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Abstract

Perception involves making sense of a dynamic, multimodal environment. In the absence of 

mechanisms capable of exploiting the statistical patterns in the natural world, infants would face 

an insurmountable computational problem. Infant statistical learning mechanisms facilitate the 

detection of structure. These abilities allow the infant to compute across elements in their 

environmental input, extracting patterns for further processing and subsequent learning. In this 

selective review, we summarize findings that show that statistical learning is both a broad and 

flexible mechanism (supporting learning from different modalities across many different content 

areas) and input specific (shifting computations depending on the type of input and goal of 

learning). We suggest that statistical learning not only provides a framework for studying language 

development and object knowledge in constrained laboratory settings, but also allows researchers 

to tackle real-world problems, such as multilingualism, the role of ever-changing learning 

environments, and differential developmental trajectories.
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1. Introduction

How do learners discern the structure organizing their environments? This question has been 

at the center of intellectual debates since the founding of the field of psychology, providing 

impetus for the theories of Ivan Pavlov and B.F. Skinner. In the domain of linguistics, a 

similar question—how learners discern the structure of natural languages—led to the two 

dominant perspectives of the twentieth century: the structural linguistics of Leonard 

Bloomfield and Zellig Harris and the generative linguistics of Harris's most famous student, 

Noam Chomsky.

All theories agree that learners must have some way to ascertain which patterns are relevant 

to acquire and store and which are not. But what factors determine which patterns merit 
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learning? This is where theoretical accounts diverge. Do the data themselves tell learners 

what matters and why? Or do learners receive guidance—via innate predispositions or 

knowledge—illuminating what to learn? As the structures to be learned become more 

abstract and less transparently mirrored in the input, the answers to these questions become 

less obvious. Similarly, as the number of possible patterns explodes combinatorially in 

complex input, it becomes less clear which patterns are tracked and why. As Gibson (1966) 

stressed, we need to understand the nature of the input before we can understand the nature 

of processing.

Statistical learning mechanisms have become prominent in cognitive and developmental 

science because they provide ways to test specific hypotheses about what is learned from 

any given set of input, and how. The term statistical learning originated in the machine 

learning literature and made contact with cognitive science through its application to 

problems in natural language processing and computer vision. In particular, connectionist 

models and other computational analyses of linguistic corpora demonstrated that, for 

suitably equipped learners, myriad statistical patterns are available in language input that 

could help learners to break the code of their native language. When creating models of 

human vision, it has become obvious that cortical-cell behavior is related to the statistics 

inherent in the natural environment (Field 1987).

1.1. Initial Evidence for Statistical Learning in Human Infants

The analyses described above made it clear that statistical patterns lurk in the natural world, 

including both the linguistic and visual environments. What remained unknown was whether 

human learners could take advantage of these patterns. In particular, the primary targets of 

interest for theories of unsupervised learning are infants, who have the most to learn and the 

least prior knowledge about how to allocate their efforts. Are infants statistical learners?

Several lines of research, beginning in the 1980s, have suggested that the answer is yes. For 

example, the developmental decline of sensitivity to non-native speech contrasts during the 

first year suggests that infants are sensitive to the distribution of individual speech sounds in 

their native language (e.g., Kuhl et al. 1992, Werker & Tees 1984). In the visual domain, 

researchers in infant cognition have found that infants are sensitive to spatial relationships 

among repetitive events. For example, young infants can learn simple (two-location), 

predictable spatial sequences in the visual expectation paradigm, which uses anticipatory eye 

movements as the index of learning (Haith 1993). By 10 months of age, infants can use 

correlational structure to discover simple visual categories (Canfield & Haith 1991, Younger 

1985, Younger & Cohen 1986). Although these studies were not designed to assess 

statistical learning mechanisms per se, they provide clear evidence that infants are sensitive 

to statistical regularities.

1.2. Infant Statistical Language Learning: Initial Evidence

One particular learning problem has emerged as an important test case for claims about 

infant statistical learning: word segmentation. Speech, even speech addressed to infants, is 

essentially continuous (except at utterance boundaries). Thus, in order to segment speech 

into words, infants must have some way to break the speech stream into word-like units. 
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This problem captured researchers' interest for several related reasons. First, it is a very 

difficult problem to solve without knowing in advance what the words are, as evidenced by 

decades of research devoted to speech-to-text technology. Second, despite this difficulty, 

infants discover word forms in fluent speech sometime in the middle of the first year of 

postnatal life (e.g., Jusczyk & Aslin 1995). Finally, this is a problem that requires learning. 

Although there are certainly innate constraints that could be helpful (e.g., Seidl & Johnson 

2006, Shukla et al. 2007), infants cannot know a priori which specific sounds are going to be 

words in their native languages.

The first infant study on word segmentation was published by Goodsitt et al. (1993). In this 

study, 7-month-olds heard utterances containing a target syllable preceded by two context 

syllables. The infants were sensitive to the statistical structure of the syllables that served as 

context for the target syllable. When the context syllables always occurred in the same order, 

infants were better able to detect the subsequent target syllable, supporting the hypothesis 

that infants can cluster syllables based on statistical patterns.

Subsequent studies by Saffran et al. (1996) assessed 8-month-olds' ability to track statistical 

patterns in continuous speech. The only cues available to chunk the speech into word-like 

units were the statistical regularities with which syllables co-occurred. After two minutes of 

exposure to the speech stream, infants could discriminate words from sequences of syllables 

spanning a word boundary (see Pelucchi et al. 2009b for related evidence using natural 

language stimuli). Importantly, these learning outcomes involved no instruction or explicit 

feedback, suggesting that statistical learning could be a mandatory response to structured 

input.

1.3. Infant Statistical Learning in Other Domains: Initial Evidence

A key question raised by these early studies concerns domain specificity. Are statistical 

learning abilities tailored specifically for a particular domain, like language? Or do they 

operate across multiple domains (e.g., music, vision, movement)? The first study to address 

this issue used a musical tone analog of the Saffran et al. (1996) task (Saffran et al. 1999). 

The results suggested that infants can successfully track nonlinguistic auditory statistics. 

Although these findings cannot tell us whether the same learning mechanisms subserve 

learning in both linguistic and nonlinguistic inputs, they are consistent with the view that 

statistical learning mechanisms are not tailored specifically for language.

Successive studies have expanded these investigations to the visual modality. Fiser & Aslin 

(2001) demonstrated that adult statistical learning of shape conjunctions (i.e., scenes of 

arbitrary complex shapes presented simultaneously on a grid) was not only spontaneous but 

also rapid. Participants learned first-order and higher-order statistics from the spatial 

arrangement of the shapes in the scene without being instructed to do so. In other words, not 

only did they learn the immediate relationships between the shapes, they also detected 

broader probabilistic regularities. Subsequent studies investigated similar capacities in 

infants. Kirkham et al. (2002) presented 2-, 5-, and 8-month-olds with a visual analog of the 

original Saffran et al. (1996) paradigm. During test trials, each age group showed heightened 

looking time to a randomly ordered presentation of the same shapes, suggesting a sensitivity 

to statistics in the original temporal sequence. Subsequent studies revealed that infants are 
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sensitive to many different statistical regularities in the visual domain across both temporal 

and spatial input, enabling them to extract patterns for further processing (Bulf et al. 2011, 

Fiser & Aslin 2002, Kirkham et al. 2007, Tummeltshammer & Kirkham 2013, 

Tummeltshammer et al. 2017, Wu et al. 2011).

1.4. Infant Statistical Language Learning

With these data in hand, one might ask whether statistical learning has any bearing on 

language learning. That is, if infants are able to track statistical regularities across myriad 

types of input, the original demonstrations of statistical language learning may have been 

unintentionally misleading in suggesting that statistical learning mechanisms subserve 

language development. As a case in point, consider the Saffran et al. (1996) study. In 

describing the results, the authors suggested that “our results raise the intriguing possibility 

that infants possess experience-dependent mechanisms that may be powerful enough to 

support not only word segmentation but also the acquisition of other aspects of language” 

(Saffran et al. 1996, p. 1928). Note, however, that the results of this study simply showed 

that infants could discriminate between high- and low-probability syllable sequences. 

Although this ability would certainly be useful for word segmentation, the study did not 

provide evidence for word segmentation per se.

To address this issue, Graf Estes et al. (2007) investigated whether the output of statistical 

tracking in fluent speech is actually word-like. They exposed 17-month-old infants to a 

stream of nonsense words, with only statistical cues to indicate word boundaries. Following 

exposure, the sound sequences were mapped to novel objects. Infants only acquired the 

words when the labels were statistically defined words in the fluent speech (for results using 

natural language stimuli, see Hay et al. 2011). When the labels spanned word boundaries in 

the fluent speech stream, infants failed to map them to novel objects. These results are 

consistent with the hypothesis that statistical learning mechanisms are harnessed in domain-

relevant ways.In the case of the sequential statistics that characterize continuous speech, 

infants can exploit these regularities in the service of discovering candidate words in fluent 

speech (for related evidence in younger infants, see Erickson et al. 2014, Saffran 2001b, 

Shukla et al. 2011).

1.5. Infant Statistical Learning: Now What?

Over the past two decades, there has been an explosion of research in the area of infant 

statistical learning. The original Saffran et al. (1996) infant statistical learning study has 

been cited over 4,000 times (Google Scholar, accessed 2017, https://scholar.google.com/

scholar?hl=en&q=saffran+aslin+newport&btnG=&as_sdt=1%2C50&as_sdtp=) and has 

been applied to myriad learning problems, ages, species, disorders, and implementations. 

Although scholars disagree about just how useful these mechanisms may be for solving 

specific problems (e.g., Johnson & Tyler 2010, Lidz & Gagliardi 2015), there appears to be 

consensus that infants are sensitive to statistical regularities in their environments.

In the remainder of this review, we ask: Now what? There is abundant evidence that infants 

are sensitive to statistical regularities and that this sensitivity reflects a robust form of 

incidental learning. The question we hope to address is what this sensitivity to statistical 
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structure does for infants. To do so, we deconstruct statistical learning into the elements 

across which computations can occur and the statistics computed over those elements. We 

then turn to real-world problems where statistical learning approaches may provide novel 

explanations while raising new questions for future work. Finally, we take a step back and 

ask why we are statistical learners. The goal is to provide a selective review of the literature, 

organized in such a way as to motivate future research in this dynamic area.

