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ABSTRACT.  In practical waste management systems, most relationships among different system components are nonlinear in 
nature. Effects of economies-of-scale can often bring about such nonlinearity in objective functions within an inexact optimization 
framework. To handle both nonlinearity and uncertainty, an inexact piecewise quadratic programming (IPQP) model was developed 
through coupling piecewise linear regression with interval linear programming. In IPQP, uncertainties expressed as intervals for 
transportation/operation costs, treatment capacities, waste generation rates, waste flows/amounts were reflected; a more accurate 
approximation for nonlinearities reflecting effects of economies-of-scale between unit transportation costs and waste flows as well as 
between unit operation costs and waste treatment amounts were provided. An interactive algorithm was designed for solving IPQP. 
IPQP was applied to a hypothesis case of waste allocation planning and compared with a conventional inexact quadratic programming 
model (IQP). The results indicated that, in the investigated waste allocation system, the optimized waste flows from the districts to the 
waste treatment facilities (WTFs) and the optimized waste treatment amounts in WTFs had no significant differences between both 
models. However, most of unit transportation costs or unit operation costs in IPQP were less than those in IQP, which finally 
contributed to a lower net system costs in IPQP than IQP. This implied that the often ignored effects of economies-of-scale should be 
considered accurately in the real-world waste management system to obtain lower costs. Strategies to balance the tradeoff between 
approximation accuracy and computational complexity for IPQP were also discussed. 
 
Keywords: quadratic programming, piecewise linear regression, waste management, operation costs, transportation costs, economies of 
scale 

 
 

 

1. Introduction  

Waste flow allocation (WFA) is critical in municipal 
solid waste management (Everett and Modak, 1996; Li and 
Huang, 2007). To address the WFA problem under uncertain- 
ties, three major types of inexact mathematical programming 
methods have been proposed, including stochastic program- 
ming, fuzzy programming, and interval parameter program- 
ming (Chang et al., 1997; Chang and Wang, 1996; Huang et 
al., 2005; Li and Huang, 2007; Maqsood and Huang, 2003; 
Sahinidis, 2004; Xu et al., 2010).These programming methods 
can tackle various uncertainties expressed as random variables, 
fuzzy sets and discrete intervals; meanwhile; combinations of 
these methods can address multiple uncertainties (Huang et al., 
1992; Huang et al., 1996; Huang and Moore, 1993; Li et al., 
2006; Liu et al., 2009; Xu et al., 2009a; Xu et al., 2009b). 
However, most of these methods are based on an assumption 
of linear objective function. In practical waste management 
systems, most relationships among different system compo- 
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nents are nonlinear in nature (Huang et al., 2010), which can 

be described accurately only if a nonlinear model is expressed 
(Wu et al., 2006). Thus, incorporation of nonlinearities and 
uncertainties within a general optimization framework is de- 
sired to comprehend tradeoffs among various waste manage- 
ment practice and policies.  

Effects of economies-of-scale can often bring about non- 
linearities in objective functions in a WFA planning under un- 
certainties. Previously, two types of approaches were employed 
to deal with the scale effects within an inexact optimization 
framework. One approach was to find efficient algorithms to 
directly solve the resulting nonlinear objective functions with 
inexact information. However, this approach needs much effort 
of strict mathematical proofs (Sun et al., 2009b). For instance, 
a derivative algorithm was proved for solving the inexact qua- 
dratic programming model (IQP) with much lower computa- 
tional efforts (Chen and Huang, 2001). An interval nonlinear 
programming model with a satisfactory algorithm was propo- 
sed and applied to the planning of waste management activities 
in the Hamilton-Wentworth Region of Ontario, Canada (Wu et 
al., 2006). The other type of approach was to approximate 
nonlinear expressions so that existing algorithms could be ap- 
plied. A simple linear approximation was often employed to 
substitute nonlinear expressions previously. For instance, with 
the consideration of data availability and computational effi- 
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ciency, two IQP methods were proposed through introduction 
of intervals and fuzzy numbers within quadratic programming 

frameworks (Huang et al., 1994; Huang and Baetz, 1995). A 
fuzzy two-stage quadratic programming method was proposed 
to better reflect uncertainties expressed as both probability- 
density and fuzzy membership functions as well as nonli- 
nearity in the form of quadratic terms as a whole (Li and 
Huang, 2007).  

In fact, nonlinear systems usually can be approximated 
more accurately by piecewise linear functions through splitting 
the state space into piecewise regions and assuming sub-system 
is linear within each region (Croxton et al., 2003; Keha et al., 
2004). The concept of piecewise has many applications in the 
field of automatic control (Bemporad et al., 2000; Bemporad 
and Morari, 1999; Rantzer and Johansson, 2000). There have 
been a few applications of piecewise-linearization-based linear 
programming to dealing with filter management in fluid power 
systems (Nie et al., 2009, 2010a, 2010b), coastal subsurface 
water management problems (Karterakis et al., 2007), hydro- 
electric generation resources management (Moraga et al., 
2007), reservoir system scheduling (Pereira and Pinto, 1991), 
and optimal synthesis of an integrated water system (Karup- 
piah and Grossmann, 2006). Notably, piecewise linearization 
was incorporated for dealing with interval-fuzzy nonlinear 
programming models in water quality management (Qin et al., 
2007; Zhu et al., 2009). However, few application of inexact 

piecewise quadratic programming to waste management pro- 
blems was reported. 

