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Abstract. This paper studies convergence properties of inexact variants of the proximal point
algorithm when applied to a certain class of nonmonotone mappings. The presented algorithms
allow for constant relative errors, in the line of the recently proposed hybrid proximal-extragradient
algorithm. The main convergence result extends a recent work of the second author, where exact
solutions for the proximal subproblems were required. We also show that the linear convergence
property is preserved in the case when the inverse of the operator is locally Lipschitz continuous near
the origin. As an application, we give a convergence analysis for an inexact version of the proximal
method of multipliers for a rather general family of problems which includes variational inequalities
and constrained optimization problems.
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1. Introduction. We deal in this paper with methods for finding zeroes of point-
to-set operators in Hilbert spaces; i.e., given a Hilbert space H and an operator
T : H → P(H), we intend to find some x∗ ∈ H such that 0 ∈ T (x∗).

The proximal point algorithm, whose origins can be traced back to [9], was born
in the 1960s (see, e.g., [12], [10]) and attained its current formulation in the works of
Rockafellar [14], [15], where its connection with the augmented Lagrangian method
for constrained nonlinear optimization was established. Basically, given a sequence
{γn} of positive real numbers bounded away from zero, the algorithm generates a
sequence {xn} ⊂ H, starting from some x0 ∈ H, through the iteration

xn+1 ∈ (I + γnT )
−1(xn).(1)

When T is monotone, i.e.,

〈x− y, u− v〉 ≥ 0(2)

for all x, y ∈ H, all u ∈ T (x), and all v ∈ T (y), and furthermore maximal monotone,
i.e., T = T ′ whenever T ′ : H → P(H) is monotone and T (x) ⊂ T ′(x) for all x ∈ H,
it follows from Minty’s theorem (see [11]) that I + γT is onto and (I + γT )−1 is
single-valued for all positive γ ∈ R so that the sequence defined by (1) is well defined.
It has been proved in [14] that maximal monotonicity of T also ensures the weak
convergence of the sequence {xn} defined by (1) to a zero of T when T has zeroes,
and its unboundedness otherwise. Such weak convergence is global; i.e., the result
just announced holds in fact for any x0 ∈ H.
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†Instituto de Matemática Pura e Aplicada (IMPA), Estrada Dona Castorina 110, Rio de Janeiro,

RJ, CEP 22460-320, Brazil (iusp@impa.br, benar@impa.br). The work of the first author was par-
tially supported by CNPq grant 301280/86.

‡Department of Management Sciences, Helsinki School of Economics and Business Administration,
PL 1210, 00101, Helsinki, Finland (pennanen@hkkk.fi).

1080



INEXACT PROXIMAL METHOD WITHOUT MONOTONICITY 1081

The situation becomes considerably more complicated when T fails to be mono-
tone. Augmented Lagrangian methods for minimization of nonconvex functions, a
particular instance of the proximal point method for finding zeroes of nonmonotone
operators, have been studied in [1], [6], and [20]. A survey of results on convergence of
the proximal algorithm without monotonicity up to 1997 can be found in [8]. A new
approach to the subject was taken in [13], which deals with a class of nonmonotone
operators that, when restricted to a neighborhood of the solution set, are not far from
being monotone. More precisely, it was assumed that, for some ρ > 0, the mapping
T−1 + ρI is monotone when restricted to a neighborhood of Ŝ∗ × {0}, where Ŝ∗ is a
nonempty connected component of the solution set S∗ = T−1(0). When this happens,
the main convergence result of [13] states that a “localized” version of (1) generates
a sequence that converges to a point in Ŝ∗, provided x0 is close enough to Ŝ∗ and
inf γn > 2ρ.

The issue of convergence of the algorithm under inexact computation of the iter-
ates; i.e., when (1), or equivalently the inclusion

xn − xn+1 ∈ γnT (xn+1),(3)

is solved only approximately, comes up immediately when dealing with the proximal
algorithm for at least two reasons. First, it is generally imposible to find an exact
value for xn+1 given by (1), or (3), particularly when T is nonlinear; second, it is
clearly inefficient to spend too much effort in the computation of a given iterate xn

when only the limit of the sequence has the desired properties. Thus, the issue was
dealt with even in the early treatment of the subject, e.g., in [14], but always, as far
as we know, for the case of a monotone T . For instance, it has been proved in [14]
that convergence is preserved when an error en is committed when performing the
iteration given by (3), i.e., when (3) is replaced by

en + xn − xn+1 ∈ γnT (xn+1),(4)

as long as

∞∑
n=0

‖en‖ <∞.(5)

Other related conditions, but always including the summability of some measure of
the error, can be found, e.g., in [14], [5]. These criteria are somewhat undesirable,
because they impose increasing precision along the iterative process.

Recently, new related procedures have been presented in [17] and [18] which allow
for constant relative error in the sense, e.g., that the norm of the error en in (4)
must be smaller than a given fraction of the distance from the current iterate to the
previous one. The price to be paid for this less stringent error criterion is that the
resulting point (i.e., xn+1 in (4)) is not the next iterate, but rather an intermediate
point which determines a hyperplane separating xn from the solution set, and thus a
direction pointing from xn to this set; the actual next iterate is obtained by taking a
certain step from xn in this direction. More precisely, taking yn as the intermediate
point, and defining

γnv
n = en + xn − yn,(6)

inclusion (4) becomes

vn ∈ T (yn)(7)



1082 A. N. IUSEM, T. PENNANEN, AND B. F. SVAITER

and the error criterion is

‖en‖ ≤ σmax{γn ‖vn‖ , ‖yn − xn‖},(8)

with σ ∈ [0, 1). Indeed, the vector vn gives the desired direction so that

xn+1 = xn − ηnvn(9)

for some appropriate ηn > 0 (e.g., ηn = 〈vn, xn − yn〉/[‖vn‖2
]). It is important to

emphasize that the additional cost of computing xn+1 once vn and yn have been
determined (i.e., the cost of (9)) is negligible as compared to the solution, even in
an inexact way, of the inclusion (4) (or the pair (6)–(7)). Algorithms of this kind
have been called “hybrid” due to the presence of the additional step (9), in addition
to the proximal step given by (6)–(7). We also remark that (8) can be seen as a
sort of stopping criterion in an internal iterative procedure for the solution of (3):
given candidate points (yn, vn) computed by such a procedure, if en as given by (6)
satisfies (8), then vn is accepted and xn+1 is computed according to (9); otherwise the
procedure must continue, generating a new pair. In this sense, we can say that error
criteria like (8) are particularly appropriate for computer implementation. In [17] it
has been proved that the sequence generated by (6)–(9) is globally convergent to a
zero of T in the weak topology, under the only assumptions of the existence of zeroes
and the monotonicity of T (besides boundedness away from 0 of {γn}). Other related
error criteria for the proximal point algorithm, allowing also for constant relative
error, can be found in [19], [3], and [4].

