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Abstract. Delayed-enhancement magnetic resonance imaging (DE-MRI)
is an effective technique for imaging left ventricular (LV) infarct. Exist-
ing techniques for LV infarct segmentation are primarily threshold-based
making them prone to high user variability. In this work, we propose a
segmentation algorithm that can learn from training images and segment
based on this training model. This is implemented as a Markov random
field (MRF) based energy formulation solved using graph-cuts. A good
agreement was found with the Full-Width-at-Half-Maximum (FWHM)
technique.
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1 Introduction

Acute and chronic infarction in the myocardium has important prognostic im-
plications in patients suffering from heart diseases. There is growing evidence
suggesting that the use of Cardiovascular Magnetic Resonance CMR using DE-
MRI sequences can be considered the gold-standard modality for assessment of
infarct. However, the optimal technique for quantifying DE in DE-MRI is still
debatable. An excellent survey and evaluation of these techniques can be found in
[1]. The two highly used techniques, owing to their ease of implementation and
simplicity, is the FWHM and standard-deviation (SD) techniques. The latter
fixes infarct to be a certain number of standard deviations from healthy my-
ocardium, and the former defines infarct to be above half of the maximal signal
within infarct. Although there is now strong evidence that the FWHM technique
is highly reproducible [1] and at least one body of work establishing correlation
with histology studies [2], it still remains unclear why the chosen half of the
maximal signal in FWHM would universally conjure the right quantification for
infarct in DE-MRI.

In this work, we present a segmentation method for the data provided as part
of the MICCAI challenge on ventricle DE-MRI data from humans and animals.
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It is based on a probabilistic tissue intensity model of DE-MRI data, which is
derived both from training and the unseen data. The algorithm uses a Markov
random field (MRF)-based energy formulation that is solved using graph-cuts
[3]. The method of graph-cuts has shown high accuracy, simultaneous ROI detec-
tion, and scalability to three dimensions in segmenting structures [4]. It has been
applied in a wide variety of segmentation problems arising in computer vision
and medical image processing [5,6,7]. It is used in this work to efficiently solve
the MRF model. The main advantages of employing the graph-cut technique in
ventricle DE-MRI quantification are the following: 1) Uses a training model and
thus the algorithm can be trained prior to suit to the quality of enhancement
in the test cohort, and 2) Regions of infarct segmented are generally continu-
ous and free from salt-and-pepper holes commonly encountered in thresholding
techniques such as FWHM and SD.

2 Methods

The segmentation of infarct from DE-MRI can be described as assigning a label
fp ∈ {0, 1} to every voxel p in the search space of the image. The search space
for infarct is myocardium and a binary segmentation is assumed to be readily
available. Voxels representing infarct tissue are assigned the foreground class
label fp = 1 and non-infarct or healthy tissues are assigned background class
label fp = 0. Given the observed intensities in the search space of the image and
prior knowledge about infarcts, the segmentation problem can be solved using
a probabilistic framework where the maximum a posteriori (MAP) estimate is
computed using Bayes’ theorem:

argmax
f

P (f|I) = P (I|f)P (f)

P (I)
(1)

where f is the total label configuration and I are all observed intensities within
the search space. The image likelihood P (I|f) describes how likely is the observed
image given a label configuration f. The prior P (f) encodes any prior knowledge
of the tissue class labels (i.e. healthy and infarct tissue classes).

The MAP estimate allows to determine the most likely label configuration f,
given the observed intensities I. To make numerical computation more conve-
nient, the MAP formulation is transformed to one involving only summations.
This is possible by taking the negative logarithm of Eq. 1:

f̂ = argmin
f
{− lnP (I|f)− lnP (f)} (2)

where f̂ is the optimal labelling. The prior probability P (I) can be ignored as it
is independent from the labelling f. Note that the segmentation problem is now
an energy minimization problem, following from (2):

f̂ = argmin
f
{λEdata(f) + Eprior(f)} (3)
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The weighting term λ weighs the relative contribution of the energy terms: Edata

is the data term which measures the disagreement between a prior probabilistic
(i.e. training) model and the observed data, and Eprior is a smoothness term
penalizing any discontinuities within a tissue class. It achieves this by penalizing
discontinuities between adjacent voxel pairs in a neighbourhood system. Eq. 3
is commonly represented in existing literature as an energy function over the
entire image as:

E(f) = λ
∑

p∈P
Dp(fp) +

∑

{p,q}∈N

Vp,q(fp, fq) (4)

Here D and V are terms corresponding to Edata and Eprior respectively of Eq.
3.