Therefore, the objective of this study is to develop an in- 
exact piecewise quadratic programming method (IPQP) and to 
apply it to a WFA problem. The performance of IPQP will be 
campared with that of conventional inexact quadratic pro- 
gramming model (IQP). A representative waste management 
planning case will then be employed to test the models in dea- 
ling with both uncertainties in waste management conditions 
and nonlinearities reflecting effects of economies-of-scale si- 
multaneously. The effects of different nonlinearity approxima- 
tion methods on both transportation and operations costs in 
IPQP and IQP will be analyzed and compared.  

2. An Interval Piecewise Quadratic Programming  

2.1. Interval Programming with Nonlinear Objective 
Consider an interval nonlinear programming where para- 

meters ( jc± ) in the objective function are expressed as nonli- 
near functions ( ( )j jg x± ) of the corresponding decision va- 
riable ( jx± ): 

1
Min  

n

j j
j

f c x± ± ±

=

= ∑  (1a) 

subject to: 

( ),   1,  2,  , j j jc g x j n± ±= = …   (1b) 

1
,   1,  2,  , 

n

ij j i
j

a x b i m± ± ±

=

≤ =∑ …  (1c) 

0,   jx j± ≥ ∀  (1d) 

 
where ija± , ib± , jc± and jx± are interval parameters or variables. 
Since it is difficult to find general arithmetic algorithms to so- 
lve the interval nonlinear problem directly, a straightforward 
solution is to transfer Model (1) into an approximated linear 
programming.  

 
2.2. Formulation of Interval Piecewise Quadratic 
Programming 

Because ( )j jg x± is only associated with one independent 
variable ( jx± ), a piecewise linear regression (PLR) model could 
be fitted to approximate equation (1b) as follows: 
 

1 1 1 1( )

...
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γ δ

γ δ γ δ

γ δ
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⎧ + ≤ <
⎪
⎪
⎪≈ + = + ≤ <⎨
⎪
⎪
⎪ + ≤ <⎩

"
 (2) 

 
where jγ ± and jδ ± are the interval slope and the interval intersec- 
tion in the PLR model to approximate ( )j jg x± , respectively; 

Substitute Equations (2) into Model (1) and consider the 
features of PLR, then we have the Interval Piecewise Quadra- 
tic Programming (IPQP) model: 
 

2

1
Min  ( )
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j j j j
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1 1
( ) ( ),

P Pl l
L U

jh jh j jh jh
h h

P x P jμ μ±

= =

≤ ≤ ∀∑ ∑  (3b) 

 

1 1
( ), ( ) ,

P Pl l

j jh jh jh jh
h h

jγ μ γ μ γ± − +

= =

⎡ ⎤
= ∀⎢ ⎥

⎣ ⎦
∑ ∑  (3c) 

 

1 1
( ), ( ) ,

P Pl l

j jh jh jh jh
h h

jδ μ δ μ δ± − +
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{ }
1

1, 0,1 ,   1,  2,  , 
Pl

jh jh
h

j nμ μ
=

=  ∈ =∑ …  (3e) 

1
,   1,  2,  , 

n

ij j i
j

a x b i m± ± ±

=

≤ =∑ …  (3f) 

0,   jx j± ≥ ∀   (3g) 

where h is piece number in the PLR model for ( )j jg x± ; Pl is the 
max piece number in the PLR model for ( )j jg x± ; L

jhP and U
jhP  

are lower and upper bounds of the range for jx± in piece h, res- 
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pectively; jhγ − and jhγ + are lower and upper bounds of jγ ± in piece 
h, respectively; jhδ − and jhδ + are lower and upper bounds of jδ ±  
in piece h, respectively; jhμ  is 0 or 1 to indicate if Piece h is 
selected in the PLR model for ( )j jg x± . 
 

jc±

( ) ( )opt t,opt t,optmin ,minf f f± − +⎡ ⎤= ⎣ ⎦

( ) ( )j j j j j jh jh jh jhc x xγ δ θ γ θ δ± ± ± ± ± ± ±= + = +∑ ∑

, ,, ,t j t j t tx x f f− + − +↔

,j jγ δ± ±

 
Figure 1. Framework of inexact piecewise quadratic 
programming. 
 
2.3. Solution Algorithm 

Figure 1 shows the general framework of the IPQP model. 
In nature, the IPQP Model is an interval-parameter mixed-in- 
teger quadratic programming model. Without loss of generali- 
ty, the binary decision variable jhμ could be firstly determined 
by the branch and bound approach. Due to the constraint from 
Equation (3e), there will be at most ( )n

Pl combinations of 
jhμ (In real applications, the number of combinations could be 

further reduced due to the individual constraints of each jx± ). 
When jhμ is searched and determined in sequence among all 

combinations, the IPQP model then can be transformed into 

two sets of sub-models under two situations by the interactive 
algorithm in the previous work (Chen and Huang, 2001; 
Huang and Baetz, 1995; Huang and Loucks, 2000). The 
pairwise submodels can be solved since they are deterministic 
quadratic programming models.  