2. Statistics of What? The Primitives Over Which Statistics are Computed

One of the main arguments leveled by Chomsky against classic learning theory accounts of 

language acquisition is known as the argument from the poverty of the stimulus (e.g., 

Chomsky 1965). The crux of this argument lies in the availability of the right kinds of data 

in the input given the linguistic target to be acquired. Children receive restricted input both 

quantitatively (in terms of the number of utterances they are exposed to) and qualitatively (in 

terms of how well the data point to the structures to be acquired). More than 50 years later, 

debates over the innateness of specific linguistic devices still turn on arguments based on 

poverty of the stimulus (for a current discussion, see Han et al. 2016, Piantadosi & Kidd 

2016). Developmental arguments that hinge on the input extend far beyond the problem of 

language acquisition. Indeed, since William James first described it as a “blooming, buzzing 

confusion” (James 1890, p. 488), the infant's complex and noisy multisensory environment 

has been viewed as an obstacle to learning, obscuring signals and making information less 

accessible.

From a statistical learning perspective, the stimulus remains problematic. We still ask 

whether the data support the types of inferences and abstractions that characterize mature 

knowledge systems. But the quantitative issues are quite different. The question is not 

whether there is sufficient data in the input. The problem, instead, is that there is too much 

data. There are vastly many statistics that could be computed over any set of input. This is 

the case, in part, because of the number of potential computations themselves—a topic 

which we address below. But the problem of the richness of the stimulus also resides in the 

nature of the input itself. There are so many potential elements to track. How do infants 

determine which primitives—the elements over which computations occur—to learn about?

Consider a problem like word segmentation. How do learners know which information to 

prioritize in their computations? Learners might track the probabilities of co-occurrence of 

features, phonemes, or syllables, all of which would be reasonable primitives over which to 

perform computations (e.g., Newport & Aslin 2004). But what about a cue like pitch 

contour? Pitch is integral to lexical structure in tonal languages like Mandarin or Hmong, 

and tones are discoverable via statistical information in adult speech (e.g., Gauthier et al. 

2007). But pitch contours, however linguistically relevant, are likely irrelevant to word 

boundary detection, even in a tonal language. Indeed, even speakers of tonal languages find 

pitch contours difficult to use for word segmentation (Wang & Saffran 2014).

Similar issues arise when considering the primitives over which visual statistical learning 

operates. Is each visual feature dimension (e.g., color, shape, orientation) independent? Or 

are features bound together to create higher-order multidimensional units? And does this 
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sensitivity to either single dimensions or feature chunks change across development? For 

example, both adults and infants track the statistics of human action sequences (Baldwin et 

al. 2008, Monroy et al. 2017, Stahl et al. 2014). One can imagine that, in this situation, the 

details of each visual element would not only be less important than the gestalt of the action 

being performed, but would also be a distraction from the task at hand.

Furthermore, consider the combination of auditory and visual stimuli. Some visual cues 

could be helpful insofar as they are correlated with auditory information (e.g., mouth 

movements) and vice versa (e.g., noting an intensification in sound as an object gets closer). 

But should learners track them? What about other visual cues, like eye blinks? These are not 

plausibly useful as cues to linguistic structure. But what is to keep language learners from 

tracking their statistics as well?

To some degree, this argument is absurd. Obviously, learners do not track the correlations 

between eye blinks and word boundaries. But why not? This is the problem of the richness 

of the stimulus. Learners are presumably constrained to consider some elements in their 

computations and not others. The interesting questions surround the determination of which 

types of units are tracked and why.

2.1. The Primitives that Enter Into Infants' Computations

The question of primitives matters in any consideration of statistical learning because 

changing the units that are tracked can change the outcome of learning. This issue was 

explicitly addressed in a series of developmental studies of statistical learning in tone 

sequences. As described above, Saffran et al. (1999) demonstrated that similar learning 

outcomes occurred for continuous sequences of musical tones as for sequences of syllables. 

This result, however, raised the interesting question of primitives. Consider a tone sequence 

like AC#E, created to be analogous to a syllable sequence like “golabu.” One can compute 

transitional probabilities between the individual tones (absolute pitches: AC#E), as one 

would between syllables. But tone sequences contain another primitive that is not present in 

syllable sequences: musical intervals (relative pitches: ascending major third followed by 

ascending minor third). These two types of information were confounded in the original 

study by Saffran et al. (1999), making it unclear which primitives infants tracked.

Subsequent studies revealed interesting developmental differences in the prioritization of 

musical primitives. Whereas 8-month-olds appear to be biased to track absolute pitches 

given continuous streams of tones, adults are biased to track relative pitches (Saffran & 

Griepentrog 2001). Both groups of participants in these studies heard the same sequence of 

tones in the input, but the groups appear to have learned different things because they 

tracked different primitives. These preferences for particular primitives can be shifted by 

altering the input such that absolute pitches are no longer informative, leading infants to 

track relative pitches (Saffran et al. 2005), or by making the input more musical, leading 

adults to track absolute pitches (Saffran 2003).

In the case of visual statistics, the issue of what constitutes a visual primitive rears its much-

debated head (e.g., Edelman et al. 2002, Marr 1982). Is the learner attending to single 

feature dimensions individually in a multi-element scene or chunking these elements 
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together and tracking across objects? In the early laboratory studies (e.g., Fiser & Aslin 

2002, Kirkham et al. 2002), visual stimuli were created to be simple two-dimensional, 

unimodal elements, with the primitives being basic shapes or colors. Either the stimuli 

removed color from the equation (so that tracking occurred across monochrome individual 

shapes) or the shapes and colors were perfectly correlated. To determine which features 

infants were tracking, Kirkham et al. (2007) exposed 8- and 11-month-olds to a 

spatiotemporal sequence of identical shapes (i.e., the location of the shapes comprised the 

statistics). Only 11-month-olds showed evidence of learning; 8-month-olds required the 

shapes to be uniquely colored to pick up on the sequence. In other words, the younger 

infants needed more cues to the sequence to demonstrate learning. This finding suggested, 

for the first time, a developmental trajectory in sensitivity to specific visual statistics.

Using a different paradigm assessing infants' ability to track objects made up of multiple 

features, Kirkham and colleagues (2012) replicated this developmental trajectory; it was not 

until 10 months of age that infants could reliably unbind the features to track the informative 

ones. Further addressing the issue of binding across features, Turk-Browne et al. (2008) 

familiarized adults to a sequence of multifeatured objects and then tested them on objects 

either without their unique colors or without their shapes. Adults bound features together 

during learning, depressing their test performance when either of the features was removed. 

Although in comparable studies adults could easily track the statistics of monochrome 

shapes, the features presented during the learning phase are clearly important. Turk-Browne 

et al. (2008) interpreted their results to suggest that visual statistical learning not only 

depends on what has been encoded, but could actually provide the cues as to what is an 

object.

Subsequent studies manipulated the stimuli to look at clusters of visual elements (e.g., 

objects). In a series of studies looking at expectations about object integrity based on feature 

co-occurrence, Wu et al. (2011) showed 9-month-olds a temporal sequence of colorful 

multipart objects, within which some parts co-occurred more often than others. The results 

revealed that infants were sensitive to the differential statistics of the parts within the objects, 

suggesting that the infants were computing relations not only between the objects, but also 

within them. Statistical tracking occurs across a variety of different primitives depending on 

the learning objective.

This pattern of results suggests several general points that should be considered in the study 

of statistical learning. First, primitives matter; some types of units may be prioritized over 

others by dint of both perceptual biases (e.g., infant tracking of absolute pitch) and 

experience (e.g., adult tracking of relative pitch). In addition, primitives matter when 

considering the learning goal (e.g., predictions about upcoming shapes versus expectations 

about how objects should behave). Second, the structure of the input matters; the 

prioritization of units can be shifted when supported by the input. When the sequence of 

tone words is continually transposed, as in the study by Saffran et al. (2005), the statistics of 

absolute pitches lose their value—they fail to predict structure. Under those circumstances, 

infants appear to increase the weight of relative pitches.
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The third general point pertains to domain specificity. The specificity of the primitives is one 

way to construe domain specificity. In this view, whether the computations themselves are 

general is distinct from considerations of the input representations. It seems clear that 

different domains of knowledge place distinct demands on perception. Music and language 

are both auditory, but they make use of different perceptual primitives for the most part (with 

the exception of some aspects of prosody). Shapes, objects, and action sequences are all part 

of the visual environment, but the learner must track across increasingly broadly defined 

primitives. In other words, the learner must chunk multiple individual features (e.g., color, 

shape) together to fully represent a rich, dynamic, and complex sensory environment (e.g., a 

sequence of actions). Many of the distinctions between different domains arise from the use 

of different inputs. The computations themselves may be quite similar, just computed over 

different types of elements (e.g., Saffran 2008).

2.2. Experience as a Determinant of Primitives

The primitives that enter into statistical learning computations are affected by experience in 

a particular domain (e.g., Krogh et al. 2013). Some of the evidence to support this claim 

comes from comparisons between infants and adults, as in the studies on absolute versus 

relative pitch described in the previous section. Another example comes from a study by 

Thiessen (2010) examining the role of correlated cues in statistical learning. When adults 

were given a sequence of syllables paired with shapes, they were better able to learn the 

syllable statistics than when the shapes were not present. Infants, however, were equally 

good at tracking the syllable statistics whether the correlated shapes were present or not. 

Thiessen (2010) hypothesized that this pattern of results can be explained by differences in 

learners' prior experiences. Adults expect syllable strings to be paired with visual referents 

based on a lifetime of exposure to language, whereas 8-month-old infants do not yet have 

this expectation. To test this hypothesis, Thiessen (2010) tested adults on a tone sequence 

analog of the syllable task, reasoning that adults should not expect tone strings to be paired 

with shapes. Indeed, the presence of the referents did not improve learning, supporting the 

view that prior exposure shapes expectations in statistical learning.

