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Inf-Net: Automatic COVID-19 Lung Infection
Segmentation From CT Images

Deng-Ping Fan , Tao Zhou , Member, IEEE, Ge-Peng Ji , Yi Zhou , Geng Chen ,

Huazhu Fu , Senior Member, IEEE, Jianbing Shen , Senior Member, IEEE,

and Ling Shao , Senior Member, IEEE

Abstract— Coronavirus Disease 2019 (COVID-19) spread
globally in early 2020, causing the world to face an exis-
tential health crisis. Automated detection of lung infec-
tions from computed tomography (CT) images offers a
great potential to augment the traditional healthcare strat-
egy for tackling COVID-19. However, segmenting infected
regions from CT slices faces several challenges, including
high variation in infection characteristics, and low intensity
contrast between infections and normal tissues. Further,
collecting a large amount of data is impractical within a
short time period, inhibiting the training of a deep model.
To address these challenges, a novel COVID-19 Lung Infec-
tion Segmentation Deep Network (Inf-Net ) is proposed to
automatically identify infected regions from chest CT slices.
In our Inf-Net, a parallel partial decoder is used to aggregate
the high-level features and generate a global map. Then,
the implicit reverse attention and explicit edge-attention
are utilized to model the boundaries and enhance the
representations. Moreover, to alleviate the shortage of
labeled data, we present a semi-supervised segmenta-
tion framework based on a randomly selected propagation
strategy, which only requires a few labeled images and
leverages primarily unlabeled data. Our semi-supervised
framework can improve the learning ability and achieve a
higher performance. Extensive experiments on our COVID-
SemiSeg and real CT volumes demonstrate that the pro-
posed Inf-Net outperforms most cutting-edge segmentation
models and advances the state-of-the-art performance.

Index Terms— COVID-19, CT image, infection segmenta-
tion, semi-supervised learning.

I. INTRODUCTION

S INCE December 2019, the world has been facing a global
health crisis: the pandemic of a novel Coronavirus Disease
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Fig. 1. Example of COVID-19 infected regions (B) in CT axial slice (A),
where the red and green masks denote the GGO and consolidation,
respectively. The images are collected from [9].

(COVID-19) [1], [2]. According to the global case count from
the Center for Systems Science and Engineering (CSSE) at
Johns Hopkins University (JHU) [3] (updated 1 May, 2020),
3,257,660 identified cases of COVID-19 have been reported
so far, including 233,416 deaths and impacting more than
187 countries/regions. For COVID-19 screening, the reverse-
transcription polymerase chain reaction (RT-PCR) has been
considered the gold standard. However, the shortage of equip-
ment and strict requirements for testing environments limit the
rapid and accurate screening of suspected subjects. Further,
RT-PCR testing is also reported to suffer from high false neg-
ative rates [4]. As an important complement to RT-PCR tests,
the radiological imaging techniques, e.g., X-rays and computed
tomography (CT), have also demonstrated effectiveness in
both current diagnosis, including follow-up assessment and
evaluation of disease evolution [5], [6]. Moreover, a clinical
study with 1014 patients in Wuhan China, has shown that chest
CT analysis can achieve 0.97 of sensitivity, 0.25 of specificity,
and 0.68 of accuracy for the detection of COVID-19, with
RT-PCR results for reference [4]. Similar observations were
also reported in other studies [7], [8], suggesting that radio-
logical imaging may be helpful in supporting early screening
of COVID-19.

Compared to X-rays, CT screening is widely preferred due
to its merit and three-dimensional view of the lung. In recent
studies [4], [10], the typical signs of infection could be
observed from CT slices, e.g., ground-glass opacity (GGO) in
the early stage, and pulmonary consolidation in the late stage,
as shown in Fig. 1. The qualitative evaluation of infection and
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TABLE I

A SUMMARY OF PUBLIC COVID-19 IMAGING DATASETS. #COV AND

#NON-COV DENOTE THE NUMBERS OF COVID-19 AND

NON-COVID-19 CASES. † DENOTES THE

NUMBER IS FROM [11]

longitudinal changes in CT slices could thus provide useful
and important information in fighting against COVID-19.
However, the manual delineation of lung infections is tedious
and time-consuming work. In addition, infection annotation
by radiologists is a highly subjective task, often influenced by
individual bias and clinical experiences.