(i) when the signs of jγ ± and jδ ± are the same (if 0jγ ± ≥ , 
i.e. 0, 0,jh jh hγ γ− +≥ ≥ ∀ , then jδ ± should be ≥ 0, i.e. 0,jhδ − ≥  

0,jh hδ + ≥ ∀ ; vice versa), the bounds for jhγ ± , jhδ ± and ,t jx± corres- 
ponding to tf − and tf + can be easily defined under each ,t jhμ  
(t = 1, 2,…, ( )n

Pl ). Then model (3) can be formulated as follows: 

2
, , , ,

1 1 1
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The solutions of sub-model (4) can be obtained as follows: 
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The solutions of sub-model (4) then can be substituted to 

sub-model (6) as constraints. Thus, we have: 

2
, , , ,
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{ }, ,
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Solutions of sub-model (6) can be obtained as: 
 

{ }opt t,optmin
t

f f
ψ=

+ +=          (7a) 

 
{ },opt , ,opt , 1,2, ,j t j t

x x j k
ψ
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Combining solutions of sub-models (4) and (6), the solutions 
of model (3) can be obtained when the signs of jγ ± and jδ ± are 
the same as follows: 
 

,opt ,opt ,opt[ ,  ],j j jx x x j± − += ∀  (8a) 
 

opt opt opt[ ,  ]f f f± − +=   (8b) 
 

(ii) when the signs of jγ ± and jδ ± are different, a two-step 
process is needed to determine the corresponding relationships 
among jhγ ± , jhδ ± , ,t jx± and tf ± . When ,t jhμ is searched and selected 
by the branch and bound approach ( 1,2, ,( )n

Pt l= " ), through 
letting all left- and/or right-hand-side coefficients of Model (3) 

be equal to their mid-values, Model (3) then becomes a deter- 
ministic quadratic programming (QP) model as follows: 
 

2
, , , , ,

1 1 1
Min  ( ) ( ) ( ) ( )

P Pl ln

t m t jh jh m t j m t jh jh m t j m
j h h

f x xμ γ μ δ
= = =

⎧ ⎫
⎡ ⎤ ⎡ ⎤= +⎨ ⎬⎣ ⎦ ⎣ ⎦

⎩ ⎭
∑ ∑ ∑

 (9a) 
 
subject to: 
 

, , ,
1 1
( ) ( ) ( ),

P Pl l
L U

t jh jh t j m t jh jh
h h

P x P jμ μ
= =

≤ ≤ ∀∑ ∑   (9b) 

 

{ }, ,
1

1, 0,1 , 1,  2,  , 
Pl

t jh t jh
h

j nμ μ
=

=  ∈ =∑ …   (9c) 

,
1

( ) ( ) ( ) , 1, 2,  ,
n

ij m t j m i m
j

a x b i m
=

⎡ ⎤ ≤  =⎣ ⎦∑ …  (9d) 

,( ) 0,   t j mx j≥ ∀  (9e) 

where (γjh)m, (δjh)m , (aij)m and (bi)m are mid-values of jhγ ± , jhδ ± , 
ija± and ib± [e.g., m( ) ( ) / 2jh jh jhγ γ γ− += + ]. Through solving mo- 

del (9), we can obtain the optimal solutions of , m, opt( )t jx ∈  
, ,opt , ,opt[ ,  ],  t j t jx x j− + ∀ . Thus, the relationships between ,t jx±  and 

tf ±  can be identified according to the following criteria: 
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⎣ ⎦
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,
1
( ) 0

Pl
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h

μ δ +
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When criterion (10a) is satisfied, ,t jx− corresponds to tf − ; when 
criterion (10b) is satisfied, ,t jx+ corresponds to tf − . Thus, two 
sets of sub-models similar to sub-models (4) and (6) can be 
further developed to obtain the interval solutions ( , optt jx± ) and 
the corresponding interval values of objective functions 
( t,optf ± ). Finally, the corresponding upper or lower bound 
solutions ( opt opt,  j jx x− + ) will be obtained through searching 

( )t,optmin f − or ( )t,optmin f + ; the bound solutions will then be 
combined to form the general solutions ( optjx± ) for Model (3) 
under this situation (when jγ ± and jδ ± have different signs). 
 

Figure 2. Multiple dimensions of waste flow allocation 
system. 

3. Overview of Waste Flow Allocation Problem 

3.1. General Complexity 
Scientifically solving a WFA problem by a regional ma- 

nager is to allocate reasonable amounts of waste flows from 
multiple districts to different waste treatment facilities (WTFs) 
over several periods across the region. The WFA problem is 
multiple-dimensional in nature (Figure 2). The planning time 
consists of several equally-long periods. The allocation region 

is divided into several districts. The WTFs usually include 
landfill, incineration, composting, and recycle. Waste flows 
generated and transferred in this multiple-dimension system 

result in interconnections among districts and facilities. A 
landfill is the disposal of waste materials by burial, which re- 
ceives wastes from different districts and residues from other 
facilities. A composting facility turns the organic wastes into 
environment-friendly humic matters (Sun et al., 2009a). A re- 
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cycling facility converts the wastes into useful products. An 
incineration facility serves as burning the allocated wastes. 
Those interconnections lead to various complexities involving 
uncertainties in wastes flow, transportation/operation costs and 
WTF capacities, constraints in treatment capacities of different 
WTFs, balances among waste amounts of generation, transpor- 
tation and treatment, as well as nonlinearity existing between 
the waste flows and their transportation/operation costs caused 
by effects of economies-of-scale. 

