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INEXACT NEWTON METHODS*

RON S. DEMBOt, STANLEY C. EISENSTAT:I: AND TROND STEIHAUG

Abstract. A classical algorithm for solving the system of nonlinear equations F(x)=0 is Newton’s
method:

Xk+l Xk + Sk, where F’(Xk)Sk --F(Xk), XO given.

The method is attractive because it converges rapidly from any sufficiently good initial guess x0. However,
solving a system of linear equations (the Newton equations) at each stage can be expensive if the number of
unknowns is large and may not be justified when xk is far from a solution. Therefore, we consider the class of
inexact Newton methods:

xk+, xg + s, where F’(x)sg -F(xk)+ 5,, Ilrll/llF(x)ll <- n
which solve the Newton equations only approximately and in some unspecified manner. Under the natural
assumption that the forcing sequence {rtk is uniformly less than one, we show that all such methods are locally
convergent and characterize the order of convergence in terms of the rate of convergence of the relative
residuals {[Irkii/ilf(x)l[}. Finally, we indicate how these general results can be used to construct and analyze
specific methods for solving systems of nonlinear equations.

1. Introduction. Consider the system of nonlinear equations

(1.1) F(x) 0,

where F" R R is a nonlinear mapping with the following properties:
(1) There exists an x* e R" with F(x*) 0.
(2) F is continuously differentiable in a neighborhood of x*.
(3) F’(x*) is nonsingular.
A classical algorithm for finding a solution to (1.1) is Newton’s method. Given an

initial guess x0, we compute a sequence of steps {Sk} and iterates {Xk} as follows:

FOR k =0 STEP 1 UNTIL Convergence DO
(1.2) Solve F’(xk)sk =-F(xk)

Set Xk+ Xk + Sk.

Newton’s method is attractive because it converges rapidly from any sufficiently good
initial guess. Indeed, it is a standard with which to compare rapidly convergent methods
for solving (1.1), since one way of characterizing superlinear convergence is that the
step should approach the Newton step asymptotically in both magnitude and direction
(see Dennis and Mor6 [5]).

One drawback of Newton’s method is having to solve the Newton equations (1.2)
at each stage. Computing the exact solution using a direct method such as Gaussian
elimination can be expensive if the number of unknowns is large and may not be
justified when Xk is far from x*. Therefore, it seems reasonable to use an iterative

* Received by the editors October 9, 1980, and in final revised form April 13, 1981. This research was
supported in part by the U.S. Department of Transportation under grant CT-06-0011, the National Science
Foundation under grant ENG-78-21615, the Office of Naval Research under grant N0001--76-C-0277 and
a grant from the Norwegian Research Council for Science and the Humanities.

" School of Organization and Management, Yale University, New Haven, Connecticut 06520.
Research Center for Scientific Computation, Department of Computer Science, Yale University, New

Haven, Connecticut 06520.
Department of Mathematical Sciences, Rice University, Houston, Texas, 77001.
For the analysis to come, it would suffice that the Jacobian exist in a neighborhood of x* and be

continuous at x*.

400



INEXACT NEWTON METHODS 401

method and to solve (1.2) only approximately. A natural stopping rule would be based
on the size of the relative residual2 [Irk[[/llF(xk)[I, where, if sk is the step actually
computed (i.e., the approximate solution to (1.2)), then the residual rk is given by

r =--F’(xk)s +F(x).

Such Newton-iterative methods (see [9], [11]) offer a trade-off between the accuracy
with which the Newton equations are solved and the amount of work per iteration. An
important question is what level of accuracy is required to preserve the rapid local
convergence of Newton’s method?

More generally, we consider the class of inexact Newton methods which compute
an approximate solution to the Newton equations in some unspecified manner such that

where the nonnegative forcing sequence {r/k} is used to control the level of accuracy (cf.
Altman [1]). To be precise, an inexact Newton method is any method which, given an
initial guess x0, generates a sequence {xk} of approximations to x* as follows’

FOR k =0 STEP 1 UNTIL Convergence DO
Find some step s which satisfies

Ilrl[ <(1.3) F’(xk)sk -F(xk)+ r, where IIF(x)[I-- n

Set Xk+ Xk %" Sk.