A related example comes from the body of work on infant rule learning. This task, pioneered 

by Marcus and colleagues (1999), involved abstraction away from the specific sequences to 

which infants are exposed. Infants are better at this task in some domains than others (e.g., 

Marcus et al. 2007). Experience seems to mediate these effects. Learning is facilitated by the 

use of familiar rather than unfamiliar stimuli, such as animals rather than abstract shapes or 

upright faces rather than inverted faces (e.g., Bulf et al. 2015, Saffran et al. 2007). 

Experience can also inhibit learning. For example, younger infants are actually better than 

older infants at abstracting across tone sequences because older infants' knowledge of 

musical structure may inhibit some types of generalizations (Dawson & Gerken 2009). Even 

within-experiment manipulations can affect whether infants generalize in these tasks. Simply 

giving 7-month-old infants exposure to social agents who appear to be using tones 

communicatively leads infants to generalize beyond the tone sequences they have heard, 

something they do not do in the absence of this experience (Ferguson & Lew-Williams 

2016).
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As suggested by this last result, experience with the input can affect downstream learning. 

When learners are first exposed to a particular set of stimuli, some of the primitives may be 

opaque. An infant listening to a stream of speech initially has access only to statistics at the 

level of sounds (phonetic features, phonemes, syllables, etc.). Until she learns some of the 

words, statistics at the word level are invisible (e.g., Saffran & Wilson 2003, Sahni et al. 

2010).

Experience with the input affects the primitives over which statistics are computed. This is 

because statistical learning is dynamic; the output of one learning experience can serve as 

the input to a new learning experience (Saffran 2008). Saffran & Wilson (2003) investigated 

this phenomenon by exposing 12-month-old infants to a fluent speech stream in which the 

words were organized according to a simple grammar. Infants were then tested on 

grammatical versus ungrammatical sentences, with both types of test items equated for the 

sequential probabilities of the syllables. Infants successfully discriminated between the test 

items, suggesting that they were able to solve the task at the level of word patterns rather 

than just the level of syllable patterns. Infants began the task by tracking syllables but ended 

up also tracking words.

The structure of the input drives statistical learning in other ways, as well. The input can call 

attention to some dimensions of the stimuli, highlighting them downstream in learning. For 

example, infants who are primed with a list of two-syllable nonsense words separated by 

pauses are subsequently better at using statistical regularities to detect new two-syllable 

words than to detect three-syllable words in fluent speech, and vice versa (Lew-Williams & 

Saffran 2012). We find similar results with other types of phonological patterns: Exposure to 

items that follow one particular pattern facilitates detection of similar items in fluent speech 

with only statistical cues to word boundaries (Saffran & Thiessen 2003, Thiessen & Saffran 

2007). Infants can also use specific experiences—such as exposure to adjacent regularities—

to help bootstrap the acquisition of more complex nonadjacent regularities across a single 

experiment (Lany & Gómez 2008).

The structure of the input helps learners to determine which types of generalizations to draw 

from the available data. Gerken (2006) adapted the infant rule learning task described above 

such that the input supported both a broad generalization (ABA versus ABB) and a narrow 

generalization (AAdi versus AdiA). Infants generalized in the way that was the most 

consistent with the structure of the input. In a follow-up study, Gerken (2010) made a small 

change to the input by adding a few counterexamples to the narrow generalization at the end 

of exposure. Just three counterexamples were enough to shift infants toward the broader 

generalization, suggesting that infants' learning outcomes are updated on something close to 

a trial-by-trial basis.

3. Which Statistics Do Learners Track?

These considerations of the primitives over which learning occurs lead us to the next major 

issue: the computations themselves. Which computations are occurring over these 

primitives? Do computations change across development and/or across primitives? Learners 

must be constrained to some degree in deciding which statistics to track (for discussions of 
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the computational constraints required for optimal visual statistical learning in adults, see 

Fiser & Aslin 2005, Fiser et al. 2007). One way in which the learner can be constrained is by 

the eventual goal of learning. If the learner is trying to predict an upcoming event based on 

previous events, then the statistics will look different than if she is trying to bind across 

different modalities to form a coherent representation of a scene or display. However, in 

most infancy paradigms, there is no specified goal or outcome; the infant is placed in front 

of a display showing a series of events, and their looking times and/or eye movements are 

measured. So what are the computations that are performed automatically? And do these 

computations change when a goal is specified?

3.1. Frequency, Transitional Probabilities, and Dependencies

The original work by Saffran et al. (1996) presented the elements of computation as 

transitional probabilities (i.e., one event in the stream is dependent upon others). These 

probabilities were higher within words (1.0) than between words (0.33). Additional studies 

across different domains followed suit. The transitional probabilities between syllables, 

shapes, objects, audiovisual events, and faces were similar to the original language studies, 

with within-event probabilities at 1.0 and between-event probabilities significantly lower 

(e.g., Bulf et al. 2011; Kirkham et al. 2002, 2007; Saffran et al. 1999; Wu et al. 2011).

Frequency counting as an alternative possible computation was ruled out quickly with 

frequency-controlled studies in both the auditory and the visual domain (Aslin et al. 1998, 

2001). By at least 8 months of age, infants appeared to be tracking transitional probabilities 

regardless of frequency of appearance. Subsequent studies examined this issue in more 

detail. Marcovitch & Lewkowicz (2009) extended the work of Kirkham et al. (2002) by 

presenting infants with sequences of shape pairs, defined independently by transitional 

probabilities and by frequency. Although 2-month-olds failed to show a sensitivity to either 

computation, 5- and 8-month-olds could track both frequency information and transitional 

probabilities.

Any given set of inputs contains myriad levels of statistical regularities. What information 

do infants use to determine which level(s) to track? Research on nonadjacent dependency 

learning has pointed to some of the key variables that influence this process. For example, 

given three-word strings, infants tend to learn the adjacent probabilities between those 

words. However, when the variability of the middle item is increased, infants shift to learn 

the nonadjacent pairs spanning the middle word (Gómez 2002). Adults learning similar 

structures are able to track both adjacent and nonadjacent relationships in the same sets of 

inputs (e.g., Romberg & Saffran 2013a). Interestingly, adults are more aware of the 

nonadjacent relationships than the adjacent relationships, suggesting that, at least for adults, 

explicit representations may influence some aspects of statistical learning.

3.2. Complexity and Maximizing Information Gathering

In the real world, input can be measured as more or less complex (i.e., information can have 

higher or lower levels of redundancy). Complexity has direct implications for which 

statistics will be attended to. Addyman & Mareschal (2013) ran a modified version of 

Kirkham et al.'s (2002) experiment, omitting the habituation phase and using looks away as 
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the dependent measure. This dependent measure allowed for a subtler assessment of infant 

attention. The results suggested that, in temporally organized visual sequences, 5-month-

olds are more sensitive to local repetitions than global statistics. Infants tended to look away 

during more repetitive portions of the sequence (e.g., during a patterned sequence versus a 

random sequence). In other words, when complexity was low, infants allocated less attention 

to the sequence.

These results have implications not only for discussions of which statistics are being 

computed, but also for thinking about how attention is deployed within these paradigms. 

Kidd and colleagues (2012, 2014) provided additional evidence suggesting differential 

attentional deployment as a function of complexity. In their experiments, infants observed 

visual and auditory episodes of varying complexity based on the predictability (or 

likelihood) of an upcoming event. In line with their predictions, infants were more likely to 

look away during episodes of either very low or very high complexity, preferring to allocate 

attention to events of intermediate complexity.

Learning itself is affected by complexity. In an eye-tracking study with 8-month-olds, three 

levels of predictability were embedded within one spatiotemporal sequence 

(Tummeltshammer & Kirkham 2013). Infants showed faster saccade (eye movement) 

latencies, more anticipation, and increased accuracy to items that were highly predictable 

relative to items that were either deterministic or unpredictable. In this case, learners may be 

maximizing information gathering by using likelihoods to constrain search (e.g., Dougherty 

et al. 2010, Gweon et al. 2010, Téglás et al. 2011, Yu et al. 2007). Because deterministic 

relations are unambiguous, they offer little information to the infant and, perhaps, little 

incentive to test possible outcomes with anticipatory looking. Low-probability relations have 

the most alternatives (and are perhaps most engaging for the infant), but the relevant 

hypotheses take longer to generate and test. Finally, high-probability relations offer the 

incentive to gain information but only a few alternatives to confirm or reject, making them a 

good target for an information-seeking infant with limited resources.

3.3. Issues of Input Specificity

In the visual domain, learners must track statistics not just temporally but also spatially. This 

differs from auditory input, in which the information to be learned is primarily arrayed in 

time, not space. In the original visual statistical learning paradigm with infants, Kirkham et 

al. (2002) presented each group of infants with a temporal sequence of shapes, looming one 

at a time from the middle of a screen. Results showed that infants were as capable in the 

visual domain as in the auditory domain, providing a clear analog to the Saffran et al. (1996) 

study. However, an important aspect of the ability to perceive the visual environment as 

coherent and intelligible is understanding objects' spatial locations and what their present 

locations might predict about future events. Acquisition of this type of knowledge is 

essential for motion perception and for the production of action sequences; one has to learn 

not only which actions are appropriate, but also where and when they should be performed. 

For example, if, while looking out the window of your house, you see your child walking up 

the path to the front door, you can reasonably predict that you will see her next in the 

doorway of your house. You can use this information to guide appropriate anticipatory 
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behavior, such as moving to a location that provides a view of the door to greet your child as 

she comes inside. In other words, each visual event is temporally related both to the previous 

event and to the future event and occurs within a spatial context.

Indeed, by 8 months of age, infants can learn temporally ordered statistics that involve 

informative spatial relations (Kirkham et al. 2007, Sobel & Kirkham 2006, 

Tummeltshammer & Kirkham 2013) and predictable co-occurrences in multi-element scenes 

(Fiser & Aslin 2002). As mentioned above, 8-month-olds' success in Kirkham et al.'s (2007) 

spatiotemporal paradigm occurred only when the elements were easily differentiable (e.g., 

differently colored shapes, each bound to an individual location). This suggests an 

interesting developmental trajectory in the effect of stimulus type on tracking statistics and 

highlights the importance of stimuli in processing the input.

