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Abstract We propose and analyze a perturbed version of the classical Josephy–
Newton method for solving generalized equations. This perturbed framework is con-
venient to treat in a unified way standard sequential quadratic programming, its sta-
bilized version, sequential quadratically constrained quadratic programming, and lin-
early constrained Lagrangian methods. For the linearly constrained Lagrangian meth-
ods, in particular, we obtain superlinear convergence under the second-order suffi-
cient optimality condition and the strict Mangasarian–Fromovitz constraint qualifica-
tion, while previous results in the literature assume (in addition to second-order suf-
ficiency) the stronger linear independence constraint qualification as well as the strict
complementarity condition. For the sequential quadratically constrained quadratic
programming methods, we prove primal-dual superlinear/quadratic convergence un-
der the same assumptions as above, which also gives a new result.
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1 Introduction

In this paper, we are interested in Newton and Newton-related methods for solving
generalized equations (GE) of the form

�(z) + N(z) � 0, (1.1)

where � : Rs → Rs is a smooth mapping, and N : Rs → 2Rs
is a set-valued mapping

(i.e., for each z ∈ Rs , N(z) is a subset of Rs ). The so-called Josephy–Newton method
(JNM) for (1.1) goes back to [18, 19]; it is the following iterative procedure. For
the current iterate zk ∈ Rs , the next iterate zk+1 is computed as a solution of the
(partially) linearized GE at zk :

�(zk) + �′(zk)(z − zk) + N(z) � 0. (1.2)

A well-known and computationally important example of JNM is the sequential
quadratic programming (SQP) method for optimization, e.g., [6]. To this end, con-
sider the mathematical programming (MP) problem

minimize f (x)

subject to F(x) = 0, G(x) ≤ 0,
(1.3)

where f : Rn → R is a smooth function and F : Rn → Rl and G : Rn → Rm are
smooth mappings. Stationary points of MP problem (1.3) and the associated La-
grange multipliers are characterized by the Karush–Kuhn–Tucker (KKT) optimality
system

∂L

∂x
(x,λ,μ) = 0, F (x) = 0, μ ≥ 0, G(x) ≤ 0, 〈μ,G(x)〉 = 0,

(1.4)
where

L : Rn × Rl × Rm → R, L(x,λ,μ) = f (x) + 〈λ,F (x)〉 + 〈μ,G(x)〉
is the Lagrangian function of MP problem (1.3).

KKT system (1.4) can be written in the form of GE (1.1) with s = n + l + m,
z = (x,λ,μ) ∈ Rs = Rn × Rl × Rm,

�(z) =
(

∂L

∂x
(x,λ,μ),F (x),G(x)

)
, (1.5)

and

N(z) = N(μ) =
{{0} × {0} × {y ∈ Rm+ | 〈μ,y〉 = 0}, if μ ≥ 0;
∅, otherwise.

(1.6)

In the case of GE associated to a KKT system, for a given zk = (xk, λk,μk) ∈ Rs , the
iteration system (1.2) of JNM takes the form

∂L

∂x
(xk, λk,μk) + ∂2L

∂x2
(xk, λk,μk)(x − xk)

+ (F ′(xk))T(λ − λk) + (G′(xk))T(μ − μk) = 0,



Inexact Josephy–Newton framework for generalized equations 349

F(xk) + F ′(xk)(x − xk) = 0,

μ ≥ 0, G(xk) + G′(xk)(x − xk) ≤ 0, 〈μ,G(xk) + G′(xk)(x − xk)〉 = 0,

where the unknown is z = (x,λ,μ) ∈ Rs . As is easily seen, the latter is the KKT
optimality system for the quadratic programming (QP) problem

minimize 〈f ′(xk), x − xk〉 + 1

2

∂2L

∂x2
(xk, λk,μk)[x − xk, x − xk]

subject to F(xk) + F ′(xk)(x − xk) = 0, G(xk) + G′(xk)(x − xk) ≤ 0,

which is precisely the iteration/subproblem of SQP. It is interesting to point out that
the strongest local convergence results for SQP that are currently available in the
literature, follow from the analysis of general JNM in [7]; more on this in the sequel.

Let us go back to the general problem (1.1). The sharpest existing theory of local
convergence and rate of convergence of JNM to a given solution z̄ of GE (1.1) is
developed in [7]. This theory relies on the following two notions.

Definition 1.1 Solution z̄ of GE (1.1) is said to be semistable if for any r ∈ Rs close
enough to zero, any solution z(r) of the perturbed GE

�(z) + N(z) � r (1.7)

close enough to z̄ satisfies the estimate

‖z(r) − z̄‖ = O(‖r‖).

If JNM generates a well-defined trajectory {zk} convergent to a semistable solution
z̄, the rate of convergence is necessarily superlinear. However, semistability does not
guarantee solvability of subproblems (1.2) for zk arbitrarily close to z̄. To this end,
the following notion comes into play.

Definition 1.2 Solution z̄ of GE (1.1) is said to be hemistable if for any z ∈ Rs close
enough to z̄, GE

�(z) + �′(z)ζ + N(z + ζ ) � 0 (1.8)

has a solution ζ(z) such that ζ(z) → 0 as z → z̄.

Convergence results for JNM then affirm the following.

Theorem 1.1 ([7]) Let � : Rs → Rs be differentiable near a point z̄ ∈ Rs , and sup-
pose that the derivative of � is continuous at z̄. Assume that z̄ is a semistable and
hemistable solution of GE (1.1).

Then there exists δ > 0 such that for any starting point z0 ∈ Rs close enough to z̄,
there exists a trajectory {zk} ⊂ Rs such that zk+1 is a solution of GE (1.2) for each
k = 0,1, . . . , satisfying ‖zk+1 − zk‖ ≤ δ; any such trajectory converges to z̄, and the
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rate of convergence is superlinear. Moreover, the rate of convergence is quadratic
provided the derivative of � is locally Lipschitz-continuous with respect to z̄, i.e.,

‖�′(z) − �′(z̄)‖ = O(‖z − z̄‖).

Generally, none of the two properties of semistability and hemistability is implied
by the other. However, both are evidently implied by Robinson’s strong regularity
of the solution z̄ [30]. Moreover, strong regularity implies that for any z ∈ Rs close
enough to z̄, GE (1.8) has a unique solution near z̄.

Let us now mention what the general convergence result for JNM given in Theo-
rem 1.1 means for some special cases of GEs. In the case of the usual equation

�(z) = 0, (1.9)

(i.e., when N(·) ≡ {0}), both semistability and strong regularity are equivalent to say-
ing that �′(z̄) is a nonsingular matrix. Moreover, in this case JNM is, of course, the
usual Newton method (NM) for (1.9), with its iteration defined by the linear system

�(zk) + �′(zk)(z − zk) = 0.

In this case, the assertion of Theorem 1.1 can be sharpened as follows: δ > 0 can be
taken arbitrarily, and for any z0 ∈ Rs close enough to z̄, the corresponding trajectory
{zk} is unique. With these clarifications, Theorem 1.1 contains the standard local
convergence and rate of convergence result for the classical Newton method.

Let us now consider again the optimization case and show how sharp convergence
results for SQP are obtained from Theorem 1.1 for JNM.