Here r/g may depend on xk; taking r/g --0 gives Newton’s method.
This paper analyzes the local behavior of such inexact Newton methods. In 2, we

prove that these methods are locally convergent if the forcing sequence is uniformly less
than one. In 3, we characterize the order of convergence and indicate how to choose a
forcing sequence (and thus how to construct an inexactNewton method) which preserves
the rapid convergence of Newton’s method. In 4, we discuss how these results can be
used to analyze specific methods for solving (1.1). Generalizations of these results to
inexact quasi-Newton methods are given by Steihaug [12].

2. Local convergence of inexact Newton methods. In this section, under the
rather weak assumption that the forcing sequence {r/k} is uniformly less than one, we
show that inexact Newton methods are locally convergent, i.e., that the sequence of
iterates {xk} converges to x* from any sufficiently good initial guess Xo. This require-
ment is natural in that s 0 satisfies (1.3) if r/ -> 1.

LEMMA 2.1. (Ortega and Rheinboldt [9, 2.3.3]). For any e >0, there exists > 0
such that F’(y) is nonsingular and

[IF’( y)-I F,(x,)-ll] < e

i lly x*ll < .
LEMMA 2.2. (Cf. Ortega and Rheinboldt [9, 3.1.5]). For any e > O, there exists > 0

such that

IIF(y) F(x*) F’(x*)( y x *)11 <- e IlY x *ll

Here [[. denotes an arbitrary norm in R" and the induced operator norm.
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THEOREM 2.3. Assume that rlk <- T/max < < 1. There exists e >0 such that, if
Ilxo- x*ll <-- , then the sequence of inexactNewton iterates {xk } converges to x *. Moreover,
the convergence is linear in the sense that

(2.1) IIx+1 x

where Ilyll,--
Proof. Since F’(x*) is nonsingular,

1
(2.2) -Ilyll-<-Ilyll,--< llyll for y R ,
where

max [llV’(x*)ll,
Since T/max < t, there exists y > 0 sufficiently small that

Now, choose e > 0 sufficiently small that

(2.3) I[F’(y)-F’(x*)ll<-_ v,

(2.4) IlF’(y)-l-F’(x*)-ll[<-_

(2.5)
2/.if [ly x*l[-<- z Such an e exists by virtue of the continuity of F’ at x* Lemma 2.1 and

Lemma 2.2.
Assume that [Ixo-x*ll<-e. We prove (2.1) by induction. Note that, by (2.2), the

induction hypothesis and (2.2) again,
2IIx x*ll <- llx x*ll, <- tllxo-x*ll, <-

so that (2.3)-(2.5) hold with y Xk. Moreover, the kth stage of the inexact Newton
method is defined in the sense that there exist s which satisfy (1.3). Since

F’(x*)(Xk+l --x*) [1 +F’(x*)[F’(xg)-1 F’(x*)-l]]

Irk +[F’(xg)-F’(x*)](xk -x*)-[F(x)-F(x*)-F’(x*)(Xk x*)]]

taking norms,

IIx+- x*ll, <--E1 / IIF’(x*)ll IIf’(x)-EIIrll / IIF’(x)-F’(x*)ll

using the definition of/z, (2.4), (1.3), (2.3) and (2.5). Since

F(x) [F’(x*)(x x*)] + [F(x)-F(x*)-F’(x*)(x x*)],

taking norms,

IIF(x)ll-<-IIx x*ll, / IIF(x)-f(x*)-F’(x*)(x x*)ll <----IIx x*ll, / vllx x*ll,
using (2.5). Therefore,

<_-(1 +/X3")[r/max(1 +

using (2.2). The result now follows from the choice of 3". Q.E.D.
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Theorem 2.3 shows that inexact Newton methods are locally convergent.
Krasnosel’skii and Rutickii [7] proved a Newton-Kantorovich theorem for such
methods with the bound on the relative residual replaced by a bound on the relative
error in the approximate solution to the Newton equations. Altman 1] proved a similar
result for damped inexact Newton methods.