In this paper we will consider the following inexact procedure for finding zeroes
of an operator T : H → P(H) whose inverse is maximal ρ-hypomonotone on a set
U × V ⊂ H ×H (see Definition 1 below). Given xn ∈ H, find (yn, vn) ∈ U × V such
that

vn ∈ T (yn),(10)

γnv
n + yn − xn = en,(11)

where the error term en satisfies either

‖en‖ ≤ σ
(
γ̂

2
− ρ

)
‖vn‖(12)

or

‖en‖ ≤ ν ‖yn − xn‖ ,(13)

with

ν =

√
σ + (1− σ) (2ρ/γ̂)2 − 2ρ/γ̂

1 + 2ρ/γ̂
,(14)

where σ ∈ [0, 1), γ̂ = inf{γn}, and ρ is the hypomonotonicity constant of T−1. Then,
under any of our two error criteria, the next iterate xn+1 is given by

xn+1 = xn − γnvn.(15)
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From now on, Algorithm 1 refers to the algorithm given by (10)–(12) and (15), and
Algorithm 2 refers to the one given by (10), (11), and (13)–(15). We will prove that,
when ρ-hypomonotonicity of T−1 holds on the whole space (i.e., U = V = H), both
Algorithm 1 and Algorithm 2 generate sequences which are weakly convergent to a
zero of T , starting from any x0 ∈ H, under the assumptions of existence of zeroes
of T and 2ρ < γ̂ = inf{γn}. For the case in which the set U × V where T−1 is
ρ-hypomonotone is an appropriate neighborhood of Ŝ∗ × {0} ⊂ H ×H, where Ŝ∗ is
a connected component of the set S∗ of zeroes of T , we still get a local convergence
result, meaning weak convergence of {xn} to a zero of T , but requiring additionally
that x0 be sufficiently close to Ŝ∗ ∩ U , in a sense which is presented in a precise way
in section 4.

We remark that when the tolerance σ vanishes, we get en = 0 from either (12) or
(13)–(14), and then xn − yn = γnv

n from (11), so that xn+1 = yn from (15). Thus,
with σ = 0 our algorithm reduces to the exact algorithm in [13]. When comparing
our analysis for this exact case with those in [13] it is worthwhile to point out the
following difference: in [13] the proposed algorithm is studied by assuming first that T
is locally monotone, and convergence is proved by showing that the resulting sequence
coincides with the one generated by the algorithm applied to some maximal mono-
tone operator. Then, the algorithm applied to a mapping whose inverse is locally
ρ-hypomonotone is shown to be equivalent to an overrelaxed version of the proximal
algorithm applied to the locally monotone operator (T−1 +ρI)−1, with a different se-
quence of regularization parameters, and convergence is finally obtained by invoking
results in [5] on the convergence of such an overrelaxed variant of the proximal point
algorithm. Our approach is less convoluted: we prove directly the Fejér monotonicity
properties of {xn}, which have as a consequence the weak convergence of {xn} to a
zero of T . The issue of overrelaxation of the proximal point applied to the Yosida
regularization (T−1 + ρI)−1 of T is confined to a lemma, also proved from scratch
(up to an invocation of Minty’s theorem), on the issue of existence of the iterates.
Thus, our proof is (almost) self-contained and, in the exact case, it can be seen as a
streamlined version of the analysis in [13].

2. Hypomonotone operators. From now on we will identify, in a set theoretic
fashion, a point-to-set operator T : H → P(H) with its graph, i.e., with {(x, v) ∈
H × H : v ∈ T (x)}. Thus, (x, v) ∈ T has the same meaning as v ∈ T (x). We
emphasize that (x, v) is seen here as an ordered pair, i.e., (x, v) ∈ T (or equivalently
(v, x) ∈ T−1) is not the same as (v, x) ∈ T .

Definition 1. Given a positive ρ ∈ R and a subset W of H × H, an operator
T : H → P(H) is said to be

(a) ρ-hypomonotone if and only if 〈x−y, u−v〉 ≥ −ρ ‖x− y‖2
for all (x, u), (y, v) ∈

T ;
(b) maximal ρ-hypomonotone if and only if T is ρ-hypomonotone and additionally

T = T ′ whenever T ′ ⊂ H ×H is ρ-hypomonotone and T ⊂ T ′;
(c) ρ-hypomonotone in W if and only if T ∩W is ρ-hypomonotone;
(d) maximal ρ-hypomonotone in W if and only if T is ρ-hypomonotone in W and

additionally T ∩W = T ′ ∩W whenever T ′ ∈ H ×H is ρ-hypomonotone and
T ∩W ⊂ T ′ ∩W .

It follows from 13.33 and 13.36 of [16] that if a function f : H → R ∪ {∞} can
be written as g− h in a neighborhood of a point x ∈ H, where g is finite and h is C2,
then the subdifferential ∂f of f is ρ-hypomonotone for some ρ > 0 in a neighborhood
of any point (x, v) ∈ H × H with v ∈ ∂f(x). It is also easy to check that a locally
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Lipschitz continuous mapping is hypomonotone for every ρ greater than the Lipschitz
constant. In particular, if H is finite dimensional and T : H → P(H) is such that
T−1 is point-to-point and differentiable in a neighborhood of some v ∈ H, then T is
ρ-hypomonotone in a neighborhood of (x, v) for any x such that v ∈ T (x), and for
any ρ larger than the absolute value of the most negative eigenvalue of J + J t, where
J is the Jacobian matrix of T−1 at v. In other words, local ρ-hypomonotonicity for
some ρ > 0 is to be expected of any T which is not too badly behaved.

Note that a mapping T is ρ-hypomonotone if and only if T +ρI is monotone. We
also have the following.

Proposition 1. If T : H → P(H) is ρ-hypomonotone, then there exists a
maximal ρ-hypomonotone T̂ : H → P(H) such that T ⊂ T̂ .

Proof. The proof is a routine application of Zorn’s lemma, with exactly the same
argument as the one used to prove that any monotone operator is contained in a
maximal monotone one.

