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Several of the animal lentiviruses, including visna virus of sheep and caprine
arthritis-encephalitis virus of goats, are known to infect cells of the monocyte/mac-
rophage lineage. Studies with visna, the prototype lentivirus, have demonstrated
that monocyte/macrophages play a critical role in pathogenesis, since these cells act
as a reservoir for virus and disseminate infection to target organs such as the lung
and central nervous system (1-3). A similar role has been proposed for monocyte/mac-
rophages in HIV infection of humans (4, 5), since these cells have been shown to
be infected in HIVpositive subjects (6-11), and can be experimentally infected in
vitro (12-18) .

Seminal studies ofvisna-maedi of sheep demonstrated that different strains ofvisna
virus exhibited marked differences in their cellular tropism, some isolates being mono-
cyte tropic while others were fibroblast tropic (1, 4, 19, 20). Furthermore, visnavirus
strains that showed different tropism in cell culture had different patterns of viru-
lence when injected into sheep (20) . Likewise, it appears that HIV-1 isolates vary
in their ability to replicate in monocyte/macrophages, and this may correlate in part
with the site and method of isolation (6, 16, 21-24) . It is plausible that these differ-
ences may be important in the persistence, dissemination, pathogenesis, or trans-
mission of HIV infection (25) .

This study was designed to address several aspects of HIV-1 infection of mono-
cyte/macrophages . (a) We wished to confirm the existence ofmonocyte-tropic strains
and to determine their relative ability to replicate in primary cultures ofmonocyte/mac-
rophages and oflymphocytes. (b) Since the use ofprimary cells is fraught with difficul-
ties, we wanted to determine whether promonocyte cell lines or lymphoid cell lines
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could be used as surrogates for primary cultures in studies of viral tropism . (c) In
addition, we addressed several related issues . Does HIV-1 infection of monocyte-
derived macrophages (MDM)' involve the majority of the cell population or is in-
fection associated with a subpopulation ofMDM or with a few residual contaminating
CD4+ lymphocytes? Does HIV-1 produce any cytopathic effect on MDM?
The results indicate that the host range of HIV is a complex phenomenon best

characterized by using a matrix of several different cell types, and that HIV infec-
tion of monocyte/macrophages differs markedly from infection of lymphocytes
justifying extensive independent study.

Materials and Methods
Cell Isolation and Culture ofMDM.

	

Monocyte-enriched populations were prepared from
PBMC of HIVseronegative volunteers as described (26) and cultured in vitro as MDM.
PBMC obtained by Ficoll-Hypaque separation of whole blood were suspended at 2-4 x 10 6
cells/ml in DME (Gibco Laboratories, Grand Island, NY) and 20 ml was placed in 75-cm 2
tissue culture flasks (Corning Glass Works, Corning, NY) previously coated with 2% gelatin .
After incubation for 1 h at 37 °C, nonadherent cells were removed, and the adherent cells
were washed four times with serum-free DME and once with 10 ml of a 1 :1 mixture of 10
mM EDTA in PBS and DME with 20% horse serum (Gibco Laboratories) . Adherent cells
were detached by incubation for 15 min with 10 ml of the EI7TA-horse serum mixture, washed
in DME, and suspended at 5 x 105 cells/ml in DME with 10% FCS (HyClone Laborato-
ries, Logan, UT), 10% horse serum (Gibco Laboratories), glutamine (600 kg/ml), penicillin
(100 U/ml), streptomycin (100,ug/ml), granulocyte-macrophage CSF (GM-CSF, 40 U/ml;
Amgen, Thousand Oaks, CA [27]), and macrophage CSF (M-CSF, 100 U/ml ; kindly provided
by Genetics Institute, Cambridge, MA [28]) . Suspended cells were seeded at 2-5 x 10 5
cells/well in 24- or 48-well plastic tissue culture plates (Flow Laboratories, McLean, VA; or
Gibco Laboratories) and maintained at 37°C in 5% C02 . Once weekly, cultures were
washed with PBS to remove nonadherent cells, and refed with media containing CSFs .

