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Mustafá YM, da Costa LS,

Da Poian AT, Bozza MT and
Arruda LB (2022) Infection of

Endothelial Cells by Dengue Virus
Induces ROS Production by

Different Sources Affecting Virus
Replication, Cellular Activation,

Death and Vascular Permeability.
Front. Immunol. 13:810376.

doi: 10.3389/fimmu.2022.810376

ORIGINAL RESEARCH
published: 02 February 2022

doi: 10.3389/fimmu.2022.810376
Infection of Endothelial Cells by
Dengue Virus Induces ROS
Production by Different Sources
Affecting Virus Replication,
Cellular Activation, Death and
Vascular Permeability
Lana Monteiro Meuren1, Elisa Beatriz Prestes2, Michelle Premazzi Papa1,3,
Luiza Rachel Pinheiro de Carvalho4, Yasmin Mucunã Mustafá 1, Leandro Silva da Costa4,
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Exacerbated inflammatory response and altered vascular function are hallmarks of
dengue disease. Reactive oxygen species (ROS) production has been associated to
endothelial barrier disturbance and microvascular alteration in distinct pathological
conditions. Increased ROS has been reported in in vitro models of dengue virus (DENV)
infection, but its impact for endothelial cell physiology had not been fully investigated. Our
group had previously demonstrated that infection of human brain microvascular
endothelial cells (HBMEC) with DENV results in the activation of RNA sensors and
production of proinflammatory cytokines, which culminate in cell death and endothelial
permeability. Here, we evaluated the role of mitochondrial function and NADPH oxidase
(NOX) activation for ROS generation in HBMEC infected by DENV and investigated
whether altered cellular physiology could be a consequence of virus-induced oxidative
stress. DENV-infected HBMECs showed a decrease in the maximal respiratory capacity
and altered membrane potential, indicating functional mitochondrial alteration, what might
be related to mtROS production. Indeed, mtROS was detected at later time points after
infection. Specific inhibition of mtROS diminished virus replication, cell death, and
endothelial permeability, but did not affect cytokine production. On the other hand,
inhibition of NOX-associated ROS production decreased virus replication and cell
death, as well as the secretion of inflammatory cytokines, including IL-6, IL-8, and
CCL5. These results demonstrated that DENV replication in endothelial cells induces
ROS production by different pathways, which impacts biological functions that might be
org February 2022 | Volume 13 | Article 8103761
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relevant for dengue pathogenesis. Those data also indicate oxidative stress events as
relevant therapeutical targets to avoid vascular permeability, inflammation, and
neuroinvasion during DENV infection.
Keywords: dengue, human brain microvascular endothelial cells (HBMEC), reactive oxygen species, mitochondria,
NADPH oxidase, cytokines, cell death
INTRODUCTION

Dengue virus (DENV) infection is a major public health problem
worldwide, mostly in tropical and subtropical countries, affecting
about 400 million people every year (1). Infection by any of the
four described serotypes can induce a range of clinical
manifestations, from mild to severe hemorrhagic forms, that
can be fatal (2). Vascular alterations, including vasodilation and
increased permeability, are major consequences of DENV
infection, contributing to plasma extravasation to the tissues,
hemorrhagic manifestations, and hypotension, which are
hallmarks of severe disease, but may also happen at lower
levels in mild and moderate disease (3, 4). Previous studies
indicated that vascular disturbances result from systemic
inflammation and endothelial lesion (4–7). In addition, direct
infection of endothelial cel ls was demonstrated in
histopathological analysis of different tissues from fatal cases,
as well as in primary cells and different cell lines (7–11).

We have previously demonstrated that human brain
microvascular endothelial cells (HBMECs) are permissive to
DENV, and virus replication triggers the activation of RNA
sensors, inducing the production of inflammatory cytokines,
chemokines and type I interferon (9). Evidence of virus-induced
cell death was also detected, but the involved mechanisms had not
been addressed (9, 12). A number of studies have been unraveling
the complex connections between virus sensing, cellular stress
response and cell death [rev in (13)]. Some of those signals
converge to the production of nitrogen and oxygen reactive
species, which accumulation stimulate the secretion of
inflammatory mediators, and trigger autophagy, apoptosis and
necroptosis in different models of viral infections (14–18).
Oxidative stress may be particularly deleterious in the vascular
context, since ROS-mediated endothelial cell activation and death
will contribute to vascular permeability and barrier disruption, as
demonstrated under several pathological conditions (19–21).
Although it has been largely demonstrated that excessive ROS
impair microvessel integrity and that leukocyte-derived ROS
might be an important contributor to endothelial barrier
damage [rev in (21)], the role of endogenous endothelial cell-
derived ROS has been poorly addressed, especially in the context
of virus infections.

Increased ROS production was evidenced in in vitro and
in vivo models of dengue infection. In vitro infection of human
monocyte derived dendritic cells (Mo-DC) induced the
activation of NADPH oxidases (NOX) and accumulation of
intracellular ROS, which contribute to enhanced production of
inflammatory cytokines and chemokines (14). NOX-derived
ROS was also associated to vascular damage in a mouse
org 2
experimental model, in which depletion of p47phox
significantly reduced DENV-induced systemic hemorrhage, in
comparison to control mice (22).