Next we introduce in a slightly different way the Yosida regularization of an
operator. For ρ ≥ 0, define Yρ : H ×H → H ×H (Y for Yosida) as

Yρ(x, v) = (x+ ρv, v).(16)

Observe that Yρ is a bijection, and (Yρ)
−1(y, u) = (y − ρu, u). Note also that

Yρ(T ) = (T−1 + ρI)−1.(17)

Proposition 2. Take ρ ≥ 0, T : H → P(H), and Yρ as in (16). Then
(i) T−1 is ρ-hypomonotone if and only if Yρ(T ) is monotone;
(ii) T−1 is maximal ρ-hypomonotone if and only if Yρ(T ) is maximal monotone.
Proof.
(i) Monotonicity of the Yosida regularization means that (T−1 + ρI)−1 is mono-

tone, which is equivalent to the monotonicity of T−1 + ρI.
(ii) Assume that T−1 is maximal ρ-hypomonotone. We prove the maximal mono-

tonicity of Yρ(T ). The monotonicity follows from item (a). Assume that
Yρ(T ) ⊂ Q for some monotone Q ⊂ H ×H. Note that Q = Yρ(TQ) for some
TQ because Yρ is a bijection. It follows, in view of (i) and the monotonicity of
Q, that T−1

Q is ρ-hypomonotone, and therefore, using again the bijectivity of

Yρ, we have T
−1 ⊂ T−1

Q . Since T−1 is maximal ρ-hypomonotone, we conclude

that T−1 = T−1
Q , i.e., T = TQ, so that Q = Yρ(T

′) = Yρ(T ), proving that
Yρ(T ) is maximal monotone. The converse statement is proved with a similar
argument.

We continue with an elementary result on the Yosida regularization Yρ(T ).
Proposition 3. For all T : H → P(H) and all ρ ≥ 0, 0 ∈ T (x) if and only if

0 ∈ [Yρ(T )] (x).
Proof. The result follows immediately from (17).
Remark 1. It is well known that the set of zeroes of a monotone operator is

closed and convex. In view of Propositions 2 and 3, the same holds for mappings
whose inverses are ρ-hypomonotone. Thus, though reasonably well-behaved operators
can be expected to be locally ρ-hypomonotone for some ρ > 0, as discussed above,
global ρ-hypomonotonicity is not at all generic; looking for instance at point-to-point
operators in R, we observe that polynomials with more than one real root, or analytic
functions like T (x) = sin x, are not ρ-hypomonotone for any ρ > 0.
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Next we establish local demiclosedness of maximal locally ρ-hypomonotone op-
erators, with a proof which mirrors the one on demiclosedness of maximal monotone
operators.

Proposition 4. Assume that T−1 : H → P(H) is maximal ρ-hypomonotone in
W−1 for some W ⊂ H × H, and consider a sequence {(xn, vn)} ⊂ T ∩W . If {vn}
is strongly convergent to v̄, {xn} is weakly convergent to x̄, and (x̄, v̄) ∈ W , then
v̄ ∈ T (x̄).

Proof. Define T ′ : H → P(H) as T ′ = T ∪ {(x̄, v̄)}. We claim that (T ′)−1 is
ρ-hypomonotone in W−1. Since T−1 is ρ-hypomonotone in W−1, clearly it suffices to
prove that

−ρ ‖v̄ − v‖2 ≤ 〈x̄− x, v̄ − v〉(18)

for all (x, v) ∈ T ∩W . Observe that, for all (x, v) ∈ T ∩W ,

−ρ ‖vn − v‖2 ≤ 〈xn − x, vn − v〉.(19)

Since {vn} is strongly convergent to v̄ and {xn} is weakly convergent to x̄, taking
limits in (19) as n → ∞ we obtain (18), and the claim is established. Since T ⊂ T ′,
(T ′)−1 is ρ-hypomonotone in W−1, and T−1 is maximal ρ-hypomonotone in W−1, we
have that T ∩W = T ′ ∩W by Definition 1(d). Since v̄ ∈ T ′(x̄) and (x̄, v̄) ∈ W , we
conclude that v̄ ∈ T (x̄).

We close this section with a result on convexity and weak closedness of some sets
related to the set of zeroes of operators whose inverses are ρ-hypomonotone. We use
the usual notation for sums of sets; i.e., for A,B ⊂ H, A + B ⊂ H is defined as
A + B = {x + y : x ∈ A, y ∈ B}. Also, for x ∈ H and δ > 0, B(x, δ) will denote the
closed ball of radius δ centered at x.

Proposition 5. Assume that T−1 : H → P(H) is maximal ρ-hypomonotone in
a subset V × U ⊂ H ×H, where U is convex and 0 ∈ V . Let S∗ ⊂ H be the set of
zeroes of T . Then

(i) S∗ ∩ U is convex;
(ii) if S∗ ∩ U is closed, then (S∗ ∩ U) +B(0, δ) is weakly closed for all δ ≥ 0.
Proof.
(i) By Proposition 1, T ∩ (U × V ) ⊂ T̂ for some T̂ : H → P(H) such that

T̂−1 is maximal ρ-hypomonotone. Let Ŝ∗ be the set of zeroes of T̂ . By
Proposition 3, Ŝ∗ is also the set of zeroes of Yρ(T̂ ), which is maximal monotone
by Proposition 2(ii). Since the set of zeroes of a maximal monotone operator
is convex (e.g., 12.8(a) and (c) in [16]), we conclude that Ŝ∗ is convex, and
therefore Ŝ∗ ∩ U is convex, because U is convex. Since T−1 is maximal ρ-
hypomonotone in V × U , T̂−1 is ρ-hypomonotone, and T ⊂ T̂ , we have that
T̂ ∩ (U × V ) = T ∩ (U × V ), and then, since 0 ∈ V , it follows easily that
Ŝ∗ ∩ U = S∗ ∩ U . The result follows.

(ii) Since H is a Hilbert space, B(0, δ) is weakly compact (e.g., Theorem III.8
in [2]), and S∗ ∩ U , being closed by assumption and convex by item (i), is
weakly closed. Thus (S∗ ∩ U) + B(0, δ) is weakly closed, being the sum of a
closed and a compact set, both with respect to the weak topology.

3. Existence results. The issue of existence of iterates for proximal algorithms
applied to nonmonotone operators is delicate. The main tool used for establishing
existence in the monotone case, namely Minty’s theorem, does not work without
monotonicity. Overcoming this obstacle requires some technicalities, where the notion
of ρ-hypomonotonicity becomes crucial.
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Note that if a pair (yn, vn) satisfies (10)–(12), or (10)–(11) together with (13)–
(14), with σ = 0 (which in the second case implies ν = 0), then such a pair satisfies
those conditions with any σ > 0. Since σ = 0 also implies that the error term
en vanishes, existence of exact iterates is enough to settle the existence issue for
our inexact schemes. Now, we already mentioned that our scheme reduces, in the
absence of errors, to the algorithm studied in [13], and therefore we could refer to the
existence results in this reference without further discussion. But since we dressed
our setting somewhat differently from the one in [13] (e.g., the definition of local ρ-
hypomonotonicity), we prefer to offer a full proof, which also contributes to making
this paper more self-contained. The technicalities will be encapsulated in the following
lemma, where, for x ∈ H and A ⊂ H, d(x,A) will denote the distance from x to A,
i.e., d(x,A) = infy∈A ‖x− y‖.