 
3.2. Case Study 

Based on representative data from governmental reports 
and related references, a hypothetical case is considered where- 
in a regional manager is responsible for reasonably allocating 
waste flows over a three-period planning horizon (each period 
is 5-year) in order to minimize the net system cost. The waste 
generation rates in district 1 are [125, 185], [165, 215], and 
[185, 245] t/d in the three periods and those in district 2 are 
[155, 205], [175, 220], and [195, 245] t/d, individually. Two 
available WTEs (one landfill and one incinerator) serve the 
MSW treatment/disposal needs from the districts. At least 40% 
(a diversion rate) of waste flows is forced to be treated by the 
incinerator due to the growing opposition from the public with 
regard to landfill disposal. Approximately 30% (on a mass ba- 
sis) residues of the incoming waste flows to the incinerator are 
further disposed at the landfill. The incinerator has a capacity 
of [200, 240] t/day while the landfill has a capacity of [1.7, 2.1] 
million tones. Revenue from incinerator is [15, 20], [20, 25], 
and [25, 30] $/t in the three periods, individually. The costs of 
waste transportation and operation vary from districts to WTFs 
in the three periods. When waste flows are high or transporta- 
tion distances are long, the effects of economies-of-scale in ter- 
ms of waste transportation to or operations in WTFs could be 
expressed as a sizing model with a power law (Thuesen et al., 
1977; Huang et al., 1995): 

,( / )m
re re trTR X X

TR
X

=  (11a) 

,( / )n
re re opOP Y Y

OP
Y

=   (11b) 

where X is a waste flow variable (t/d); Xre,tr is a reference waste 
flow (t/d); TR is the unit transportation cost ($/t); TRre is a kn- 
own transportation cost for reference waste flow Xre,tr ($/t); Y 
is a waste treatment amount variable (equals to a sum of waste 
flow which enters the WTF, t/d); Yre,op is a reference waste treat- 
ment amount (t/d); OP is the unit operation cost in WTFs ($/t); 
OPre is a known operation cost for reference waste flow Yre,op 
in WTFs ($/t); and m and n are the corresponding economies- 
of-scale exponents (0 < m, n < 1). For waste transportation and 
operation cost, m or n value is approximately 0.8 to 0.9 (Huang 
and Baetz, 1995).  

Assume that there are l pieces within the feasible range of 
waste flows or waste treatment amounts. Accordingly, Equation 
(11) can be approximated as PLR models as follows: 
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"
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  (12a) 
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1
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γ δ
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+

−
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⎪
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⎪
⎪ + ≤ ≤⎩

"
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  (12b) 

 
where iα , and iβ  are the slopes and the intercepts for ith PLR 
model for waste transportation cost (i = 1, 2, ... , l); the lower 
and upper bounds for the range of waste flows are iP  and 1iP+  
individually; jγ and jδ are the slopes and the intercepts for jth 
PLR model for waste treatment cost (j = 1, 2, ... , l); The lower 
and upper bounds for the range of waste treatment amounts 
are jQ and 1jQ +  individually. 

Since effects of economies-of-scale may change due to va- 
riations of factors affecting transportation and operation costs, 
different levels of scale exponents (m and n) are assumed. In 
the meantime, an increasing piecewise level will not only bring 
about decreasing approximation errors between the sizing mo- 
del and the PLR models but also results in increased numbers 
of decision variables. Thus, a proper piecewise level of 4 is 
chosen for all PLR models in this study.  

4. Application 

The proposed IPQP model is applied to tackle the above 
planning problem for WFA. The objective is to minimize the 
net system cost (i.e. subtracting revenues from transportation 
cost and operation costs in WTFs). The decision variables re- 
present waste flows from district j to WTE i in period k. The 
constraints involve all relationships among the decision varia- 
bles under representative waste management conditions. Thus, 
we have: 
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where: f ± is net system cost ($); ijkX ±

kY ± and ikZ ± are decision va- 
riables; ijkX ± is waste flow from district j to facility i during pe- 
riod k (t/d); kY ± is waste residue flow from incinerator to land- 
fill during period k (t/d); ikZ ± is waste treatment amount in fa- 
cility i during period k (t/d); i is type of waste management fa- 
cility (i = 1 for landfill and 2 for incinerator); j is name of dis- 
trict (j = 1 and 2); k is planning period (k = 1, 2 and 3); kL is 
length of period k (day); h is piece number in the PLR models 
for ijkTR± , kFT ± and ikOP± (h =1, 2, …, l); ijkTR± is transportation 
cost for waste flow from district j to facility i during period k 
($/t); ijkα ± and ijkβ ± are slope and y-intercept in the PLR model 
to approximate ijkTR± ; ijkhα − and ijkhα + are lower and upper bounds 
of ijkα ± in piece h, respectively; ijkhβ − and ijkhβ + are lower and up- 
per bounds of ijkβ ± in piece h, respectively; L

ijkhP and U
ijkhP are lo- 

wer and upper bounds of the range for ijkX ±
 in piece h, respec- 

tively; kFT ± is transportation cost for residue flow from the in- 
cinerator to the landfill during period k ($/t); kε ± and kζ ± are 
slope and y-intercept in the PLR model to approximate kFT ± ; 

khε − and khε +  are lower and upper bounds of kε ± in piece h, re- 
spectively; khζ − and khζ + are lower and upper bounds of kζ ± in 
piece h, respectively; L

khQ and U
khQ are lower and upper bounds 

of the range for kY ± in piece h; ikOP± is operating cost in facility i 
for waste treatment amount during period k ($/t); ikγ ± and ikδ ±  
are slope and y-intercept in the PLR model to approximate 

ikOP± ; ikhγ −
 and ikhγ +  are lower and upper bounds of ikγ ±  in 

piece h, respectively; ikhδ −  and ikhδ +  are lower and upper 
bounds of ikδ ±  in piece h, respectively; L

ikhR and U
ikhR are lower 

and upper bounds of the range for ikZ ± in piece h; kRE± is 
revenue from the incinerator during period k ($/t). 