Mitochondrial oxidative phosphorylation metabolism is
another major source of intracellular ROS (23, 24). However,
despite previous observations of altered mitochondrial
bioenergetics and morphology in in vitro experimental models
of DENV infection, the impact of virus replication in the
generation of mitochondrial-derived ROS (mtROS) had not
been clearly addressed (25, 26). In fact, cellular ROS may be
generated by different enzymes present in distinct intracellular
sites, also including xanthan oxygenase, cyclooxygenase and
lipooxygenase, further contributing to overall oxidative stress
(13, 19, 27).

Here, we evaluated whether infection of HBMEC with DENV
resulted in enhanced cellular ROS by NOX and mitochondrial-
derived pathways and assessed the relative role of each ROS
source for viral replication, endothelial activation, cell death and
endothelium permeability. We observed that DENV replication
triggered mitochondrial and NOX-mediated ROS production,
which were essential for viral replication and cell death.
Mitochondrial-derived ROS was a major inducer of HBMEC
permeability, whereas NOX-derived ROS played a relevant role
for endothelial activation and production of inflammatory
mediators. This study reveals new information about the
impact of oxidative stress caused by DENV during infection of
endothelial cells and provides a new perspective for the use of
antioxidants for dengue treatment.
MATERIAL AND METHODS

Cells and Virus
Human brain microvascular endothelial cell line (HBMEC) (28)
was kindly given by Dr. Dennis J. Grab (The Johns Hopkins
University, MD, USA). The cells were cultivated in medium
M199 (M199), supplemented with 10% fetal bovine serum (FBS)
(Thermo Fisher Scientific Inc), at 37°C. Aedes albopictus clone
C6/36 cell line (ATCC® CRL-1660™) was cultured in Leibovitz
(L-15) medium (Invitrogen), supplemented with 10% FCS,
tryptose phosphate (2.95 g/L), 0.75% sodium bicarbonate, and
0.2% of L-glutamine (Sigma-Aldrich), at 28°C. Baby hamster
kidney cells [BHK-21 (C-13]) ATCC® CCL-10™] were cultured
in Minimum Essential Medium Eagle - Alpha Modification (a-
MEM) (Thermo Fisher Scientific Inc) supplemented with 5% of
FBS, at 37°C.

DENV serotype 2 strain 16681 was propagated in C6/36 cells.
The supernatants of infected cells were harvested, filtered, and
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Meuren et al. DENV-Induced ROS Impacts Endothelial Function
stored at -80°C, and virus stock was titrated by plaque assay
using BHK cells, as described below. Supernatants obtained from
noninfected C6/36 cells cultured under the same conditions were
used as mock control. Virus inactivation was performed by 2
hours UV exposure and confirmed by qRT-PCR in HBMECs.

Ethical Statements and Obtention of
Human Primary Macrophages
Blood samples (buffy coat) were obtained from the Hemotherapy
Service at the Hospital Universitário Clementino Fraga Filho
(HUCFF) of Universidade Federal do Rio de Janeiro (UFRJ). The
study protocol was approved by the Experimental Ethics Committee
of UFRJ (Permit Number: CAAE 27600314.7.0000.5275). Fresh
peripheral blood mononuclear cells (PBMCs) were obtained by
Ficoll-Hypaque density gradient centrifugation and cultured for 7-
10 days with RPMI medium, supplemented with L-glutamine, and
2% human serum (Thermo Fisher Scientific Inc). Macrophage
differentiation was confirmed by CD68 staining and flow
cytometry analysis.

Infection of HBMECs and Macrophages
HBMECs were incubated with DENV-2 virus, with a MOI of 1,
for 1h at 37°C in 5% CO2 atmosphere. As a control, cells were
mock-treated or incubated with UV-inactivated DENV-2
(iDENV). After the adsorption, the inoculum was removed, the
cells were washed with phosphate buffer saline (PBS 1x) and
maintained in culture medium with 10% FBS at 37°C at 5% de
CO2 for different periods of time (24hpi-72hpi). Primary
macrophages were infected, under the same conditions, using a
MOI of 2. In some experiments, the following ROS inhibitors/
scavengers were added to the cultures: N-Acetylcysteine (NAC;
1mM; Merck Millipore; Darmstadt, Germany), Apocynin (Apo;
1mM; Merck Millipore); mitoTEMPO (MitoT; 50µM; Enzo Life
Sciences). The culture supernatants were harvested, and the titer
of infectious particles released was evaluated by plaque assay.

Virus Titration by Plaque Assay
Titration of virus stocks and measurement of infectious particles
released in the supernatants of experimental cultures were
performed by plaque assay using BHK cells, as described (29).
Briefly, the cells were inoculated with serial dilutions of the
infected samples for 2h, at 370C for virus adsorption. Then,
medium was replaced with 1% carboxymethylcellulose (CMC)
diluted in a-MEMmedium with 1% FBS. After 5 days of culture,
the cells were fixed with 1ml of 10% formaldehyde for 1h and
stained with 4% crystal violet solution. Virus titers were indicated
as PFU/ml.