For MRF-based energy functions such as the one in Eq. 4, global optimization
methods are computationally inefficient to be applied to medical image segmen-
tation, especially with 3D free-breathing images. Other optimization schemes
such as the Iterated Conditional Modes (ICM), widely applied in medical image
segmentation, is well known to suffer from local minima trapping. The graph-cut
method employed in this work, is now a widely used technique for minimizing
context-dependent MRF problems as the one suggested here.

In the graph-cut implementation of [3], a close approximation of the global
minimum is guaranteed and this is most desirable in DE-MRI we seek a global
optimal solution (i.e. segmentation of infarct) based on the observed and training
data. Indeed, a locally optimal solution would yield regions with inconsistent
segmentations. In the graph formulation, the MRF-based energy function in Eq.
4 is coded into the edge-weights. The cost of the graph cut, partitioning the
graph into two sets of nodes each belonging to a separate class: scar or healthy,
is equal to the total energy of the corresponding segmentations. The problem is
thus to find the cut with the least cost thus yielding the optimal segmentation.

2.1 Integration of Information in Edge-Weights

In the graph-cut method, the graph constructed from the infarct search space
(i.e. region of myocardium) contains t-links and n-links. The t-links connect
each voxel in the image to the tissue label classes namely healthy and infarct.
The n-links are links between adjacent voxels that enforce smoothness in a local
neighbourhood. The t and n-links correspond to the data termEdata and smooth-
ness terms Eprior of Eq. 3 respectively. The t-links are the major contributing
term and is what drives most of the segmentation process. It is sensible that
the weights assigned to these links are derived from a tissue prior such as a
probabilistic model of healthy and infarct tissues.

Tissue Intensity Prior: For integrating prior knowledge about healthy and
infarct tissues, tissue intensities are modelled in each class. In the healthy tis-
sue (i.e. non-infarct) class, tissue intensities are modelled from from the unseen
image. As the segmentation of myocardium is assumed to be available, tissues
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lying outside myocardium are modelled using a multi-modal Gaussian mixture
model. The number of modes is left variable as it is often unclear what would
be the ideal and optimal number of tissue modes within the healthy class.

For infarct tissue class, the enhancement ratio of the mean intensity of infarct
to blood-pool is modelled from the training data. These can be readily obtained
from manually segmented infarct images. The ratio is modelled with a uni-modal
Gaussian distribution. The data term of Eq. 3 and thus the t-link in the graph-
cut is obtained from the aforementioned intensity distributions: P (Ip|fp = 1) for
infarct and P (Ip|fp = 0) for healthy, and thus before we insert this information
as edge-weights we must have:

Dp(fp) = −lnP (Ip|fp) (5)

Tissue Continuity Prior: The smoothness term V in Eq. 3 ensure that seg-
mented regions remain smooth and continuous. Neighbouring adjacent voxels
with similar intensities incur an exponentially high cut cost if they are classified
into separate tissue classes. The Lorentzian error norm [6] is employed, which is
a robust metric for measuring intensity differences within a neighbourhood:

ϕ(p, q) = 1 +
1

2

( |Ip − Iq|
σ

)2

(6)

The implementation of the graph-cut algorithm used is the one found in [8].

3 Results

3.1 Challenge Data

The data provided as part of this challenge was acquired using a standard 1.5T
scanner and a 32 -channel coil (Philips Healthcare, Best, Netherlands). These
were both from human (n = 10) and pig (n = 10). In the human set, the pixel
resolution was reconstructed to 1.3 × 1.3 × 2 mm3. For the animal data, the
resolution of the images provided were 1.7× 1.7 × 6 mm3. Segmentation of the
myocardium was also provided for each scan. These were manually annotated
by a clinical expert. Also a set of training data (n = 5) were provided for both
the patient and animal cohorts. This included expert segmentations of infarct
within the myocardial contour. A sample of the datasets provided can be seen
in Fig. 1.