3. Rate of convergence of inexact Newton methods. In this section, we charac-
terize the order of convergence of the inexact Newton iterates in terms of the rate of
convergence of the relative residuals and indicate how the forcing sequence influences
that rate of convergence.

DEFINITION. Let {Xk} be a sequence which converges to x*. Then
(1) xk "-> x* superlinearly if3

[[Xk +1 X*II- o (llx x*ll) as k --> oo;

(2) Xk --> X* with (strong) order at least q (q > 1) if

IIx + -x*ll: o(llx -x*ll as k

(3) Xk ’’> X* with weak order at least q(q > 1) if

limsup[lXk--X*[[1/qk<l as k -> oo.
k->oo

LEMMA 3.1. Let

where =- IIF’(x*)-’ll. Then

max IIF’(x*)ll + 2fl

for [[y- x*[[ sufficiently small.
Proof. By Lemma 2.2, there exists B > 0 sufficiently small that

1
I[F(y) F(x *) F’(x *)( y x *)l[-<- [[Y x

if []y x*ll < . Since

F(y) {F’(x *)( y x *)] + IF(y) F(x *) F’(x *)( y x *)],

taking norms,

I[f(y)ll<-[lf’(x*)ll Ily -x*ll+[lf(y)-F(x*)-F’(x*)(y x*)ll

--< IIf’(x*)[I + Ily x

Let {Xk} be any sequence which converges to x*. Given continuous nonnegative real-valued functions g
and h, we write

g(Xk)=O(h(Xk)) ask-->oo iflimsup
g(xk)

k--, h-x
and

g(xk)
g(Xk) O(h(xk)) as k eo if lim sup

k-.oo h(xk)
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and

liE( y )11 liE’ (x *)-11-lly x *11- liE(y) F(x *) F’(x *)( y x

>_- ilf,(x,)_ll__ 1
]ly -x*ll Ily -x*ll

if Ily x*ll <*. Q.E.D.
DEI=INI’rlON. F’ is H61der continuous with exponent p (0 < p 1) at x* if there

exists L 0 such that

for Ily- x*ll sumciently small.
LZMMA 3.2 (cf. Ortega and Rheinboldt [9, 3.2.12]). ff F’ is H61der continuous

with exponent p at x*, then there exists L’ 0 such that

IIf(y)-f(x*)-f’(x*)(y-x*)llZ’tly-x*l +"

for Ily- x*ll suciently small.
THEOREM 3.3. Assume that the inexact Newton iterates {x} converge to x*. Then

x x* superlinearly ff and only ff

Moreover, ifF’ is H6lder continuous with exponentp at x *, then x x* with order at least
1 + p g and only g

Proof. Assume that x x* superlinearly. Since

r [F(x) F(x *) F’(x *)(x x *)] IF’(x) F’(x *)](x x *)

+ [F’(x*) + [F’(x)-F’(x*)](x+ x*),
taking norms,

IIr lie(x) F(x *) f’(x *)(x x *)11 + liE’(x) F’(x *)11 IIx x

o (llx x*ll) + o (a)llx x*ll + filE’ (x*)ll + o (a)]o (llx x

by Lemma 2.2, the continuity of F’ at x* and the assumption that x x* superlinearly.
Therefore,

IIrll o(llx x*[I) o(lF(x)ll) as k ,
by Lemma 3.1.

Conversely, assume that IIrll o(llF(x)ll), As in the proof of Theorem 2.3.

EIIr + I[F’(x) F’(x *)11 IIx x *1[ + lF(x) f(x *) F’ (x *)(x x*)113

EIIF’ (x *)-11 + o (a)3. o (lie(x)ll) + o (a)llx x *ll + o (llx x

by Lemma 2.1, the assumption that [lr[l= o([IF(x)ll), the continuity of F’ at x* and
Lemma 2.2. Therefore,

by Lemma 3.1.
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If F’ is H61der continuous at x*, then the proof is essentially the same, using the
H61der continuity of F’ and Lemma 3.2 instead of the continuity of F’ and Lemma
2.2. Q.E.D.
Theorem 3.3 characterizes the order of convergence of the inexact Newton iterates in

terms of the rate of convergence of the relative residuals. Dennis and Mor6 [4], [5]
proved an equivalent result in terms of the steps {sk} for quasi-Newton methods.
Expressed in our notation, xk x* superlinearly if and only if