Analysis of Virus Replication by RT-qPCR
HBMECs and macrophages were infected with DENV-2, in the
presence or absence of N-acetylcysteine. After 48hpi, cell lysates
and supernatants were harvested and RNA was isolated using
TRIZOL reagent (Life Technologies), according to the
manufacturer’s instructions. First strand cDNA was synthesized
using 2 µg RNA using High-Capacity cDNA Archive Kit (Life
Technologies), according to the manufacturer’s instructions.
Frontiers in Immunology | www.frontiersin.org 3
Quantitative real-time PCR was performed using a StepOnePlus
Real-time PCR system (Life Technologies) and Taqman Master
Mix Reagents (Life Technologies), as described before (9).

ROS Quantification by Flow Cytometry and
Immunofluorescence
To measure total or mtROS, the cells were incubated with the
probes CM-H2DCFDA (1µM/1x106 cells; Thermo Fisher
Scientific Inc) or MitoSOX (1µM; Thermo Fisher Scientific
Inc), respectively, at different time points post infection. The
cells were analyzed by flow cytometry using the FACScalibur and
FlowJo software (LCC, Ashland, USA). The same methodology
was used to measure ROS by fluorescence microscopy and the
cells were analyzed using OLYMPUS IX81 microscopy.

Analysis of Oxygen Consumption and
Assessment of Mitochondrial
Bioenergetics
Oxygen consumption rate (OCR) by control or DENV-2-
infected cells was evaluated by high resolution respirometry.
HBMECs (2 x 106 cells) were mock-treated or infected with
DENV-2 for different periods of time. Respirometry was
monitored in real time using Oroboros equipment (Oxygraph-
2K, Instruments, Innsbruck, Austria) and sequentially adding
pharmacological inhibitors of the oxidative phosphorylation.
Oligomycin (200µg/mL) was used to determine oxygen
consumption not associated with ATP synthase, and the
mitochondrial oxidative phosphorylation uncoupler carbonyl
cyanide p-trifluoromethoxyphenylhydrazone (FCCP) (1mM)
was used to allow maximum electron flow in the electron
transport chain. These parameters allowed the evaluation of
basal respiration (before oligomycin addition), OCR due to
proton leak (uncoupled OCR; after oligomycin addition), OCR
associated to ATP synthase (coupled OCR - difference between
basal and oligomycin OCR), maximum respiratory capacity
(after addition of FCCP), and reserve capacity (difference
between FCCP and basal OCR).

Evaluation of Mitochondrial Membrane
Potential (Dym)
Mitochondrial membrane potential in mock-treated or DENV-
2-infected HBMEC was evaluated using JC-1 dye (5,5′,6,6′-
tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl-carbocya-nine
iodide; Molecular Probes). Cells were incubated with 5mg/mL
JC-1 at 37°C for 1 h. Culture medium and 10 minutes incubation
with FCCP were used as negative and positive control,
respectively. The cells were analyzed by flow cytometry using
the FACScalibur equipment and FlowJo software (LCC, Ashland,
USA), and the ratio red/green fluorescence was used to measure
the membrane potential.

Cell Viability Assays
HBMECs and macrophages were mock-treated or infected with
DENV-2, in the presence or absence of ROS inhibitors. After
48hpi, macrophage metabolic activity was addressed by MTT
assay, according to the manufacturers protocol (Thermo Fisher
February 2022 | Volume 13 | Article 810376
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Scientific Inc). In addition, after 48-72hpi, the integrity of the
plasma membrane and cell viability was carried out using
propidium iodide (PI) staining (2,5µg/ml per well) for 15 min.
The cells were analyzed by flow cytometry using the FACScalibur
and FlowJo software.

Endothelial Permeability Assay
HBMECs were cultured onto transwell insert (Corning Costar,
ME, USA; 0,4 µM membrane), at a concentration of 5x104 cells.
The cells were mock treated or infected with DENV-2 (MOI of
1), in the presence or absence of ROS inhibitors, as described.
Staurosporine (10 µM; Sigma-Aldrich) was used as a positive
control. Cell confluence was monitored before infection and
during all the experiment by measuring the transendothelial
electrical resistance (TEER), using a Voltohmmeter (Millicell
ERS-2), as previously described (30). To calculate the TEER
(reported as ‘W/cm2’), the membrane resistance itself (without
cells) was considered as blank, and the obtained TEER value was
subtracted from the resistance value obtained in each
experimental conditions; also, the resistance was considered
inversely proportional to the area of the membrane. All the
experiments were started when a high resistance (> 80 W/cm2)
was reached (31, 32). Endothelial permeability was further
evaluated by measuring extravasation of FITC-conjugated BSA
through the culture. After 72 hpi, the culture supernatant was
removed and a solution of BSA-FITC was added for 30 minutes.
BSA extravasation to the lower transwell chamber was quantified
using spectrophotometer SpectraMAX i3 (Molecular Devices,
Lagerhausstrasse, Austria). The Permeability Coefficient (Pd) of
albumin was calculated as described previously (30).