Substitute Equations 13b - 13d into 13a, then we have the 
IPQP model as follows: 
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subject to: 
 

[Piecewise constraints related to transportation cost from dis- 
tricts to WTFs]: 
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[Residue mass balance in WTFs]: 
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[Piecewise constraints related to transportation cost from WTFs 
to landfill]: 
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[Mass balance for waste treatment]: 
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[Piecewise constraints related to operation costs in WTFs]: 
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[Capacity constraints for Landfill]: 
 

1
1

q

k k
k

L Z LC± ±
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≤∑   (14n) 

 
[Capacity constraints for Incinerator]: 
 

2 ,  k ikZ TC k±± ≤ ∀   (14o) 
 
[Waste disposal demand constraints]: 

1
, ,
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X WG j k± ±
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,   , ; 2, 3, ,ijk ik jkX DG WG j k i u± ±≥  ∀ = "     (14q) 

 
[Non-negativity constraints]: 
 

0, , ,ijkX i j k± ≥ ∀   (14r) 
 
where ijkhθ is 0 or 1 to indicate if piece h is selected in the PLR 
model for ;ijkTR± FE± is residue flow rate from incinerator to 
landfill (% of incoming mass to incinerator); khη is 0 or 1 to in- 
dicate if Piece h is selected in the PLR model for kFT ± ; ikhλ is 0 
or 1 to indicate if Piece h is selected in the PLR model for 

ikOP± ; LC ± is capacity of landfill (tonne or t); ikTC ± is capacity 
of WTF i (t/day) in period k; jkWG± is amount of waste gene- 
rated in district j in period k; ikDG± is diversion rate of waste 
flow to facility i regulated by the authority in period k.  

To verify the performance of IPQP, a conventional inexact 
quadratic programming model (IQP) is introduced for compa- 
rison. The IQP model can be formulated based on Model (14) 
with removal of piecewise constraints (Equations (14b) to (14d), 
(14f) to (14h), and (14k) to (14m)). Accordingly, in IQP model, 

ijkα ± and ijkβ ±  become slope and y-intercept in a linear regres- 
sion (LR) model to approximate ;ijkTR±

kε ±
 and kζ ±  change to 

slope and y-intercept in a LR model to approximate ikOP± ; and 

ikγ ± and ikδ ± are slope and y-intercept in a LR model to approxi- 
mate ikOP± . Obviously, IQP could be considered as the simplest 
type of IPQP where the max piece number is 1 and the unit 
cost functions in the entire feasible region is linear. 

5. Result Analysis  

Table 1 presents the optimized waste flows and the corres- 
ponding unit transportation costs from the two districts to two 
WTFs, which are obtained through both IPQP and IQP models. 
Since the inexact waste-management conditions vary tempo- 
rally and spatially, the patterns of optimized waste flows change 
accordingly in the multidimensional system. Figures 3 and 4 
shows the lower and upper bound curves of waste transporta- 
tion cost from districts to the landfill and to the incinerator, 
which are based on raw data (generated by exponential func- 
tions), linear regression models and PLR models for all of the 
pieces. The bold pieces in Figures indicated those which were 
optimally selected in the final solution for IPQP model. Better 
agreement between raw data and the PLR models than the LR 
models indicated that better fitting ability of PLR than LR 
when approximating nonlinear scale effects between waste 
flows and transportation costs. This implied more accurate 
transportation costs would be calculated in the PLR-based 
IPQP model compared with the LR-based IQP model. 

Based on the IPQP model (Table 1), for the landfill, the 
optimized waste flows from district 1 would be [75.0, 106.5] 
t/d in period 1, [99.0, 114.0] t/d in period 2, and [102.5, 143.0] 
t/d in period 3. The corresponding transportation costs related 
to these waste flows would be [14.1, 16.4], [14.8, 18.2], and 
[16.2, 19.1] $/t in periods 1, 2 and 3. The optimally selected 
pieces in the IPQP model for calculated lower- and upper-bound 
of these costs would be number 1 and 2, 2 and 2, and 2 and 3 
in each PLR model (Figure 3), respectively; similar to district 
1, the optimized flows from district 2 to the landfill would be 
[93.0, 123.0], [105.0, 131.5], and [117.0, 147.0] t/d in periods 
1 to 3, individually. The associated transportation costs would 
be [11.2, 15.1], [12.0, 15.7] and [13.0, 16.6] $/t. The obtained 

Table 1. Optimized Waste Flows ( ijkX ± ) from Districts to WTFs and the Corresponding Transportation Costs ( ijkTR± )  