IIr,ll o (llSk [I) as k - oe,

and xg x* with order at least 1 + p if and only if

[[r[[ O(lls]l+) as k-

provided F’ is H61der continuous with exponent p at x*. It should be noted that these
conditions were not originally stated in terms of the residuals r, and that, since they are
not scale-invariant, they do not suggest a natural criterion for when to accept an
approximate solution to the Newton equations.
The following result gives an analogous characterization of weak order of con-

vergence.
TIEOREM 3.4. Assume that the inexact Newton iterates {x} converge to x*. IfF’ is

H61der continuous with exponentp atx *, then x x* with weak order at least 1 + p ifand
only if rk - 0 with weak order at least 1 + p.

Proof. Let L be the H61der constant, and let a and L’ be the constants given in
Lemma 3.1 and Lemma 3.2 respectively. Pick e > 0 sufficiently small that F’(y) is
nonsingular and

(3.1)

(3.2) IlF’(y)ll <= a,

(3.3)

(3.4) IIF’( y F’(x *)]l <-- Lily x *llp,
(3.5) [IF(y) F(x *) F’(x *)( y x*)ll t’lly x*ll +

if IIY -x*ll <-- e. Such an e exists by Lemma 2.1, Lemma 3.1, the H61der continuity of F’
at x* and Lemma 3.2.

Assume that x x* with weak order at least 1 +p. Then there exist constants
0 <_- y < 1 and ko >_- 0 such that

(3.6) for k -->ko.
Now choose k >-ko sufficiently large that

I[x x*l[-<_ e for k k l.

From the definition of rg,

by the triangle inequality and (3.1). Using (3.2) and (3.6),

Ilrll--< [,+"+’ + v+"] +,+ [,]/p(l+p)k _it_ 2a]3’
so that

I[rk[l-<3a"/’I+p) for k ekl.

(l+p)

The result now follows immediately from the definition of weak order of convergence.
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Conversely, assume that rk 0 with weak order at least 1 + p. Then there exist
constants 0 <- 3’ < 1 and ko --> 0 such that

(3.7) Ilrkll_-<, (a+’)" for k >=ko.
Let c [1/(2a (L + L’))]/ and choose ka >- ko sufficiently large that

(3.8) Ilxk x*ll <-- min {e, cy}- for k >= ka,

(3 9)
a (l+p)k[l_(l+p),--kl] <_-

1
-3’ for k >_-k.
c 2

From the definition of weak order of convergence it suffices to prove that

IIx-x*ll<--c’y(+p-I fork->kl.

The proof is by induction. The result follows trivially from (3.8) when k kl. As in the
proof of Theorem 2.3,

IlXk +1 X *ll IIF’ (x)-lll[llr + I[F’(x) F’(x *)ll [[xk x

+ I]F(x) F(x *) F’(x *)(x. x

-<- - [llr. + Cllx *[1" IIx x *11 + L’ll. ’1[
by (3.3), (3.4) and (3.5). Using (3.7) and the induction hypothesis,

IIx+- x*ll <---r+"" + (L +L’)[cr+"-]+"

Ice (l+p)[l-(l+p,’-,] +a(L+L’)P]’y
By (3.9) and the definition o c,

and the induction is complete. O.E.D.
Theorem 3.4 characterizes the weak order of convergence of the inexact Newton

iterates in terms of the rate of convergence of the residuals. The sufficiency of forcing
the residual to zero was proved for the case p 1 by Pereyra [10].

The following result indicates how the forcing sequence influences the rate of
convergence of the inexact Newton iterates.

COROLLARY 3.5. Assume that the inexact Newton iterates {xk} converge to x*.
rheH

(a) xk x* superlinearly if limk_,oo r/k 0;
(b) xk x* with order at least 1 + p ifF’ is Halder continuous with exponent p at x*

and

, oQIf(x)ll) as k -+

(c) xk x* with weak order at least 1 + p ifF’ is H61der continuous with exponent p
at x* and {r/k} converges to 0 with weak order at least 1 + p.