Visual streams containing both backward and forward conditional probabilities provide an 

interesting opportunity to evaluate input specificity. Whereas some statistics, such as 

frequency, do not contain any information about order or direction, conditional probabilities 

can differ when computed with respect to the forward direction (i.e., X followed by Y) or the 

backward direction (i.e., Y preceded by X). Research in the auditory domain has 

demonstrated that both infants and adults are sensitive to statistical regularities defined in the 

backward as well as the forward direction (Jones & Pashler 2007, Pelucchi et al. 2009a, 

Perruchet & Desaulty 2008). However, language is inherently temporal, which suggests a 

need to be receptive to temporal order. Sensitivity to backward and forward statistics could 

be modality specific rather than domain general. Indeed, when 8-month-olds were 

familiarized to either temporal or spatial visual displays, they did not encode the visual 

regularities in the same way across both temporal and spatial dimensions (Tummeltshammer 

et al. 2017). Infants computed the predictive direction only in the temporal condition, with 

chunking occurring in the spatial condition. These data are consistent with the view that the 

computations performed by learners are susceptible to the specifics of the input.

Modality constraints observed in some studies of statistical learning can be construed as 

perceptual biases that affect domain-general computational principles (Frost et al. 2015). 

Studies with adults suggest substantial modality effects (e.g., Conway & Christiansen 2005, 

Emberson et al. 2011, Saffran 2002). For example, Saffran (2001b) developed an artificial 

grammar learning task in which the presence of a statistical cue to syntactic phrase structure 

(predictive dependencies between elements of phrases) was manipulated across conditions. 

Adults, children, and infants were better able to learn the grammar when predictive 

dependencies were present (Saffran 2001a, Saffran et al. 2008). The same pattern of results 

was obtained when adults were trained on auditory non-linguistic sequences (computer alert 

sounds) and on spatial arrays of visual images (Saffran 2002). However, when presented 

with sequences of visual images—organized like auditory information in time, but presented 

visually—the benefits afforded by the statistical regularity were not observed (Saffran 2002). 

These results are consistent with the modality effects on learning described above. Visual 

information, unlike auditory information, is typically less transient, with patterns organized 

in space rather than time. These differences appear to impact the outcome of statistical 

learning.
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4. Real-World Problems

Researchers considering what statistical learning can do for learners have approached a 

number of important and interesting problems through this lens. These approaches have both 

suggested novel answers and raised new questions for researchers.

4.1. Multilingualism

Since the earliest discussions of the possible role of statistical learning in language 

development, questions about bilingual learners have come to the fore. If statistical 

regularities play a key role in such language learning processes as phonemic learning, word 

segmentation, and word learning, what happens in bilingual environments? Can learners 

track multiple sets of statistics simultaneously? If so, what cues do they use to help them 

determine which bits of input go with which language? Strikingly, infants in bilingual 

environments acquire language at roughly the same pace as their monolingual peers, despite 

having twice as much to learn—and half the amount of input (e.g., Byers-Heinlein & 

Fennell 2014, Costa & Sebastián-Gallés 2014, Hoff et al. 2012).

The first study to examine the problem of bilingual statistical learning placed adults in a 

simulated bilingual environment created by interleaving two artificial languages (Weiss et al. 

2009). By design, the languages contained overlapping syllable inventories. In order to 

recover the correct underlying statistics from each language, learners needed to keep the two 

languages separate. As long as an indexical cue—speaker voice—was available to highlight 

the presence of two languages, learners successfully tracked the two systems independently.

In another study, Antovich & Graf Estes (2017) tested 14-month-old infants in a simulated 

bilingual exposure task in which two artificial language streams were interleaved. Again, an 

indexical cue was present to indicate to learners that multiple streams were present. In 

contrast to the results of Weiss et al. (2009), monolingual infants failed to demonstrate 

learning of dual interleaved speech streams. However, bilingual infants were able to track 

both sets of regularities. Also in contrast to the results of Weiss et al. (2009), the two 

languages did not overlap in their syllable inventories. It is thus unclear whether the 

bilingual infants treated the input as being drawn from two languages or whether they 

acquired one larger set of words. Regardless, these findings suggest that infants who have 

had more experience dealing with complex and highly variable sets of input—i.e., bilingual 

infants—are better able to cope with this rich set of experimental input than monolingual 

infants.

In these studies, indexical information—a change in speaker voice—helped to mark the 

presence of two distinct speech streams. In monolingual language input, however, infants 

must learn to collapse over speaker identity. That is, the pitch of a word does not change its 

meaning (at least in nontonal languages). This observation raises an interesting question for 

infant statistical language learning research: Do infants collapse statistics across speakers 

within a single language? A recent study by Graf Estes & Lew-Williams (2015) suggests 

that the answer hinges on variability. When infants were exposed to an artificial language 

spoken by eight different female voices, infants successfully tracked the sequential statistics 

in the input. However, when just two voices were present, infants failed to demonstrate 
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learning, presumably because they did not collapse the statistics across the two voices. 

Taken with the previously discussed studies about simulated bilingual acquisition, these 

results raise important questions about the role of variability in statistical learning. The 

distribution of exemplars in memory has been argued to be highly sensitive to variability, 

helping to explain patterns of results across myriad statistical learning tasks (Thiessen & 

Pavlik 2013).

4.2. Individual Differences

Another area where statistical learning approaches have been gaining traction is the study of 

individual differences (e.g., Siegelman & Frost 2015, Siegelman et al. 2017). This issue is of 

interest both in terms of individual differences in learning in themselves and insofar as 

individual differences in learning help to explain variability in key outcomes, such as native 

language learning.

Much of the research in this area has focused on adults, to facilitate correlations between 

statistical learning results and measures of cognitive or academic achievement. For example, 

English-speaking adults who performed better at a visual statistical learning task showed 

higher levels of performance in the acquisition of the Hebrew writing system, which is 

highly patterned (Frost et al. 2013). Experience with Mandarin in the college classroom 

improved adults' performance on an auditory statistical language learning task (Potter et al. 

2016). Skill at auditory statistical learning, but not visual statistical learning, appears to be 

related to musical skill (Vasuki et al. 2016).

Few studies have addressed individual differences in statistical learning in infancy. This is 

due at least in part to methodological constraints. Tasks like the head-turn preference 

procedure—used in many infant auditory learning studies—are not amenable to individual 

difference studies. They provide a single score for each infant—a difference score for 

looking on novel versus familiar trials. There is no evidence that the size of that difference is 

meaningful—that is, that an infant with a larger novelty preference learned more than an 

infant with a smaller novelty preference. Issues of direction of preference also complicate 

attempts to use preferential looking procedures to study individual differences. Unless there 

is a habituation component to the task, it is often not possible to make strong a priori 

predictions about the expected direction of preference.

Visual statistical learning tasks hold promise for studies of individual differences in infancy 

because they permit the collection of continuous measures that are clearly interpretable. For 

example, Shafto et al. (2012) used a reaction time measure in a visual anticipation task to 

assess statistical learning in 8.5-month-old infants. The results were correlated with the 

infants' vocabularies, as assessed by parental report. Indeed, infants' processing speed in 

sequential learning tasks predicts vocabulary size months later (Ellis et al. 2014). Studies 

with child learners suggest a similar pattern of results: 6- to 8-year-olds' visual statistical 

learning skills predict their level of performance on measures of native language syntax 

comprehension (Kidd & Arciuli 2016). Research investigating the relationship between 

visual attention in infancy (from a visual pattern prediction task) and later childhood 

behavior and temperament showed that mean fixation duration infancy was positively 
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associated with effortful control and negatively associated with surgency, hyperactivity, and 

inattention in childhood (Papageorgiou et al. 2014).

4.3. Developmental Disabilities

A related approach to understanding individual differences involves comparisons between 

groups of infants or children who are known to be following different developmental 

trajectories. These studies ask whether relative strengths and weaknesses in statistical 

learning can help to explain the patterns of deficits observed in infants and children with 

developmental disabilities. The first study to take this approach concerned adolescents with 

specific language impairment (SLI)—weakness in native language skill relative to other 

academic and cognitive skills (Tomblin et al. 2007). Participants with grammatical language 

impairment performed worse than their typically developing peers on a serial reaction time 

task requiring detection of visual patterns. Similar findings emerged from a study of grade 

school–aged children with SLI tracking statistical patterns inaword segmentation task 

(Evans et al. 2009). Compared to a nonverbal IQ–matched comparison group, the children 

did poorly on the statistical language learning task. Interestingly, the children with SLI 

performed even worse on a version of the word segmentation task using tone sequences 

rather than syllables, suggesting, in line with the Tomblin et al. (2007) findings, that the 

children's learning challenges are not limited to linguistic materials.

A recent meta-analysis of the extant literature confirmed this general pattern: Children with 

SLI perform worse on statistical learning tasks than children who are typical language 

learners (Obeid et al. 2016). These findings are interesting given the potential links between 

statistical learning and native language acquisition. Similar conclusions were drawn by a 

study comparing children with developmental dyslexia (DD) and children with typical 

development (Gabay et al. 2015). Children with DD performed more poorly on linguistic 

and tone-sequence statistical learning tasks than children in the comparison group. 

Moreover, performance on both the linguistic and nonlinguistic statistical learning tasks was 

correlated with reading measures. These data are consistent with the view that challenges in 

procedural learning underlie at least some aspects of DD (e.g., Lum et al. 2013).