Let x̄ ∈ Rn be a stationary point of MP problem (1.3), and let (λ̄, μ̄) ∈ Rn ×Rm be
a Lagrange multiplier associated with x̄, that is, the triple (x̄, λ̄, μ̄) satisfies (1.4). We
assume that f , F and G are twice differentiable near x̄, and their second derivatives
are continuous at x̄. Recall that the Mangasarian–Fromovitz constraint qualification
(MFCQ) at x̄ consists of saying that rankF ′(x̄) = l and there exists ξ̄ ∈ kerF ′(x̄)

such that G′
A(x̄)(x̄)ξ̄ < 0, where A(x̄) = {i = 1, . . . ,m | Gi(x̄) = 0} is the set of con-

straints active at x̄. For MP problems, MFCQ is another name for the so-called Robin-
son’s constraint qualification [8, Definition 2.86]. The strict Mangasarian–Fromovitz
constraint qualification (SMFCQ) for (λ̄, μ̄) consists of saying that

rank

(
F ′(x̄),

G′
A+(x̄,μ̄)

(x̄)

)
= l + |A+(x̄, μ̄)|

and there exists ξ̄ ∈ kerF ′(x̄) such that

G′
A+(x̄,μ̄)(x̄)ξ̄ = 0, G′

A(x̄)\A+(x̄,μ̄)(x̄)ξ̄ < 0,

where A+(x̄, μ̄) = {i ∈ A(x̄) | μ̄i > 0} is the set of strongly active constraints.
SMFCQ is actually equivalent to the combination of MFCQ with the requirement
that (λ̄, μ̄) be the unique Lagrange multiplier associated with x̄.

The following key facts were established in [7]:
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• If the solution z̄ = (x̄, λ̄, μ̄) of GE (1.1) with �(·) and N(·) defined according
to (1.5) and (1.6), respectively, is semistable then x̄ necessarily satisfies SMFCQ
for (λ̄, μ̄).

• If SMFCQ holds at x̄ for (λ̄, μ̄), and if the second-order sufficient optimality con-
dition (SOSC) holds as well, then z̄ is semistable. Here, SOSC means that

∂L

∂x
(x̄, λ̄, μ̄)[ξ, ξ ] > 0 ∀ξ ∈ C(x̄) \ {0}, (1.10)

where

C(x̄) = {ξ ∈ Rn | F ′(x̄)ξ = 0, G′
A(x̄)(x̄)ξ ≤ 0, 〈f ′(x̄), ξ 〉 ≤ 0}

is the critical cone of the MP problem (1.3) at x̄.
• If x̄ is a local solution of MP problem (1.3) then SOSC (1.10) is also necessary for

semistability of z̄ and, moreover, semistability implies hemistability of z̄.

It thus follows immediately from Theorem 1.1 (and the facts stated above) that
local superlinear convergence of SQP method for MP problem (1.3) is guaranteed
under SMFCQ and SOSC. We emphasize that this consequence of the analysis of
general JNM in [7] is the sharpest known local convergence result for SQP. In addi-
tion to SOSC, other results in the literature assume the stronger linear independence
constraint qualification instead of SMFCQ (e.g., [9, Theorem 15.4]) and sometimes
also the strict complementarity condition μ̄A(x̄) > 0 (e.g., [5, pp. 252–256] and [9,
Theorem 15.2], or the original work [28]).

The discussion above puts in evidence that (exact) JNM for GE is a convenient
and fruitful tool for analyzing SQP for optimization. In what follows, we shall extend
the framework for dealing with Newton-related algorithms that can be regarded as
inexact JNM (iJNM). These will include the stabilized version of SQP [12, 13, 16,
33–35], sequential quadratically constrained quadratic programming [2, 11, 15, 31],
and linearly constrained Lagrangian methods [14, 24, 27]. Formally, instead of (1.2),
the next iterate zk+1 would now satisfy the (perturbed) GE

�(zk) + �′(zk)(z − zk) + ωk + N(z) � 0, (1.11)

where ωk ∈ Rs is a perturbation term. This term may have different forms and mean-
ings, may play various roles, and may conform to different sets of assumptions. This
would depend on particular algorithms at hand, and on the particular purposes of the
analysis. In Sect. 2, we prove convergence results for general iJNM. In Sect. 3, we
show that the linearly constrained Lagrangian methods fall into our general frame-
work. As a consequence, we obtain local superlinear/quadratic convergence under
assumptions that are strictly weaker than those in the literature [14, 27]. In Sect. 4,
we consider the sequential quadratically constrained quadratic programming method,
and obtain a new convergence result (which improves [11] in the case of optimiza-
tion, while being neither weaker nor stronger than the results in [2] and [15]). Finally,
the stabilized version of SQP is considered in Sect. 5.

Before proceeding, we note that our development for iJNM was motivated, in
part, by [13], which considers a different generalized perturbed version of JNM. The
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framework of [13] assumes a condition weaker than semistability, allowing the case
of nonisolated solutions. In fact, the original version of our local convergence re-
sult for iJNM (1.11) could have been derived from [13]. However, the refined The-
orem 2.1, given in the present version, cannot be obtained using [13]. Some further
comments on this follow the proof of Theorem 2.1. Concerning specific optimization
algorithms considered here, only stabilized SQP is analyzed in [13]; this application
would be discussed in Sect. 5.

Our notation is mostly standard. By 〈·, ·〉 we denote the Euclidian inner product,
and by ‖ · ‖ the associated norm (the space is always clear from the context). For
MP problem (1.3), we denote by σ(·) the natural residual function for its KKT sys-
tem (1.4), i.e.,

σ : Rn × Rl × Rm → R, σ (x,λ,μ) =
∥∥∥∥
(

∂L

∂x
(x, λ, μ),F (x),min{μ,−G(x)}

)∥∥∥∥,

(1.12)

where the minimum is applied componentwise. Note that under our assumptions, σ(·)
is Lipschitz-continuous near {x̄} × Rl × Rm, and since σ(x̄, λ̄, μ̄) = 0, it holds that

σ(x,λ,μ) = O(‖x − x̄‖ + ‖λ − λ̄‖ + ‖μ − μ̄‖). (1.13)

2 Inexact Josephy–Newton method for generalized equations

Similarly to other inexact frameworks in the literature, theoretical results regarding
iJNM may be rather different in nature. For example, a posteriori analysis does not
consider solvability of subproblems: it subsumes that the sequences {zk} ⊂ Rs and
{ωk} ⊂ Rs are given, with zk+1 satisfying (1.11) for each k = 0,1, . . . , and one is
interested under which assumptions (in particular, regarding {ωk}) convergence of
{zk} to z̄ is preserved, and the convergence rate estimates can be given. One example
of this type of result is the famous Dennis–Moré Theorem [10] for usual equations,
which is the theoretical basis for quasi-Newton methods. In contrast, a priori analysis
does not subsume {zk} to be given: the role of {ωk} is now primary with respect
to {zk}, and the question of solvability of subproblems (1.11) is an important part of
the analysis. Of course, this can be possible only introducing some structure for the
perturbation terms.

Speaking about inexact NM (iNM) for usual equations, a priori analysis is often
possible and natural. However, for more complex GEs solvability of iJNM subprob-
lems can generally be impossible to establish, at least without stronger assumptions
which could be avoided otherwise. In such cases, the results which are in a sense
intermediate between a priori and a posteriori can be more appropriate, with solv-
ability of subproblems still being assumed, having in mind that this can be verified
separately for some specific algorithms and/or problem classes. Theorem 2.1 below
is an intermediate result of this kind, and it is a generalization of Theorem 1.1, allow-
ing for inexactness. Solvability of subproblems will be treated later on, separately for
specific algorithms.