Lemma 1. Let T : H → P(H) be an operator such that T−1 is maximal ρ-
hypomonotone in a subset V × U of H × H. Assume that T has a nonempty set of
zeroes S∗, that U is convex, and that

(i) S∗ ∩ U is nonempty and closed;
(ii) there exists β > 0 such that B(0, β) ⊂ V ;
(iii) there exists δ > 0 such that (S∗ ∩ U) +B(0, δ) ⊂ U .

Take any γ > 2ρ and define ε = min{δ, βγ/2}. If x ∈ H is such that d(x, S∗∩U) ≤ ε,
then there exists y ∈ H such that γ−1(x− y) ∈ T (y) and d(y, S∗ ∩ U) ≤ ε.

Proof. By Definition 1(c) and (d), T−1 ∩ (V ×U) is ρ-hypomonotone. By Propo-
sition 1, there exists a maximal ρ-hypomonotone T̂−1 ⊂ H ×H such that

[T−1 ∩ (V × U)] ⊂ T̂−1.(20)

By Proposition 2(ii), Yρ(T̂ ) is maximal monotone, with Yρ as defined in (16). Let
γ̂ = γ− ρ. Since γ̂ > 0 by assumption, it follows from Minty’s theorem (see [11]) that
the operator [I + γ̂Yρ(T̂ )]

−1 is onto (and also one-to-one, but this does not concern

us) so that there exists z ∈ H such that x ∈ [I + γ̂Yρ(T̂ )]
−1(z), or equivalently

γ̂−1(x− z) ∈
[
Yρ(T̂ )

]
(z).(21)

Letting

v := γ̂−1(x− z),(22)

we can rewrite (21) as (z, v) ∈ Yρ(T̂ ), which is equivalent, in view of (16), to

(z − ρv, v) ∈ T̂ .(23)

Let now y = z− ρv. In view of (22) and the definition of γ̂, (23) is in turn equivalent
to

(y, γ̂−1(x− z)) ∈ T̂ .(24)

It follows easily from (22) and the definitions of y and γ̂ that

γ̂−1(x− z) = (γ − ρ)−1(x− z) = γ−1(x− y) = ρ−1(z − y).(25)

We conclude from (24) and (25) that

γ−1(x− y) ∈ T̂ (y).(26)
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Note that (26) looks pretty much like the statement of the lemma, except that
we have T̂ instead of T . The operators T and T̂ do coincide on U ×V , as we will see,
but in order to use this fact we must first establish that (y, γ−1(x−y)) belongs indeed
to U × V , which will result from the assumption on d(x, S∗ ∩U). The analysis in the
following paragraph is tantamount to establishing Fejér monotonicity of the iterates
of an overrelaxed proximal algorithm applied to a maximal monotone operator, which
can be found in [5].

Take any x̄ ∈ S∗ ∩ U , nonempty by condition (i), and z as in (21). Note that x̄
is a zero of T ∩ (U × V ), because it belongs to S∗ ∩ U and 0 ∈ V by condition (ii).
Thus x̄ is a zero of T̂ , which contains T ∩ (U × V ). By Proposition 3, x̄ is a zero of
Yρ(T ). Then

‖x− x̄‖2
= ‖x− z‖2

+ ‖z − x̄‖2
+ 2〈x− z, z − x̄〉

= ‖x− z‖2
+ ‖z − x̄‖2

+ 2γ̂〈γ̂−1(x− z)− 0, z − x̄〉 ≥ ‖x− z‖2
+ ‖z − x̄‖2

,(27)

using (21), the monotonicity of Yρ(T̂ ), the nonnegativity of γ̂, and the fact that x̄ is

a zero of Yρ(T̂ ) in the inequality. Take now y as defined after (23). Then

‖y − x̄‖2
= ‖y − z‖2

+ ‖z − x̄‖2 − 2〈y − z, x̄− z〉

=

(
ρ

γ − ρ
)2

‖z − x‖2
+ ‖z − x̄‖2 − 2ρ

γ − ρ 〈z − x, x̄− z〉

≤ ‖x− x̄‖2 −
[
1−

(
ρ

γ − ρ
)2

]
‖z − x‖2 − 2ρ〈0− (γ − ρ)−1(x− z), x̄− z〉

≤ ‖x− x̄‖2−
[
1−

(
ρ

γ − ρ
)2

]
‖z − x‖2

= ‖x− x̄‖2− γ(γ − 2ρ)

(γ − ρ)2 ‖z − x‖2 ≤ ‖x− x̄‖2
,

(28)

using (25) in the first equality, (27) in the first inequality, (21) and the monotonicity of
Yρ(T̂ ) in the second inequality, and the assumption that γ > 2ρ in the third inequality.
It follows from (28) that ‖y − x̄‖ ≤ ‖x− x̄‖ for all x̄ ∈ S∗ ∩ U , in particular when x̄
is the orthogonal projection of x onto S∗ ∩ U , which exists because S∗ ∩ U is closed
by condition (i) and convex by Proposition 5(i). For this choice of x̄ we have that

‖y − x̄‖ ≤ ‖x− x̄‖ = d(x, S∗ ∩ U) ≤ ε = min{δ, βγ/2} ≤ δ,(29)

where the second inequality holds by the assumption on x. Since x̄ belongs to S∗∩U ,
we get from (29) that

y ∈ (S∗ ∩ U) +B(0, δ) ⊂ U,(30)

using condition (iii) in the inclusion.
Observe now that, with the same choice of x̄,

γ−1 ‖x− y‖ ≤ γ−1(‖x− x̄‖+ ‖y − x̄‖) ≤ 2εγ−1 ≤ β,(31)

using (29) and the assumption on x in the second inequality, and the fact that ε =
min{δ, βγ/2} in the third inequality. It follows from (30), (31), and condition (ii) that

(y, γ−1(x− y)) ∈ U × V.(32)
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Since T is maximal ρ-hypomonotone in U×V and T̂ is ρ-hypomonotone, it follows
from (20) and Definition 1(d) that T ∩ (U × V ) = T̂ ∩ (U × V ). In view of (26), we
conclude from (32) that γ−1(x − y) ∈ T (y). Finally, using (29), d(y, S∗ ∩ U) ≤
‖y − x̄‖ ≤ ε, completing the proof.