It is not the case, though, that all developmental language learning deficits can be attributed 

to challenges in statistical learning. The same meta-analysis examined the extant literature 

on statistical learning in children and adolescents with autism spectrum disorders (ASD) 

(Obeid et al. 2016). Strikingly, the data across numerous studies suggest that autistic 

individuals do not show difficulties in statistical learning tasks. For example, Mayo & Eigsti 

(2012) tested autistic children with the same materials previously used by Evans et al. (2009) 

in their study of children with SLI. The autistic children showed the same pattern of 

performance as children with typical development. Thus, the tracking of sequential statistics 

does not, in itself, provide a way to differentiate between language disorders that may have 

quite different etiologies. That said, it is worth noting that the vast majority of studies 

investigating language learning in autistic children have sampled relatively high-functioning 

children (Obeid et al. 2016). Autistic children who show more language deficits may exhibit 

different patterns of functioning.
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Using event-related electrophysiological methodology, Jeste et al. (2015) presented children 

with ASD with an oddball paradigm version of the Kirkham et al. (2002) test in which the 

sequence was infrequently interrupted by a deviant or unexpected stimulus. Results showed 

a positive association between visual statistical learning and both nonverbal IQ and social 

function in children with ASD. Children with high nonverbal IQ scores demonstrated a 

larger (more negative) response to the unexpected trials (i.e., the 10% of the trials during 

which a shape was followed by an unmatching shape), as quantified by the N1 component 

difference (see Vogel & Luck 2000 for a discussion of the N1 component). This was 

opposite to the response of the typically developing group, who showed a greater response to 

the expected trials, suggesting greater allocation of attention to unexpected events. This 

preliminary work suggests that there may be statistical learning processing differences 

between children with ASD and typically developing children.

It would be ideal to be able to test infants at risk for developmental disorders on these sorts 

of tasks. Doing so would allow researchers to disentangle the starting state—abilities to 

detect sequential regularities, for example—from the effects of experience in detecting 

sequential regularities. Diagnoses like SLI, DD, and ASD currently cannot be made in early 

infancy. However, other types of developmental disorders, such as genetic syndromes arising 

from deletions or point mutations (in which part of a chromosome or DNA sequence is lost 

during replication), are diagnosed in infancy and provide fascinating opportunities to 

examine early learning abilities. Williams syndrome (WS) is a genetic disorder that is 

associated with significant intellectual disabilities, although with relative sparing of 

language abilities. Cashon et al. (2016) tested a group of infants with WS on the Saffran et 

al. (1996) artificial language segmentation task. The data provide the first evidence that 

infants with developmental disorders can track sequential statistics. Understanding how 

these abilities are used—and how they are combined with detection of other types of 

regularities—may help us to understand the developmental trajectories characterizing 

children with different disorders and individual differences more generally (e.g., Thomas et 

al. 2009). For example, some evidence suggests that infants with WS are more reliant on 

prosodic cues than their typically developing peers, at least after the first year of postnatal 

life (Nazzi et al. 2003). More complex approaches to studying early learning, asking how 

infants integrate multiple sources of information rather than focusing on how infants track 

single cues, will be necessary to develop a deeper understanding of the emergence of these 

complex phenotypes.

4.4. Noise, Distraction, and Context

In the real world, the infant learner is faced by another set of problems: noise and 

distraction. The literature reviewed above has shown the infant to be a robust learner, 

sensitive to the statistics in the input across a wide variety of situations. However, in the real 

world, those statistics can be in a fierce competition for attention among other, equally 

enticing cues. Tummeltshammer & Kirkham (2013) asked whether attention to highly 

probabilistic events would shift with the addition of noise. In a paradigm looking at three 

different spatiotemporal probabilities, infants showed heightened learning of a highly 

predictable event (as opposed to deterministic or low-probability events). However, when 

noise was added to the paradigm (in the guise of a light going on and off in a separate area 
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of the screen), despite absolute attention to the events being the same as in the previous 

condition, infants now showed better learning of the deterministic events. This suggests that 

sensitivity to input statistics is context dependent. A series of studies by Tummeltshammer 

and colleagues (2014a,b; 2017) have expanded upon the issue of context, showing that 

visual statistical learning is mediated by stimulus salience, source reliability, and mode of 

presentation.

5. Why are We Statistical Learners?

As we have described throughout this review, there is ample evidence that human infants, 

along with other learners, are sensitive to the statistical structure of their environment. We 

have also tried to highlight the ways in which statistical learning abilities serve infants well, 

given the structure of the environment into which they are born. At least some of these 

abilities are observed in other species (e.g., Abe & Watanabe 2011, Santolin et al. 2016, 

Toro & Trobalón 2005). Almost 50 years ago, Rescorla (1968) demonstrated that 

conditioning is actually dependent on more complicated factors than just contiguity of the 

pairing. Conditioning is affected by the base rate of unconditioned stimulus occurrence, 

against which a conditioned stimulus/unconditioned stimulus (CS/US) contiguity takes 

place. In other words, if a tone always occurs just before a shock is administered to a rat, but 

shocks also occur in absence of a tone, the CS/US pairing is not learned. If, later, the same 

number of tones is presented but the shocks only occur after the tone, then the animal learns, 

even though in both cases the rate of tone–shock pairings is identical. Thus, it is not the 

absolute frequency of the pairings that is important, but the general probabilistic relationship 

between the variables. Conditioning takes place only when the US has predictive value. 

Rescorla's (1968) work refuted the traditional belief that the CS/US pairing frequency was 

the crucial aspect of classical conditioning and showed that animals are sensitive, instead, to 

the statistics of each individual situation.

5.1. Relationships Between Statistical Learning and the Environment

To some extent, we can construe infants' learning abilities as well tailored to their 

environments. This way of thinking makes sense when considering the visual world, which 

predates human evolution. The modality-specific constraints described above are a good 

example of tailoring: Learners appear to be better at tracking sequential statistics in auditory 

stimuli, which tend to be more temporally fleeting than stimuli in the visual environment. 

The latter are more temporally stable, with structures organized more in terms of space than 

of time. The degree to which our learning abilities reflect these differences may be due to 

modality constraints on learning and memory that are present prior to experience in these 

domains. Alternatively, infants' divergent early experiences with auditory and visual inputs, 

possibly dating to prenatal exposure, may have shaped modality-specific constraints on 

learning and memory. Regardless of the locus of the constraints, they are a good fit to the 

world.

Another way to think about the relationship between statistical learning and the world is to 

consider the idea that our learning abilities themselves may have played a role in shaping our 

environments. Consider the structure of natural languages. An enduring puzzle in the study 
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of linguistics concerns cross-linguistic similarities. Although languages appear to be very 

different on their surface, much of the underlying structure of human languages is 

remarkably similar. Whereas some of these similarities likely reflect historical relationships, 

others seem unlikely to be explainable in those terms. Indeed, these considerations played a 

major role in the original positing of a language acquisition device containing innate 

knowledge about possible human languages.

Statistical learning accounts are not sophisticated enough to be able to account for many 

detailed aspects of language acquisition, especially some of the more complex linguistic 

structures that do not appear to be transparently mirrored in the input (e.g., Han et al. 2016). 

However, both experimental tasks and computational models have suggested specific ways 

in which constraints on statistical learning might have influenced the structure of natural 

languages (e.g., Christiansen & Chater 2008, Saffran 2001b, Smith et al. 2017). The general 

idea is that language structures that are more learnable, particularly by infants and young 

children, should be more prevalent in the languages of the world than structures that are 

more difficult to learn. Moreover, if the constraints on learning precede the structures that 

they have shaped, the same constraints on learning should be evident in learning 

nonlinguistic structures (e.g., Saffran 2002).

Although there is not a great deal of data to support this theoretical perspective, the extant 

studies are promising. For example, infants are better able to track phonotactic patterns—the 

statistics of phoneme co-occurrence conditioned by position within syllables and words—

when the observed patterns mirror the types of regularities present in natural languages 

(Saffran & Thiessen 2003). Similarly, infants are better able to acquire linguistic phrase 

structure when it contains distributional regularities—within-phrase predictive elements—

that mirror structures found in natural languages (Saffran et al. 2008). Similar constraints on 

learning appear given non-linguistic input designed to simulate language structures (C. 

Santolin & J.R. Saffran, unpublished manuscript; Thiessen 2011).

5.2. Memory and Prediction

Statistical learning mechanisms are well suited to our environments, and our 

environments,in turn, may have been shaped by our learning mechanisms—at least for 

structures that are culturally transmitted. In this section, we turn to an even more speculative 

question: Why do we track statistics in the first place?

One possibility is that the detection of statistical patterns is a result of the structure of 

memory (e.g., Perruchet & Vintner 1998, Thiessen & Pavlik 2013). For example, the 

iMinerva model proposed by Thiessen & Pavlik (2013) simulates a range of statistical 

learning phenomena using principles of long-term memory: activation, decay, integration, 

and abstraction. Thus, sensitivity to statistical regularities is due to the properties of memory 

and forgetting. Memory-based approaches to statistical learning permit the integration of 

multiple learning tasks that appear quite different on the surface but that may be explainable 

under the umbrella of memory considerations (e.g., Thiessen 2017). This leads nicely to 

another major question currently debated in visual statistical learning: Is this type of learning 

chunking or statistical computation (see Perruchet & Pacton 2006)? One alternative 

interpretation for infants' seeming sensitivity to statistical distributions across visual input is 
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that this may be the outcome of a broader associative learning strategy (i.e., chunking; Miller 

1956). This implies that co-occurring elements in a scene are extracted and stored as a 

structured chunk (Perruchet & Peereman 2004), allowing infants to recall regularities 

encountered in the environment without relying on sophisticated computational abilities [see 

the models PARSER (word segmentation; Perruchet & Vintner 1998) and TRACX 

(sequence segmentation and chunk extraction; French et al. 2011, Mareschal & French 

2017)]. However, as noted by Perruchet and colleagues (Perruchet & Pacton 2006, Perruchet 

& Peereman 2004), statistical learning and chunking explanations may not be mutually 

exclusive, and, indeed, chunking may arise from an initial sensitivity to statistical 

regularities.

Another way to think about why we track statistics entails a shift in focus from learning 

statistics to using statistics (e.g., Hasson 2017). Statistical information sharpens predictions. 

To the extent that our brains and, by extension, our cognitive and linguistic systems are 

engaged in reduction of uncertainty, statistical information should be informative. Note that 

this way of framing the issues—around prediction—is neutral concerning the specific types 

of statistical information that are relevant; any type of information, from Bayesian priors to 

transitional probabilities to the weights in connectionist networks, could, in principle, help to 

tune predictions. By tuning predictions, learners have the opportunity to reduce errors to 

better anticipate outcomes.