It is convenient to start with an a posteriori result regarding the superlinear rate of
convergence, assuming convergence itself.
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Proposition 2.1 Let a mapping � : Rs → Rs be differentiable in a neighborhood
of z̄ ∈ Rs , with its derivative being continuous at z̄. Let z̄ be a semistable solution
of GE (1.1). Let a sequence {zk} ⊂ Rs be convergent to z̄, and assume that zk+1

satisfies (1.11) for each k = 0,1, . . . , with some ωk ∈ Rs such that

‖ωk‖ = o(‖zk+1 − zk‖ + ‖zk − z̄‖). (2.1)

Then the rate of convergence of {zk} is superlinear. Moreover, the rate of conver-
gence is quadratic provided the derivative of � is locally Lipschitz-continuous with
respect to z̄, and provided

‖ωk‖ = O(‖zk+1 − zk‖2 + ‖zk+1 − zk‖‖zk − z̄‖ + ‖zk − z̄‖2). (2.2)

Proof If zk = z̄ for some k, semistability of z̄ implies that zk = z̄ for all subsequent
values of k, and the assertions hold trivially. We therefore assume that zk �= z̄ ∀ k.

For each k, zk+1 is a solution of GE (1.7) with

r = rk = �(zk+1) − �(zk) − �′(zk)(zk+1 − zk) − ωk, (2.3)

and according to the Mean-Value Theorem (of the form in [20, Chap. XVII, §1.3])
and (2.1),

‖rk‖ ≤ sup{‖�′(tzk+1 + (1 − t)zk) − �′(zk)‖ | t ∈ [0,1]}‖zk+1 − zk‖ + ‖ωk‖
= o(‖zk+1 − zk‖ + ‖zk − z̄‖). (2.4)

Then, by semistability of z̄, it holds that

‖zk+1 − z̄‖ = O(‖rk‖)
= o(‖zk+1 − zk‖) + o(‖zk − z̄‖)
= o(‖zk+1 − z̄‖ + ‖zk − z̄‖),

i.e.,

0 = lim
k→∞

‖zk+1 − z̄‖
‖zk+1 − z̄‖ + ‖zk − z̄‖

= lim
k→∞

1

1 + ‖zk − z̄‖/‖zk+1 − z̄‖ .

The latter relation implies that

‖zk − z̄‖
‖zk+1 − z̄‖ → ∞ as k → ∞,

i.e.,

‖zk+1 − z̄‖ = o(‖zk − z̄‖),
which shows the superlinear convergence rate of {zk}.
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Furthermore, if the derivative of � is locally Lipschitz-continuous with respect
to z̄, from (2.2) and (2.3) it follows that the estimate (2.4) can be sharpened as follows:

‖rk‖ = O(‖zk+1 − zk‖2 + ‖zk+1 − zk‖‖zk − z̄‖ + ‖zk − z̄‖2).

Then by semistability of z̄, we obtain

‖zk+1 − z̄‖ = O(‖rk‖)
= O(‖zk+1 − zk‖2) + O(‖zk − z̄‖2)

= O(‖zk+1 − z̄‖2 + ‖zk+1 − z̄‖‖zk − z̄‖ + ‖zk − z̄‖2),

which means that the quantities

‖zk+1 − z̄‖
‖zk+1 − z̄‖2 + ‖zk+1 − z̄‖‖zk − z̄‖ + ‖zk − z̄‖2

= 1

‖zk+1 − z̄‖ + ‖zk − z̄‖ + ‖zk − z̄‖2/‖zk+1 − z̄‖
form a bounded sequence. But the latter is possible only when there exists γ > 0 such
that

‖zk − z̄‖2

‖zk+1 − z̄‖ ≥ γ ∀k,

i.e.,

‖zk+1 − z̄‖ ≤ 1

γ
‖zk − z̄‖2 ∀k,

which gives the quadratic convergence rate of {zk}. �

As an immediate application of Proposition 2.1, we can recover the result of [7,
Theorem 2.1] concerning the quasi-Newton version of JNM. Specifically, let {Jk} ⊂
Rn×n be a sequence of matrices satisfying the Dennis–Moré condition

(Jk − �′(zk))(zk+1 − zk) = o(‖zk+1 − zk‖). (2.5)

For a current zk ∈ Rn, the next iterate zk+1 is computed as a solution of GE

�(zk) + Jk(z − zk) + N(z) � 0, (2.6)

which can be interpreted as (1.11) with

ωk = (Jk − �′(zk))(zk+1 − zk).

Then, by (2.5), it follows that

ωk = o(‖zk+1 − zk‖),
and hence, Proposition 2.1 implies the following a posteriori result for quasi-Newton
JNM.
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Corollary 2.1 Let a mapping � : Rn → Rn be differentiable in a neighborhood of
z̄ ∈ Rn, with its derivative being continuous at z̄. Let z̄ be a semistable solution of
GE (1.1). Let {Jk} ⊂ Rn×n be a sequence of matrices, and let {zk} ⊂ Rn be a sequence
convergent to z̄ and such that zk+1 satisfies (2.6) for all k large enough. Assume,
finally, that condition (2.5) holds.

Then the rate of convergence of {zk} is superlinear.

We next present our main convergence result concerning iJNM. In what follows,
we shall deal with iJNM with iteration subproblem of the form

�(zk) + �′(zk)(z − zk) + �(zk, z − zk) + N(z) � 0, (2.7)

where � : Rs × Rs → 2Rs
is a given multifunction. In other words, the perturbation

term appearing in (1.11) must satisfy the inclusion ωk ∈ �(zk, zk+1 − zk).

Theorem 2.1 Let � : Rs → Rs be differentiable near a point z̄ ∈ Rs , and suppose
that the derivative of � is continuous at z̄. Assume that z̄ is a semistable solution of
GE (1.1). Let � : Rs × Rs → 2Rs

be a multifunction satisfying the following assump-
tions:

(iJNM1) For each z ∈ Rs close enough to z̄, the GE

�(z) + �′(z)ζ + �(z, ζ ) + N(z + ζ ) � 0 (2.8)

has a solution ζ(z) such that ζ(z) → 0 as z → z̄.
(iJNM2) The estimate

‖ω‖ = o(‖ζ‖ + ‖z − z̄‖) (2.9)

holds uniformly for ω ∈ �(z, ζ ), z ∈ Rs and ζ ∈ Rs close enough to zero
and satisfying

�(z) + �′(z)ζ + ω + N(z + ζ ) � 0. (2.10)

Then there exists δ > 0 such that for any starting point z0 ∈ Rs close enough to z̄,
there exists a trajectory {zk} ⊂ Rs such that zk+1 is a solution of GE (2.7) for each
k = 0,1, . . . , satisfying

‖zk+1 − zk‖ ≤ δ; (2.11)

any such trajectory converges to z̄, and the rate of convergence is superlinear. More-
over, the rate of convergence is quadratic provided the derivative of � is locally
Lipschitz-continuous with respect to z̄, and provided (2.9) in Assumption (iJNM2)
can be replaced by the estimate

‖ω‖ = O(‖ζ‖2 + ‖ζ‖‖z − z̄‖ + ‖z − z̄‖2). (2.12)

Proof Semistability of z̄ implies the existence of δ1 > 0 and M > 0 such that for any
r ∈ Rs and any solution z(r) of GE (1.7), satisfying ‖z(r) − z̄‖ ≤ δ1, it holds that

‖z(r) − z̄‖ ≤ M‖r‖. (2.13)
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Fix any δ2 ∈ (0, δ1]. According to Assumption (iJNM1), there exists δ ∈ (0,3δ2/5]
such that the inequality ‖zk − z̄‖ ≤ 2δ/3 implies the existence of a solution zk+1 of
GE (2.7) such that ‖zk+1 − z̄‖ ≤ δ2. Then zk+1 is a solution of GE (1.7) with r = rk

defined in (2.3), and with some ωk ∈ �(zk, zk+1 − zk), and the inequality in (2.4) and
condition (2.9) imply that

‖rk‖ ≤ 1

5M
(‖zk+1 − zk‖ + ‖zk − z̄‖), (2.14)

perhaps for a smaller value of δ2 (and hence, also of δ). Since δ2 ≤ δ1, (2.13) holds
with r = rk for zk+1 = z(rk). Hence, taking into account (2.14), we obtain

‖zk+1 − z̄‖ ≤ 1

5
‖zk+1 − zk‖ + 1

5
‖zk − z̄‖

≤ 1

5
‖zk+1 − z̄‖ + 2

5
‖zk − z̄‖.

