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Abstract

Introduction: Diverse insects and other organisms are associated with microbial symbionts, which often

significantly contribute to growth and survival of their hosts and/or drastically affect phenotypes of their hosts in a

variety of ways. Sodalis glossinidius was first identified as a facultative bacterial symbiont of tsetse flies, and recent

studies revealed that Sodalis-allied bacteria encompass diverse ecological niches ranging from free-living bacteria

through facultative symbionts to obligate symbionts associated with a diverse array of insects. Despite potential

ecological and evolutionary relevance of the Sodalis symbionts, their infection prevalence in natural insect

populations has been poorly investigated.

Results: Here we surveyed diverse stinkbugs and allied terrestrial heteropteran bugs, which represented 17 families,

77 genera, 108 species, 310 populations and 960 individuals, for infection with the Sodalis symbionts. Diagnostic

PCR detected relatively low infection frequencies of the Sodalis symbionts: 13.6% (14/103) of the species, 7.5%

(22/295) of the populations, and 4.3% (35/822) of the individuals of the stinkbugs except for those belonging to the

family Urostylididae. Among the urostylidid stinkbugs, strikingly, the Sodalis symbionts exhibited very high infection

frequencies: 100% (5/5) of the species, 100% (15/15) of the populations, and 94.2% (130/138) of the individuals we

examined. Molecular phylogenetic analysis based on bacterial 16S rRNA gene sequences revealed that all the

symbionts were placed in the clade of Sodalis-allied bacteria while the symbiont phylogeny did not reflect the

systematics of their stinkbug hosts. Notably, the Sodalis symbionts of the urostylidid stinkbugs were not clustered

with the Sodalis symbionts of the other stinkbug groups on the phylogeny, suggesting their distinct evolutionary

trajectories.

Conclusions: The relatively low infection frequency and the overall host-symbiont phylogenetic incongruence

suggest that the Sodalis symbionts are, in general, facultative symbiotic associates in the majority of the stinkbug

groups. On the other hand, it is conceivable, although speculative, that the Sodalis symbionts may play some

substantial biological roles for their host stinkbugs of the Urostylididae.
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Introduction
Diverse insects are associated with symbiotic microor-

ganisms [1]. Some symbionts are obligate companions

essential for their hosts via, for example, provisioning of

essential nutrients deficient in their host’s diets, and often

referred to as the primary symbionts [2,3]. Other symbi-

onts are facultative associates not essential for their hosts,

and often designated as the secondary symbionts [4,5].

Although not needed for their host’s survival, many of the

facultative symbionts drastically affect various adaptive

phenotypes of their hosts, which include manipulating

host’s reproductive phenotypes in selfish ways [6,7], con-

ferring host’s resistance to parasites and pathogens [8-10],

enhancing host’s tolerance to heat stress [11,12], broaden-

ing host’s food plant range [13,14], modifying host’s body

color [15,16] and others.

Grasping infection prevalence of these symbionts is

important for gaining insights into biological interac-

tions with their hosts. The primary symbionts of obligate

nature generally exhibit 100% infection frequencies in
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their host populations due to their indispensable roles.

By contrast, the secondary symbionts of facultative na-

ture exhibit variable infection frequencies ranging from

near 0% to almost 100% depending on the symbiont spe-

cies, the host species and populations, the environmental

conditions, etc. For example, some Wolbachia strains

attain 100% infection frequencies in their host populations

by their selfish driving mechanisms such as cytoplasmic

incompatibility and parthenogenesis induction [6,7]. The

facultative symbionts Serratia, Regiella and Hamiltonella

in natural aphid populations exhibit intermediate values

between 0% to 100% [17-20], which probably reflect their

context-dependent fitness consequences [8,9,11,13].

Sodalis glossinidius was first identified and described

as a gammaproteobacterial secondary symbiont of tsetse

flies (Diptera: Glossinidae) [21-23]. Subsequently, primary

symbionts associated with bacteriocytes of Sitophilus grain

weevils (Coleoptera: Curculionidae) turned out to be closely

related to Sodalis [24,25] and designated as ‘Candidatus

Sodalis pierantonius’ [26]. Recently, a number of studies

have reported occurrences of Sodalis-allied bacteria in a

diverse array of insects: as bacteriocyte-associated presu-

mable primary symbionts in bird lice (Phthiraptera:

Philopteridae) [27,28], louse flies (Diptera: Hippoboscidae)