Predictive contexts also provide the opportunity for learners to generate internal error 

signals, which may supplement bottom-up statistical information and facilitate learning. For 

example, consider the following simple predictive learning study by Romberg & Saffran 

(2013b). In one condition, infants saw a brief video repeatedly on the left side of the screen, 

and learned to saccade predictively to the left, anticipating the reward. After several such 

trials, the reward occurred on the right side of the screen. The question of interest was what 

infants would do on the next trial. Would they respond by anticipating on the left based on 

the overall statistical information (the reward was much more likely to occur on the left), or 

would they weight the error signal more highly and look to the right? Interestingly, the 

infants' behavior was unaffected by a single unexpected trial; they continued to predict the 

reward on the left. However, after a second unexpected trial, the infants updated their 

predictions and became less biased to the left side. Across the experiment, the evidence 

suggested that infants updated their predictions based on the evidence they saw, but not 

based on a single counterexample.

6. Conclusion

We began this review by placing theories of statistical learning firmly in the middle of the 

big question of how the structured environment is detected by infants. We have presented 

evidence to suggest that infants' sensitivity to statistical structure is not only broad, applied 

across modalities and domains, but also focused, attending to the specifics of the input and 

the varying goals of perception. We have suggested that statistical learning is part of a 

reciprocal determinism between the brain mechanisms and the environment, in which each 

helps shape the other, perhaps crucially related to the structure of human memory itself.
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Normal perception is concerned with real-life events: dynamic multimodal scenes that 

involve language, objects, and action. For statistical learning to be of use, it must be a 

mechanism that is flexible enough to encompass all of these dimensions. For example, 

solely attending to the relationships between individual features in a sensory scene would 

eventually create a computational bottleneck that would strangle the system. Thus, the 

primitives of statistical computation matter, changing the outcome of learning. They are 

affected by experience and modified by perceptual biases. And what are the actual 

computations operating over these primitives? In the field of infant statistical learning, 

transitional probabilities, frequencies, redundancies, dependencies, and conditional 

probabilities (temporal and spatial) have all played a part in this discussion. Although the 

research continues, it is clear from the work to date that these computations depend on both 

the age of the infant (perhaps shifting from frequency counting or attention to local 

redundancies to transitional probabilities across the first year of life) and the specifics of the 

input. At present, numerous different implementations can account for the empirical 

findings. It is up to the field to generate experimental results that can tease them apart.

For statistical learning to be useful, it has to tell us something about real-world problems. 

And it does: It offers insights into issues specific to multilinguals and tackles problems of 

real-world chaos (e.g., noise and distraction). Recently, studies using statistical learning 

paradigms have begun to shine light on individual differences in perception and certain 

developmental disabilities.

In sum, statistical learning is a rich and robust learning mechanism allowing infants to find 

structure (and meaning) in the blooming, buzzing confusion. We recognize that we have 

only touched the surface of the field in this review. But we hope that we have raised issues 

and questions that will help to motivate the next generation of research on statistical 

learning.

Acknowledgments

Preparation of this manuscript was supported by a grant from the National Institute of Child Health and Human 
Development (R37HD037466) to J.R.S. and by a Nuffield Foundation Grant (PSA68) and a British Academy Small 
Research Grant (SG–47879) to N.Z.K.

Literature Cited

Abe K, Watanabe D. Songbirds possess the spontaneous ability to discriminate syntactic rules. Nat 
Neurosci. 2011; 14(8):1067–74. [PubMed: 21706017] 

Addyman C, Mareschal D. Local redundancy governs infants' spontaneous orienting to visual-temporal 
sequences. Child Dev. 2013; 84(4):1137–44. [PubMed: 23432603] 

Antovich DM, Graf Estes K. Learning across languages: Bilingual experience supports dual language 
statistical word segmentation. Dev Sci. 2017 In press. 

Aslin RN, Saffran JR, Newport EL. Computation of conditional probability statistics by 8-month-old 
infants. Psychol Sci. 1998; 9(4):321–24.

Aslin, RN., Slemmer, JA., Kirkham, NZ., Johnson, SP. Statistical learning of visual shape sequences; 
Presented at Biennial Meet. Soc. Res. Child Dev; Apr. 19–22; Minneapolis, MN. 2001. 

Baldwin D, Andersson A, Saffran J, Meyer M. Segmenting dynamic human action via statistical 
structure. Cognition. 2008; 106(3):1382–407. [PubMed: 18035346] 

Saffran and Kirkham Page 20

Annu Rev Psychol. Author manuscript; available in PMC 2018 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bulf H, Brenna V, Valenza E, Johnson SP, Turati C. Many faces, one rule: the role of perceptual 
expertise in infants' sequential rule learning. Front Psychol. 2015; 6:1595. [PubMed: 26539142] 

Bulf H, Johnson SP, Valenza E. Visual statistical learning in the newborn infant. Cognition. 2011; 
121(1):127–32. [PubMed: 21745660] 

Byers-Heinlein K, Fennell CT. Perceptual narrowing in the context of increased variation: insights 
from bilingual infants. Dev Psychobiol. 2014; 56(2):274–91. [PubMed: 24114364] 

Canfield RL, Haith MM. Young infants' visual expectations for symmetric and asymmetric stimulus 
sequences. Dev Psychol. 1991; 27:198–208.

Cashon CH, Ha OR, Estes KG, Saffran JR, Mervis CB. Infants with Williams syndrome detect 
statistical regularities in continuous speech. Cognition. 2016; 154:165–68. [PubMed: 27299804] 

Chomsky, N. Aspects of the Theory of Syntax. Cambridge, MA: MIT Press; 1965. 

Christiansen MH, Chater N. Language as shaped by the brain. Behav Brain Sci. 2008; 31(05):489–
509. [PubMed: 18826669] 

Conway CM, Christiansen MH. Modality-constrained statistical learning of tactile, visual, and 
auditory sequences. J Exp Psychol Learn Mem Cogn. 2005; 31(1):24–39. [PubMed: 15641902] 

Costa A, Sebastián-Gallés N. How does the bilingual experience sculpt the brain? Nat Rev Neurosci. 
2014; 15(5):336–45. [PubMed: 24739788] 

Dawson C, Gerken L. From domain-generality to domain-sensitivity: 4-month-olds learn an abstract 
repetition rule in music that 7-month-olds do not. Cognition. 2009; 111(3):378–82. [PubMed: 
19338982] 

Dougherty M, Thomas R, Lange N. Toward an integrative theory of hypothesis generation, probability 
judgment, and hypothesis testing. Psychol Learn Motiv. 2010; 52:299–342.

Edelman, S., Intrator, N., Jacobson, JS. Proc Int Workshop Biol Motiv Comp Vis 2nd Tübingen Ger. 
Berlin: Springer; 2002. Unsupervised learning of visual structure; p. 629-42.

Ellis EM, Gonzalez MR, Deák GO. Visual prediction in infancy: What is the association with later 
vocabulary? Lang Learn Dev. 2014; 10(1):36–50.

Emberson LL, Conway CM, Christiansen MH. Timing is everything: Changes in presentation rate have 
opposite effects on auditory and visual implicit statistical learning. Q J Exp Psychol. 2011; 64(5):
1021–40.

Erickson L, Thiessen ET, Graf Estes K. Statistically coherent labels facilitate categorization in 8-
month-olds. J Mem Lang. 2014; 72:49–58.

Evans JL, Saffran JR, Robe-Torres K. Statistical learning in children with specific language 
impairment. J Speech Lang Hear Res. 2009; 52(2):321–35. [PubMed: 19339700] 

Ferguson B, Lew-Williams C. Communicative signals support abstract rule learning by 7-month-old 
infants. Sci Rep. 2016; 6:25434. [PubMed: 27150270] 

Field DJ. Relations between the statistics of natural images and the response properties of cortical 
cells. J Opt Soc Am A. 1987; 4(12):2379–94. [PubMed: 3430225] 

Fiser J, Aslin RN. Unsupervised statistical learning of higher-order spatial structures from visual 
scenes. Psychol Sci. 2001; 12(6):499–504. [PubMed: 11760138] 

Fiser J, Aslin RN. Statistical learning of new visual feature combinations by infants. PNAS. 2002; 
99(24):15822–26. [PubMed: 12429858] 

Fiser J, Aslin RN. Encoding multielement scenes: statistical learning of visual feature hierarchies. J 
Exp Psychol Gene. 2005; 134(4):521–37.

Fiser J, Scholl BJ, Aslin RN. Perceived object trajectories during occlusion constrain visual statistical 
learning. Psychon Bull Rev. 2007; 14(1):173–78. [PubMed: 17546749] 

French RM, Addyman C, Mareschal D. TRACX: a recognition-based connectionist framework for 
sequence segmentation and chunk extraction. Psychol Rev. 2011; 118(4):614–36. [PubMed: 
22003842] 

Frost R, Armstrong BC, Siegelman N, Christiansen MH. Domain generality versus modality 
specificity: the paradox of statistical learning. Trends Cogn Sci. 2015; 19(3):117–25. [PubMed: 
25631249] 

Frost R, Siegelman N, Narkiss A, Afek L. What predicts successful literacy acquisition in a second 
language? Psychol Sci. 2013; 24(7):1243–52. [PubMed: 23698615] 

Saffran and Kirkham Page 21

Annu Rev Psychol. Author manuscript; available in PMC 2018 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gabay Y, Thiessen ED, Holt LL. Impaired statistical learning in developmental dyslexia. J Speech 
Lang Hear Res. 2015; 58(3):934–45. [PubMed: 25860795] 

Gauthier B, Shi R, Xu Y. Learning phonetic categories by tracking movements. Cognition. 2007; 
103(1):80–106. [PubMed: 16650399] 

Gerken L. Decisions, decisions: infant language learning when multiple generalizations are possible. 
Cognition. 2006; 98(3):B67–74. [PubMed: 15992791] 

Gerken L. Infants use rational decision criteria for choosing among models of their input. Cognition. 
2010; 115(2):362–66. [PubMed: 20144828] 

Gibson, JJ. The Perception of the Visual World. Boston: Houghton Mifflin; 1966. 