This implies the inequality

‖zk+1 − z̄‖ ≤ 1

2
‖zk − z̄‖, (2.15)

which, in turn, implies that

‖zk+1 − z̄‖ ≤ 1

3
δ. (2.16)

Hence,

‖zk+1 − zk‖ ≤ ‖zk+1 − z̄‖ + ‖zk − z̄‖
≤ δ.

We thus proved that if ‖zk − z̄‖ ≤ 2δ/3 then GE (2.7) has a solution zk+1 satisfy-
ing (2.11).

Suppose now that ‖zk − z̄‖ ≤ 2δ/3, and zk+1 is any solution of GE (2.7) satisfy-
ing (2.11). Then

‖zk+1 − z̄‖ ≤ ‖zk+1 − zk‖ + ‖zk − z̄‖
≤ 5

3
δ

≤ δ2

≤ δ1.

Thus, zk+1 = z(rk) satisfies (2.13) with r = rk , and by the same argument as above,
the latter implies (2.15) and (2.16).

Therefore, if ‖z0 − z̄‖ ≤ 2δ/3 then the next iterate z1 can be chosen in such a way
that (2.11) would hold with k = 0, and any such choice will give (2.15) and (2.16)
with k = 0. The latter implies that ‖z1 − z̄‖ ≤ 2δ/3. Hence, the next iterate z2 can
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be chosen in such a way that (2.11) would hold with k = 1, and any such choice
will give (2.15) and (2.16) with k = 1. Continuing this argument, we obtain that
there exists a trajectory {zk} such that for each k, zk+1 is a solution of GE (2.7)
satisfying (2.11), and for any such trajectory (2.15) is valid for all k. But the latter
implies that {zk} converges to z̄.

To complete the proof (with respect to the rate of convergence), it remains to
invoke Proposition 2.1. �

For exact JNM (i.e., when �(·) ≡ {0}), Theorem 2.1 reduces to Theorem 1.1 (in
particular, Assumption (iJNM1) reduces to hemistability).

We note that results related to Theorem 2.1 can be obtained from the framework of
[13], adding to the latter the assumption of semistability. To see that Theorem 2.1 does
not follow from [13], it is enough to note the difference between the “localization”
condition (2.11) above and

‖zk+1 − zk‖ ≤ �‖zk − z̄‖
for some � > 0, used in [13]. Since under our assumptions solutions of iJNM sub-
problems need not be unique (even locally), this difference means that Theorem 2.1
and [13] may refer, in principle, to different iterative sequences. Condition (2.11) ap-
pears somewhat more “practical”, as it does not involve the unknown solution and
merely requires the next iterate to be within some fixed distance to the previous one
(a numerically natural assumption).

3 Linearly constrained Lagrangian methods

Linearly constrained Lagrangian (LCL) methods are traditionally stated for MP prob-
lems with equality constraints and bound constraints (inequality constraints are re-
formulated introducing slacks); see [14, 24, 27]. We therefore consider MP prob-
lem (1.3) with bound constraints given by G(x) = −x, x ∈ Rn. For the current
primal-dual iterate (xk, λk,μk) ∈ Rn × Rl × Rn, the next primal iterate xk+1 of LCL
method is computed as a stationary point of the subproblem of minimizing the (aug-
mented) Lagrangian subject to bounds and linearized equality constraints:

minimize f (x) + 〈λk,F (x)〉 + ck

2
‖F(x)‖2

subject to F(xk) + F ′(xk)(x − xk) = 0, x ≥ 0,

(3.1)

where ck ≥ 0 is the penalty parameter. The next dual iterate (λk+1,μk+1) is of the
form (λk + uk,μk+1), where (uk,μk+1) is a Lagrange multiplier of problem (3.1),
associated to the stationary point xk+1.

Local superlinear convergence of LCL methods had been previously established
under SOSC, the linear independence constraint qualification, and the strict com-
plementarity condition (see [14, 27]). In what follows, we obtain a stronger result,
replacing the linear independence constraint qualification by the weaker SMFCQ and
removing strict complementarity.
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Assuming that ck = c ∀k (which is natural for asymptotic analysis, see the discus-
sion in [14]), the KKT system of subproblem (3.1) has the form

f ′(x) + (F ′(x))Tλk + c(F ′(x))TF(x) + (F ′(xk))Tu − μ = 0,

F (xk) + F ′(xk)(x − xk) = 0,

μ ≥ 0, x ≥ 0, 〈μ,x〉 = 0.

(3.2)

Observe that the last two lines of system (3.2), associated to the bound and linearized
constraints, are exactly the same as in the SQP iteration for MP problem (1.3) at
hand. Structural perturbation that defines LCL within iJNM framework is therefore
given by the first line of (3.2). In particular, exact LCL method is a special case of
iJNM (2.7) for GE (1.1) with �(·) and N(·) defined according to (1.5) and (1.6),
respectively, with the perturbation term being �(z, ζ ) = {ω(z, ζ )}, with

ω(z, ζ ) =
(

∂L

∂x
(x + ξ,λ,μ) − ∂L

∂x
(x,λ,μ)

− ∂2L

∂x2
(x,λ,μ)ξ + c(F ′(x + ξ))TF(x + ξ),0,0

)
, (3.3)

where z = (x,λ,μ) ∈ Rs , ζ = (ξ, u, v) ∈ Rs .
We are now in position to state our convergence result. The proof is by verifying

Assumptions (iJNM1) and (iJNM2), thus obtaining the assertions of Theorem 2.1.

Corollary 3.1 Let f : Rn → R and F : Rn → Rl be twice differentiable near a point
x̄ ∈ Rn, and suppose that the second derivatives of f and F are continuous at x̄.
Assume that x̄ is a local solution of MP problem (1.3) with G(x) = −x, x ∈ Rn,
satisfying SMFCQ and SOSC (1.10) for the associated Lagrange multiplier (λ̄, μ̄) ∈
Rl × Rm.

Then for any fixed c ≥ 0, there exists δ > 0 such that for any starting point
(x0, λ0,μ0) ∈ Rn × Rl × Rm close enough to (x̄, λ̄, μ̄), there exists a trajec-
tory {(xk, λk,μk)} ⊂ Rn × Rl × Rm such that for each k = 0,1, . . . , the triple
(xk+1, λk+1 − λk,μk+1) satisfies the system (3.2), and also satisfies

‖(xk+1 − xk,λk+1 − λk,μk+1 − μk)‖ ≤ δ; (3.4)

any such trajectory converges to (x̄, λ̄, μ̄), and the rate of convergence is superlinear.
Moreover, the rate of convergence is quadratic provided the second derivatives of f

and of F are locally Lipschitz-continuous with respect to x̄.

Proof We start with (iJNM1). For each fixed (x,λ) ∈ Rn × Rl regarded as a parame-
ter, consider the MP problem

minimizeξ f (x + ξ) + 〈λ,F (x + ξ)〉 + c

2
‖F(x + ξ)‖2

subject to F(x) + F ′(x)ξ = 0,

x + ξ ≥ 0.