Preliminary studies showed that in combination, M-CSF and GM-CSF improved the via-
bility of uninfected MDM cultures (27, 29) from _50% at 4 wk and _25% at 8 wk to _80%
and _60%, respectively (data not shown) . Therefore, CSFs were added at the initiation of
macrophage cultures and replaced each time medium was changed . Selected batches of fresh
medium were tested periodically and shown to be free of endotoxin by the limulus amoebo-
cyte lysate assay (QCL-1000 ; Whittaker M. A . Bioproducts, Walkersville, MD) .

After initial purification, cells were 390% monocytes as determined by surface markers,
latex phagocytosis, and nonspecific esterase (Fig. 1, Table I), and after 7 d in culture were
397% monocyte/macrophage cells by the same criteria (Table I) .
PBL.

	

Lymphocyte-enriched cultures were prepared from PBMC by adherence deple-
tion of monocytes . PBMC were suspended at 106 cells/ml in RPMI with 10% FCS (Gibco
Laboratories), penicillin (100 U/ml), streptomycin (100 Rg/ml), glutamine (300 ug/ml), nones-
sential amino acids (1% ; Gibco Laboratories), and PHA-L (5 Wg/ml ; Sigma Chemical Co.,
St . Louis, MO) . After 24 h the nonadherent cells were transferred to a new flask and 2-3 d
later the nonadherent cells were resuspended at 10 6 cells/ml in wells in medium (without
PHA) supplemented with rIL-2 (600 U/ml; DuPont Co., Wilmington, DE) . Lymphocytes
were maintained with IL-2 and split 1 :2-1 :4 every 5 d. At 4 d of culture, these cells were
_75% T lymphocytes and 15% B lymphocytes by surface markers, and <2% reacted with
surface markers for monocyte/macrophages (Table I) .

U937 and SUP-TI Cells.

	

U937 promonocytic (30) and SUPTI T lymphocyte (31) cell
lines were maintained at _106 cells/ml in RPMI with 10% FCS, penicillin (100 U/ml), strep-
tomycin (100 lzg/ml), and glutamine (300 lAg/ml) ; cells were split 1 :4 every 5 d .

I Abbreviations used in thispaper GM-CSF, granulocyte-macrophage CSF ; M-CSF, macrophage CSF;
MDM, monocyte-derived macrophages .
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Analysis of Cell Populations.

	

Immunofluorescent detection of surface markers was carried
out with mAbs OKMI (anti-CD11b/CR3; Ortho Diagnostic Systems Inc., Westwood, MA),
OKT3 (anti-CD3, Ortho Diagnostic Systems, Inc.), OKT4 (anti-CD4; Ortho Diagnostic
Systems Inc.), OKT11 (anti-CD2; Ortho Diagnostic Systems Inc.), Leu-M3 (anti-CD14 ; Bec-
ton Dickinson&Co., Mountain View, CA), HD37 (anti-CD19 ; Boehringer Mannheim Bio-
chemicals, Indianapolis, IN), 12 (anti-la; Coulter Electronics, Inc., Hialeah, FL), B73.1
(anti-FcR/NK ; provided by G. Trinchieri, The Wistar Institute, Philadelphia, PA [32]), and
isotype-matched control antibodies . Cell lines, lymphocytes, and freshly isolated monocytes
in suspension were incubated for 30 min at 4°C with mAb at 1 :10-1 :20 dilution, washed
twice with PBSwith 217o FCS, incubated for 30 min at 4°C with fluorescein-conjugated goat
F(aV)2 anti-mouse IgG (Organon Teknika Corp., Durham, NC) diluted 1 :60, washed and
analyzed by flow cytometry (Epics; Coulter Electronics, Inc.), or mounted on glass slides
and assessed by fluorescent microscopy. For detection ofsurface markers on adherent MDM,
cells were cultured on polylysine-coated glass cover slips, fixed with methanol for 30 min at
room temperature, washed twice with PBS, and overlaid with 20% nonimmune rabbit serum
and 5% nonimmune goat serum (Organon Teknika Corp.) for 20 min at room temperature
to block nonspecific binding. Cells were then incubated for 45 min at room temperature with
mAb diluted 1 :10 in PBS containing 5% goat and 20% rabbit serum, washed twice with
PBS, and incubated for 30 minwith fluorescein-conjugated goat F(ab)2 anti-mouse IgG (Or-
ganon Teknika Corp .) diluted 1 :60 in PBS containing 50% FCS, 1017o goat serum, 10% rabbit
serum, and 0.5% Evans blue as a counterstain to minimize autofluorescence . Coverslips were
mounted on glass slides and examined by fluorescent microscopy.