Analysis of Cytokine Production by ELISA
and qRT-PCR
HBMECs were mock-treated or infected with DENV-2, in the
presence or absence of NAC, apocynin or mitoTEMPO, and
cytokine production was evaluated at 48 hpi, as determined
elsewhere (9). The supernatants were harvested and the
concentration of secreted CCL5 was determined using the
ELISA Development Kit (PeproTech), whereas IL-6 and IL-8
levels were determined using ELISA Ready-SET-Go!
(eBiosciences), according to manufacturer’s instructions. The
expression of IFN-b mRNA was evaluated in the cell lysates by
qRT-PCR. Briefly, RNA was isolated using TRIZOL reagent, and
cDNA synthesis was performed using the High-Capacity cDNA
Archive Kit (Life Technologies), following the manufacturer’s
recommendations. The cDNA was subjected to real-time PCR
using Power SYBR Green PCR master mix reagent (Thermo
Fisher Scientific Inc.), with the following primers: IFN-b sense:
5’-TAG CAC TGG CTG GAA TGA GA-3′; IFN-b antisense: 5′-
TCC TTG GCC TTC AGG TAA TG-3’. GAPDH expression was
measured as control gene, using the primers: GAPDH sense 5′-
GTG GAC CTG ACC TGC CGT CT-3′, and GAPDH antisense
5′-GGA GGA GTG GGT GTC GCT GT-3′. The reactions were
carried out in a StepOnePlus real-time PCR system (Thermo
Fisher Scientific Inc.). The comparative CT method (DDCt) (33)
was used to quantify gene expression levels.
Frontiers in Immunology | www.frontiersin.org 4
Statistical Analysis
Data were analyzed using the GraphPad Prism software
(GraphPad Software, San Diego, CA, USA). Comparisons
among every two groups were performed by t-test, and two
way ANOVA followed by Dunnett’s multiple comparison test
were used when different time points were considered; p < 0.05
were considered statistically significant.
RESULTS

Infection of HBMEC With DENV-2 Induces
ROS Production Through Different
Pathways, Which Modulate Virus
Replication
Our group demonstrated that infection of HBMEC with DENV-
2 induced RIG-I expression, cytokine production, and cell death
(9, 12). Since NOX-mediated ROS production has been
associated to cellular activation and death upon DENV
infection in other cell models (14), here we investigated
whether altered HBMEC biology could also be a consequence
of DENV-induced oxidative stress.

HBMECs were infected with DENV-2, at a MOI of 1, and
stained with CM-H2DCFDA probe at different time points until
72 hours post infection (hpi). DENV infection stimulated ROS
production at 48 and 72 hpi, in comparison to mock-treated
cells, which was evidenced by a significant increase in the
frequency of cells producing higher ROS levels (% ROShi cells)
and in the overall level of intracellular ROS in the culture (MFI)
(Figures 1A–C). UV-inactivated virus (iDENV) did not affect
ROS levels. Also, ROS production was not observed at earlier
time points (Figures S1A, B), probably reflecting the need for
virus replication cycles to amplify the stimulatory signal. As a
control, HBMECs were cultured with heme (34), which resulted
in increased ROS production after 24h, indicating that there was
no intrinsic impairment of the cultures at this time point
(Figures S1C, D). We evaluated the concentration of released
infectious particles in the cultures (PFU) (Figure 1D) and
observed that ROS levels positively correlated with virus titer
overtime (Figure 1E). This data was corroborated by
immunofluorescence analyses, showing that the majority of
DENV-2-infected cells were generating ROS (Figure 1F).

In another set of experiments, HBMECs were stained with
MitoSox probe to specifically investigate mitochondrial-derived
ROS. Increased mtROS were also detected in DENV-infected
cells from 48hpi, with a significant enhancement at 72hpi
(Figures 1G–I).

To identify the ROS-inducing pathway, HBMECs were
infected in the presence or absence of apocynin or
mitoTEMPO, to respectively inhibit NOX or scavenge mtROS.
The antioxidant N-acetyl-L-cystein (NAC) was used as a control.
Decreased ROS levels were observed when HBMECs were
cultured with either apocynin or mitoTEMPO, indicating that
cytoplasmic and mitochondrial sources are important for ROS
generation induced upon DENV-2 infection (Figures 2A–C).
Viability assays using the drugs alone confirmed that none of the
February 2022 | Volume 13 | Article 810376
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FIGURE 1 | Infection of human brain endothelial cells (HBMEC) with DENV-2 induces ROS production. HBMECs were mock-treated or inoculated with infectious
(DENV) or UV-inactivated DENV-2 (iDENV), at an MOI of 1, for the indicated time points. (A–C) After 24, 48 and 72hpi, the cells were incubated with CM-H2DCFDA
and ROS production was analyzed flow cytometry. A representative histogram overlay is depicted in (A) the medians of the frequency of cells producing increased
ROS (%ROShi), and the level of ROS production (MFI) obtained from five independent experiments are showed in (B, C). (D) The concentration of released infectious
particles was measured at the same time points by plaque assay and (E) the correlation between DENV-2 titer (PFU/ml) and the frequency of ROS producing cells
was analyzed. (F) At 72hpi the cells were incubated with anti-DENV antibody and with CM-H2DCFDA probe and analyzed by immunofluorescence. (G–I) After 48
and 72hpi, the cells were incubated with MitoSox probe and mtROS production was analyzed flow cytometry. Representative histograms are depicted in (G) and the
medians of the frequency of cells producing mtROS (%mtROS+ cells), and the level of mtROS production (MFI) obtained from four independent experiments are
showed in (H, I) *Represents p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.
Frontiers in Immunology | www.frontiersin.org February 2022 | Volume 13 | Article 8103765
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inhibitors were cytotoxic at the concentrations and time points
evaluated, supporting their use in the system (Figure S2). In
addition, since apocynin may function as a ROS scavenger and
not as a specific NOX inhibitor in some systems (35), we
evaluated whether it could be in fact inhibiting mtROS. The
addition of apocynin did not affect MitoSox staining,
corroborating with the hypothesis that DENV infection
induces ROS generation by different sources in HBMECs
(Figures 2D–F).