Remark 2. As we mentioned along the proof of Lemma 1, the vector z satisfying
(21) is unique by Minty’s theorem, and thus it is easy to check that the vector y in
the statement of the lemma is also unique. This is not too relevant for our inexact
algorithms: the iterates are unique for σ = 0 (i.e., in the exact case) but hopefully not
so for other values of σ. We emphasize that uniqueness of the iterates is no blessing
for inexact algorithms; it is rather catastrophic.

Corollary 1. Consider either Algorithm 1 or Algorithm 2 applied to an operator
T : H → P(H) which is ρ-hypomonotone on a subset U × V of H × H satisfying
conditions (i)–(iii) of Lemma 1. If d(xn, S∗ ∩ U) ≤ ε, with ε as in the statement of
Lemma 1, and γn > 2ρ, then there exists a pair (yn, vn) ∈ U × V satisfying (10) and
(11), and consequently a vector xn+1 satisfying (15).

Proof. Apply Lemma 1 with x = xn, γ = γn. Take yn as the vector y whose
existence is ensured by the lemma and vn = γ−1

n (xn − yn). Then yn and vn satisfy
(10) and (11) with en = 0 so that (12) or (13)–(14) hold for any σ ≥ 0. Once a pair
(yn, vn) exists, the conclusion about xn+1 is obvious, since (15) raises no existence
issues.

In order to ensure existence of the iterates, we still have to prove, in view of
Corollary 1, that the whole sequence {xn} is contained in B(x̄, ε), where x̄ is the
orthogonal projection of x0 onto S∗ ∩ U and ε is as in Lemma 1. This will be a
consequence of the Fejér monotonicity properties of {xn}, which we will establish in
the following section.

4. Convergence analysis. The next lemma establishes the Fejér monotonicity
property of sequences generated by our inexact algorithm. We have not yet proved
the existence of such sequences, but the lemma is phrased so as to circumvent the
existential issue for the time being.

Lemma 2. Let {xn} ⊂ H be a sequence generated by either Algorithm 1 or
Algorithm 2 applied to an operator T : H → P(H) such that T−1 is ρ-hypomonotone
in a subsetW−1 of H×H, and take x∗ in the set S∗ of zeroes of T . If 2ρ < γ̂ = inf{γn}
and both (x∗, 0) and (yn, vn) belong to W , then

(i) ∥∥xn+1 − x∗∥∥2 ≤ ‖xn − x∗‖2 − (1− σ)γn(γ̂ − 2ρ) ‖vn‖2

for Algorithm 1 and
(ii)

∥∥x∗ − xn+1
∥∥2 ≤ ‖x∗ − xn‖2 − (1− σ)

(
1− 2ρ

γ̂

)
‖yn − xn‖2

for Algorithm 2.
Proof. We start with the following elementary algebraic equality:

‖x∗ − xn‖2 − ∥∥x∗ − xn+1
∥∥2 − ‖yn − xn‖2

+
∥∥yn − xn+1

∥∥2
= 2〈x∗ − yn, xn+1 − xn〉.

(33)

Using first (15) in the right-hand side of (33), and then ρ-hypomonotonicity of T−1

in W−1, together with the fact that both (x∗, 0) and (yn, vn) belong to T ∩W , by
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(10) and the assumptions of the lemma we get

‖x∗ − xn‖2 − ∥∥x∗ − xn+1
∥∥2 − ‖yn − xn‖2

+
∥∥yn − xn+1

∥∥2

= 2γn〈x∗ − yn, 0− vn〉 ≥ −2ργn ‖vn‖2
.(34)

From this point the computations differ according to the error criterion. We start
with the one given by (12). It follows from (11) and (15) that yn − xn = en − γnvn
and yn − xn+1 = en. Substituting these two equalities in (34) we get

‖x∗ − xn‖2 − ∥∥x∗ − xn+1
∥∥2 ≥ γ2

n ‖vn‖2 − 2γn〈vn, en〉 − 2ργn ‖vn‖2

≥ γ2
n ‖vn‖2 − 2γn ‖vn‖ ‖en‖ − 2ργn ‖vn‖2

= γn ‖vn‖ [(γn − 2ρ) ‖vn‖ − 2 ‖en‖]

≥ γn ‖vn‖ [(γn − 2ρ) ‖vn‖ − σ(γ̂ − 2ρ) ‖vn‖] ≥ γn ‖vn‖ [(1− σ)(γ̂ − 2ρ) ‖vn‖]

= (1− σ)γn(γ̂ − 2ρ) ‖vn‖2
,(35)

using (12) in the third inequality and the definition of γ̂ in the last inequality. The
results follows immediately from (35).

Now we look at the error criterion given by (13)–(14). Using again (11) and (15),
we can replace yn − xn+1 by en and −vn by γ−1

n (yn − xn − en) in (34), obtaining

‖x∗ − xn‖2 − ∥∥x∗ − xn+1
∥∥2 ≥ ‖yn − xn‖2 −

(
‖en‖2

+ 2ργ−1
n ‖yn − xn − en‖2

)
≥ ‖yn − xn‖2 −

[
‖en‖2

+ 2ργ−1
n (‖yn − xn‖+ ‖en‖)2

]
.(36)

Using now (13) in (36) we get

‖x∗ − xn‖2 − ∥∥x∗ − xn+1
∥∥2 ≥

[
1− ν2 − 2ρ

γn
(1 + ν)2

]
‖yn − xn‖2

≥
[
1− ν2 − 2ρ

γ̂
(1 + ν)2

]
‖yn − xn‖2

.(37)

It follows from (14), after some elementary algebra, that[
1− ν2 − 2ρ

γ̂
(1 + ν)2

]
= (1− σ)

(
1− 2ρ

γ̂

)
.(38)

Replacing (38) in (37), we obtain

‖x∗ − xn‖2 − ∥∥x∗ − xn+1
∥∥2 ≥ (1− σ)

(
1− 2ρ

γ̂

)
‖yn − xn‖2

,(39)

and the results follows immediately from (39).
Next we combine the results of Lemmas 1 and 2 in order to obtain our convergence

theorem.
Theorem 1. Let T : H → P(H) so that T−1 is maximal ρ-hypomonotone in a

subset V × U of H ×H satisfying
(i) S∗ ∩ U is nonempty and closed;
(ii) there exists β > 0 such that B(0, β) ⊂ V ;
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(iii) there exists δ > 0 such that (S∗ ∩ U) +B(0, δ) ⊂ U ;
(iv) U is convex,

where S∗ is the set of zeroes of T . Take a sequence {γn} of positive real numbers such
that 2ρ < γ̂ = inf{γn}. Define ε = min{δ, βγ̂/2}. If d(x0, S∗ ∩ U) ≤ ε, then, for both
Algorithm 1 and Algorithm 2,

(a) for all n there exist yn, vn, en, xn+1 ∈ H satisfying (10)–(12) and (15), in the
case of Algorithm 1, and (10)–(11) and (13)–(15), in the case of Algorithm
2, and such that (yn, vn) ∈ U × V , d(xn+1, S∗ ∩ U) ≤ ε;

(b) for any sequence as in (a), we have that (xn) converges weakly to a point in
S∗ ∩ U .