Monocyte/macrophage cultures were examined by modified Wright-Giemsa stain (Dif-
Quik ; American Scientific Products, McGaw Pk, IL). Nonspecific esterase was demonstrated
cytochemically (diagnostic kit 181B ; Sigma Chemical Co. [33]). Latex phagocytosis was de-
tected by incubating cells for 1 h with 1.1-Am latex particles (Dow Chemical Co., Indianapolis,
IN); cultures were scored microscopically for intracellular particles (34) . Fc receptors were
detected by rosette formation with IgG-coated sheep erythrocytes (35) . Sheep erythrocytes
were incubated with rabbit anti-sheep erythrocyte IgG(Organon Teknika Corp.) for 30 min
at 37°C, washed three times with PBS, and incubated with monocyte/macrophages for 1 h
at 37°C, which were then washed, fixed, and stained with Wright-Giemsa stain. Cells with
three or more adherent erythrocytes were scored positive. Quantification was based on a
minimum of 300 cells visualized microscopically or 5,000 cells analyzed by flow cytometry.

Viruses.

	

HIV-I strains HIVIIIB (36) and HIVDV (37) were isolated from PBMC, and
HIVSF162 (24) was isolated from cerebrospinal fluid. Virus stocks were grown in SUP-T1
cells or PHA/IL-2-stimulated lymphocytes, and clarified supernatant was frozen at -80°C .
Stocks were titered by p24 antigen content and by TCID50 titration on PBL or SUP-T1 cells.
The infectious titer per 100 ng p24 antigen was: IIIB, 5.6 x 10 4 TCID50 ; DV, 10 5 TCID50;
and SF162, 5.3 x 103 TCID50 .

HIV-1 Infection .

	

Monocyte/macrophages were infected as MDM after 7-14 d in culture.
Cells were washed four times with PBS, and the viral inoculum was added. After incubation
for 2 h at 37°C, cells were washed four times with PBS to remove unadsorbed virus, and
fresh medium was added. Lymphocytes were cultured for 4 d before infection. Virus was
added to 106 cells in 1 ml for 2 h at 37°C, washed four times with PBS, and cells were
resuspended at the same density in medium containing IL-2 . U937 and SUPTI cells were
infected by the same protocol . In each experiment the final wash was tested for viral p24
antigen and shown to be free of residual inoculum.

Virus Detection .

	