[29,30], spittle bugs (Hemiptera: Cercopoidea) [31,32] and

pseudococcids (Hemiptera: Pseudococcidae) [33]; and as

presumable secondary symbionts in acorn weevils (Coleop-

tera: Curculionidae) [34-36], longicorn beetles (Coleoptera:

Cerambycidae) [37], stinkbugs (Hemiptera: Scutelleridae

and Pentatomidae) [38-41], psyllids (Hemiptera: Triozidae)

[42] and archaeococcoid scale insects (Hemiptera: Coelos-

tomidiidae) [43]. Furthermore, a Sodalis-allied bacterial

strain was isolated from a human wound infection [44],

and a biofilm-forming bacterium isolated from a tufa

deposit, Biostraticola tofi, turned out to be a close rela-

tive of Sodalis [45], uncovering diverse ecological niches

and symbiotic statuses of the Sodalis-allied bacteria.

While infection frequencies in natural insect populations

have been extensively surveyed for Wolbachia [46-48],

Rickettsia [49,50], Cardinium [51-53], Spiroplasma [52,54],

Arsenophonus [52,55] and other facultative symbionts, no

systematic and comprehensive survey of Sodalis symbionts

in natural host populations has been reported.

In this study, we surveyed diverse stinkbugs and allied

terrestrial heteropteran bugs (order Hemiptera: suborder

Heteroptera: infraorder Pentatomomorpha), which repre-

sent 17 families, 77 genera, 108 species, 310 populations

and 960 individuals, for infection with Sodalis symbionts

by diagnostic PCR and molecular phylogenetic approaches.

Materials and methods
Insect samples

Additional file 1 lists the insect samples examined in this

study. These insects were preserved in either acetone or

ethanol [56], or freshly brought to the laboratory. For

large specimens, dissected gonad was subjected to DNA

extraction. For small specimens, dissected abdomen was

subjected to DNA extraction. DNA extraction was per-

formed using QIAamp DNA Mini kit (Qiagen).

PCR, cloning and sequencing

A 1.5 kb region of the bacterial 16S rRNA gene was

amplified by PCR with primers 16SA1 (5’-AGA GTT

TGA TCM TGG CTC AG-3’) and 16SB1 (5’-TAC GGY

TAC CTT GTT ACG ACT T-3’), and cloned and se-

quenced as described previously [57]. Diagnostic PCR

was performed with primers sodalis370F (5’-CGR TRG

CGT TAA YAG CGC-3’) [38] and 16SB1 under the

temperature profile of 95°C for 10 min followed by 35 cy-

cles of 94°C for 30 sec, 55°C for 1 min and 72°C for

1.5 min. For quality control of the DNA samples, a 1.5 kb

region of mitochondrial 16S rRNA gene was amplified by

PCR with primers MtrA1 (5’-AAW AAA CTA GGA TTA

GAT ACC CTA-3’) and MtrB1 (5’-TCT TAA TYC AAC

ATC GAG GTC GCA A-3') [58].

Molecular phylogenetic analysis

A multiple alignment of the nucleotide sequences was

generated by the program MAFFT version 7.127b [59].

The nucleotide substitution model, GTR + I + G, was se-

lected using the program jModelTest 2 [60,61]. The

phylogenetic analyses were conducted by Bayesian (BA)

and maximum-likelihood (ML) methods with the pro-

grams MrBayes v3.2.2 [62] and RAxML version 7.2.6

[63], respectively. In the BA analysis, in total 37,500

trees were obtained for each analysis (ngen = 50,000,000,

samplefreq = 1,000, burn in = 12,501, temp = 0.2) and mul-

tiple independent runs were conducted to ensure the

stable results. Posterior probabilities were calculated for

each node by statistical evaluation in BA, whereas boot-

strap values were obtained with 1000 replications in ML.

Results and discussion
Our diagnostic PCR survey of diverse stinkbugs and al-

lied terrestrial heteropteran bugs, which represent 17

families, 77 genera, 108 species, 310 populations and

960 individuals, detected Sodalis symbionts from 17.6%

(19/108) of the species, 11.0% (34/310) of the popula-

tions, and 17.2% (165/960) of the individuals (Table 1;

Additional file 1). The infection frequencies were gener-

ally low and considerably variable among the different

heteropteran groups: at the individual level, for example,

15.4% (4/26) in the Acanthosomatidae; 0.0% (0/33) in

the Cydnidae; 5.6% (18/323) in the Pentatomidae; 0.0%

(0/40) in the Plataspidae; 4.5% (11/247) in the Scutelleridae;

0.0% (0/30) in the Alydidae; 0.0% (0/45) in the Coreidae;

and 0.0% (0/43) in the Blissidae (Table 1; Additional file 1).