Proof.
(a) We proceed by induction. Take any n ≥ 0. We have that

d(xn, S∗ ∩ U) ≤ ε,(40)

by inductive hypothesis, if n ≥ 1, and by assumption if n = 0. We are within
the hypotheses of Corollary 1, which indicates that the desired vectors exist
and that (yn, vn) ∈ U × V . It remains to establish that d(xn+1, S∗ ∩ U) ≤ ε.
Let x̄ be the orthogonal projection of xn onto S∗∩U , which exists by condition
(i) and (iv) and Proposition 5. Note that both (x̄, 0) and (yn, vn) belong to
U × V . Thus we are within the hypotheses of Lemma 2, with W = U × V ,
and both for Algorithm 1 and Algorithm 2 we get from either Lemma 2(i) or
Lemma 2(ii) that ∥∥x∗ − xn+1

∥∥ ≤ ‖x∗ − xn‖(41)

for all x∗ ∈ S∗ ∩ U . By (41) with x̄ instead of x∗,

d(xn+1, S∗ ∩ U) ≤ ∥∥x̄− xn+1
∥∥ ≤ ‖x̄− xn‖ = d(xn, S∗ ∩ U) ≤ ε,

using (40) in the last inequality.
(b) We follow here with minor variations the standard convergence proof for the

proximal point algorithm; see, e.g., [14]. In view of (41), for all x∗ ∈ S∗ ∩ U
the sequence {‖xn − x∗‖} is nonincreasing, and certainly nonnegative, and
hence convergent. Also, since ‖xn − x∗‖ ≤ ∥∥x0 − x∗∥∥ for all n, we get that
{xn} is bounded.
Now we consider separately both algorithms. In the case of Algorithm 1, we
get from Lemma 2(i)

(1− σ)(γ̂ − 2ρ)γn ‖vn‖2 ≤ ‖xn − x∗‖2 − ∥∥xn+1 − x∗∥∥2
.(42)

Since the right-hand side of (42) converges to 0, we conclude that limn→∞ γn ‖vn‖
= 0, and therefore, since γn ≥ γ̂ > 0 for all n,

lim
n→∞ v

n = 0,(43)

which implies, in view of (12), that limn→∞ en = 0, and therefore, by (11),

lim
n→∞(yn − xn) = 0.(44)

In the case of Algorithm 2, we get from Lemma 2(ii)

(1− σ)
(
1− 2ρ

γ̂

)
‖yn − xn‖2 ≤ ‖x∗ − xn‖2 − ∥∥x∗ − xn+1

∥∥2
.(45)
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Again, the right-hand side of (45) converges to 0, and thus (44) also holds in
this case, so that, in view of (13), limn→∞ en = 0, which gives, in view of (44)
and (11), limn→∞ γnvn = 0, so that in this case we also have (43). We have
proved that (43) and (44) hold both for Algorithm 1 and Algorithm 2, and
we proceed from now on with an argument which holds for both algorithms.
Since {xn} is bounded, it has weak cluster points. Let x̃ be any weak cluster
point of {xn}; i.e., x̃ is the weak limit of a subsequence {xkn} of {xn}. By
(44), x̃ is also the weak limit of {ykn}. We claim that (x̃, 0) belongs to
U × V . In view of condition (ii), it suffices to check that x̃ ∈ U . Note
that {xn} ⊂ (S∗ ∩ U) + B(0, ε) by item (a). Since U is convex by condition
(iv) and S∗ ∩ U is closed by condition (i), we can apply Proposition 5(ii)
to conclude that (S∗ ∩ U) + B(0, ε) is weakly closed. Thus, the weak limit
x̃ of {xnk} belongs to (S∗ ∩ U) + B(0, ε), and henceforth to U , in view of
condition (ii) and the fact that ε ≤ δ. The claim holds, and we are within
the hypotheses of Proposition 4: {vkn} is strongly convergent to 0 by (43),
{xkn} is weakly convergent to x̃, and (0, x̃) belongs to V × U , where T−1 is
maximal ρ-hypomonotone. Then 0 ∈ T (x̃), i.e., x̃ ∈ S∗ ∩ U .
Finally we establish uniqueness of the weak cluster point of {xn}, with the
standard argument (e.g., [14]) which we include just in order to keep our self-
containment policy. Let x̃, x̂ be two weak cluster points of {xn}, say the weak
limits of {xkn}, {xjn}, respectively. We have just proved that both x̃ and x̂
belong to S∗ × U , and thus, by (41), both {‖x̂− xn‖} and {‖x̃− xn‖} are
nonincreasing, and hence convergent, say, to α̂ ≥ 0 and to α̃ ≥ 0, respectively.
Now,

‖x̂− xn‖2
= ‖x̂− x̃‖2

+ ‖x̃− xn‖2
+ 2〈x̂− x̃, x̃− xn〉.(46)

Taking limits in (46) as n→ ∞ along the subsequence {xkn}, we get

‖x̂− x̃‖2
= α̂2 − α̃2.(47)

Reversing now the roles of x̃, x̂ in (46), and taking limits along the subse-
quence {xjn}, we get

‖x̂− x̃‖2
= α̃2 − α̂2.(48)

It follows from (47) and (48) that x̃ = x̂, and thus the whole sequence {xn}
has a weak limit which is a zero of T and belongs to U .

The next corollary states the global result for the case in which T−1 is
ρ-hypomonotone in the whole H ×H.

Corollary 2. Assume that T : H → P(H) has a nonempty set of zeroes S∗ and
that T−1 is maximal ρ-hypomonotone. Take a sequence {γn} of positive real numbers
such that 2ρ < γ̂ = inf{γn}. Then, for both Algorithm 1 and Algorithm 2, given any
x0 ∈ H,

(a) for all n there exist yn, vn, en, xn+1 ∈ H satisfying (10)–(12) and (15), in the
case of Algorithm 1, and (10)–(11) and (13)–(15), in the case of Algorithm
2;

(b) any sequence generated by either Algorithm 1 or Algorithm 2 is weakly con-
vergent to a point in S∗.