All samples were stored at -80°C until assayed. p24 antigen was deter-
mined on tissue culture supernatant or on cell pellets lysed with 1% Triton X-100 (and
resuspended to the original culture volume) by ELISA (Coulter Electronics, Inc.). Tissue
culture infectious dose 50% endpoint (TCID50) was determined by inoculating replicate mi-
crotiter wells of SUP-T1 cells (104 cells/well) or PHA-stimulated lymphocytes (5 x 10 4
cells/well, with IL-2) with serial dilutions of cell-free supernatant. Lymphocyte wells were
split 1 :5 once weekly and fed with fresh medium containing IL-2 . After 3 wk, each well was
scored for the presence of syncytia (SUP-TI cells) or for p24 antigen production (lympho-
cytes) by ELISA (Chiron Corp., Emeryville, CA). MDMcultured on polylysine-coated glass
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cover slips were stained 22 d after infection . Coverslips were washed twice with PBS, fixed
with methanol for 30 min at room temperature, and incubated with 20% nonimmune rabbit
serum and 5% nonimmune goat serum for 20 min at room temperature . They were then
overlaid for 45 min at room temperature with IgG purified from HIVseropositive human
serum (Af i-gel ; Bio-Rad Laboratories, Richmond, CA) at a concentration of 0.35 mg/ml
diluted in PBS containing 5% goat serum and 5% rabbit serum . Coverslips were washed
three times with PBS and incubated for 30 min with fluorescein-conjugated goat F(aV)2
anti-human IgG (Boehringer Mannheim Biochemicals) diluted 1 :60 in PBS with 50% FCS,
10°Jo goat serum, 10% rabbit serum, and 0.5% Evans blue as a counterstain to minimize
autofluorescence .

Results
MDM.

	

Monocyte/macrophages were prepared from peripheral blood ofnormal
human subjects and were infected as MDM after 7-14 d in culture. On the day of
preparation, >95% of these cells exhibited monocyte markers, as they did at the
time of infection, and very few cells showed T cell markers (Table I and Fig. 1) .
These cells expressed very low levels of CD4 by flow cytometry on the day of prepa-
ration (Fig . 1), and CD4 could not be detected by fluorescent microscopy on ad-
herent MDM at the time of infection (Table 1) .
HIVI Replication in Monocyte-derived Macrophages and Lymphocytes.

	

We selected three
HIV-1 strains as prototypes, HIB, DV, and SF162, and compared their replication
in MDM, PBL, a promonocytic line (U937), and a T cell line (SUP-TI) . Virus in-
ocula were standardized by their content of p24 antigen, and cultures were infected

TABLE I

Characteristics of Cell Populations Used for HIV Infection

Values are the percentage of positive cells . Monocytes were characterized im-
mediately after separation from PBMC (day 0), and after culture as adherent
MDM at day 7 and 60 . PBMC fraction was characterized immediately after
Ficoll-Hypaque isolation before further separation . PBL cultures were obtained
by culturing PBMC for 4 d, with PHA stimulation and serial depletion of plastic-
adherent cells . U937, promonocytic cell line ; SUP-TI, T lymphocyte cell line .
Binding ofmAbs to macrophage markers(OKM 1 and Leu-M3), T lymphocyte
markers (OKT3 and OKTI1), B lymphocyte marker (HD37), and CD4 (OKT4)
was assessed by fluorescence microscopy . Nonspecific esterase (NSE), latex
phagocytosis, and Fc receptors were also assessed by microscopy, as described
in Materials and Methods . Percentage of cells positive is based on a minimum
of 300 cells counted .

Marker
Monocyte/macrophage
0 d 7 d 60 d

PBMC
(0 d)

PBL
(4 d) U937 SUP-Tl

OKM1 99 82 63 20 2 0 0
Leu-M3 95 43 ND 19 0 5 0
OKT3 2 0 ND 52 78 0 1
OKTl1 7 0 0 64 75 0 98
OKT4 4 0 ND 35 31 96 97
HD37 0 1 0 5 15 0 0

NSE 92 97 65 ND ND 95 ND

Latex
phagocytosis 91 98 88 ND ND <5 ND

Fc receptors 96 98 ND ND ND 85 ND
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with ti100 ng/106 cells. Infection was followed by examining supernatants for con-
centration of p24 antigen and infectious virus, by p24 assay of cell lysates for cell-
associated antigen, and by immunohistochemical staining of viral antigens for the
proportion of cells infected .
The three virus strains showed sharply different patterns of replication in MDM

(Figs . 2 and 3) ; strain SF162 produced moderate levels of p24 antigen and infectious
virus, while strain III B produced little or no antigen or infectious virus, and strain
DV showed an intermediate pattern. All three strains of HIV-1 replicated to a high
titer in PBL, with similar kinetics of antigen and infectious virus production (Figs .
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FIGURE 1 .