Importantly, ROS scavenging by NAC resulted in diminished
intracellular and released virus RNA (Figure 2G). Furthermore,
addition of NAC, apocynin or mitoTEMPO to the cultures
decreased the concentration of released DENV-2 infectious
particles, indicating that DENV infection induces the production
of ROS, which further contribute to virus replication (Figure 2H).
Interestingly, inhibition of released virus RNA and infectious
particles were more pronounced, in comparison to intracellular
RNA reduction, suggesting that ROS may affect later steps of
DENV biosynthetic cycle, delaying virus replication.

DENV-2 Infection of HBMEC Affects
Mitochondrial Bioenergetics and
Membrane Potential
Virus infection and intracellular virus biosynthesis relies on
enhanced energy spent, what may trigger increased respiration.
Abnormal respiration may then result in increased electron
leakage and generation of mtROS. Indeed, we had demonstrated
that infection of hepatic cell lines with DENV resulted in altered
mitochondrial bioenergetics and morphology and cell death (25).
To evaluate mitochondrial function in DENV-2-infected
HBMECs, bioenergetic and membrane potential analyses were
performed by high-resolution respirometry and flow cytometry
assays. HBMECs were mock-treated or infected with DENV-2
for different periods, and oxygen consumption rate (OCR)
was measured after sequentially adding pharmacological
modulators of the oxidative phosphorylation. We did not detect
any alterations in mitochondrial bioenergetics at 24hpi
(Figures 3A, B). However, at 48hpi, we observed a significant
decrease in the basal OCR in DENV-infected cells, in comparison
to the mock treated ones (Figures 3C, D). As expected, inhibition
of ATP synthase through the addition of oligomycin strongly
diminished the OCR in the mock-treated cells (2.7 times,
p<0.001). In contrast, oligomycin did not significantly affected
the OCRs of the infected cells (1.6 times, p=0.082), which showed
similar basal, coupled, and uncoupled values at this time point. In
addition, DENV-2-infected cells presented a reduced maximum
respiratory capacity evidenced by the lower OCR detected after
addition of the proton ionophore FCCP (Figures 3C, D). These
data indicate that DENV induced mitochondrial membrane leak,
detected by diminished basal OCR, which could not be further
affected by the modulators of oxidative phosphorylation. In
addition, cellular staining with JC1 dye indicated mitochondrial
depolarization after 48hpi (Figures 3E, F). Taken together, these
findings suggest that DENV-2 impairs mitochondrial function
and affects membrane potential, resulting in the increased mtROS,
which was mostly detected at later time points upon infection.
Frontiers in Immunology | www.frontiersin.org 6
DENV-2-Induced ROS Production
Promotes Cell Death and Endothelial
Permeability
Since DENV infection impacted HBMEC survival (9), and given
that endothelial cell death would affect the endothelium
permeability, we investigated whether ROS generation was also
involved in these events. Analysis of propidium iodide staining at
48 and 72hpi demonstrated that NAC, apocynin and
mitoTEMPO partially reduced HBMECs death induced by
DENV-2 infection (Figures 4A, B).

We then evaluated whether endothelial permeability induced
by DENV-2 would also be restored by reducing ROS
accumulation. HBMECs were seed onto transwell inserts and
infected with DENV-2, with or without NAC, apocynin or
mitoTEMPO, and transendothelial electrical resistance (TEER)
was measured at 48 and 72hpi. At 72hpi, culture permeability was
also accessed by measuring the extravasation FITC-conjugated
BSA through the transwell membrane. Mock and staurosporin
(STS) were used as negative and positive controls, respectively. As
expected, DENV-2 infection promoted a decrease in the TEER,
associated to increased extravasation of BSA-FITC to the lower
transwell compartment (Figures 4C, D), demonstrating that
DENV-2 induces permeability in this cell model. HBMEC
permeability was completely rescued when the cells were treated
with NAC or mitoTEMPO. Addition of apocynin resulted in
increased TEER but did not significantly protect the monolayer
from BSA extravasation, suggesting that mtROS might be a major
mediator in DENV-2-induced endothelial permeability.

To investigate whether these events were specific to endothelial
cells, we evaluated ROS production, virus replication, and cell
viability after infection of primary human macrophages with
DENV-2. DENV-infected macrophages also showed increased
total and mtROS production as evidenced by staining with CM-
H2DCFDA or MitoSox probes (Figures S3A, B). As observed for
HBMEC, macrophage treatment with NAC resulted in diminished
virus replication and cellular survival (Figures S3C, D), indicating
that oxidative stress induced by DENV-2 infection might be
essential for fueling virus replication, resulting in cell death.