Recently, deep learning systems have been proposed to
detect patients infected with COVID-19 via radiological imag-
ing [6], [15]. For example, a COVID-Net was proposed to
detect COVID-19 cases from chest radiography images [16].
An anomaly detection model was designed to assist radiolo-
gists in analyzing the vast amounts of chest X-ray images [17].
For CT imaging, a location-attention oriented model was
employed in [18] to calculate the infection probability of
COVID-19. A weakly-supervised deep learning-based soft-
ware system was developed in [19] using 3D CT volumes
to detect COVID-19. A paper list for COVID19 imaging-
based AI works could be found in [20]. Although plenty
of AI systems have been proposed to provide assistance in
diagnosing COVID-19 in clinical practice, there are only a
few works related infection segmentation in CT slices [21],
[22]. COVID-19 infection detection in CT slices is still a
challenging task, for several issues: 1) The high variation

in texture, size and position of infections in CT slices is

challenging for detection. For example, consolidations are
tiny/small, which easily results in the false-negative detec-
tion from a whole CT slices. 2) The inter-class variance is

small. For example, GGO boundaries often have low contrast
and blurred appearances, making them difficult to identify.
3) Due to the emergency of COVID-19, it is difficult to collect

sufficient labeled data within a short time for training deep

model. Further, acquiring high-quality pixel-level annotation of
lung infections in CT slices is expensive and time-consuming.
Table I reports a list of the public COVID-19 imaging datasets,
most of which focus on diagnosis, with only one dataset
providing segmentation labels.

To address above issues, we propose a novel COVID-
19 Lung Infection Segmentation Deep Network (Inf-Net) for
CT slices. Our motivation stems from the fact that, during lung
infection detection, clinicians first roughly locate an infected
region and then accurately extract its contour according to the
local appearances. We therefore argue that the area and bound-
ary are two key characteristics that distinguish normal tissues
and infection. Thus, our Inf-Net first predicts the coarse areas
and then implicitly models the boundaries by means of reverse
attention and edge constraint guidance to explicitly enhance the

boundary identification. Moreover, to alleviate the shortage of
labeled data, we also provide a semi-supervised segmentation
system, which only requires a few labeled COVID-19 infection
images and then enables the model to leverage unlabeled data.
Specifically, our semi-supervised system utilizes a randomly
selected propagation of unlabeled data to improve the learning
capability and obtain a higher performance than some cutting
edge models. In a nutshell, our contributions in this paper are
threefold:

• We present a novel COVID-19 Lung Infection Segmen-
tation Deep Network (Inf-Net) for CT slices. By aggre-
gating features from high-level layers using a parallel
partial decoder (PPD), the combined feature takes con-
textual information and generates a global map as the
initial guidance areas for the subsequent steps. To fur-
ther mine the boundary cues, we leverage a set of
implicitly recurrent reverse attention (RA) modules and
explicit edge-attention guidance to establish the relation-
ship between areas and boundary cues.

• A semi-supervised segmentation system for COVID-19
infection segmentation is introduced to alleviate the short-
age of labeled data. Based on a randomly selected prop-
agation, our semi-supervised system has better learning
ability (see § IV).

• We also build a semi-supervised COVID-19 infection
segmentation (COVID-SemiSeg) dataset, with 100 labeled
CT slices from the COVID-19 CT Segmentation
dataset [9] and 1600 unlabeled images from the
COVID-19 CT Collection dataset [11]. Extensive
experiments on this dataset demonstrate that the
proposed Inf-Net and Semi-Inf-Net outperform most
cutting-edge segmentation models and advances the
state-of-the-art performance. Our code and dataset have
been released at: https://github.com/DengPingFan/Inf-
Nethttps://github.com/DengPingFan/Inf-Net

II. RELATED WORKS

In this section, we discuss three types of works that are
most related to our work, including: segmentation in chest
CT, semi-supervised learning, and artificial intelligence for
COVID-19.

A. Segmentation in Chest CT

CT imaging is a popular technique for the diagnosis of lung
diseases [23], [24]. In practice, segmenting different organs
and lesions from chest CT slices can provide crucial informa-
tion for doctors to diagnose and quantify lung diseases [25],
[26]. Recently, many works have been provided and obtained
promising performances. These algorithms often employ a
classifier with extracted features for nodule segmentation in
chest CT. For example, Keshani et al. [27] utilized the support
vector machine (SVM) classifier to detect the lung nodule
from CT slices. Shen et al. [28] presented an automated
lung segmentation system based on bidirectional chain code
to improve the performance. However, the similar visual
appearances of nodules and background makes it difficult
for extracting the nodule regions. To overcome this issue,
several deep learning algorithms have been proposed to learn
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a powerful visual representations [29]–[31]. For instance,
Wang et al. [29] developed a central focused convolutional
neural network to segment lung nodules from heterogeneous
CT slices. Jin et al. [30] utilized GAN-synthesized data to
improve the training of a discriminative model for patholog-
ical lung segmentation. Jiang et al. [31] designed two deep
networks to segment lung tumors from CT slices by adding
multiple residual streams of varying resolutions.