Facility District Period IQP  IPQP   
i  j k Waste Flow (t/d) Transportation 

Cost ($/t) 
Piece h Waste Flow (t/d) Transportation 

Cost ($/t) 
Landfill 1 1 [75.0, 111.0] [14.1, 16.6] 1, 2 [75.0, 106.5] [14.1, 16.4] 
Landfill 1 2 [99.0, 129.0] [15.0, 18.0] 2, 2 [99.0, 114.0] [14.8, 18.2] 
Landfill 1 3 [111.0, 147.0] [16.3, 19.2] 2, 3 [102.5, 143.0] [16.2, 19.1] 
Landfill 2 1 [93.0, 123.0] [11.5, 15.5] 2, 2 [93.0, 123.0] [11.2, 15.1] 
Landfill 2 2 [105.0, 135.0] [12.4, 15.9] 2, 3 [105.0, 131.5] [12.0, 15.7] 
Landfill 2 3 [117.0, 147.0] [13.4, 16.8] 2, 3 [117.0, 147.0] [13.0, 16.6] 
Incinerator 1 1 [50.0, 74.0] [11.8, 15.1] 1, 1 [50.0, 78.5] [12.2, 14.9] 
Incinerator 1 2 [66.0, 86.0] [12.1, 15.7] 1, 2 [66.0, 101.0] [12.3, 15.1] 
Incinerator 1 3 [74.0, 98.0] [12.8, 16.3] 2, 2 [82.5, 102.0] [12.4, 15.9] 
Incinerator 2 1 [62.0, 82.0] [12.3, 15.8] 1, 2 [62.0, 82.0] [12.4, 15.5] 
Incinerator 2 2 [70.0, 90.0] [12.9, 16.5] 1, 2 [70.0, 93.5] [12.9, 16.1] 
Incinerator 2 3 [78.0, 98.0] [13.5, 17.6] 2, 2 [78.0, 98.0] [13.2, 17.1] 
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pieces for calculating lower-bound and upper-bound of these 
costs would be number 2 and 2, 2 and 3, and 2 and 3 in each 
PLR model (Figure 3), respectively. For the incinerator, the 
optimized flows from district 1 would be [50.0, 78.5], [66.0, 
101.0], and [82.5, 102.0] t/d, the related transportation costs 
would be [12.2, 14.9], [12.3, 15.1] and [12.4, 15.9] $/t in periods 
1 to 3, and the matching piece numbers for lower- and upper- 
bounds of these costs would be 1 and 1, 1 and 2, and 2 and 2 
(Figure 4), separately; those from district 2 would be [62.0, 
82.0], [70.0, 93.5], and [78.0, 98.0] t/d which are associated 
with transportation costs of [12.4,15.5], [12.9,16.1] and [13.2, 

17.1] $/t and piece numbers of 1 and 2, 1 and 2, and 2 and 2, 
in periods 1 to 3 (Figure 4), respectively.  

In comparison, the interval solutions of the IQP are close 
to those of the IPQP (Table 1). Most lower-bounds of optimized 
waste flows in IQP are almost the same as those in IPQP. Only 
two differences between lower-bounds can be found when wa- 
ste flows in Period 3 are allocated from district 1 to the landfill 
(102.5 vs. 111.0) and from district 1 to the incinerator (82.5 vs. 
74.0). Most upper-bounds of optimized waste flows in IQP are 
slightly different from those in IPQP while four upper-bounds 
of waste flows from district 2 to both landfill and incinerator 
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                 Figure 3. Waste transportation costs to the landfill ( 11kTR− and 12kTR− ). 
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in Periods 1 and 3 have no differences in both models (123.0 
vs. 123.0 and 147.0 vs. 147.0, 82.0 vs. 82.0 and 98.0 vs. 98.0). 
Meanwhile, most of unit transportation cost intervals in IQP 
are larger than those in IPQP (i.e. both lower-bound and upper- 
bound are larger or equal) except for four exceptions. The ex- 
ceptions are unit transportation cost intervals from district 1 to 
landfill in period 2 ([14.8, 18.2] vs. [15.0, 18.0]), from district 
1 to incinerator in periods 1 and 2 ([12.2, 14.9] vs. [11.8, 15.1], 
and [12.3, 15.1] vs. [12.1, 15.7]), and from district 2 to incine- 
rator in period 1 ([12.4, 15.5] vs. [12.3, 15.8]). The differences 

for unit transportation cost can be due to the fitting degrees be- 
tween raw data and these regression models, which can be 
obviously observed in Figures 3 and 4. Since most of selected 
piece numbers are 2 or 3, the curves of PLR models are closer 
to the raw data and thus lower than the curves of LR models. 
Therefore when lower and upper bounds of optimized waste 
flows in both models are near to each other, the corresponding 
unit transportation cost calculated by PLR models would be 
less than by LR models. On the contrary, in the four excep- 
tions, when the piece number is optimally selected as 1 and 
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                Figure 4. Waste transportation costs to the incinerator ( 21kTR− and 22kTR− ). 
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the corresponding lines for PLR models (related to the opti- 
mized waste) are higher than that for LR models, unit tran- 
sportation costs based on PLR models would be larger than LR 
models. 

Similarly, Table 2 presents the optimized residue and the 
corresponding unit transportation costs from the incinerator to 
landfill based on IPQP and IQP models. Figure 5 shows the 
lower and upper bound curves of unit transportation costs, 
which further confirms that prediction of the PLR models are 
much closer to raw data than that of the LR models. For this 
reason, even intervals (or only lower-bounds or upper-bounds) 
of optimized residue waste flows in IPQP are larger than those 
in IQP models ( [33.6, 48.1] > [33.6, 46.8] t/d in period 1, 
[40.8, 58.4] > [40.8, 52.8] t/d in period 2, and [48.1, 60.0] > 

[45.6, 58.8] t/d in period 3), the unit transportation costs for 

these waste flows in IPQP model are still less than those in IQP 
models ([6.5, 7.8] < [6.6, 8.1] $/t in period 1, [6.8, 8.3] < [7.0, 
8.8] $/t in period 2, and [7.2, 9.1] < [7.4, 9.3] $/t). It thus would 
be concluded that PLR-based IPQP model can calculate unit 
transportation costs more accurately compared with the LR- 
based IQP model. 