Apocynin-Modulated ROS, But Not
mtROS, Is Essential for the Secretion of
Inflammatory Cytokines Induced by
DENV-2 Infection of HBMECs
Given that HBMEC infection with DENV-2 promoted cellular
activation (9) and since accumulation of intracellular ROS had
been previously proposed to stimulate immune responses in other
human cell types (14), we investigated whether this stress response
could also contribute to HBMEC activation. HBMECs were infected,
in the presence or absence of ROS inhibitors, and IFN-b expression
and IL-6, IL-8 and CCL5 secretion were measured by qRT-PCR and
ELISA, respectively. Cytokine secretion was significantly inhibited by
NAC and apocynin, but not by mitoTEMPO (Figures 5A–C),
indicating that other ROS sources, but not mtROS, contributes to
signal transduction associated to IL-6 and chemokine release.
Surprisingly, increased IFN-b expression induced by DENV-2
infection was not modulated by any inhibitors (Figure 5D).
February 2022 | Volume 13 | Article 810376

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Meuren et al. DENV-Induced ROS Impacts Endothelial Function
A

B C

D E

G H

F

FIGURE 2 | DENV-induced ROS by different intracellular sources modulate virus replication. HBMECs were mock treated or infected with DENV-2, in the presence or
absence of N-acetyl-L-cysteine (NAC), apocynin (Apo), or mitoTEMPO (MitoT). (A–C) At the indicated time points, the cells were incubated with CM-H2DCFDA probe
and the analysis of ROS production was performed by flow cytometry. A representative histogram overlay is shown in (A), the medians of the frequency of cells
producing increased ROS (%ROShi), and the level of ROS production (MFI) obtained from four independent experiments are showed in (B, C). (D–F) Mock-treated or
DENV-infected HBMECs were cultured in the presence or absence of apocynin (Apo) and mtROS production was evaluated by MitoSOX staining and flow cytometry
analysis. A representative histogram overlay is shown in (D), the medians of the frequency of cells producing ROS (%ROS), and the level of ROS production (MFI)
obtained from two independent experiments are showed in (E, F). (G–H) Mock-treated or DENV-infected HBMECs were cultured in the presence or absence of the
indicated ROS inhibitors. The concentration of intracellular and released virus RNA were measured by qRT-PCR (G) and concentration of released virus particles was
evaluated by plaque assay (H) data is representative of three independent experiments. *Represents p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.
Frontiers in Immunology | www.frontiersin.org February 2022 | Volume 13 | Article 8103767

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Meuren et al. DENV-Induced ROS Impacts Endothelial Function
DISCUSSION

Dengue severity correlates with exacerbated inflammation, cytokine
storm, vascular hyperpermeability, and plasma leakage (2, 3, 36).
Enhanced circulation of inflammatory cytokines has been assumed
to be the major cause of vascular lesion (4–6). However, virus
Frontiers in Immunology | www.frontiersin.org 8
replication in endothelial cells may directly affect endothelium
integrity or synergize with the inflammatory mediators, further
contributing to dengue-mediated vascular dysfunction. In the
present study we demonstrated that infection of HBMEC by
DENV results in increased generation of ROS, which in turn
modulates virus replication, cell death and cellular activation.
A B

C D

E F

FIGURE 3 | DENV infection impacts mitochondrial function in HBMECs. HBMECs were mock-treated or infected with DENV-2, at a MOI of 1. (A–D) At 24 and 48
hpi the oxygen consumption ratio (OCR) was analyzed by high resolution respirometry. OCR in intact cells and after addition of oligomycin and FCCP were
sequentially measured (A, C) and the obtained values used to calculate the basal respiration, uncoupled OCR (ATP-independent oxygen consumption); coupled
OCR (consumption of oxygen dependent on ATP synthase); Max OCR (maximum respiration independent of ATP transport); and the reserve capacity (consumption
capacity available during ATP increase) (B, D). Data are represented as mean ± SD of seven independent experiments. *Represents p ≤ 0.05; ***p ≤ 0.001.
(E, F) Cells were incubated with JC-1 probe and membrane potential was evaluated as the ration red/green fluorescence by flow cytometry. A representative dot
plot is shown in (E) and the average of the ratio values obtained from three independent experiments are demonstrated in (F).
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Evidence of oxidative stress has been reported in patients and
in vivo experimental models. Plasma obtained from dengue
patients showed higher levels of lipid oxidation and increased
ratio of protein carbonylation (PCOs) in relation to protein-
bound sulphydryl (PBSH) group, which are indicatives of protein
oxidation and decreased plasma antioxidants (37). Importantly,
protein and lipid alterations were detected early after the
Frontiers in Immunology | www.frontiersin.org 9
symptoms onset and positively correlated with dengue severity
and cytokine storm (38).