B. Annotation-Efficient Deep Learning

In our work, we aim to segment the COVID-19 infec-
tion regions for quantifying and evaluating the disease pro-
gression. The (unsupervised) anomaly detection/segmentation
could detect the anomaly region [32]–[34], however, it can not
identify whether the anomaly region is related to COVID-19.
By contrast, based on the few labeled data, the semi-supervised
model could identify the target region from other anomaly
region, which is better suit for assessment of COVID-19.
Moreover, the transfer learning technique is another good
choice for dealing with limited data [35], [36]. But currently,
the major issue for segmentation of COVID-19 infection is that
there are already some public datasets (see [20]), but, being
short of high quality pixel-level annotations. This problem
will become more pronounced, even collecting large scale
COVID-19 dataset, where the annotations are still expensive
to acquire. Thus, our target is to utilize the limited annota-
tion efficiently and leverage unlabeled data. Semi-supervised
learning provides a more suitable solution to address this issue.

The main goal of semi-supervised learning (SSL) is to
improve model performance using a limited number of labeled
data and a large amount of unlabeled data [37]. Currently,
there is increasing focus on training deep neural network
using the SSL strategy [38]. These methods often optimize
a supervised loss on labeled data along with an unsuper-
vised loss imposed on either unlabeled data [39] or both
the labeled and unlabeled data [40], [41]. Lee [39] pro-
vided to utilize a cross-entropy loss by computing on the
pseudo labels of unlabeled data, which is considered as an
additional supervision loss. In summary, existing deep SSL
algorithms regularize the network by enforcing smooth and
consistent classification boundaries, which are robust to a
random perturbation [41], and other approaches enrich the
supervision signals by exploring the knowledge learned, e.g.,
based on the temporally ensembled prediction [40] and pseudo
label [39]. In addition, semi-supervised learning has been
widely applied in medical segmentation task, where a frequent
issue is the lack of pixel-level labeled data, even when large
scale set of unlabeled image could be available [36], [42].
For example, Nie et al. [43] proposed an attention-based
semi-supervised deep network for pelvic organ segmentation,
in which a semi-supervised region-attention loss is developed
to address the insufficient data issue for training deep learning
models. Cui et al. [44] modified a mean teacher framework
for the task of stroke lesion segmentation in MR images.
Zhao et al. [45] proposed a semi-supervised segmentation
method based on a self-ensemble architecture and a random
patch-size training strategy. Different from these existing

methods, our semi-supervised framework is based on a random
sampling strategy for progressively enlarging the training
dataset with unlabeled data.

C. Artificial Intelligence for COVID-19

Artificial intelligence technologies have been employed in
a large number of applications against COVID-19 [6], [15].
Rajinikanth et al. [15] categorized these applications into
three scales, including patient scale (e.g., medical imaging for
diagnosis [46], [47]), molecular scale (e.g., protein structure
prediction [48]), and societal scale (e.g., epidemiology [49]).
In this work, we focus on patient scale applications [18], [22],
[46], [47], [50]–[53], especially those based on CT slices.
For instance, Wang et al. [46] proposed a modified inception
neural network [54] for classifying COVID-19 patients and
normal controls. Instead of directly training on complete CT
images, they trained the network on the regions of interest,
which are identified by two radiologists based on the fea-
tures of pneumonia. Chen et al. [47] collected 46,096 CT
image slices from COVID-19 patients and control patients of
other disease. The CT images collected were utilized to train
a U-Net++ [55] for identifying COVID-19 patients. Their
experimental results suggest that the trained model performs
comparably with expert radiologists in terms of COVID-
19 diagnosis. In addition, other network architectures have
also been considered in developing AI-assisted COVID-19
diagnosis systems. Typical examples include ResNet, used
in [18], and U-Net [56], used in [50]. Finally, deep learning
has been employed to segment the infection regions in lung CT
slices so that the resulting quantitative features can be utilized
for severity assessment [52], large-scale screening [53], and
lung infection quantification [15], [21], [22] of COVID-19.

III. PROPOSED METHOD

In this section, we first provide details of our Inf-Net in
terms of network architecture, core network components, and
loss function. We then present the semi-supervised version
of Inf-Net and clarify how to use a semi-supervised learning
framework to enlarge the limited number of training samples
for improving the segmentation accuracy. We also show an
extension of our framework for the multi-class labeling of
different types of lung infections. Finally, we provide the
implementation details.