3.2 Comparison with Gold-Standard

The FWHM is now established as a gold-standard for quantifying infarct in DE-
MRI scans of the ventricle with good correlation shown against histology studies
[2,1]. Results from the proposed algorithm were evaluated quantitatively against
segmentations from the FWHM technique. Details on the implementation of
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Fig. 1. Sample of the human (top row) and animal pig (bottom row) DE-MRI data
provided to participants as part of the challenge. Red arrows indicate areas of enhance-
ment.

FWHM can be found in [2]. Infarct was defined as signal intensities T where:
T > 0.5×Tmax, here Tmax is the (mean) peak signal intensity within myocardium.

Infarct was quantified using both FWHM and the proposed algorithm. For
comparison, the amount of infarct detected represented as percentage of my-
ocardium was determined in both the methods. These comparisons are shown
in the Bland-Altman plots of Fig. 2 for the human data set and 3 for the ani-
mal data set. In these plots, the percentage difference (vertical axis) is plotted
against the average (horizontal axis) of the two techniques. Furthermore, the two
techniques are also compared using the Dice overlap measure [9] in Table 1. We
see good agreement in both human (Mean difference in measurements = -0.9%)
and animal (Mean difference = -1.4 %) datasets. Note that a negative percent-
age indicates under-estimation of infarct by the proposed algorithm. There was
also good pixel-by-pixel correlation in both human (Mean dice = 93/100) and
animal (Mean dice = 87/100) datasets.

3.3 Performance

The human DE-MRI images were segmented in all but 1 case successfully using
the proposed graph-cut algorithm. Segmentations were evaluated both qualita-
tively and quantitatively. A successful segmentation was defined as one where
the algorithm was able to produce a result and had good correlation (Dice > 0.7)
with FWHM. See Fig. 4 for a sample of the segmentations generated by the al-
gorithm. The segmentations were computed in less than 5 seconds on a 2.5 Ghz
PC. There was no operator input during the entire segmentation process. How-
ever, it is essential that a correct segmentation of the myocardium is provided
as this defines its search space.
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Fig. 2. Patient data-set: Bland-Altman plot showing difference in measurements (in-
farct detected as percentage of myocardium) in FWHM and proposed algorithm. A
negative percentage indicates under-estimation of infarct by the proposed algorithm.

Fig. 3. Animal data-set: Bland-Altman plot showing difference in measurements (in-
farct detected as percentage of myocardium) in FWHM and proposed algorithm. A
negative percentage indicates under-estimation of infarct by the proposed algorithm.

In the animal DE-MRI images, segmentations were obtained in all but 2 cases
successfully. Similar to the human data, segmentations were computed in less
than 5 seconds with no operator input. Fig. 5 shows a sample of the output
generated by the algorithm.
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Table 1. Dice overlap comparison with FWHM technique

No. Human Animal

1 80 90
2 90 95
3 91 98
4 95 92
5 93 95
6 98 75
7 92 89
8 95 77
9 94 72
10 97 50

Mean 93 (5) 87 (10)

The Dice overlap between FWHM and the algorithm for human and animal data sets.
The Dice ranges between 0 and 100 where 100 represents perfect overlap.

Fig. 4. Patient data: Original DE-MRI scans (top row) and their corresponding graph-
cut segmentations (bottom row)
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Fig. 5. Animal data: Original DE-MRI scans (top row) and their corresponding graph-
cut segmentations (bottom row)

3.4 Conclusions

The proposed work employs a graph-cut implementation to maximize the MAP
estimate and obtain the most likely (i.e. optimal) segmentation for infarct, given
the observed and training data. The algorithm was tested on both patient and
animal DE-MRI by utilizing the training data from each separately. Results from
the algorithm were verified by a clinician qualitatively and were deemed suit-
able for clinical applications. Furthermore, quantitative validation with FWHM,
currently the gold-standard in infarct quantification, shows good agreement.

Quantification of acute and chronic infarction in the myocardium is a chal-
lenging problem and has important prognostic implications in patients suffering
from heart-related illnesses. Existing techniques rely on setting a standard cut-
off intensity value for infarct and it is yet not clear why fixing a global intensity
value would generate accurate segmentations. Given the quality of images ob-
tained in clinical practice and as seen in the mix provided within this challenge,
it is becoming clear that techniques which exploit local information are more
likely to generate accurate segmentations. Furthermore, any quantification algo-
rithm intended to be used in clinical practice must be tested against multi-center
studies. Future work will further include a more detailed quantitative evaluation
with ground-truth information.
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