with 0 is less than τi = δ‖Ri‖ if

ki ≥ 1 +
1

log |φ(0)|
(

log
(
N̂‖Ŝi‖

)
+ log

ŝi

δ‖Ri‖
)

, (4.17)

where ‖Ŝi‖ = ‖I −Ki‖ ≤ ‖I −K‖+ c1εi can be bounded independent of i since εi is
decreasing.

Now in order to show that ki can be bounded independent of i for small enough
εi, it only remains to show that the ratio ŝi/‖Ri‖ possesses this property.

From Proposition 2.1 we have

‖Ŝi‖ ≤ ‖P̂i‖ sin∠(Ũi,Xi) ≡ ‖P̂i‖ sin ∠(AXi,Xi)

where P̂i is the spectral projection of AP−1
i onto Ũi.

We have

sin ∠(AXi,Xi) ≤ sin ∠(AXi,V1) + sin ∠(V1,Xi) ≤ (c3 + 1)εi.

The term ‖P̂i‖ is bounded as

‖P̂i‖ ≤ ‖P̂ − P̂i‖+ ‖P̂‖

where P̂ is the spectral projection of AP−1 onto V1. For small enough εi, (4.14) shows
that lemma 4.4 can be applied. Taking, in this lemma, γ as the circle of center 1 and
radius εi, we obtain:

‖P̂ − P̂i‖ ≤
βm2

γ(AP−1)
1− βmγ(AP−1)εi

εi.

Since εi is decreasing, we have for εi small enough

βm2
γ(AP−1)

1− βmγ(AP−1)εi
≤ c4

with c4 independent of i and hence

‖Ŝi‖ ≤ (c4εi + ‖P̂‖)(c3 + 1)εi ≤ c5εi with c5 =
(
‖P̂‖+ c4

)
(c3 + 1).
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Finally from Proposition 2.1 and Lemma 4.2, we have for εi small enough

ŝi

‖Ri‖ ≤
1 + ‖Ŝi‖
1− ‖Ŝi‖

‖Ŝi‖
α sin ∠(AXi,Xi)

≤ 1 + ‖Ŝi‖
1− ‖Ŝi‖

‖P̂i‖
α

≤ 1 + c5εi

1− c5εi

c4εi + ‖P̂‖
α

.

Since εi is decreasing, the last inequality shows that the ratio ŝi

‖Ri‖ is bounded inde-
pendent of i for small enough εi.

The numerical results illustrate this theorem, namely that the number of itera-
tions is asymptotically independent of i, see Figures 5.1 and 5.5.

5. Numerical tests. In this section we present some numerical tests to illustrate
the performance of Algorithm 1 when step 3 is replaced by the preconditioned block
system

AP−1Zi = Xi, Yi = P−1Zi, (5.1)

solved by block-GMRES with the tolerance τi = min(δ, δ‖Ri‖) , δ = 10−3.
Any version of block-GMRES can be used to illustrate the theory. We have

chosen to use a new variant of block-GMRES which detects the near-dependance in
the corresponding block-Arnoldi basis and then adapts the block sizes accordingly.
As a consequence, this variant selects appropriate directions for convergence. See [19]
for the details.

We compare two preconditioners:
• ILU preconditioner: P is obtained from the incomplete LU factorization of A

with a drop tolerance fixed at 10−1.
• Tuned preconditioner: Pi = P + FiX

∗
i where Fi = AXi − PXi and P is as

above. In this case the computation of P−1
i in Yi = P−1

i Zi uses the Woodbury
formula (see [10]). Note that the application of P−1

i within block-GMRES
requires little extra work compared with the application of P−1, with the
additional work mainly needed at the outer step.

For each example, we give information on the spectrum of A, the block size p,
the dimension q of the computed invariant subspace Ṽ1 associated to the eigenvalues
near 0. We show the inner iterations for the two preconditioners and the norm of the
residuals, denoted by Γi, associated to the computed invariant subspaces.

Example 1. A is obtained with a five-point stencil and centered difference dis-
cretization of the convection diffusion operator (see [11]):

{ Au = ∆u + 10∂u
∂x + 10∂u

∂y , on Ω = [0, 1]× [0, 1],
u = 0 on ∂Ω.

The matrix A is of order n = 2025 and has nz = 9945 nonzero elements, ‖A‖ =
16152, ‖A − P‖ = 1400. We use p = 6 and look for the invariant subspace Ṽ1 of
dimension q = 4. The computations stop when ‖Γi‖ < 10−8. The spectrum of A and
the computed eigenvalues are shown in Figure 5.4.

Figure 5.1 shows the inner iterations ki for the two preconditioners and figures 5.2
and 5.3 show the behavior of ‖Γi‖ during the outer iterations and compared with the
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total number of inner iterations. Figure 5.1 illustrates well the theory: it shows that as
the outer convergence proceeds, the number of inner iterations becomes independent
of i when the tuned preconditioner is used but increases when the standard ILU
preconditioner is used. Figure 5.2 illustrates that there is little difference in the
performance of the two preconditioners with regard to the residual norms in step 3
of Algorithm 1. Figure 5.3 shows the dramatic improvement in overall cost achieved
by the tuned preconditioner, with the required tolerance being achieved at 12.65% of
the cost needed for the untuned preconditioner.
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Fig. 5.1. Outer iterations against inner it-
erations (Example 1)
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Fig. 5.2. Residual norms against outer iter-
ations (Example 1)
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Fig. 5.3. Residual norms against the total
number of inner iterations (Example 1)
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Fig. 5.4. Eigenvalues A (Example 1)

Example 2. A is the matrix QC2534 from the NEP set 1. This matrix is complex,
symmetric and non-Hermitian. It is of order n = 2534 and has nz = 463360 nonzero
elements, ‖A‖ = 3.32, ‖A − P‖ = 0.41. We use p = 16 and look for the invariant
subspace Ṽ1 of dimension q = 10. The computations stop when ‖Γi‖ < 10−8. Figure
5.8 shows the spectrum of A and the computed eigenvalues. Figure 5.5 compares the
number of inner iterations for the ILU and tuned preconditioners. Figures 5.6 and 5.7
show the norm of the residual of the invariant subspace associated to the q eigenvalues

1see http://math.nist.gov/MatrixMarket/collections/NEP.html
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near 0. Similar comments apply as in Example 1. The tuned preconditioner requires
a roughly constant number of inner iterations per outer iteration, (see Figure 5.5).
Finally, the overall costs for the tuned preconditioned system to achieve ‖Γi‖ < 10−8

are about 36.18% of the costs for the untuned preconditioner, (see Figure 5.7).
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Fig. 5.5. Outer iterations against inner it-
erations (Example 2)
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Fig. 5.6. Residual norms against outer iter-
ations (Example 2)
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Fig. 5.7. Residual norms against the total
number of inner iterations (Example 2)
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