	

Purity and surface characteristics ofmonocytes
immediately after isolation from PBMC . Flow cytometry
profiles represent the entire population of cells isolated.
Monocytes were stained with mAbs formonocyte markers
(OKMI, Leu-M3), class II expression (I2), CD4 expres-
sion (OKT4),Tlymphocyte marker(OKT3),B cell marker
(HD37), and NK cell marker (1373.1) . An IgG2a control
antibody is shown.

FIGURE 2. Antigen production by three
strains of HIV-1 (SF162, DV, and IIIB) in
MDM(A) and PBL (B). MDMcultured for
7 d and lymphocytescultured for 4 d were in-
fected with equal amountsofvirus (100 ng p24
antigen per 106 cells) for 2 h, washed, and
maintained as described . The culture super-
natantwas periodically tested for p24 antigen .
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FIGURE 3.

	

Replication of three strains of
HIV-1 (SF162, DV, and 11113) in MDM (A)
andPBL (B) . MDMcultured for 7 d and lym-
phocytes cultured for 4 d were infected with
equal amounts ofvirus (100 ng ofp24 antigen
per 106 cells) for 2 h, washed, and maintained
as described. The culture supernatant was
tested periodically for infectious virus produc-
tion by titration on PBL.

2 and 3) . Of note, even the monocyte-tropic strain SF162 replicated to titers 10- to
100-fold higher in PBL than in MDM.

Since infected MDM consistently produced lower levels of supernatant p24 an-
tigen than did infected PBL, a search was made for sequestration of p24 antigen
in infected MDM. Thoroughly washed cells were lysed and the p24 content of the
lysates compared with p24 in the supernatants from the same cultures (Table II) .
Of the total p24 antigen, ti3:4 was associated with the supernatant and 1 :4 with
the cell, and this ratio was similar for infected MDM and PBL.

TABLE II

Supernatant and Cell-associated Viral Antigen in HIV-1-infected MDM
and Lymphocyte (PBL) Cultures

MDM and lymphocyte cultures were infected as described. At each time point, culture was
divided into supernatant and cellular component, and p24 antigen levels were determined. Values
are expressed as the total p24 antigen content in each compartment of the culture .

Cell Day
III13

Supernatant Cellular
DV

Supernatant
ng

Cellular
SF162

Supernatant Cellular

MDM 6 0.15 <0.01 10 .1 2 .8 13 .3 0.8
13 0 .06 0.06 29 .2 50 .0 63 .0 18 .2
21 0.17 0.09 47 .0 8.9 35 .8 9.7

PBL 7 14 2 187 58 228 32
13 29 22 71 39 118 11
22 131 33 58 15 104 10
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Donor Variability in MDM.

	

Replicate experiments withMDM are shown in Table
III . Although strain IIIB usually produced no antigen or only trace levels (0.01-0.1
ng/ml), titers of 2-4 ng/ml were occasionally seen; conversely, strain SF162 usually
produced titers of 50-150 ng/ml, but occasionally did not exceed 1 ng/ml. There
appeared to be both experiment-to-experiment and donor-to-donor variation . De-
spite this biological variation, within each experiment there was a consistent gra-
dient of replication, from SF162 (highest) to IIIB (lowest) .