A. Lung Infection Segmentation Network (Inf-Net)

1) Overview of Network: The architecture of our Inf-Net is
shown in Fig. 2. As can be observed, CT images are first
fed to two convolutional layers to extract high-resolution,
semantically weak (i.e., low-level) features. Herein, we add an
edge attention module to explicitly improve the representation
of objective region boundaries. Then, the low-level features
f2 obtained are fed to three convolutional layers for extracting
the high-level features, which are used for two purposes. First,
we utilize a parallel partial decoder (PPD) to aggregate these
features and generate a global map Sg for the coarse local-
ization of lung infections. Second, these features combined
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Fig. 2. The architecture of our proposed Inf-Net model, which consists of three reverse attention (RA) modules connected to the paralleled partial
decoder (PPD). See § III-A for details.

with f2 are fed to multiple reverse attention (RA) modules
under the guidance of the Sg . It is worth noting that the RA
modules are organized in a cascaded fashion. For instance,
as shown in Fig. 2, R4 relies on the output of another RA R5.
Finally, the output of the last RA, i.e., S3, is fed to a Sigmoid

activation function for the final prediction of lung infection
regions. We now detail the key components of Inf-Net and
our loss function.

2) Edge Attention Module: Several works have shown that
edge information can provide useful constraints to guide fea-
ture extraction for segmentation [57]–[59]. Thus, considering
that the low-level features (e.g., f2 in our model) preserve
some sufficient edge information, we feed the low-level feature
f2 with moderate resolution to the proposed edge attention

(EA) module to explicitly learn an edge-attention represen-
tation. Specifically, the feature f2 is fed to a convolutional
layer with one filter to produce the edge map. Then, we can
measure the dissimilarity of the EA module between the
produced edge map and the edge map Ge derived from the
ground-truth (GT), which is constrained by the standard Binary
Cross Entropy (BCE) loss function:

Ledge = −

w∑

x=1

h∑

y=1

[Gelog(Se) + (1 − Ge)log(1 − Se)], (1)

where (x, y) are the coordinates of each pixel in the pre-
dicted edge map Se and edge ground-truth map Ge. The
Ge is calculated using the gradient of the ground-truth map
Gs . Additionally, w and h denote the width and height of
corresponding map, respectively.

3) Parallel Partial Decoder: Several existing medical image
segmentation networks segment interested organs/lesions using

all high- and low-level features in the encoder branch [55],
[56], [60]–[63]. However, Wu et al. [64] pointed out that,
compared with high-level features, low-level features demand
more computational resources due to larger spatial resolutions,
but contribute less to the performance. Inspired by this obser-
vation, we propose to only aggregate high-level features with
a parallel partial decoder component, illustrated in Fig. 3.
Specifically, for an input CT image I , we first extract two sets
of low-level features { fi , i = 1, 2} and three sets of high-level
features { fi , i = 3, 4, 5} using the first five convolutional
blocks of Res2Net [65]. We then utilize the partial decoder
pd(·) [64], a novel decoder component, to aggregate the
high-level features with a paralleled connection. The partial
decoder yields a coarse global map Sg = pd( f3, f4, f5), which
then serves as global guidance in our RA modules.

4) Reverse Attention Module: In clinical practice, clinicians
usually segment lung infection regions via a two-step pro-
cedure, by roughly localizing the infection regions and then
accurately labeling these regions by inspecting the local tissue
structures. Inspired by this procedure, we design Inf-Net using
two different network components that act as a rough locator
and a fine labeler, respectively. First, the PPD acts as the rough
locator and yields a global map Sg , which provides the rough
location of lung infection regions, without structural details
(see Fig. 2). Second, we propose a progressive framework,
acting as the fine labeler, to mine discriminative infection
regions in an erasing manner [66], [67]. Specifically, instead
of simply aggregating features from all levels [67], we propose
to adaptively learn the reverse attention in three parallel
high-level features. Our architecture can sequentially exploit
complementary regions and details by erasing the estimated



2630 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 8, AUGUST 2020

Fig. 3. Paralleled partial decoder is utilized to generate the global map.

Fig. 4. Reverse attention module is utilized to implicitly learning edge
features.

infection regions from high-level side-output features, where
the existing estimation is up-sampled from the deeper layer.

We obtain the output RA features Ri by multiplying
(element-wise �) the fusion of high-level side-output features
{ fi , i = 3, 4, 5} and edge attention features eat t = f2 with RA
weights Ai , i.e.,

Ri = C( fi , Dow(eat t )) � Ai , (2)

where Dow(·) denotes the down-sampling operation, C(·)

denotes the concatenation operation follow by two 2-D con-
volutional layers with 64 filters.

The RA weight Ai is de-facto for salient object detection
in the computer vision community [67], and it is defined as:

Ai = E(⊖(σ (P(Si+1)))), (3)

where P(·) denotes an up-sampling operation, σ(·) is a
Sigmoid activation function, and ⊖(·) is a reverse operation
subtracting the input from matrix E , in which all the elements
are 1. Symbol E denotes expanding a single channel feature
to 64 repeated tensors, which involves reversing each channel
of the candidate tensor in Eq. (2). Details of this procedure
are shown in Fig. 4. It is worth noting that the erasing strategy
driven by RA can eventually refine the imprecise and coarse
estimation into an accurate and complete prediction map.