Using a mouse model of dengue infection, Yen and
collaborators showed that iNOS- and 47phox-deficient mice
were partially protected from hemorrhage development (22).
In this model, DENV antigens were detected in hemorrhagic
tissues in association with CD31+ endothelial cells, which also
A

B

C D

FIGURE 4 | ROS inhibition reduced DENV-induces HBMEC death and partially recover endothelial permeability in vitro. HBMECs were mock-treated or infected with DENV-2
for 48 or 72h, in the presence or absence of NAC, apocynin (Apo) or MitoTEMPO (MitoT). (A, B) The cells were incubated with propidium iodide (PI) and cell death was
evaluated by flow cytometry. A representative dot blot is shown in (A) and the bar graph (B) demonstrates the average and SD of the frequency of PI+ cells (%PI+ cells)
obtained from three independent experiments. (C, D) HBMECs were cultured onto transwell insert plates and infected with DENV-2, in the presence or absence of NAC,
apocynin (Apo) or MitoTEMPO (MitoT). Mock and staurosporin (STS) were used as negative and positive controls, respectively. (C) At 48 and 72hpi, transendothelial electrical
resistance (TEER) was measured using a volthmeter. (D) After 72hpi, the cells were incubated with FITC-conjugated BSA for 1 hour, and the amount of extravasated albumin
was measured by spectrophotometry. The permeability coefficient (Pd) was calculated and normalized in relation to cells cultured in medium only. Data represent the mean
and SD obtained from four independent experiments. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001 in relation to ctrl; #p ≤ 0.0001 in relation to mock.
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showed an apoptotic phenotype, potentiated by TNFa. In
addition, in vitro infection of HUVEC with DENV-2 resulted
in increased iNOS and NOX activity, which appeared to be
related to DENV-induced apoptosis. We have previously
demonstrated that HBMECs are productively infected by
DENV, resulting in prompt cellular activation and late cell
death (9), what might be associated to the increased vascular
permeability. In this HBMEC model, we have now showed that
DENV replication stimulated ROS generation, which depended
on virus replication. It is important to notice, however, that most
of the probes available to measure ROS may eventually react with
other species such reactive nitrogen species (RNS) (39).
Although we cannot discard that DENV also increased nitric
oxide production, DCF staining was reduced by apocynin and
mitoTEMPO inhibitors, supporting ROS production by DENV-
Frontiers in Immunology | www.frontiersin.org 10
infected HBMEC. Also, ROS inhibition reduced cell death,
corroborating the previous reported data regarding
HUVEC infection.

Infection of HBMECs, however, also induced mtROS,
probably as a consequence of mitochondrial dysfunction.
Altered mitochondrial bioenergetics and depolarization of
mitochondrial membrane were clearly observed after 48hpi,
when increased mtROS was detected with additional increase
afterwards. Inhibition of mtROS also reduced cell death,
suggesting that DENV-induced mitochondrial stress further
contribute to HBMEC death.

Several pathological conditions have been associated to
abnormal mtROS generation, due to inefficient production of
ATP, altered NADH/NAD+ ratio in the matrix, or inner
membrane depolarization, promoting an unbalanced escape of
A B

C D

FIGURE 5 | Apocynin-inhibited ROS is essential for the secretion of inflammatory cytokines induced by DENV infection of HBMECs. HBMECs were mock treated or
infected with DENV-2 for 48h, in the presence or absence of NAC, apocynin (Apo) or mitoTEMPO (MitoT). (A–C) The supernatants were harvested and the
concentration of IL-6 (A), IL-8 (B), and CCL5 (C) were measured by ELISA. (D) The expression of IFN-b mRNA was measured in the cell lysates by quantitative real
time PCR. Data represent the mean and SD obtained from three independent experiments. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.
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electrons from complex I and III (24, 40, 41). Increased ROS may
then act in a feedback loop, inducing the depolarization of
membrane potential, and impairment of oxidative metabolism,
potentiating mitochondrial damage (42, 43). Interaction of viral
proteins with mitochondrial membranes, leading to
depolarization and increased permeability, has been largely
described, and leakage of mitochondrial content was associated
to apoptosis (44–46). Additionally, recruitment and activation of
mitochondrial antiviral-signaling protein (MAVS) triggered by
cytoplasmic sensing of virus RNA was also associated to cell
death in in vitro infection models (47).

We had demonstrated that infection of hepatocytes with
DENV as well as of neuroblastoma cells with Sindbis virus
induced altered mitochondrial bionenergetics (25, 48). These
events probably reflect additional energy demands during virus
replication with disruption of the energetic mitochondrial flux.
Increased ATP flux might be necessary for efficient virus
replication, whereas sustained stress resulted in cell death (48).

Despite possible antiviral effects of oxidative stress responses
(49, 50), we observed that ROS inhibition reduced DENV
replication in HBMEC. Different mechanisms might explain
this phenomenon. Like our model, infection of A549 cells with
Respiratory Syncytial Virus (RSV) altered mitochondrial
bioenergetics, evidenced by lower basal OCR and decreased
maximal respiratory capacity. Enhanced ROS production was
also detected and inhibition of ROS dampened virus replication
(51, 52). Taken together with other morphological and
functional alterations detected in the mitochondria, one can
suggest that mitochondrial components might be coopted by
viruses favoring their replication. Accordingly, HBMEC
treatment with mitoTEMPO decreased the production of
DENV infectious particles, indicating that mitochondrial
dysfunction is also associated with viral replication in this
system. Decreased effect of mitoTEMPO at later time points
may indicate that mtROS scavenging is hindering, but not
preventing virus replication. Supplementation of the cell
culture with ROS inhibitors overtime could foster their effect.
Still, more than 50% inhibition in the virus titers were detected at
72hpi, even by adding mitoTEMPO only at the beginning of
the culture.