Viral Antigen in HIV-1-infectedMDM

	

To determine the proportion ofinfected cells
and the morphological effects of infection, MDM, inoculated 22 d previously with
SF162, were examined for viral antigen by immunofluorescence (Fig . 4) . Many cells
contained viral antigen, and these cells were readily identified as macrophages be-
cause oftheir large size, abundant cytoplasm, and multiple nuclei . Antigen was seen
in the cytoplasm and not in nuclei and was usually concentrated in multiple focal
accumulations . A striking feature of infected cells was the localization of antigen
at sites of cell-to-cell contact (Fig . 4 B).
Viral antigen was clearly associated with multinucleated MDM. Cultures were

mononuclear at the time of preparation, but during cultivation (in the absence of
infection) the cells gradually fused to form small syncytia. However, infected com-
panion cultures demonstrated much more pronounced syncytia formation (Fig. 5),
and the largest syncytia were almost always antigen positive (Fig . 4 C) . These mul-
tinucleated giant cells expanded over time and formed cellular "lakes" with >100
nuclei, yet remained viable andcontinued to produce virus for >8 wk. The associa-
tion of syncytia formation with infection is demonstrated in Table IV, which com-
pares the number of nuclei in antigen-positive and antigen-negative MDM within
a single infected culture. Antigen-positive MDMform much larger syncytia, while
antigen-negative MDM form smaller syncytia very similar to the size of those seen
in uninfected cultures . Table IV also shows that in infected cultures, N2 :3 of nuclei
(representing 2 :3 of the initial monocytes in the original culture) were in antigen-
positive cells.

TABLE III
Variability of HIV-1 Replication in MDM

MDM were prepared and infected as described in Materials and Methods . All
cultures were followed for at least 30 d after infection and peak titers ofp24 anti-
gen in supernate are recorded in this table . Titer of p24 antigen : + + + +
(100-1,000 ng/ml); + + + (10-100 ng/ml) ; + + (1-10 ng/ml) ; + (0 .1-1 ng/ml) ;
and t (<O .1 ng/ml) .

Exp . Donor IIIB DV SF162
1 A - + +++
2 B - ++ ++++
3 B - + +++
4 C + + ++++
5 C + ++ +++
6 D t ++ +++
7 D t + + +

9 E ++ +++ ++++
10 F ++ +++ ++++
11 G + ++ ++
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FIGURE 4.

	

Viral antigens in infected MDM. Macrophages cultured for 14 d were infected with
HIV-1 SF162 (75 ng ofp24 antigen per 6 x 10 5 cells), and 22 d later were fixed, stained for viral
antigens, and examined by immunofluorescence. (A) Infected culture showinga single small poly-
karyon with focal areas of viral antigen . (B) Infected culture with antigen-positive polykaryon
and antigen at points ofcontact with other cells . (C) Infected culture showing a very large poly-
karyon with multiple foci of viral antigen . (D) Uninfected culture of same age showing a heter-
ogenous population of cells that contain up to several nuclei (x 250) .

Large syncytia were frequently seen in cultures infected with strain SF162, less
commonly with strain DV, and never in MDM infected with strain IIIB . However,
among SF162-infected cultures, there was only a general correlation between the
degree of giant cell formation and the titer of p24 antigen in the supernate .
U937 and SUP-TI Cell Lines.

	

Both the promonocytic line, U937, and the T cell
line, SUP-TI, supported replication of strains IIIB and DV to high titer, but strain
SF162 replicated poorly with only trace amounts of p24 antigen detected (Fig . 6) .
Similarly, as measured by TCID50, strains IIIB and DV produced high titers of
free infectious virus in both U937 and SUPT1 cells, while no infectious virus was
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FIGURE 5 .

	

Morphology of infected MDM. Macrophages cultured for 14 d were infected with
HIV-1 SF162 (75 ng ofp24 antigen per 6 x 10 5 cells), and 22 d later cells were fixed and stained
by a modified Wright-Giemsa method. (A) Infected culture showing very large syncytia. (B) Unin-
fected culture showing smaller multinucleated cells (x250) .

TABLE IV

The Distribution of Polykaryocytes in HIV-1-infected and
Uninfected Cultures of MDM

MDM cultured for 14 d were infected with HIV-1 strain SF162 (75 ngp24 anti-
gen per 6 x 10 5 cells), incubated for 22 d, and stained for viral antigen by im-
munofluorescence . Individual cells were classified according to the number of
nuclei and presence of antigen; the total nuclei in the cells in each category is
recorded.
' Totals of each column .