Besides waste flows and unit transportation costs among 
districts and WTFs, Table 3 further lists optimized waste treat- 
ment amounts in WTFs and the corresponding unit operation 
costs. The patterns of optimized waste treatment amounts vary 
in periods in two WTFs while the differences of waste treat- 
ment amounts between two models are not significant. Figure 
6 illustrates the lower-bound and upper-bound curves of unit 
operation costs in WTFs in three different forms. Although the 
slopes of unit operation cost curves are gentler than those of 
unit transportation costs, curves of the PLR models are still 
nearer to raw operation cost data than that of the LR models. 
For example, the results of IPQP indicate that waste treatment 
amounts in landfill would be [201.6, 277.7], [244.8, 303.8], 
and [267.7, 350.0] t/d in periods 1 to 3; in comparison, slightly 
higher waste treatment amounts obtained by IQP would be 
[201.6, 280.8], [244.8, 316.8], and [273.6, 352.8] t/d in periods 

1 to 3. Meanwhile, the corresponding unit operation costs of 
IPQP are lower than those of IQP in Periods 1 and 2 ([22.2, 
30.6] < [22.5, 30.7] $/t and [25.6, 37.5] < [25.9, 37.4] $/t) whi- 
le the upper-bound of unit operation costs of IPQP are slightly 
larger than that of IQP in Period 3 (48.7 > 48.1 $/t). This excep- 
tion can be explained by the fact that Piece 4 is selected in the 
IPQP model, the curves of IPQP are higher than that of IQP in 
the specific ranges, and the two corresponding waste treat- 
ment amounts are almost the same (350.0 vs. 352.8 t/d). Diffe- 
rent from landfill, the waste treatment amounts in incinerator 
of IPQP would be larger than those of IQP in periods 1 to 3 
([112.0, 160.5] > [112.0, 156.0] t/d, [136.0, 194.5] > [136.0, 
176.0] t/d, and [160.5, 200.0] > [152.0, 196.0] t/d). Despite this, 
the unit operation costs of IPQP would be still lower than those 
of IQP in periods 1 to 3 ([51.2, 67.4] < [51.5, 68.7] $/t, [53.8, 
73.9] < [54.6, 75.9] $/t, [56.7, 81.2] < [58.1, 82.9] $/t), which 
would be due to the curves of IPQP are much lower than those 
of IQP in the range where Piece Number is 2 or 3 (Figure 6). 
 
Table 4. Cost Comparison for Waste Flow Allocation between 
Two Models  

Expense  Specification IQP ($106) IPQP ($106) 
Transportation
Cost  

Districts 
to WTFs  

[24.32, 40.32] [24.00, 39.59] 

 Incinerator 
to Landfill 

[1.544, 2.533] [1.538, 2.569] 

Landfill [40.20, 73.59] [40.41, 75.63] Operation 
Cost Incinerator [36.67, 68.32] [35.92, 67.42] 
Revenue Incinerator [-19.64, -18.62] [-20.62,-19.08]
Net Cost System [84.12, 165.13] [82.79,164.59]

 
In order to testify how the unit cost differences (transpor- 

tation and operation costs) in IPQP and IQP models would af- 
fect the net system costs (objective functions), Table 4 presents 
the sum of costs for waste flow allocation. The sum of tran- 
sportation cost in IPQP from districts to WTFs in the waste  

Table 2. Optimized Residues ( kY ± ) from Incinerator to Landfill and the Corresponding Transportation cost ( kFT ± )  

Period IQP  IPQP   
k Waste Flow (t/d) Transportation Cost ($/t) Piece h Waste Flow (t/d) Transportation Cost ($/t) 
1 [33.6, 46.8] [6.6, 8.1] 1, 2 [33.6, 48.1] [6.5, 7.8] 
2 [40.8, 52.8] [7.0, 8.8] 2, 3 [40.8, 58.4] [6.8, 8.3] 
3 [45.6, 58.8] [7.4, 9.3] 2, 3 [48.1, 60.0] [7.2, 9.1] 

 

Table 3. Optimized Waste Treatment Amounts in WTFs ( ikZ ± ) and the Corresponding Operation Costs ( ikOP± ) 

Facility Period IQP   IPQP  
i  k Waste Generation 

(t/d) 
Operation Cost 
($/t) 

Piece 
h 

Waste Generation 
(t/d) 

Operation Cost 
($/t) 

Landfill 1 [201.6, 280.8] [22.5, 30.7] 2, 3 [201.6, 277.7] [22.2, 30.6] 
Landfill 2 [244.8, 316.8] [25.9, 37.4] 3, 3 [244.8, 303.8] [25.6, 37.5] 
Landfill 3 [273.6, 352.8] [33.7, 48.1] 3, 4 [267.7, 350.0] [33.5, 48.7] 
Incinerator 1 [112.0, 156.0] [51.5, 68.7] 2, 3 [112.0, 160.5] [51.2, 67.4] 
Incinerator 2 [136.0, 176.0] [54.6, 75.9] 2, 3 [136.0, 194.5] [53.8, 73.9] 
Incinerator 3 [152.0, 196.0] [58.1, 82.9] 3, 3 [160.5, 200.0] [56.7, 81.2] 
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Figure 5. Residue transportation costs from the incinerator to 
the landfill ( kFT − ). 
 
management system is $[24.00, 39.59] ×106, being lower than 
that in IQP ($ [24.32, 40.32] × 106). The lower-bound of the 
sum of transportation cost from the incinerator to the landfill 
in IPQP is lower than that in IQP ($1.538 × 106 < 1.544 × 106) 
whereas upper-bound of residue transportation cost sum in 
IPQP is slightly higher than that in IQP ($2.569 × 106 > 2.533 
× 106). However, the sum of residue transportation cost from 
the incinerator to the landfill is relatively low, which would 
have no significant effects on the difference between two 

models’ objective function values. Meanwhile, the sum of 
operations cost in landfill in IPQP is higher than that in IQP 
($[40.41, 75.63] ×106