(3.5)
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It can be easily checked that for the base parameter value (x,λ) = (x̄, λ̄), ξ̄ = 0 is
a stationary point for this problem, and (0, μ̄) is an associated Lagrange multiplier.
Furthermore, SMFCQ and SOSC (1.10) hold for this problem at this point for this
multiplier. Hence, ξ̄ = 0 is a strict local minimizer of the problem associated to the
base parameter value and it satisfies MFCQ. It then follows (e.g., from Robinson’s
stability theorem [29] and, e.g., from [3, Theorem 3.1]) that for each (x,λ) ∈ Rn ×Rl

close enough to (x̄, λ̄), the problem (3.5) has a local solution ξ(x,λ) ∈ Rn such
that ξ(x,λ) → 0 as (x,λ) → (x̄, λ̄). Since MFCQ is stable under small perturba-
tions (see, e.g., [8, Remark 2.88]), we conclude that for (x,λ) ∈ Rn × Rl close
enough to (x̄, λ̄), MFCQ holds at ξ(x,λ). Hence, by the standard first-order neces-
sary optimality conditions (see, e.g., [8, Theorem 3.9]) for problem (3.5), there exists
(u(x,λ), μ̃(x,λ)) ∈ Rl × Rn such that the triple (ξ(x,λ),u(x,λ), μ̃(x,λ)) satisfies
the KKT system

f ′(x + ξ) + (F ′(x + ξ))Tλ + c(F ′(x + ξ))TF(x + ξ) + (F ′(x))Tu − μ̃ = 0,

F (x) + F ′(x)ξ = 0,

μ̃ ≥ 0, x + ξ ≥ 0, 〈μ̃, x + ξ 〉 = 0.

(3.6)

Since under SMFCQ and SOSC primal-dual solutions of parametric KKT systems
have locally upper Lipschitzian behaviour (see [8, Theorem 5.9]), we obtain the esti-
mate

‖ξ(x,λ)‖ + ‖u(x,λ)‖ + ‖μ̃(x,λ) − μ̄‖ = O(‖x − x̄‖ + ‖λ − λ̄‖), (3.7)

and in particular, (ξ(x,λ),u(x,λ), μ̃(x,λ)) → (0,0, μ̄) as (x,λ) → (x̄, λ̄). Fixing
an arbitrary pair (λ,μ) ∈ Rl ×Rn, and denoting v = μ̃−μ, we can re-write the KKT
system (3.6) as follows:

∂L

∂x
(x,λ,μ) + ∂2L

∂x2
(x,λ,μ)ξ + (F ′(x))Tu − v

+ ∂L

∂x
(x + ξ,λ,μ) − ∂L

∂x
(x,λ,μ)

− ∂2L

∂x2
(x,λ,μ)ξ + c(F ′(x + ξ))TF(x + ξ) = 0,

F (x) + F ′(x)ξ = 0,

μ + v ≥ 0, x + ξ ≥ 0, 〈μ + v, x + ξ 〉 = 0.

The latter system is precisely (2.8) for LCL method, with z = (x,λ,μ) and ζ =
(ξ, u, v). Denoting v(x,λ,μ) = μ̃(x,λ) − μ, and setting ζ(z) = (ξ(x,λ),u(x,λ),

v(x,λ,μ)), we finally obtain from (3.7) that

‖ζ(z)‖ ≤ ‖ξ(x,λ)‖ + ‖u(x,λ)‖ + ‖μ̃(x,λ) − μ̄‖ + ‖μ − μ̄‖
= O(‖x − x̄‖ + ‖λ − λ̄‖) + ‖μ − μ̄‖
= O(‖z − z̄‖), (3.8)
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and in particular ζ(z) → 0 as z → z̄, with z̄ = (x̄, λ̄, μ̄). Hence, Assumption (iJNM1)
is verified.

We next check Assumption (iJNM2). According to the argument above, esti-
mate (3.8) is valid for z = (x,λ,μ) ∈ Rs and for any solution ζ(z) = (ξ(x,λ),u(x,λ),

v(x,λ,μ)) of GE (2.10), such that ζ(z) is close enough to zero. Moreover, for any
such z and ζ(z), it holds that F(x) + F ′(x)ξ(x,λ) = 0, and hence, employing (3.3)
and the Mean-Value Theorem, we derive the estimate

‖ω(z, ζ(z))‖ ≤
∥∥∥∥∂L

∂x
(x + ξ(x,λ), λ,μ) − ∂L

∂x
(x,λ,μ) − ∂2L

∂x2
(x,λ,μ)ξ(x,λ)

∥∥∥∥
+ c‖(F ′(x + ξ(x,λ)))T(F (x + ξ(x,λ)) − F(x) − F ′(x)ξ(x,λ))‖

= o(‖ξ(x,λ)‖)
= o(‖ζ(z)‖)
= o(‖z − z̄‖), (3.9)

which verifies Assumption (iJNM2). Moreover, if the second derivatives of f and F

are locally Lipschitz-continuous with respect to x̄, the right-hand side of (3.9) can be
replaced by O(‖z − z̄‖2), so that (iJNM2) holds with (2.9) replaced by (2.12).

All the assertions now follow applying Theorem 2.1. �

We emphasize that the result above is stronger than previous local convergence re-
sults for LCL methods. Apart from SOSC, all the existing results of this kind (see [14,
27]) assume the linear independence constraint qualification (stronger than SMFCQ)
and in addition strict complementarity, and they assert R-superlinear (rather than Q-
superlinear) convergence.

Taking into account that (3.1) is not a QP, it is difficult to expect that the subprob-
lems can be solved exactly. Motivated by this, apart from interpreting exact LCL as
iJNM, let us introduce an extra perturbation associated to inexact solution of LCL
subproblems. Specifically, it seems natural to consider the truncated LCL (tLCL)
method, where (3.2) is replaced by a version where the parts corresponding to gen-
eral nonlinearities are relaxed:

‖f ′(x) + (F ′(x))Tλk + c(F ′(x))TF(x) + (F ′(xk))Tu − μ‖ ≤ ϕ(σ(xk, λk,μk)),

‖F(xk) + F ′(xk)(x − xk)‖ ≤ ϕ(σ(xk, λk,μk)),

μ ≥ 0, x ≥ 0, 〈μ,x〉 = 0,

(3.10)

where σ(·) is the natural residual (1.12) measuring violation of optimality condi-
tions (1.4) for the MP problem (1.3), and ϕ : R → R+ is some forcing function (spe-
cific conditions on ϕ will be imposed later on). Note that the first line of (3.10) can
be re-written as follows:

ϕ(σ(xk, λk,μk)) ≥
∥∥∥∥∂L

∂x
(x,λk,μk) + (F ′(xk))Tu − (μ − μk) + c(F ′(x))TF(x)

∥∥∥∥
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=
∥∥∥∥∂L

∂x
(xk, λk,μk) + ∂2L

∂x2
(xk, λk,μk)(x − xk)

+ (F ′(xk))Tu − (μ − μk)

+
(

∂L

∂x
(x,λk,μk) − ∂L

∂x
(xk, λk,μk)

− ∂2L

∂x2
(xk, λk,μk)(x − xk)

+ c(F ′(x))TF(x)

)∥∥∥∥.

We therefore can define the total perturbation (which combines that with respect to
SQP with that with respect to exact LCL) as

�(z, ζ ) = ω(z, ζ ) + �(z),

with ω(z, ζ ) defined according to (3.3), and with

�(z) = {θ ∈ Rs | ‖θ‖ ≤ ϕ(σ(x,λ,μ))}, (3.11)

where z = (x,λ,μ) ∈ Rs , ζ = (ξ, u, v) ∈ Rs . In particular, tLCL method is a spe-
cial case of iJNM (2.7) for GE (1.1) with �(·) and N(·) defined according to (1.5)
and (1.6), respectively. Separating the perturbation into the single-valued part ω(z, ζ )

and the set valued-part �(z) is instructive, because the two parts correspond to inex-
actness of different kind: ω(z, ζ ) stands for structural inexactness of LCL methods
with respect to SQP, while �(z) stands for additional inexactness allowed when solv-
ing LCL subproblems.