5) Loss Function: As mentioned above in Eq. (1), we pro-
pose the loss function Ledge for edge supervision. Here,
we define our loss function Lseg as a combination of
a weighted IoU loss Lw

I oU and a weighted binary cross
entropy (BCE) loss Lw

BC E for each segmentation supervision,
i.e.,

Lseg = L
w
I oU + λLw

BC E , (4)

Algorithm 1 Semi-Supervised Inf-Net

Input: Labeled training data DLabeled and unlabeled training
data DUnlabeled

Output: Trained Inf-Net M

1: Construct a training dataset DTraining using all the labeled
CT images from DLabeled

2: Train our model M using DTraining

3: repeat

4: Perform testing using the trained model M and K CT
images randomly selected from DUnlabeled, which yields
network-labeled data DNet-labeled, consisting of K CT
images with pseudo labels

5: Enlarge the training dataset using DNet-labeled, i.e.,
DTraining = DTraining ∪ DNet-labeled

6: Remove the K testing CT images from DUnlabeled

7: Fine-tune M using DTraining

8: until DUnlabeled is empty
9: return Trained model M

where λ is the weight, and set to 1 in our experiment.
The two parts of Lseg provide effective global (image-level)
and local (pixel-level) supervision for accurate segmentation.
Unlike the standard IoU loss, which has been widely adopted
in segmentation tasks, the weighted IoU loss increases the
weights of hard pixels to highlight their importance. In addi-
tion, compared with the standard BCE loss, Lw

BC E puts more
emphasis on hard pixels rather than assigning all pixels equal
weights. The definitions of these losses are the same as in [68],
[69] and their effectiveness has been validated in the field of
salient object detection.

Finally, we adopt deep supervision for the three side-outputs
(i.e., S3, S4, and S5) and the global map Sg . Each map is
up-sampled (e.g., S

up
3 ) to the same size as the object-level

segmentation ground-truth map Gs . Thus, the total loss in
Eq. (4) is extended to

Ltotal = Lseg(Gs, S
up
g ) + Ledge +

i=5∑

i=3

Lseg(Gs, S
up

i ). (5)

B. Semi-Supervised Inf-Net

Currently, there is very limited number of CT images with
segmentation annotations, since manually segmenting lung
infection regions are difficult and time-consuming, and the
disease is at an early stage of outbreak. To resolve this issue,
we improve Inf-Net using a semi-supervised learning strategy,
which leverages a large number of unlabeled CT images to
effectively augment the training dataset. An overview of our
semi-supervised learning framework is shown in Fig. 5. Our
framework is mainly inspired by the work in [70], which
is based on a random sampling strategy for progressively
enlarging the training dataset with unlabeled data. Specifically,
we generate the pseudo labels for unlabeled CT images using
the procedure described in Algorithm 1. The resulting CT
images with pseudo labels are then utilized to train our model
using a two-step strategy detailed in Section III-D.
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Fig. 5. Overview of the proposed Semi-supervised Inf-Net framework. Please refer to § III-B for more details.

Fig. 6. Illustration of infection region guided multi-class segmentation for
multi-class labeling task. We feed both the infection segmentation results
provided by Inf-Net and the CT images into FCN8s (or Multi-class U-Net)
for improving the accuracy of multi-class infection labeling.

The advantages of our framework, called Semi-Inf-Net, lie
in two aspects. First, the training and selection strategy is
simple and easy to implement. It does not require measures to
assess the predicted label, and it is also threshold-free. Second,
this strategy can provide more robust performance than other
semi-supervised learning methods and prevent over-fitting.
This conclusion is confirmed by recently released studies [70].

C. Extension to Multi-Class Infection Labeling

Our Semi-Inf-Net is a powerful tool that can provide crucial
information for evaluating overall lung infections. However,
we are aware that, in a clinical setting, in addition to the
overall evaluation, clinicians might also be interested in the
quantitative evaluation of different kinds of lung infections,
e.g., GGO and consolidation. Therefore, we extend Semi-

Inf-Net to a multi-class lung infection labeling framework
so that it can provide richer information for the further

diagnosis and treatment of COVID-19. The extension of Semi-

Inf-Net is based on an infection region guided multi-class
labeling framework, which is illustrated in Fig. 6. Specifically,
we utilize the infection segmentation results provided by Semi-

Inf-Net to guide the multi-class labeling of different types of
lung infections. For this purpose, we feed both the infection
segmentation results and the corresponding CT images to
a multi-class segmentation network, e.g., FCN8s [71], or
U-Net [56]. This framework can take full advantage of the
infection segmentation results provided by Semi-Inf-Net and
effectively improve the performance of multi-class infection
labeling.