Proof. This is just Theorem 1 for the case of U = V = H. In this case all
the assumptions above hold trivially. Regarding condition (i), note that S∗ is closed
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because, by Proposition 3, it is also the set of zeroes of the maximal monotone operator
Yρ(T ), which is closed (see, e.g., 12.8(a) and (c) in [16]). Conditions (ii) and (iii)
hold for any β, δ > 0 so that the result will hold for any ε > 0, in particular for
ε > d(x0, S∗).

We close this section with a restatement of Theorem 1, which is needed in our
section on multiplier methods.

Corollary 3. Let Z ⊂ H be a linear subspace, and consider Algorithms 1 and
2, with the additional requirement that en, besides satisfying (12) or (13)–(14), belong
to Z. Then, the results of Theorem 1 still hold.

Proof. The inductive step in the proof of Theorem 1(a), based on Lemma 1,
essentially consists of establishing, for all n, the existence of exact iterates, i.e., with
en = 0, which certainly belongs to Z, so that item (a) does hold with the additional
requirement. The proof of item (b), depending on the results of Lemma 2, is valid
for all sequences {xn} as in item (a), and hence in particular for those sequences such
that en ∈ Z.

5. Convergence rate results. We prove in this section that our inexact algo-
rithm still enjoys the convergence rate results which are already classical for proximal
point algorithms, namely, at least a linear convergence rate when T−1 is locally Lip-
schitz at 0 (see [14] for the monotone case and [13] for the nonmonotone one with
exact iterates). We will say that Q : H → P(H) is Lipschitz continuous at W ⊂ H
if there exists a constant λ ≥ 0 such that ‖v − v′‖ ≤ λ ‖x− x′‖ for all, x, x′ ∈ W , all
v ∈ Q(x), and all v′ ∈ Q(x′). Our convergence rate result is the following.

Theorem 2. Under all the assumptions of Theorem 1, suppose furthermore that
T−1 is Lipschitz continuous, with constant λ, in a neighborhood W ⊂ H of 0. Let
x∗ be the weak limit point of the sequence {xn}. Then there exists n0 such that the
following inequalities hold for all n ≥ n0:

(i)

∥∥xn+1 − x∗∥∥ ≤ λ+ µ√
(λ+ µ)2 + θn

‖xn − x∗‖(49)

for Algorithm 1, where

µ = σ

(
γ̂

2
− ρ

)
, θn = (1− σ)γn(γ̂ − 2ρ);(50)

(ii) ∥∥xn+1 − x∗∥∥ ≤ ωn√
ω2
n + ξ

‖xn − x∗‖(51)

for Algorithm 2, where

ξ = (1− σ)
(
1− 2ρ

γ̂

)
, ωn = ν + (1 + ν)

λ

γn
,(52)

with ν as in (13).
Proof. By (10), yn ∈ T−1(vn). By Theorem 1(b), x∗ ∈ T−1(0). By (43),

limn→∞ vn = 0, and so there exists n0 such that vn ∈ W for n ≥ n0. By Lipschitz
continuity of T−1 in W , for n ≥ n0,

‖yn − x∗‖ ≤ λ ‖vn‖ .(53)
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By (11) and (15), xn+1 = yn − en. Thus,∥∥xn+1 − x∗∥∥ = ‖yn − x∗ − en‖ ≤ ‖yn − x∗‖+ ‖en‖ ≤ λ ‖vn‖+ ‖en‖ ,(54)

using (53) in the second inequality.
Now we consider separately both algorithms.
(i) Combining Lemma 2(i), (50), (54), and (12) we get

∥∥xn+1 − x∗∥∥2 ≤ ‖xn − x∗‖2 − θn ‖vn‖2 ≤ ‖xn − x∗‖2 − θn
(λ+ µ)2

∥∥xn+1 − x∗∥∥2
,

(55)

and the conclusion of item (i) follows directly from (55).
(ii) By (11), vn = γ−1

n (xn − yn + en). Thus

λ ‖vn‖ ≤ λγ−1
n ‖xn − yn + en‖ ≤ λγ−1

n (‖xn − yn‖+ ‖en‖) .(56)

Combining (54) and (56)∥∥xn+1 − x∗∥∥ ≤ λγ−1
n (‖xn − yn‖+ ‖en‖) + ‖en‖

≤
[
ν + (1 + ν)

λ

γn

]
‖xn − yn‖ = ωn ‖xn − yn‖ ,(57)

using (13) in the last inequality and (52) in the equality. By Lemma 2(ii),
(52), and (57),

∥∥xn+1 − x∗∥∥2 ≤ ‖xn − x∗‖2 − ξ ‖xn − yn‖2 ≤ ‖xn − x∗‖2 − ξ

ω2
n

∥∥xn+1 − x∗∥∥2
,

(58)

and the conclusion of item (ii) follows immediately from (58).
Corollary 4. Under the assumptions of Theorem 2, the sequences generated by

Algorithms 1 and 2 converge at least linearly, with asymptotic error constants given
by λ+µ√

(λ+µ)2+θ̄
, ω̄√

ω̄2+ξ
, respectively, where θ̄ = (1 − σ)γ̂(γ̂ − 2ρ), ω̄ = ν + (1 + ν)λγ̂ ,

and superlinearly, when limn→∞ γn = ∞.
Proof. Note that ωn ≤ ω̄, θn ≥ θ̄ for all n. Thus (55), and consequently (49),

hold with θ̄ instead of θn. By the same token, (58), and consequently (51), hold
with ω̄ instead of ωn, establishing the asymptotic error constants. The statement on
superlinear convergence follows directly from Theorem 2, observing that limn→∞ γn =
∞ implies that limn→∞ θn = ∞ and limn→∞ ωn = 0.

Of course, a caveat is in order in connection with the result on superlinear con-
vergence in Corollary 4, as is the case with similar results for other variants of the
proximal point algorithm (e.g., [7]). Proximal procedures, in general, replace the in-
version of T for a sequence of subproblems, each one of which demands inversion of
I + γnT , or equivalently of γ−1

n I + T . On one hand, when γn becomes very large,
γ−1
n I + T gets very close to T , and thus an arbitrarily high convergence rate can

be achieved by making γn go fast enough to ∞ (in the limit, for γn = ∞ the al-
gorithm would find a zero of T in one iteration). But this high convergence rate is
deceiving in the following sense. Replacement of the inversion of T by a sequence
of subproblems is recommended basically when the inversion of T is hard, i.e., when
T is somewhat ill-conditioned. The properties of T imply that γ−1

n I + T is instead
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theoretically well-conditioned (for all γn > 0 when T is monotone, for γn > 2ρ when
T is ρ-hypomonotone), but, for very large γn, γ

−1
n I + T becomes numerically almost

as ill-conditioned as T , in which case the regularization properties of the algorithm
are lost (think, e.g., of the case of linear and singular T ). In fact, one of the main ad-
vantages of the proximal point algorithm with respect to other regularization schemes
is that it works without requiring that the regularization coefficients go to ∞, i.e.,
for constant γn, for instance. In other words, when γn increases, a tradeoff takes
place between the improvement in the convergence rate and the deterioration of the
numerical stability.