Gómez RL. Variability and detection of invariant structure. Psychol Sci. 2002; 13(5):431–36. 
[PubMed: 12219809] 

Goodsitt JV, Morgan JL, Kuhl PK. Perceptual strategies in prelingual speech segmentation. J Child 
Lang. 1993; 20(2):229–52. [PubMed: 8376468] 

Graf Estes K, Evans JL, Alibali MW, Saffran JR. Can infants map meaning to newly segmented 
words? Statistical segmentation and word learning Psychol Sci. 2007; 18(3):254–60. [PubMed: 
17444923] 

Graf Estes K, Lew-Williams C. Listening through voices: infant statistical word segmentation across 
multiple speakers. Dev Psychol. 2015; 51(11):1517–28. [PubMed: 26389607] 

Gweon H, Tenenbaum JB, Schulz LE. Infants consider both the sample and the sampling process in 
inductive generalization. PNAS. 2010; 107(20):9066–71. [PubMed: 20435914] 

Haith, MM. Future-oriented processes in infancy: the case of visual expectations. In: Granrud, CE., 
editor. Visual Perception and Cognition in Infancy. Hillsdale, NJ: Erlbaum; 1993. p. 235-64.

Han CH, Musolino J, Lidz J. Endogenous sources of variation in language acquisition. PNAS. 2016; 
113(4):942–47. [PubMed: 26755580] 

Hasson U. The neurobiology of uncertainty: implications for statistical learning. Phil Trans R Soc B. 
2017; 372(1711):20160048. [PubMed: 27872367] 

Hay JF, Pelucchi B, Estes KG, Saffran JR. Linking sounds to meanings: infant statistical learning in a 
natural language. Cogn Psychol. 2011; 63(2):93–106. [PubMed: 21762650] 

Hoff E, Core C, Place S, Rumiche R, Senor M, Parra M. Dual language exposure and early bilingual 
development. J Child Lang. 2012; 39:1–27. [PubMed: 21418730] 

James, W. The Principles of Psychology. Cambridge, MA: Harvard Univ. Press; 1890. 

Jeste SS, Kirkham N, Senturk D, Hasenstab K, Sugar C, et al. Electrophysiological evidence of 
heterogeneity in visual statistical learning in young children with ASD. Dev Sci. 2015; 18(1):90–
105. [PubMed: 24824992] 

Johnson EK, Tyler MD. Testing the limits of statistical learning for word segmentation. Dev Sci. 2010; 
13(2):339–45. [PubMed: 20136930] 

Jones J, Pashler H. Is the mind inherently forward looking? Comparing prediction and retrodiction. 
Psychon Bull Rev. 2007; 14(2):295–300. [PubMed: 17694916] 

Jusczyk PW, Aslin RN. Infants' detection of the sound patterns of words in fluent speech. Cogn 
Psychol. 1995; 29(1):1–23. [PubMed: 7641524] 

Kidd E, Arciuli J. Individual differences in statistical learning predict children's comprehension of 
syntax. Child Dev. 2016; 87(1):184–93. [PubMed: 26510168] 

Kidd C, Piantadosi ST, Aslin RN. The Goldilocks effect: Human infants allocate attention to visual 
sequences that are neither too simple nor too complex. PLOS ONE. 2012; 7(5):e36399. [PubMed: 
22649492] 

Kidd C, Piantadosi ST, Aslin RN. The Goldilocks effect in infant auditory attention. Child Dev. 2014; 
85(5):1795–804. [PubMed: 24990627] 

Kirkham NZ, Richardson DC, Wu R, Johnson SP. The importance of “what”: Infants use featural 
information to index events. J Exp Child Psychol. 2012; 113(3):430–39. [PubMed: 22867888] 

Kirkham NZ, Slemmer JA, Johnson SP. Visual statistical learning in infancy: evidence for a domain 
general learning mechanism. Cognition. 2002; 83(2):B35–42. [PubMed: 11869728] 

Saffran and Kirkham Page 22

Annu Rev Psychol. Author manuscript; available in PMC 2018 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kirkham NZ, Slemmer JA, Richardson DC, Johnson SP. Location, location, location: development of 
spatiotemporal sequence learning in infancy. Child Dev. 2007; 78(5):1559–71. [PubMed: 
17883448] 

Krogh L, Vlach HA, Johnson SP. Statistical learning across development: flexible yet constrained. 
Front Psychol. 2013; 3:598. [PubMed: 23430452] 

Kuhl PK, Williams KA, Lacerda F, Stevens KN, Lindblom B. Linguistic experience alters phonetic 
perception in infants by 6 months of age. Science. 1992; 255:606–8. [PubMed: 1736364] 

Lany J, Gómez RL. Twelve-month-old infants benefit from prior experience in statistical learning. 
Psychol Sci. 2008; 19(12):1247–52. [PubMed: 19121132] 

Lew-Williams C, Saffran JR. All words are not created equal: Expectations about word length guide 
infant statistical learning. Cognition. 2012; 122(2):241–46. [PubMed: 22088408] 

Lidz J, Gagliardi A. How nature meets nurture: universal grammar and statistical learning. Annu Rev 
Linguistics. 2015; 1:333–53.

Lum JA, Ullman MT, Conti-Ramsden G. Procedural learning is impaired in dyslexia: evidence from a 
meta-analysis of serial reaction time studies. Res Dev Disabil. 2013; 34:3460–76. [PubMed: 
23920029] 

Marcovitch S, Lewkowicz DJ. Sequence learning in infancy: the independent contributions of 
conditional probability and pair frequency information. Dev Sci. 2009; 12(6):1020–25. [PubMed: 
19840056] 

Marcus GF, Fernandes KJ, Johnson SP. Infant rule learning facilitated by speech. Psychol Sci. 2007; 
18(5):387–91. [PubMed: 17576276] 

Marcus GF, Vijayan S, Rao SB, Vishton PM. Rule learning by seven-month-old infants. Science. 1999; 
283(5398):77–80. [PubMed: 9872745] 

Mareschal D, French RM. TRACX2: a connectionist autoencoder using graded chunks to model infant 
visual statistical learning. Phil Trans R Soc B. 2017; 372(1711):20160057. [PubMed: 27872375] 

Marr, D. Vision. San Francisco: WH Freeman & Co; 1982. 

Mayo J, Eigsti IM. Brief report: a comparison of statistical learning in school-aged children with high 
functioning autism and typically developing peers. J Autism Dev Disord. 2012; 42(11):2476–85. 
[PubMed: 22382606] 

Miller GA. The magical number seven, plus or minus two: some limits on our capacity for processing 
information. Psychol Rev. 1956; 63(2):81–97. [PubMed: 13310704] 

Monroy CD, Gerson SA, Hunnius S. Toddlers' action prediction: statistical learning of continuous 
action sequences. J Exp Child Psychol. 2017; 157:14–28. [PubMed: 28103496] 

Nazzi T, Paterson S, Karmiloff-Smith A. Early word segmentation by infants and toddlers with 
Williams syndrome. Infancy. 2003; 4(2):251–71.

Newport EL, Aslin RN. Learning at a distance: 1. Statistical learning of non-adjacent dependencies. 
Cogn Psychol. 2004; 48:127–62. [PubMed: 14732409] 

Obeid R, Brooks PJ, Powers KL, Gillespie-Lynch K, Lum JA. Statistical learning in specific language 
impairment and autism spectrum disorder: a meta-analysis. Front Psychol. 2016; 7:1245. 
[PubMed: 27602006] 

Papageorgiou KA, Smith TJ, Wu R, Johnson MH, Kirkham NZ, Ronald A. Individual differences in 
infant fixation duration relate to attention and behavioral control in childhood. Psychol Sci. 2014; 
25(7):1371–79. [PubMed: 24815614] 

Pelucchi B, Hay JF, Saffran JR. Learning in reverse: Eight-month-old infants track backward 
transitional probabilities. Cognition. 2009a; 113(2):244–47. [PubMed: 19717144] 

Pelucchi B, Hay JF, Saffran JR. Statistical learning in a natural language by 8-month-old infants. Child 
Dev. 2009b; 80(3):674–85. [PubMed: 19489896] 

Perruchet P, Desaulty S. A role for backward transitional probabilities in word segmentation? Mem 
Cogn. 2008; 36:1299–305.

Perruchet P, Pacton S. Implicit learning and statistical learning: one phenomenon, two approaches. 
Trends Cogn Sci. 2006; 10:233–38. [PubMed: 16616590] 

Perruchet P, Peereman R. The exploitation of distributional information in syllable processing. J 
Neurolinguist. 2004; 17:97–119.

Saffran and Kirkham Page 23

Annu Rev Psychol. Author manuscript; available in PMC 2018 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Perruchet P, Vintner A. PARSER: a model for word segmentation. J Mem Lang. 1998; 39:246–63.

Piantadosi ST, Kidd C. Endogenous or exogenous? The data don't say. PNAS. 2016; 113(20):E2764. 
[PubMed: 27099292] 

Potter C, Wang T, Saffran JR. Second language experience facilitates statistical learning of novel 
linguistic materials. Cogn Sci. 2016; 41(S4):913–27. [PubMed: 27988939] 

Rescorla RA. Probability of shock in the presence and absence of CS in fear conditioning. J Comp 
Physiol Psychol. 1968; 66(1):1–5. [PubMed: 5672628] 

Romberg AR, Saffran JR. All together now: concurrent learning of multiple structures in an artificial 
language. Cogn Sci. 2013a; 37(7):1290–320. [PubMed: 23772795] 

Romberg AR, Saffran JR. Expectancy learning from probabilistic input by infants. Front Psychol. 
2013b; 3:610. [PubMed: 23439947] 

Saffran JR. The use of predictive dependencies in language learning. J Mem Lang. 2001a; 44:493–515.

Saffran JR. Words in a sea of sounds: the output of statistical learning. Cognition. 2001b; 81:149–69. 
[PubMed: 11376640] 

Saffran JR. Constraints on statistical language learning. J Mem Lang. 2002; 47(1):172–96.