D. Implementation Details

Our model is implemented in PyTorch, and is accelerated
by an NVIDIA TITAN RTX GPU. We describe the implemen-
tation details as follows.

1) Pseudo Label Generation: We generate pseudo labels
for unlabeled CT images using the protocol described in
Algorithm 1. The number of randomly selected CT images
is set to 5, i.e., K = 5. For 1600 unlabeled images, we need
to perform 320 iterations with a batch size of 16. The entire
procedure takes about 50 hours to complete.

2) Semi-Supervised Inf-Net: Before training, we uniformly
resize all the inputs to 352 × 352. We train Inf-Net using
a multi-scale strategy [58]. Specifically, we first re-sample
the training images using different scaling ratios, i.e.,
{0.75, 1, 1.25}, and then train Inf-Net using the re-sampled
images, which improves the generalization of our model. The
Adam optimizer is employed for training and the learning
rate is set to 1e − 4. Our training phase consists of two
steps: (i) Pre-training on 1600 CT images with pseudo labels,
which takes ∼180 minutes to converge over 100 epochs with
a batch size of 24. (ii) Fine-tuning on 50 CT images with the
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ground-truth labels, which takes ∼15 minutes to converge over
100 epochs with a batch size of 16. For a fair comparison,
the training procedure of Inf-Net follows the same setting
described in the second step.

3) Semi-Inf-Net + Multi-Class Segmentation: For Multi-class
segmentation network, we are not constrained to specific
choice of the segmentation network, and herein FCN8s [71]
and U-Net [56] are used as two backbones. We resize all the
inputs to 512 ×512 before training. The network is initialized
by a uniform Xavier, and trained using an SGD optimizer
with a learning rate of 1e − 10, weight decay of 5e − 4, and
momentum of 0.99. The entire training procedure takes about
45 minutes to complete.

IV. EXPERIMENTS

A. COVID-19 Segmentation Dataset

As shown in Table I, there is only one segmentation dataset
for CT data, i.e., the COVID-19 CT Segmentation dataset [9],1

which consists of 100 axial CT images from different COVID-
19 patients. All the CT images were collected by the Italian
Society of Medical and Interventional Radiology, and are
available at here.2 A radiologist segmented the CT images
using different labels for identifying lung infections. Although
this is the first open-access COVID-19 dataset for lung infec-
tion segmentation, it suffers from a small sample size, i.e.,
only 100 labeled images are available.

In this work, we collected a semi-supervised COVID-
19 infection segmentation dataset (COVID-SemiSeg), to lever-
age large-scale unlabeled CT images for augmenting the
training dataset. We employ COVID-19 CT Segmentation [9]
as the labeled data DLabeled, which consists of 45 CT images
randomly selected as training samples, 5 CT images for
validation, and the remaining 50 images for testing. The
unlabeled CT images are extracted from the COVID-19 CT
Collection [11] dataset, which consists of 20 CT volumes
from different COVID-19 patients. We extracted 1,600 2D CT
axial slices from the 3D volumes, removed non-lung regions,
and constructed an unlabeled training dataset DUnlabeled for
effective semi-supervised segmentation.

B. Experimental Settings

Baselines: For the infection region experiments, we compare
the proposed Inf-Net and Semi-Inf-Net with five classical
segmentation models in the medical domain, i.e., U-Net3 [56],
U-Net++3 [55], Attention-UNet4 [72], Gated-UNet4 [73], and
Dense-UNet5 [74]. For the multi-class labeling experiments,
we compare our model with two cutting-edge models from the
computer vision community: DeepLabV3+ [75], FCN8s [71]
and multi-class U-Net [56].

Evaluation Metrics: Following [22], [53], we use three
widely adopted metrics, i.e., the Dice similarity coefficient,
Sensitivity (Sen.), Specificity (Spec.), and Precision (Prec.).

1http://medicalsegmentation.com/covid19/
2https://www.sirm.org/category/senza-categoria/covid-19
3https://github.com/MrGiovanni/UNetPlusPlus
4https://github.com/ozan-oktay/Attention-Gated-Networks
5https://github.com/xmengli999/H-DenseUNet

We also introduce three golden metrics from the object detec-
tion field, i.e., Structure Measure [76], Enhance-alignment
Measure [77], and Mean Absolute Error. In our evalua-
tion, we choose S3 with Sigmoid function as the final
prediction Sp . Thus, we measure the similarity/dissimilarity
between final the prediction map and object-level segmentation
ground-truth G, which can be formulated as follows:

1) Structure Measure (Sα): This was proposed to mea-
sure the structural similarity between a prediction map and
ground-truth mask, which is more consistent with the human
visual system:

Sα = (1 − α) ∗ So(Sp, G) + α ∗ Sr (Sp, G), (6)

where α is a balance factor between object-aware similarity So

and region-aware similarity Sr . We report Sα using the default
setting (α = 0.5) suggested in the original paper [76].