6. Inexact proximal method of multipliers. Let X and Y be Hilbert spaces.
For an arbitrary S : X → P(X), a maximal monotone T : Y → P(Y ), and a C2

function F : X → Y , we consider the problem of finding a solution to the inclusion

(P) S(x) +∇F (x)∗T (F (x)) � 0,

where ∇F (x)∗ is the adjoint of the Jacobian of F at a point x ∈ X. This provides
a flexible model for various applications, and it has an associated duality theory that
can be seen as a generalization of the traditional convex programming duality theory.
Combining dualization with the proximal point algorithm leads to multiplier methods
for a wide class of problems much like in Rockafellar [15], where convex programs
were treated. In [13], this approach was extended to problems of the form (P), and
multiplier methods for variational inequalities and nonlinear convex programs were
obtained as special cases. The purpose of this section is to derive an inexact version
of the proximal method of multipliers for (P).

We reproduce here those parts of the duality theory which are needed in what
follows (see [13] for a full exposition). Denote

F0(x) = S(x) +∇F (x)∗T (F (x))

so that (P) can be written as F0(x) � 0. Define the Lagrangian L : X×Y → P(X×Y )
by

L(x, y) = (∇F (x)∗y,−F (x)) + S(x)× T−1(y),

and consider the primal-dual problem

(PD) L(x, y) � (0, 0).

The mapping F0 is related to L by

F0(x) = {S(x) +∇F (x)∗y | ∃y ∈ Y : y ∈ T (F (x))}
=

{
S(x) +∇F (x)∗y ∣∣ ∃y ∈ Y : 0 ∈ −F (x) + T−1(y)

}
= {v ∈ X | ∃y ∈ Y : (v, 0) ∈ L(x, y)} .(59)

The following is immediate.
Lemma 3. We have F0(x) � e if and only if there exists a y such that L(x, y) �

(e, 0).
We will also need to reformulate Algorithm 2. Eliminating vn, and denoting yn

by z̃n and xn by zn, we can write it as follows.
Method 1.
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1. Given zn, find a z̃n such that

γnT (z̃
n) + z̃n − zn � en

for some en ∈ Z satisfying

‖en‖ ≤ ν‖z̃n − zn‖.
2. Set

zn+1 = z̃n − en,
n = n+ 1, and go to 1.

In step 1, Z denotes a subspace of H. Corollary 3 can now be stated in the
following equivalent form.

Theorem 3. Under the assumptions of Theorem 1,
(a) there exists an infinite sequence {zn} ⊂ H, conforming to Method 1, and

satisfying

z̃n ∈ U,
en − z̃n + zn ∈ γnV,

d(xn+1, S∗ ∩ U) ≤ ε;
(b) any sequence as in (a) converges weakly to a point in S∗ ∩ U .
If we apply Method 1 with Z = X × {0} to (PD), we get the following.
Method 2.
1. Given (xn, yn) ∈ X × Y , find a (x̃n, ỹn) ∈ X × Y such that

γnL(x̃
n, ỹn) + [(x̃n, ỹn)− (xn, yn)] � (en, 0)

for some en satisfying

‖en‖ ≤ ν‖(x̃n, ỹn)− (xn, yn)‖.
2. Set

xn+1 = x̃n − en,
yn+1 = ỹn,

n = n+ 1, and go to 1.
The inclusion in step 1 can be written as

Ln(x̃
n, ỹn) � γ−1

n (en, 0),(60)

where

Ln(x, y) = L(x, y) + γ
−1
n (x− xn, y − yn)

= (∇F (x)∗y,−F (x)) + [S(x) + γ−1
n (x− xn)]× [T−1(y) + γ−1

n (y − yn)]
= (∇F (x)∗y,−F (x)) + Sn(x)× T−1

n (y),

with Sn(x) = S(x) + γ−1
n (x − xn), and Tn(u) = (I + γnT

−1)−1(yn + γnu). We thus
get from (60) that ỹn ∈ Tn(F (x̃

n)). But since Tn is single-valued by the maximal
monotonicity of T , we see that the value of x̃n determines the value of ỹn uniquely by

ỹn = Tn(F (x̃
n)).
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Since Ln is in the format of the general duality framework, we have by Lemma 3 that
(x̃n, ỹn) satisfies (60) if and only if

S(x̃n) + γ−1
n (x̃n − xn) +∇F (x̃n)∗Tn(F (x̃n)) � γ−1

n en

ỹn = Tn(F (x̃
n)).

Method 2 can thus be written as follows.
Method 3 (proximal method of multipliers).
1. Given (xn, yn) ∈ X × Y , find an x̃n ∈ X such that

S(x̃n) + γ−1
n (x̃n − xn) +∇F (x̃n)∗Tn(F (x̃n)) � γ−1

n en

for some en satisfying

‖en‖ ≤ ν‖(x̃n, Tn(F (x̃n)))− (xn, yn)‖.

2. Set

xn+1 = x̃n − en,
yn+1 = Tn(F (x̃

n)),

n = n+ 1, and go to 1.
Theorem 3 can be herefore restated in the following form.
Theorem 4. Assume that L−1 is maximal ρ-hypomonotone in a subset V × U ,

where U ⊂ X × Y and V ⊂ X × Y satisfy
(i) S∗ ∩ U is nonempty and closed;
(ii) there exists β > 0 such that B(0, β) ⊂ V ;
(iii) there exists δ > 0 such that (S∗ ∩ U) +B(0, δ) ⊂ U ;
(iv) U is convex,

where S∗ is the set of zeroes of L. Take a sequence {γn} of positive real numbers such
that 2ρ < γ̂ = inf{γn}. Define ε = min{δ, βγ/2}. If d(x0, y0, S∗ ∩ U) ≤ ε, then

(a) there exists an infinite sequence {(xn, yn)} ⊂ X×Y , conforming to Method 3,
such that for all n

(x̃n, Tn(F (x̃
n))) ∈ U,

(en, 0)− (x̃n, Tn(F (x̃
n))) + (xn, yn) ∈ γnV,

d((xn+1, yn+1), S∗ ∩ U) ≤ ε;

(b) any sequence as in (a) converges to a point in S∗ ∩ U .
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