Corollary 3.2 Under the assumptions of Corollary 3.1, for any fixed c ≥ 0, there
exists δ > 0 such that for any function ϕ : R+ → R+ such that ϕ(t) = o(t), and for
any starting point (x0, λ0,μ0) ∈ Rn ×Rl ×Rm close enough to (x̄, λ̄, μ̄), there exists
a trajectory {(xk, λk,μk)} ⊂ Rn ×Rl ×Rm such that for each k = 0,1, . . . , the triple
(xk+1, λk+1 − λk,μk+1) satisfies the system (3.10) and (3.4); any such trajectory
converges to (x̄, λ̄, μ̄), and the rate of convergence is superlinear. Moreover, the rate
of convergence is quadratic provided the second derivatives of f and F are locally
Lipschitz-continuous with respect to x̄, and provided ϕ(t) = O(t2).

Proof Assumption (iJNM1) was established in the proof of Corollary 3.1.
Assuming that z = (x,λ,μ) ∈ Rs and ζ = (ξ, u, v) satisfy GE (2.10) with ω ∈

�(z, ζ ), we have that, in particular,

‖F(x) + F ′(x)ξ‖ ≤ ϕ(σ(x,λ,μ)).

Thus, by (3.3), employing the Mean-Value Theorem and (1.13), we obtain the esti-
mate

‖ω(z, ζ )‖ ≤
∥∥∥∥∂L

∂x
(x + ξ,λ,μ) − ∂L

∂x
(x,λ,μ) − ∂2L

∂x2
(x,λ,μ)ξ

∥∥∥∥
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+ c‖(F ′(x + ξ))T(F (x + ξ) − F(x) − F ′(x)ξ)‖ + O(ϕ(σ(x,λ,μ)))

= o(‖ξ‖) + o(σ (x,λ,μ))

= o(‖ζ‖) + o(‖z − z̄‖).
Furthermore, by (1.13) and (3.11), for each θ ∈ �(z, ζ ) it holds that

‖θ‖ ≤ ϕ(σ(x,λ,μ))

= o(σ (x,λ,μ))

= o(‖z − z̄‖).
Combining the latter two estimates, we obtain that for each ω(= ω(z, ζ ) + θ) ∈
�(z, ζ ), the estimate (2.9) holds, and hence, Assumption (iJNM2) is satisfied.

Moreover, assuming that the second derivatives of f and F are locally Lipschitz-
continuous with respect to x̄, and that ϕ(t) = O(t2), it can be easily checked that
(2.9) can be replaced by the stronger estimate (2.12).

The assertions now follow applying Theorem 2.1. �

4 Sequential quadratically constrained quadratic programming

The sequential quadratically constrained quadratic programming (SQCQP) method
is the following iterative procedure. For the current primal iterate xk ∈ Rn, the next
iterate xk+1 is computed as a stationary point of the subproblem

minimize 〈f ′(xk), x − xk〉 + 1

2
f ′′(xk)[x − xk, x − xk]

subject to F(xk) + F ′(xk)(x − xk) + 1

2
F ′′(xk)[x − xk, x − xk] = 0,

G(xk) + G′(xk)(x − xk) + 1

2
G′′(xk)[x − xk, x − xk] ≤ 0,

(4.1)

with quadratic objective function and quadratic constraints. The dual sequence
{(λk,μk)} is given by Lagrange multiplies associated to the primal sequence. We
note, in the passing, that SQCQP is in principle a primal algorithm, since dual vari-
ables are not used to formulate the subproblems. Nevertheless, dual behaviour is cer-
tainly important, as most standard stopping criteria for the MP problem (1.3) are
based on some primal-dual measure of optimality, such as the natural residual (1.12).

As some previous work on SQCQP and related methods, we mention [2, 11, 15,
21, 26, 31, 32]. In the convex case, subproblem (4.1) can be cast as a second-order
cone program [23, 25], which can be solved efficiently by interior-point algorithms.
Another possibility for the convex case is [17]. In [2], nonconvex subproblems were
also handled quite efficiently by using other computational techniques. In the non-
convex case, one might also use [1, 4] for solving the subproblems.

We next discuss previous local convergence results for SQCQP (we note that they
concern inequality-constrained problems, i.e., there is no F part in the MP prob-
lem (1.3) and in the iteration (4.1)). In [2], local primal superlinear rate of conver-
gence of a trust-region SQCQP method was obtained under the MFCQ and a certain
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quadratic growth condition (under MFCQ, the latter is equivalent to SOSC, see [8,
Theorem 3.70]). Quadratic convergence of the primal-dual sequence was obtained
in [15] under the convexity assumptions on f and on G, MFCQ, and strong SOSC.
In [11], primal-dual quadratic convergence was established under the linear indepen-
dence constraint qualification, SOSC, and strict complementarity. In what follows, we
obtain primal-dual quadratic convergence under SMFCQ and SOSC, thus improving
the result in [11] (in the case of optimization, as [11] deals with the more general
variational problems). We note that this new result is complementary to those in [2,
15], in the sense that neither of the three results implies any of the others.

First note that the KKT system of subproblem (4.1) can be written in the following
form:

∂L

∂x
(xk, λk,μk) + ∂2L

∂x2
(xk, λk,μk)(x − xk)

+ (F ′(xk))T(λ − λk) + (F ′′(xk)[x − xk])T(λ − λk)

+ (G′(xk))T(μ − μk) + (G′′(xk)[x − xk])T(μ − μk) = 0,

F (xk) + F ′(xk)(x − xk) + 1

2
F ′′(xk)[x − xk, x − xk] = 0,

μ ≥ 0, G(xk) + G′(xk)(x − xk) + 1

2
G′′(xk)[x − xk, x − xk] ≤ 0,

〈
μ,G(xk) + G′(xk)(x − xk) + 1

2
G′′(xk)[x − xk, x − xk]

〉
= 0.

By setting �(z, ζ ) = {ω(z, ζ )}, with

ω(z, ζ ) =
(

(F ′′(x)[ξ ])Tu + (G′′(x)[ξ ])Tv,
1

2
F ′′(x)[ξ, ξ ], 1

2
G′′(x)[ξ, ξ ]

)
, (4.2)

where z = (x,λ,μ) ∈ Rs , ζ = (ξ, u, v) ∈ Rs , we observe that SQCQP method is a
particular instance of iJNM (2.7) for GE (1.1) with �(·) and N(·) defined according
to (1.5) and (1.6), respectively.

Our proof of convergence is again via verification of the assumptions of Theo-
rem 2.1 for iJNM.

Corollary 4.1 Let f : Rn → R, F : Rn → Rl and G : Rn → Rm be twice differen-
tiable near a point x̄ ∈ Rn, and suppose that the second derivatives of f , F and G

are continuous at x̄. Assume that x̄ is a local solution of MP problem (1.3), satisfying
SMFCQ and SOSC (1.10) for the associated Lagrange multiplier (λ̄, μ̄) ∈ Rl × Rm.