Increased ROS may also trigger autophagy, and subversion of
autophagy machinery has been demonstrated to benefit viral
replication in different infection models, including dengue (53,
54). Infection of monocytes with different flaviviruses induced
autophagy and this event was important to protect the cells from
other stress responses and early cell death. Early inhibition of
cellular stress contributed to virus replication (55). Accordingly,
increased LC3/LC3II conversion and accumulation of p62 was
observed in HBMECs infected with at 24hpi, but not at later time
points (data not shown), suggesting that autophagy may be an
earlier event conferring cell protection. These events will be
further investigated. On the other hand, ROS-mediated cell death
phenotype started to be detected at 48hpi, being significantly
increased at 72hpi, suggesting that apoptotic or necroptic events
are later triggered probably as a resulted of sustained
ROS production.
Frontiers in Immunology | www.frontiersin.org 11
We could only detect significant ROS enhancement after
48hpi, what indicates that sequential virus replication cycles
might be necessary to amplify the response. In fact, we
previously observed that HBMEC infection with a MOI of 1
resulted in about 30% of infected cells at early time points (9).
Alternatively, earlier oxidative stress could be impaired by
stimulation of antioxidant responses. DENV infection of
monocytes derived dendritic cells (mo-DC) induced NOX-
mediated late ROS response, which was also associated to cell
death in that model (14). It was also showed that Nrf2
antioxidant was increased at earlier time points, but it was
later degraded due to action of NS2BNS3 viral proteins,
allowing ROS accumulation (16). Nrf2 depletion resulted in
increased frequency of DENV infected cells, indicating that
ROS was also important for virus replication in those cells.

Besides fueling virus replication, NOX-dependent ROS
production in Mo-DC resulted in activation of inflammatory
signals, with the production of IFN-b, IL-1b and CCL5 (14, 16).
In our model, treatment of DENV-infected HBMEC with
apocynin inhibited CCL5, IL-6, and IL-8 secretion, suggesting
that NOX-derived ROS may also take part in vascular
inflammation induced by the virus. It is important to notice,
however, that apocynin may not function as a bona fide NOX
inhibitor in endothelial cells. Heumuller and colleagues
described that porcine aortic endothelial cells (PAEC) might
not express myeloperoxidase and failed to form apocynin dimers,
which would be essential to its activation and NOX inhibition
(35). In these cells, apocynin mostly functioned as a peroxidase
scavenger. In another set of studies, using a HUVEC-derived cell
free system, it was demonstrated that addition of peroxidase to
the system was indeed important to form apocynin dimer and
that those dimers induced a prompt and almost complete
inhibition of O2- production. Still, apocynin monomers also
resulted in decreased O2- production, although after a lagtime
(56). It is important to point that previous studies addressing
multiple effects of oxidative stress specifically in HBMECs have
reported that apocynin reduced the activation of NADPH
oxidases or, at least, NOX-dependent cellular dysfunction (57–
59), highlighting the complexity and diversity of vascular
endothelial models. Importantly, in DENV-infected HBMEC
model it was clearly demonstrated that apocynin-inhibited
ROS, but not mtROS, was a major contributor to the secretion
of inflammatory cytokines and chemokines. Therefore, although
we had not fully elucidated the source of non mtROS, it is worth
to mention that inhibition of ROS by apocynin might be a
potential strategy to control DENV-induced inflammation. It
was previously demonstrated that cytoplasmic ROS may induce
MAVS oligomerization, potentiating RIG-I-MAVS signaling
pathway, independent of virus RNA sensing (60). Interestingly,
IFN-b expression was not affected by ROS inhibition, suggesting
that ROS may differentially impact NF-kB and IRF signaling
pathways, what should be further investigated.

Cell death and NF-kB inflammatory signaling pathways were
also detected after infection of neuroblastoma cells with DENV
(61). Given that the endothelial cells used in this study are a
representative model of in vitro blood brain barrier (BBB), we
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can speculate that when DENV achieves the BBB and the central
nervous system, ROS production might contribute to virus
invasion and neuroinflammation. Finally, DENV-induced ROS
was important for increased endothelial permeability and
mtROS appeared to be the major pathway, although inhibition
of NOX activation also increased the TEER.

Taken together our data indicate that altered metabolism
triggered by DENV replication results in ROS production from
different cell sources, which is important for virus replication,
endothelial activation, and increased permeability (Figure 6).
Further studies addressing the effect of antioxidants in vivo may
contribute to avoid vascular permeability, inflammation and
neuroinvasion upon DENV infection.
Frontiers in Immunology | www.frontiersin.org 12
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Experimental Ethics Committee of Universidade
Federal do Rio de Janeiro. Written informed consent for
participation was not required for this study in accordance
with the national legislation and the institutional requirements.
FIGURE 6 | Schematical representation showing the effects of ROS induced by DENV infection in HBMECs. Infection of endothelial cells by DENV-2 impact the
mitochondrial physiology, leading to ROS production, which will fuel virus replication and induce cell death, contributing to endothelial permeability. In addition,
activation of other intracellular sources, such as NOX enzymes further enhance ROS production, which will be essential to increase secretion of chemokine and
inflammatory cytokines.
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