2) Enhanced-Alignment Measure (Emean
φ ): This is a recently

proposed metric for evaluating both local and global similarity
between two binary maps. The formulation is as follows:

Eφ =
1

w × h

w∑

x

h∑

y

φ(Sp(x, y), G(x, y)), (7)

where w and h are the width and height of ground-truth
G, and (x, y) denotes the coordinate of each pixel in G.
Symbol φ is the enhanced alignment matrix. We obtain a
set of Eφ by converting the prediction Sp into a binary
mask with a threshold from 0 to 255. In our experi-
ments, we report the mean of Eξ computed from all the
thresholds.

3) Mean Absolute Error (MAE): This measures the pixel-wise
error between Sp and G, which is defined as:

MAE =
1

w × h

w∑

x

h∑

y

|Sp(x, y) − G(x, y)|. (8)

C. Segmentation Results

1) Quantitative Results: To compare the infection segmen-
tation performance, we consider the two state-of-the-art mod-
els U-Net and U-Net++. Quantitative results are shown in
Table II. As can be seen, the proposed Inf-Net outperforms
U-Net and U-Net++ in terms of Dice, Sα , Emean

φ , and MAE
by a large margin. We attribute this improvement to our
implicit reverse attention and explicit edge-attention modeling,
which provide robust feature representations. In addition,
by introducing the semi-supervised learning strategy into our
framework, we can further boost the performance with a 5.7%
improvement in terms of Dice.

As an assistant diagnostic tool, the model is expected to
provide more detailed information regarding the infected areas.
Therefore, we extent to our model to the multi-class (i.e., GGO
and consolidation segmentation) labeling. Table III shows the
quantitative evaluation on our COVID-SemiSeg dataset, where
“Semi-Inf-Net & FCN8s” and “Semi-Inf-Net & MC” denote
the combinations of our Semi-Inf-Netwith FCN8s [71] and
multi-class U-Net [56], respectively. Our “Semi-Inf-Net &
MC” pipeline achieves the competitive performance on GGO
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TABLE II

QUANTITATIVE RESULTS OF INFECTION REGIONS ON OUR COVID-SemiSeg DATASET

TABLE III

QUANTITATIVE RESULTS OF GROUND-GLASS OPACITIES AND CONSOLIDATION ON OUR COVID-SemiSeg DATASET. THE BEST TWO RESULTS ARE

SHOWN IN RED AND BLUE FONTS. PLEASE REFER TO OUR MANUSCRIPT FOR THE COMPLETE EVALUATIONS

segmentation in most evaluation metrics. For more chal-
lenging consolidation segmentation, the proposed pipeline
also achieves best results. For instance, in terms of Dice,
our method outperforms the cutting-edge model, Multi-class
U-Net [56], by 12% on average segmentation result. Overall,
the proposed pipeline performs better than existing state-
of-the-art models on multi-class labeling on consolidation
segmentation and average segmentation result in terms of Dice
and Sα .

2) Qualitative Results: The lung infection segmentation
results, shown in Fig. 7, indicate that our Semi-Inf-Net and
Inf-Net outperform the baseline methods remarkably. Specif-
ically, they yield segmentation results that are close to the
ground truth with much less mis-segmented tissue. In contrast,
U-Net gives unsatisfactory results, where a large number of
mis-segmented tissues exist. U-Net++ improves the results,
but the performance is still not promising. The success of
Inf-Net is owed to our coarse-to-fine segmentation strategy,
where a parallel partial decoder first roughly locates lung
infection regions and then multiple edge attention modules
are employed for fine segmentation. This strategy mimics how
real clinicians segment lung infection regions from CT slices,
and therefore achieves promising performance. In addition,
the advantage of our semi-supervised learning strategy is also
confirmed by Fig. 7. As can be observed, compared with
Inf-Net, Semi-Inf-Net yields segmentation results with more
accurate boundaries. In contrast, Inf-Net gives relatively fuzzy
boundaries, especially in the subtle infection regions.

We also show the multi-class infection labeling results
in Fig. 8. As can be observed, our model, Semi-Inf-Net &
MC, consistently performs the best among all methods. It
is worth noting that both GGO and consolidation infections
are accurately segmented by Semi-Inf-Net & MC, which
further demonstrates the advantage of our model. In contrast,
the baseline methods, DeepLabV3+ with different strides and

FCNs, all obtain unsatisfactory results, where neither GGO
and consolidation infections can be accurately segmented.