Then there exists δ > 0 such that for any starting point (x0, λ0,μ0) ∈ Rn × Rl ×
Rm close enough to (x̄, λ̄, μ̄), there exists a trajectory {(xk, λk,μk)} ⊂ Rn ×Rl ×Rm

such that xk+1 is a stationary point of problem (4.1) for each k = 0,1, . . . , and
(λk+1,μk+1) is an associated Lagrange multiplier, satisfying (3.4); any such tra-
jectory converges to (x̄, λ̄, μ̄), and the rate of convergence is superlinear. Moreover,
the rate of convergence is quadratic provided the second derivatives of f , F and G

are locally Lipschitz-continuous with respect to x̄.
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Proof For each fixed x ∈ Rn regarded as a parameter, consider the MP problem

minimizeξ 〈f ′(x), ξ 〉 + 1

2
f ′′(x)[ξ, ξ ]

subject to F(x) + F ′(x)ξ + 1

2
F ′′(x)[ξ, ξ ] = 0,

G(x) + G′(x)ξ + 1

2
G′′(x)[ξ, ξ ] ≤ 0.

(4.3)

For the base parameter value x = x̄, the point ξ̄ = 0 is stationary for this prob-
lem, with the associated Lagrange multiplier (λ̄, μ̄). It can be easily checked that
SMFCQ and SOSC (1.10) hold for this problem, at this point, for this multiplier.
Repeating the argument from the proof of Corollary 3.1, we obtain that for each
x ∈ Rn close enough to x̄, there exists (λ̃(x), μ̃(x)) ∈ Rl × Rm such that the triple
(ξ(x), λ̃(x), μ̃(x)) satisfies the KKT system

f ′(x) + f ′′(x)ξ + (F ′(x))Tλ̃ + (F ′′(x)[ξ ])Tλ̃ + (G′(x))Tμ̃ + (G′′(x)[ξ ])Tμ̃ = 0,

F (x) + F ′(x)ξ + 1

2
F ′′(x)[ξ, ξ ] = 0,

μ̃ ≥ 0, G(x) + G′(x)ξ + 1

2
G′′(x)[ξ, ξ ] ≤ 0,

〈
μ̃,G(x) + G′(x)ξ + 1

2
G′′(x)[ξ, ξ ]

〉
= 0

of problem (4.3), and

‖ξ(x)‖ + ‖λ̃(x) − λ̄‖ + ‖μ̃(x) − μ̄‖ = O(‖x − x̄‖). (4.4)

In particular, (ξ(x), λ̃(x), μ̃(x)) → (0, λ̄, μ̄) as x → x̄. Fixing an arbitrary pair
(λ,μ) ∈ Rl × Rm, and denoting (u, v) = (λ̃ − λ, μ̃ − μ), we can re-write the lat-
ter KKT system as follows:

∂L

∂x
(x,λ,μ) + ∂2L

∂x2
(x,λ,μ)ξ + (F ′(x))Tu + (F ′′(x)[ξ ])Tu

+ (G′(x))Tv + (G′′(x)[ξ ])Tv = 0,

F (x) + F ′(x)ξ + 1

2
F ′′(x)[ξ, ξ ] = 0,

μ + v ≥ 0, G(x) + G′(x)ξ + 1

2
G′′(x)[ξ, ξ ] ≤ 0,

〈
μ + v,G(x) + G′(x)ξ + 1

2
G′′(x)[ξ, ξ ]

〉
= 0.

The latter system is precisely (2.8) for the SQCQP method, with z = (x,λ,μ) and
ζ = (ξ, u, v). Using the notation (u(x,λ), v(x,μ)) = (λ̃(x) − λ, μ̃(x) − μ), and set-
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ting ζ(z) = (ξ(x), u(x,λ), v(x,μ)), we finally obtain from (4.4) that

‖ζ(z)‖ ≤ ‖ξ(x)‖ + ‖λ̃(x) − λ̄‖ + ‖μ̃(x) − μ̄‖ + ‖λ − λ̄‖ + ‖μ − μ̄‖
= O(‖x − x̄‖) + ‖λ − λ̄‖ + ‖μ − μ̄‖
= O(‖z − z̄‖), (4.5)

and in particular ζ(z) → 0 as z → z̄, with z̄ = (x̄, λ̄, μ̄). This verifies Assump-
tion (iJNM1).

Furthermore, according to the argument above, estimate (4.5) is valid for z =
(x,λ,μ) ∈ Rs and for any solution ζ(z) = (ξ(x), u(x,λ), v(x,μ)) of GE (2.10), such
that ζ(z) is close enough to zero. Employing (4.2), we now obtain the estimate

‖ω(z, ζ(z))‖ = O(‖ζ(z)‖2)

= O(‖z − z̄‖2).

Hence, Assumption (iJNM2), with (2.9) replaced by (2.12), is verified.
The assertions now follow applying Theorem 2.1. �

5 Stabilized SQP

The stabilized SQP (sSQP) method is the following iterative procedure. For
the current primal-dual iterate (xk, λk,μk) ∈ Rn × Rl × Rm, the next iterate
(xk+1, λk+1,μk+1) is computed as a stationary point of the QP subproblem

minimize(x,λ,μ) 〈f ′(xk), x − xk〉 + 1

2

∂2L

∂x2
(xk, λk,μk)[x − xk, x − xk]

+ σk

2
(‖λ‖2 + ‖μ‖2)

subject to F(xk) + F ′(xk)(x − xk) − σk(λ − λk) = 0,

G(xk) + G′(xk)(x − xk) − σk(μ − μk) ≤ 0,

(5.1)

with σk > 0 (to be specific, we shall take σk = σ(xk, λk,μk), where σ(·) is the natural
residual defined in (1.12)).

The sSQP method was proposed in [33] (for inequality-constrained problems) and
further studied in [12, 13, 16, 22, 34, 35]. In [34, 35], superlinear convergence of
sSQP was established under MFCQ and the strong SOSC assumed for all multipliers.
Superlinear convergence had also been shown under the sole assumption of strong
SOSC for some multiplier μ̄, provided that μ0 is close enough to such μ̄ [16]; see
also [13]. In what follows, we shall establish superlinear convergence under SMFCQ
and SOSC, which gives a result neither stronger nor weaker than the above. It should
be noted that, in principle, sSQP had been introduced for the purposes of dual stabi-
lization, when multiplier associated to a solution is not unique. In this sense, SMFCQ
is not the most natural assumption in this context. Nevertheless, whether the multi-
plier is unique or not is often unknown (a priori, at the time of applying the algorithm).
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For this reason, one would still like to know how the algorithm behaves in different
situations. Finally, it should also be noted that recently convergence of sSQP had been
shown under SOSC only [12], which gives the strongest result so far. Even though the
result of this section is weaker than this most recent one, we chose to include a brief
exposition as an application of iJNM framework. It is also worthwhile to point out
the following difference between “localization” conditions in our Corollary 5.1 below
and previous convergence results for sSQP (recall also related comments concerning
general iJNM after the proof of Theorem 2.1). In [12, 13], superlinear convergence is
affirmed for primal-dual iterates satisfying

‖(xk+1 − xk,λk+1 − λk,μk+1 − μk)‖ ≤ �‖(xk − x̄, λk − λ̄,μk − μ̄)‖
for some � > 0, while the condition in Corollary 5.1 is (3.4) for some δ > 0. The lat-
ter appears somewhat more “practical”, as it does not involve the unknown solution.

Note first that the KKT system of subproblem (5.1) can be written in the following
form:

∂L

∂x
(xk, λk,μk) + ∂2L

∂x2
(xk, λk,μk)(x − xk) + (F ′(xk))T(λ − λk)

+ (G′(xk))T(μ − μk) = 0,

F (xk) + F ′(xk)(x − xk) − σk(λ − λk) = 0,

μ ≥ 0, G(xk) + G′(xk)(x − xk) − σk(μ − μk) ≤ 0,

〈μ,G(xk) + G′(xk)(x − xk) − σk(μ − μk)〉 = 0.