 > [40.20, 73.59] ×106) while the sum of 

operations costs in incinerator in IPQP is lower than that in 
IQP ($[35.92, 67.42] ×106 < [36.67, 68.32] ×106). The incine- 
rator’s revenue in IPQP is also less than that in IQP ($[-20.62, 
-19.08] × 106 < [-19.64, -18.62] × 106). Thus, the overall net 
cost (objective function) for the entire waste allocation system 
by IPQP is lower than by IQP ($[82.79, 164.59] ×106 < [84.12, 
165.13] ×106). The bound difference between two objective 

function values would be $1.32 × 106
 and $0.54 × 106, 

respectively. This supports the fact that the differences of unit 
transportation and operation costs between two waste flow 
cost models (PLR vs. LR) would result in lower net costs in 
PLR-based IPQP than LR-based IQP. This further implies that 
the often negligible effects of scale should be considered accu- 
rately in waste flow allocation system. 

6. Discussion 

In general, the IPQP model can not only reflect uncertain- 
ties expressed as intervals among costs, capacities, waste ge- 
neration rates, waste flows, and waste treatment amounts and 
so on, but also provide a more accurate approximation for non- 
linearity existing in the objective function between unit trans- 
portation costs and waste flows as well as between unit opera- 
tion costs and waste treatment amounts due to the effects of 
economic scale. This integration indicates a capability enhan- 
cement of the IPQP in dealing with multiple complexities (i.e. 
both uncertainties and nonlinearity) so as to further decrease 
the net costs for the overall waste management system to some 
degrees. In comparison, the conventional IQP model usually 
handles only uncertainties and inaccurate approximation for 
nonlinearity in effects of economies-of-scale.  

It is interesting to note that, in the investigated waste allo- 
cation system, the optimized waste flows from the districts to 
the WTFs and the optimized waste treatment amounts in WTFs 
obtained through both the IPQP and IQP models have no sig- 
nificant differences. This maybe mainly because the added pie- 
cewise constraints (Equations 14b to 14d, 14f to 14h, and 14k 
to 14m) could not change the feasible region for both models 
in this study. Equations 14b, 14f and 14k can not restrict the 
ranges of waste flows or waste treatment amounts at all be- 
cause each piece has the chance to be selected and determined 
by restrictions from other constraints. The solution differences 
between the IPQP and IQP models would be due to the degrees 
that objective functions to be approximated as well as the con- 
comitant change of interactive locations between approximated 

objective functions and the same feasible region. Correspon- 
dingly, once these optimized waste flows and waste treatment 
amounts lie in the ranges where the PLR curves are much 
closer to the raw data (usually lower than the LR curves; Piece 

number equals 2 or 3 in this study), most of the unit transport- 
tation costs or unit operation costs in IPQP model would be 
less than those in IQP models. These unit cost differences 
would finally contribute to the fewer sums of net costs (object- 
tive function values) in IPQP than those in IQP.  

In principle, any smooth nonlinear system can be piece- 
wise approximated to an arbitrary accuracy. In this sense, the 
nonlinear curves (waste flow vs. unit transportation cost and 
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waste treatment amount vs. unit operation cost) in the waste 
management system can be further approximated by increasing 
the max piecewise number in IPQP model to obtain more accu- 
rate and fewer net costs. However, the number of binary varia- 
bles (ln) would exponentially increase accordingly in the prac- 
tical application. Therefore, the max piecewise number and 
the number of decision variables with considered scale effects 
need appropriate selections through the trial and error method. 
When the increasing piece number could not change the 
feasible region so as the decision variables would not change 
significantly, a reasonable strategy would be: 1) ensure max 

piece numbers large enough in a wider feasible region and 
solve the model; 2) gradually decrease the max piece numbers 
but narrow down the feasible region of decision variables to 
the neighborhood of solutions obtained in the first step; 3) 
repeat steps 1 and 2 until the tradeoff between approximation 
accuracy and computational complexity is carefully balanced.  

7. Conclusions 

An inexact piecewise quadratic programming (IPQP) mo- 
del has been developed for municipal solid waste allocation 
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      Figure 6. Operation costs for waste treatment facilities (landfill and incinerator; 1kOP± and 2kOP± ). 
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under uncertainty and nonlinearity. In IPQP, uncertainties ex- 
pressed as intervals among transportation/operation costs, treat- 
ment capacities, waste generation rates, and waste flows/am- 
ounts can be reflected; a more accurate approximation for non- 
linearities reflecting effects of economies-of-scale in the objec- 
tive function between unit transportation costs and waste flows 
as well as between unit operation costs and waste treatment 
amounts can be provided. The developed method has been ap- 
plied to a hypothesis case of waste allocation planning. An in- 
teractive algorithm is designed for solving the developed IPQP 
model. A conventional inexact quadratic programming model 
(IQP) is chosen to compare its performances with IPQP. The 
results indicate that, in the investigated waste allocation system, 
the optimized waste flows from the districts to the WTFs and 
the optimized waste treatment amounts in WTFs through IPQP 
and IQP models have no significant differences. However, 
most of unit transportation costs or unit operation costs in IPQP 
would be less than those in IQP. These unit cost differences 
would finally contribute to a lower net system costs (objective 
function values) in IPQP than those in IQP. This further implies 
that the often ignored effects of economies-of-scale should be 
considered accurately in the real-world waste management sys- 
tem to obtain lower costs. Although this study is the first attem- 
pt for waste management application through developing the 
IPQP approach, the IPQP is applicable to other environmental 
problems under uncertainty and nonlinearity.  
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