Corollary 3.5 indicates how the forcing sequence {r/k} influences the rate of
convergence of the inexact Newton iterates {xk}. Part (a) was proved in the context of
unconstrained optimization by McCormick and Ritter [8].

Corollary 3.5 is constructive in the sense that is specifies how to devise a method
with a given rate of convergence for smooth functions F" simply choose the forcing
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sequence appropriately and solve the Newton equations (e.g., using an iterative
method) sufficiently accurately that (1.3) holds. For example, one could choose
T/k min {c[IF(x,)l], } (0 < p <- 1) so that the closer one is to the solution, the better one
must solve the Newton equations. Such a choice allows the method to adapt to the
problem being solved. An application of this idea to unconstrained optimization is given
by Dembo and Steihaug [2].

Given Corollary 3.5(c), one might conjecture that {xk} converges to x* with order
at least 1 + p if {T/k } converges to 0 with order at least 1 + p. This is false! In fact the {xk }
need not converge any faster than superlinearly even if {[Ir,[I/[IF(x,)l[} converges to 0
with order at least 1 + p (see the example given in the appendix). The problem is that a
step which makes the error very small need not result in a correspondingly small relative
residual.

4. Applications. The class of inexact Newton methods is sufficiently general as to
encompass most existing methods for solving (1.1). Moreover, the results presented
extend immediately to an arbitrary Banach space. But the importance of the inexact
Newton approach lies in how easily these results can be applied to analyze specific
methods. In this section, we discuss several examples.

Consider using Newton’s method on a problem in which F and F’ are not known
exactly but can be evaluated to any specified accuracy (e.g., F and F’ might be obtained
by integrating a differential equation numerically). Then Corollary 3.5 specifies how
accurately F and F’ must be evaluated in order to ensure a given rate of convergence.

Dennis [3] proves a Newton-Kantorovich theorem for Newton-like methods of the
form

Xk+l Xk --M(xk)F(Xk), Xo given,

where M(xk) satisfies

I[I F’(xk)M(xk)[I <-- T/max < 1.

But with this assumption,

[Ir ]l- IIF’(x)[ M(xk)F(xk)] +F(xk)[[-<-]lI F’(xk)M(xk)[[ [[F (xk)[1 <-- T/max

so that Xk+l is an inexact Newton iterate, and the same result can be proved under this
weaker assumption (cf. Altman [1]).

Sherman 11] and Dennis and Walker [6] prove that any Newton-iterative method
can be made to converge with weak order at least 2 (and superlinearly) if O(2k) inner
iterations (of the linear iterative method) are applied to the Newton equations at the kth
outer iteration. The same results follows directly from Corollary 3.5 when one observes
that, in the appropriate norm, each ic,.er iteration reduces the norm of the residual by a
constant factor less than one, so that the relative residuals corresponding to outer
iterations converge to 0 with weak order at least 2.

Dennis and Walker [6] prove that a modified Jacobi-secant method is locally and
linearly convergent. The same result follows from Theorem 2.3 when one observes that,
in the appropriate norm, (1.3) is satisfied at every iteration for some T/k T/max < 1.

Appendix: A counterexample. Consider the function of one variable F(x)=
X--X2 with root x* 0. Let x0 =1/2 and define the sequences {xk} and {T/k} as follows:

i+1 i+3
X2/+1 X2i X2/+2 X2i T/2i 5X2i, T/2/+1 5X for _>-0.
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Then xk x* and sk =- x+ x satisfies

r/k<= IIF(x,)II rlk, where rk (Xk)& +F(x),

so that {x} is a sequence of inexact Newton iterates corresponding to the forcing
sequence {n}. Moreover,

k+1 forkO,

so that {} converges to zero quadratically (as does {lllIzlIr()ll}). However, for an

]lXk+l--X#[[ ]X2i+21
lim sup lim sup ,

so that {x} is not converging to x* with order q.
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