Saffran JR. Absolute pitch in infancy and adulthood: the role of tonal structure. Dev Sci. 2003; 6(1):
35–43.

Saffran, JR. What can statistical learning tell us about infant learning?. In: Needham, A., Woodward, 
A., editors. Learning and the Infant Mind. Oxford, UK: Oxford Univ. Press; 2008. p. 29-46.

Saffran JR, Aslin RN, Newport EL. Statistical learning by 8-month-old infants. Science. 1996; 
274:1926–28. [PubMed: 8943209] 

Saffran JR, Griepentrog GJ. Absolute pitch in infant auditory learning: evidence for developmental 
reorganization. Dev Psychol. 2001; 37(1):74–85. [PubMed: 11206435] 

Saffran JR, Hauser M, Seibel R, Kapfhamer J, Tsao F, Cushman F. Grammatical pattern learning by 
human infants and cotton-top tamarin monkeys. Cognition. 2008; 107(2):479–500. [PubMed: 
18082676] 

Saffran JR, Johnson EK, Aslin RN, Newport EL. Statistical learning of tone sequences by human 
infants and adults. Cognition. 1999; 70(1):27–52. [PubMed: 10193055] 

Saffran JR, Pollak SD, Seibel RL, Shkolnik A. Dog is a dog is a dog: Infant rule learning is not 
specific to language. Cognition. 2007; 105(3):669–80. [PubMed: 17188676] 

Saffran JR, Reeck K, Niebuhr A, Wilson D. Changing the tune: The structure of the input affects 
infants' use of absolute and relative pitch. Dev Sci. 2005; 8(1):1–7. [PubMed: 15647061] 

Saffran JR, Thiessen ED. Pattern induction by infant language learners. Dev Psychol. 2003; 39(3):
484–94. [PubMed: 12760517] 

Saffran JR, Wilson DP. From syllables to syntax: multilevel statistical learning by 12-month-old 
infants. Infancy. 2003; 4(2):273–84.

Sahni SD, Seidenberg MS, Saffran JR. Connecting cues: Overlapping regularities support cue 
discovery in infancy. Child Dev. 2010; 81(3):727–36. [PubMed: 20573101] 

Santolin C, Rosa-Salva O, Vallortigara G, Regolin L. Unsupervised statistical learning in newly 
hatched chicks. Curr Biol. 2016; 26(23):R1218–20. [PubMed: 27923125] 

Seidl A, Johnson EK. Infant word segmentation revisited: Edge alignment facilitates target extraction. 
Dev Sci. 2006; 9(6):565–73. [PubMed: 17059453] 

Shafto CL, Conway CM, Field SL, Houston DM. Visual sequence learning in infancy: domain-general 
and domain-specific associations with language. Infancy. 2012; 17(3):247–71. [PubMed: 
22523477] 

Shukla M, Nespor M, Mehler J. An interaction between prosody and statistics in the segmentation of 
fluent speech. Cogn Psychol. 2007; 54(1):1–32. [PubMed: 16782083] 

Shukla M, White KS, Aslin RN. Prosody guides the rapid mapping of auditory word forms onto visual 
objects in 6-mo-old infants. PNAS. 2011; 108(15):6038–43. [PubMed: 21444800] 

Siegelman N, Bogaerts L, Christiansen MH, Frost R. Towards a theory of individual differences in 
statistical learning. Phil Trans R Soc B. 2017; 372(1711):20160059. [PubMed: 27872377] 

Siegelman N, Frost R. Statistical learning as an individual ability: theoretical perspectives and 
empirical evidence. J Mem Lang. 2015; 81:105–20. [PubMed: 25821343] 

Saffran and Kirkham Page 24

Annu Rev Psychol. Author manuscript; available in PMC 2018 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Smith K, Perfors A, Fehér O, Samara A, Swoboda K, Wonnacott E. Language learning, language use 
and the evolution of linguistic variation. Phil Trans R Soc B. 2017; 372(1711):20160051. 
[PubMed: 27872370] 

Sobel DM, Kirkham NZ. Blickets and babies: the development of causal reasoning in toddlers and 
infants. Dev Psychol. 2006; 42:1103–15. [PubMed: 17087545] 

Stahl AE, Romberg AR, Roseberry S, Golinkoff RM, Hirsh-Pasek K. Infants segment continuous 
events using transitional probabilities. Child Dev. 2014; 85(5):1821–26. [PubMed: 24749627] 

Téglás E, Vul E, Girotto V, Gonzalez M, Tenenbaum JB, Bonatti LL. Pure reasoning in 12-month-old 
infants as probabilistic inference. Science. 2011; 332(6033):1054–59. [PubMed: 21617069] 

Thiessen ED. Effects of visual information on adults' and infants' auditory statistical learning. Cogn 
Sci. 2010; 34(6):1093–106. [PubMed: 21564244] 

Thiessen ED. Domain general constraints on statistical learning. Child Dev. 2011; 82(2):462–70. 
[PubMed: 21410909] 

Thiessen ED. What's statistical about learning? Insights from modelling statistical learning as a set of 
memory processes. Phil Trans R Soc B. 2017; 372(1711):20160056. [PubMed: 27872374] 

Thiessen ED, Pavlik PI. iMinerva: a mathematical model of distributional statistical learning. Cogn 
Sci. 2013; 37(2):310–43. [PubMed: 23126517] 

Thiessen ED, Saffran JR. Learning to learn: infants' acquisition of stress-based strategies for word 
segmentation. Lang Learn Dev. 2007; 3(1):73–100.

Thomas MS, Annaz D, Ansari D, Scerif G, Jarrold C, Karmiloff-Smith A. Using developmental 
trajectories to understand developmental disorders. J Speech Lang Hear Res. 2009; 52(2):336–
58. [PubMed: 19252129] 

Tomblin JB, Mainela-Arnold E, Zhang X. Procedural learning in adolescents with and without specific 
language impairment. Lang Learn Dev. 2007; 3(4):269–93.

Toro JM, Trobalón JB. Statistical computations over a speech stream in a rodent. Atten Percept 
Psychophys. 2005; 67(5):867–75.

Tummeltshammer K, Amso D, French RM, Kirkham NZ. Across space and time: Infants learn from 
backward and forward visual statistics. Dev Sci. 2017 In press. 

Tummeltshammer KS, Kirkham NZ. Learning to look: Probabilistic variation and noise guide infants' 
eye movements. Dev Sci. 2013; 16(5):760–71. [PubMed: 24033580] 

Tummeltshammer KS, Mareschal D, Kirkham NZ. Infants' selective attention to reliable visual cues in 
the presence of salient distractors. Child Dev. 2014a; 85(5):1981–94. [PubMed: 24646174] 

Tummeltshammer KS, Wu R, Sobel DM, Kirkham NZ. Infants track the reliability of potential 
informants. Psychol Sci. 2014b; 25(9):1730–38. [PubMed: 25022277] 

Turk-Browne NB, Isola PJ, Scholl BJ, Treat TA. Multidimensional visual statistical learning. J Exp 
Psychol Learn Mem Cogn. 2008; 34(2):399–407. [PubMed: 18315414] 

Vasuki PRM, Sharma M, Demuth K, Arciuli J. Musicians' edge: a comparison of auditory processing, 
cognitive abilities and statistical learning. Hear Res. 2016; 342:112–23. [PubMed: 27770623] 

Vogel EK, Luck SJ. The visual N1 component as an index of a discrimination process. 
Psychophysiology. 2000; 37(2):190–203. [PubMed: 10731769] 

Wang T, Saffran JR. Statistical learning of a tonal language: the influence of bilingualism and previous 
linguistic experience. Front Psychol. 2014; 5:953. [PubMed: 25232344] 

Weiss DJ, Gerfen C, Mitchel AD. Speech segmentation in a simulated bilingual environment: a 
challenge for statistical learning? Lang Learn Dev. 2009; 5(1):30–49. [PubMed: 24729760] 

Werker J, Tees RC. Cross-language speech perception: evidence for perceptual reorganization during 
the first year of life. Infant Behav Dev. 1984; 7:49–63.

Wu R, Gopnik A, Richardson DC, Kirkham NZ. Infants learn about objects from statistics and people. 
Dev Psychol. 2011; 47(5):1220–29. [PubMed: 21668098] 

Younger BA. The segregation of items into categories by ten-month-old infants. Child Dev. 1985; 
54:858–67.

Younger BA, Cohen LB. Developmental change in infants' perception of correlations among attributes. 
Child Dev. 1986; 57:803–15. [PubMed: 3720405] 

Saffran and Kirkham Page 25

Annu Rev Psychol. Author manuscript; available in PMC 2018 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yu, C., Smith, LB., Klein, KA., Shiffrin, RM. Proc Annu Meet Cogn Sci Soc 29th Nashville TN. 
Austin, TX: Cogn. Sci. Soc; 2007. Hypothesis testing and associative learning in cross-situational 
word learning: Are they one and the same?; p. 737-42.

Saffran and Kirkham Page 26

Annu Rev Psychol. Author manuscript; available in PMC 2018 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. Introduction
	1.1. Initial Evidence for Statistical Learning in Human Infants
	1.2. Infant Statistical Language Learning: Initial Evidence
	1.3. Infant Statistical Learning in Other Domains: Initial Evidence
	1.4. Infant Statistical Language Learning
	1.5. Infant Statistical Learning: Now What?

	2. Statistics of What? The Primitives Over Which Statistics are Computed
	2.1. The Primitives that Enter Into Infants' Computations
	2.2. Experience as a Determinant of Primitives

	3. Which Statistics Do Learners Track?
	3.1. Frequency, Transitional Probabilities, and Dependencies
	3.2. Complexity and Maximizing Information Gathering
	3.3. Issues of Input Specificity

	4. Real-World Problems
	4.1. Multilingualism
	4.2. Individual Differences
	4.3. Developmental Disabilities
	4.4. Noise, Distraction, and Context

	5. Why are We Statistical Learners?
	5.1. Relationships Between Statistical Learning and the Environment
	5.2. Memory and Prediction

	6. Conclusion
	References