1157

Nuclei/cell
Uninfected

Nuclei Percent
Without
Nuclei

Infected
antigen With
Percent Nuclei

antigen
Percent

1 98 24 163 33 4 0
2-5 200 48 135 28 64 7
6-10 52 13 85 17 102 11
11-25 66 16 74 15 151 16
26-50 0 0 32 7 218 23
>50 0 0 0 0 415 44

416' 100 489 100 954 100
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FIGURE 6 . Antigen production by three
strains of HIV-1 (SF162, DV and IIIB) in
U937 cells (A) and SUP-TI cells (B) . Cells were
infected with equal amounts of virus (50 ng
ofp24 antigen per 10 6 cells) for 2 h, washed,
and maintained as described. Supernatant was
tested periodically for p24 antigen .

produced in these two cell lines after infection with strain SF162 (data not shown) .
Infection of U937 cells was noncytopathic, with no morphological changes or cell
death, and viral antigen was distributed diffusely throughout the cytoplasm of virtu-
ally 100% of cells at peak infection . Infected SUPTI cells were also uniformly posi-
tive for cytoplasmic viral antigen but, in contrast, formed extensive syncytia with
rapid cell killing. After variable periods of time, however, a non-syncytia-forming
chronicallyHIVIIIB-infected population ofSUPTI cells emerged (data not shown) .
The pattern of tropism of the three strains of HIV-1 in four different cell types

is summarized in TableV. Strains SF162 and IIIB showed reciprocal patterns, since
SF162 replicated in MDM but poorly in U937 or SUPT1 cells, while strain IIIB
replicated in U937 and SUPTI, but poorly or not at all in MDM. PBL were the

TABLE V

Antigen Production by Selected Strains of HIV-1 in Primary
Cultures and Transformed Lines of MDM and Lymphocytes

U937, promonocytic cell line ; SUP-T1, T lymphocyte cell line . Titers
ofp24 antigen in supernatant are reported as : + + + + + (>1,000 ng/ml) ;
+ + + + (100-1,000 ng/ml) ; + + + (10-100 ng/ml) ; + + (1-10 ng/ml) ;
+ (0 .1-1 ng/ml) ; t (<O.1 ng/ml) . Values are the peak titers and represent
the medians of 3-11 experiments .

Cell type Strain IIIB Strain DV Strain SF162

MDM + ++ +++
PBL ++++ ++++ ++++
U937 +++++ +++++ t
SUP-T1 +++++ +++++ t
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only one of the four cell cultures in which all strains replicated to high titer. It is
noteworthy that the promonocyte line, U937, showed a totally different pattern of
permissiveness than did MDM, and that the T cell line, SUP-TI, showed a totally
different pattern of permissiveness than did PBL.

Discussion
HIV strains are heterogeneous in their host range and infect a wide variety of

cell types (38-41). Therefore, cell tropism is best defined ifviruses and cells are studied
in multiple combinations and cell lines are compared with the corresponding pri-
mary cells. By systematically examining the replication of a selected panel of proto-
type HIV-1 strains in primary monocyte-derived macrophages, primary lympho-
cytes, a promonocytic cell line, and a lymphoid cell line, we have developed a matrix
that represents a spectrum of HIV-cell interactions from permissive to highly re-
stricted (Table V) . Our results confirm previous work, demonstrating that HIV-1
strains display differing degrees of monocyte tropism, but challenge the widespread
use of cell lines as surrogates for primary macrophages and T lymphocytes in studies
of tropism.
We found that the three isolates studied exhibit a gradation in their ability to replicate