By setting �(z, ζ ) = {ω(z, ζ )} with

ω(z, ζ ) = (0,−σ(x,λ,μ)u,−σ(x,λ,μ)v), (5.2)

where z = (x,λ,μ) ∈ Rs , ζ = (ξ, u, v) ∈ Rs , we observe that sSQP is a particular
instance of iJNM (2.7) for GE (1.1) with �(·) and N(·) defined according to (1.5)
and (1.6), respectively.

Corollary 5.1 Under the assumptions of Corollary 4.1, there exists δ > 0 such that
for any starting point (x0, λ0,μ0) ∈ Rn×Rl ×Rm close enough to (x̄, λ̄, μ̄), there ex-
ists a trajectory {(xk, λk,μk)} ⊂ Rn ×Rl ×Rm such that (xk+1, λk+1,μk+1) is a sta-
tionary point of QP problem (5.1) for each k = 0,1, . . . , with σk = σ(xk, λk,μk) de-
fined according to (1.12), satisfying (3.4); any such trajectory converges to (x̄, λ̄, μ̄),
and the rate of convergence is superlinear. Moreover, the rate of convergence is
quadratic provided the second derivatives of f , F and G are locally Lipschitz-
continuous with respect to x̄.

Proof Under SOSC (1.10), Assumption (iJNM1) with z̄ = (x̄, λ̄, μ̄) for sSQP follows
from [12, Theorem 3].

Regarding Assumption (iJNM2), by (1.13) and (5.2) we obtain that the estimate

‖ω(z, ζ )‖ = σ(x,λ,μ)‖(u, v)‖
= O(‖ζ‖‖z − z̄‖)
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holds for z = (x,λ,μ) ∈ Rs and ζ = (ξ, u, v) ∈ Rs . This estimate implies Assump-
tion (iJNM2) with (2.9) replaced by (2.12).

The assertion now follows from Theorem 2.1. �

References

1. An, L.T.H.: An efficient algorithm for globally minimizing a quadratic function under convex
quadratic constraints. Math. Program. 87, 401–426 (2000)

2. Anitescu, M.: A superlinearly convergent sequential quadratically constrained quadratic programming
algorithm for degenerate nonlinear programming. SIAM J. Optim. 12, 949–978 (2002)

3. Arutyunov, A.V., Izmailov, A.F.: Sensitivity analysis for cone-constrained optimization problems un-
der the relaxed constraint qualifications. Math. Oper. Res. 30, 333–353 (2005)

4. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for nonconvex quadrati-
cally constrained quadratic programming. Math. Program. 87, 131–152 (2000)

5. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New
York (1982)

6. Boggs, B.T., Tolle, J.W.: Sequential quadratic programming. Acta Numer. 4, 1–51 (1996)
7. Bonnans, J.F.: Local analysis of Newton-type methods for variational inequalities and nonlinear pro-

gramming. Appl. Math. Optim. 29, 161–186 (1994)
8. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York

(2000)
9. Bonnans, J.F., Gilbert, J.Ch., Lemaréchal, C., Sagastizábal, C.: Numerical Optimization: Theoretical

and Practical Aspects, 2nd edn. Springer, Berlin (2006)
10. Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-

Newton methods. Math. Comput. 28, 549–560 (1974)
11. Fernández, D., Solodov, M.: On local convergence of sequential quadratically-constrained quadratic-

programming type methods, with an extension to variational problems. Comput. Optim. Appl. 39,
143–160 (2008)

12. Fernández, D., Solodov, M.: Stabilized sequential quadratic programming for optimization
and a stabilized Newton-type method for variational problems. Math. Program. (2009). DOI
10.1007/s10107-008-0255-4

13. Fischer, A.: Local behavior of an iterative framework for generalized equations with nonisolated so-
lutions. Math. Program. 94, 91–124 (2002)

14. Friedlander, M.P., Saunders, M.A.: A globally convergent linearly constrained Lagrangian method for
nonlinear optimization. SIAM J. Optim. 15, 863–897 (2005)

15. Fukushima, M., Luo, Z.-Q., Tseng, P.: A sequential quadratically constrained quadratic programming
method for differentiable convex minimization. SIAM J. Optim. 13, 1098–1119 (2003)

16. Hager, W.W.: Stabilized sequential quadratic programming. Comput. Optim. Appl. 12, 253–273
(1999)

17. Huang, Z.-H., Sun, D., Zhao, G.: A smoothing Newton-type algorithm of stronger convergence for the
quadratically constrained convex quadratic programming. Comput. Optim. Appl. 35, 199–237 (2006)

18. Josephy, N.H.: Newton’s method for generalized equations. Technical Summary Report no. 1965,
Mathematics Research Center, University of Wisconsin, Madison (1979)

19. Josephy, N.H.: Quasi-Newton methods for generalized equations. Technical Summary Report no.
1966, Mathematics Research Center, University of Wisconsin, Madison (1979)

20. Kantorovich, L.V., Akilov, G.P.: Functional Analysis, 2nd edn. Pergamon, Oxford (1982)
21. Kruk, S., Wolkowicz, H.: Sequential, quadratically constrained, quadratic programming for general

nonlinear programming. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) Handbook of Semi-
definite Programming, pp. 563–575. Kluwer Academic, Dordrecht (2000)

22. Li, D.-H., Qi, L.: Stabilized SQP method via linear equations. Appl. Math. Techn. Rept. AMR00/5,
Univ. New South Wales, Sydney (2000)

23. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming.
Linear Algebra Appl. 284, 193–228 (1998)

24. Murtagh, B.A., Saunders, M.A.: A projected Lagrangian algorithm and its implementation for sparse
nonlinear constraints. Math. Program. Study 16, 84–117 (1982)

http://dx.doi.org/10.1007/s10107-008-0255-4


368 A.F. Izmailov, M.V. Solodov

25. Nesterov, Y.E., Nemirovskii, A.S.: Interior Point Polynomial Methods in Convex Programming: The-
ory and Applications. SIAM, Philadelphia (1993)

26. Panin, V.M.: A second-order method for discrete min-max problem. USSR Comput. Math. Math.
Phys. 19, 90–100 (1979)

27. Robinson, S.M.: A quadratically convergent algorithm for general nonlinear programming problems.
Math. Program. 3, 145–156 (1972)

28. Robinson, S.M.: Perturbed Kuhn–Tucker points and rates of convergence for a class of nonlinear-
programming algorithms. Math. Program. 7, 1–16 (1974)

29. Robinson, S.M.: Stability theorems for systems of inequalities, Part II: Differentiable nonlinear sys-
tems. SIAM J. Numer. Anal. 13, 497–513 (1976)

30. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)
31. Solodov, M.V.: On the sequential quadratically constrained quadratic programming methods. Math.

Oper. Res. 29, 64–79 (2004)
32. Wiest, E.J., Polak, E.: A generalized quadratic programming-based phase-I–phase-II method for

inequality-constrained optimization. Appl. Math. Optim. 26, 223–252 (1992)
33. Wright, S.J.: Superlinear convergence of a stabilized SQP method to a degenerate solution. Comput.

Optim. Appl. 11, 253–275 (1998)
34. Wright, S.J.: Modifying SQP for degenerate problems. SIAM J. Optim. 13, 470–497 (2002)
35. Wright, S.J.: Constraint identification and algorithm stabilization for degenerate nonlinear programs.

Math. Program. 95, 137–160 (2003)


	Inexact Josephy-Newton framework for generalized equations and its applications to local analysis of Newtonian methods for constrained optimization
	Abstract
	Introduction
	Inexact Josephy-Newton method for generalized equations
	Linearly constrained Lagrangian methods
	Sequential quadratically constrained quadratic programming
	Stabilized SQP
	References