D. Ablation Study

In this subsection, we conduct several experiments to vali-
date the performance of each key component of our Semi-Inf-

Net, including the PPD, RA, and EA modules.
1) Effectiveness of PPD: To explore the contribution of

the parallel partial decoder, we derive two baselines: No.1
(backbone only) & No.3 (backbone + PPD) in Table IV.
The results clearly show that PPD is necessary for boosting
performance.

2) Effectiveness of RA: We investigate the importance of the
RA module. From Table IV, we observe that No.4 (backbone
+ RA) increases the backbone performance (No.1) in terms of
major metrics, e.g., Dice, Sensitivity, MAE, etc. This suggests
that introducing the RA component can enable our model to
accurately distinguish true infected areas.

3) Effectiveness of PPD & RA: We also investigate the
importance of the combination of the PPD and RA components
(No.6). As shown in Table IV, No.4 performs better than other
settings (i.e., No.1∼No.4) in most metrics. These improve-
ments demonstrate that the reverse attention together with
the parallel partial decoder are the two central components
responsible for the good performance of Inf-Net.

4) Effectiveness of EA: Finally, we investigate the impor-
tance of the EA module. From these results in Table IV
(No.2 vs. No.1, No.5 vs. No.4, No.7 vs. No.6), it can be
clearly observed that EA module effectively improves the
segmentation performance in our Inf-Net.

E. Evaluation on Real CT Volumes

In the real application, each CT volume has multiple slices,
where most slices could have no infections [78]. To further
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Fig. 7. Visual comparison of lung infection segmentation results.

TABLE IV

ABLATION STUDIES OF OUR Semi-Inf-Net. THE BEST TWO RESULTS

ARE SHOWN IN RED AND BLUE FONTS

validate the effectiveness of the proposed method on real CT
volume, we utilized the recently released COVID-19 infec-
tion segmentation dataset [9], which consists of 638 slices
(285 non-infected slices and 353 infected slices) extracting
from 9 CT volumes of real COVID-19 patients as test set for
evaluating our model performance. The results are shown in
Tables V. Despite containing non-infected slices, our method

still obtains the best performance. Because we employed two
datasets for semi-supervised learning, i.e., labeled data with
100 infected slices (50 training, 50 testing), and unlabeled
data with 1600 CT slices from real volumes. The unlabeled
data contains a lot of non-infected slices to guarantee our
model could deal with non-infected slices well. Moreover, our
Inf-Net is a general infection segmentation framework, which
could be easily implemented for other type of infection.

F. Limitations and Future Work

Although the our Inf-Net achieved promising results in
segmenting infected regions, there are some limitations in the
current model. First, the Inf-Net focuses on lung infection
segmentation for COVID-19 patients. However, in clinical
practice, it often requires to classify COVID-19 patients and
then segment the infection regions for further treatment. Thus,
we will study an AI automatic diagnosis system, which
integrates COVID-19 detection, lung infection segmentation,
and infection regions quantification into a unified framework.
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Fig. 8. Visual comparison of multi-class lung infection segmentation results, where the red and green labels indicate the GGO and consolidation,
respectively.

TABLE V

PERFORMANCES ON NINE Real CT Volumes WITH 638 SLICES

(285 NON-INFECTED AND 353 INFECTED SLICES). THE BEST TWO

RESULTS ARE SHOWN IN RED AND BLUE FONTS

Second, for our multi-class infection labeling framework,
we first apply the Inf-Net to obtain the infection regions, which
can be used to guide the multi-class labeling of different types
of lung infections. It can be seen that we conduct a two-step
strategy to achieve multi-class infection labeling, which could
lead to sub-optimal learning performance. In future work,
we will study to construct an end-to-end framework to achieve

this task. Moreover, our method may have a bit drop in
accuracy when considering non-infected slices. Running a
additional slice-wise classifier (e.g., infected vs non-infected)
for selecting the infected slice is an effective solution for
avoiding the performance drop on non-infected slices.

V. CONCLUSION

In this paper, we have proposed a novel COVID-19 lung
CT infection segmentation network, named Inf-Net, which
utilizes an implicit reverse attention and explicit edge-attention
to improve the identification of infected regions. Moreover,
we have also provided a semi-supervised solution, Semi-Inf-

Net, to alleviate the shortage of high quality labeled data.
Extensive experiments on our COVID-SemiSeg dataset and
real CT volumes have demonstrated that the proposed Inf-

Net and Semi-Inf-Net outperform the cutting-edge segmen-
tation models and advance the state-of-the-art performances.
Our system has great potential to be applied in assessing
the diagnosis of COVID-19, e.g., quantifying the infected
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regions, monitoring the longitudinal disease changes, and mass
screening processing. Note that the proposed model is able
to detect the objects with low intensity contrast between
infections and normal tissues.
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