in macrophages; macrophages are most permissive for SF162, intermediate in per-
missiveness for DV, and least permissive for IIIB . These results confirm previous
findings (6, 16, 21-25) of monocyte tropism in HIV isolates anddocument that some
HIV strains may undergo a productive infection in the same macrophages that will
only support persistent latent infection of other HIV strains .
The promonocytic U937 cell line is widely used as a surrogate for monocyte/mac-

rophages in studies of HIV infection (42-46) . U937 cells resemble promonocytes
rather than MDM (47), and there are other significant differences between U937
cells andmonocyte/macrophages, including CD4 expression, which is high in U937
cells but very low in MDM. U937 cells are readily infected by the lymphocyte-tropic
strain IIIB and do not support replication ofthe monocyte-tropic strain SF162, which
is the inverse of the pattern seen with primary MDM. SUP-TI is one of a number
of cell lines used as a model for T4 lymphocytes (48) and expresses high levels of
CD4. However, SUP-TI cells fail to support replication of strain SF162, which repli-
cates to high titer in primary lymphocytes (24) . Thus, the promonocytoid U937 and
lymphoid SUPTl cell lines demonstrate similar patterns of viral restriction (Table
V), and are not adequate surrogates for primary MDMand PBL in studies ofviral
host cell tropism . It is possible that U937 cells induced to "differentiate" to a more
mature phenotype would demonstrate a pattern of permissiveness more representa-
tive of macrophages (49-51).
Because T4 lymphocytes are exquisitely permissive forHIVinfection, it is critical

to document that HIV infection ofMDM involves macrophages and is not limited
to a contaminating fraction of lymphocytes. Our immunofluorescence observations
indicate that a large proportion of cells are antigen positive and that infection is
strongly associated with syncytium formation, the best established cytopathic effect
of HIV. Since >90% of the cells in these cultures exhibit macrophage markers (Table
I), it seems clear that MDM are heavily infected . HIV antigens are concentrated
in focal accumulations (Fig . 4), and this could reflect both internal budding of virus
(16) and phagocytic accumulation ofvirions and viral proteins. Theimmunofluorescent
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images also suggest (Fig. 4 B) that HIV may spread by cell-to-cell transmission of
virus as well as by production of free infectious virions, which could be relevant
to the potential blocking effects of soluble T4 or of antiviral antibody.

Summary
To characterize the host range of different strains of HIV1, we have used four

types of cells, primary monocyte-derived macrophages (MDM), primary PBL, a
promonocyte cell line (U937), and a CD4+ T cell line (SUP-TI).These cells were
infected with three prototype strains of HIV-1, a putative lymphocyte-tropic strain
(IIIB), and two putative monocyte-tropic strains (SF162 and DV) . Infections were
monitored by assays for infectious virus, for cell-free and cell-associated viral an-
tigen (p24), and for the proportion ofcells infected by immunohistochemical staining.

It was concluded that : (a) the use offour different cell types provides a useful bio-
logical matrix for distinguishing the tropism of different strains of HIV1 ; this ma-
trix yields more information than the infection ofany single cell type . (b) A monocyte-
tropic strain of HIV1, such as strain SF162, shows a reciprocal host range when
compared with a lymphocyte-tropic strain such as IIIB ; strain SF162 replicates well
in primary MDM but not in U937 or SUP-TI cells, while strain IIIB replicates well
in both U937 and SUP-T1 cells but not in MDM. (c) Both lymphocyte-tropic and
monocyte-tropic strains of HIV-1 replicate well in PBL . (d) The promonocyte cell
line, U937, and the T cell line, SUP-TI, differ markedly from primary cells, such
as MDM and PBL, in their ability to support the replication of different strains
of HIV1; these cell lines cannot be used as surrogates for primary cells in host range
studies of HIV-1 strains .
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for cytokines; P Ralph for M-CSF used in preliminary work ; K . Steimer for ELISA reagents ;
D. Campbell for flow cytometry assistance ; and F Gonzalez-Scarano andJ . Hoxie for advice
and consultation .
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