In the Urostylididae, by contrast, infection frequencies with
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the Sodalis symbionts were exceptionally high: 100% (5/5)

of the species, 100% (15/15) of the populations and 94.2%

(130/138) of the individuals (Table 1; Additional file 1) [40].

In previous studies, 16S rRNA gene sequences of the

Sodalis symbionts were determined for two scutellerid

species Cantao ocellatus and Eucoryses grandis [38,39]

and four urostylidid species Urostylis annulicornis,

Urostylis striicornis, Urostylis westwoodii and Urochela

quadrinotata [40]. In this study, we newly cloned and

sequenced 16S rRNA gene of the Sodalis symbionts

from the following heteropteran species: an acantho-

somatid Elasmucha putoni; pentatomids Aelia fieberi

(from two populations), Dolycoris baccarum, Glaucias

subpunctatus, Lelia decempunctata, Nezara antennata

(from three populations), Palomena angulosa, Picromerus

lewisi and Piezodorus hybneri; a scutellerid Poecilocoris

lewisi; and a rhopalid Rhopalus sapporensis (Figure 1).

Molecular phylogenetic relationship of the Sodalis symbi-

onts associated with the heteropteran bugs and other in-

sects was inferred from the 16S rRNA gene sequences

(Figure 2). The phylogenetic pattern indicated that (i)

all the symbiont sequences were placed in the clade of

Sodalis-allied bacteria with high statistical supports, (ii)

the symbiont sequences within the same host species

tended to be closely related to each other, (iii) nonetheless,

the overall phylogenetic relationship of the symbiont se-

quences did not reflect the systematics of the host stink-

bugs, and (iv) notably, the Sodalis symbionts of the

urostylidid stinkbugs were not clustered with the Sodalis

symbionts of the other stinkbug groups on the phylogeny.

The relatively low infection frequencies and the overall

host-symbiont phylogenetic incongruence favor the

hypothesis that the Sodalis symbionts are, in general,

facultative associates for the heteropteran bugs, as

Wolbachia, Rickettsia, Spiroplasma, Lariskella, etc.

[41,64-66]. The majority of the plant-sucking heterop-

teran bugs harbor specific gut bacteria as the primary

symbionts within the crypt cavities present in a posterior

midgut region [1,67,68], which are important for normal

growth, survival and reproduction of the host insects

[69-80]. Probably, the majority of the Sodalis symbionts

are, unlike the primary gut symbionts, not essential for

their heteropteran hosts. On the other hand, it is conceiv-

able, although speculative, that the Sodalis symbionts may

play some substantial biological roles for their host stink-

bugs in the Urostylididae. It deserves future studies what

Table 1 Detection of Sodalis symbionts from stinkbugs representing 17 families, 77 genera, 108 species, 310 populations

and 960 individuals collected in Japan

Superfamily family Genus Species Population Individual

Pentatomoidea

Acanthosomatidae 1/4 (25.0%) 1/4 (25.0%) 2/10 (20.0%) 4/26 (15.4%)

Cydnidae 0/3 (0.0%) 0/5 (0.0%) 0/8 (0.0%) 0/33 (0.0%)

Dinidoridae 0/1 (0.0%) 0/1 (0.0%) 0/5 (0.0%) 0/12 (0.0%)

Parastrachiidae 0/1 (0.0%) 0/1 (0.0%) 0/1 (0.0%) 0/10 (0.0%)

Pentatomidae 8/37 (21.6%) 8/51 (15.7%) 15/189 (7.9%) 18/323 (5.6%)

Platasipidae 0/3 (0.0%) 0/8 (0.0%) 0/16 (0.0%) 0/40 (0.0%)

Scutelleridae 3/7 (42.9%) 3/8 (37.5%) 3/29 (10.3%) 11/247 (4.5%)

Urostylididae 2/2 (100%) 5/5 (100%) 15/15 (100%) 130/138 (94.2%)

Coreoidea

Alydidae 0/1 (0.0%) 0/1 (0.0%) 0/1 (0.0%) 0/30 (0.0%)

Coreidae 0/9 (0.0%) 0/13 (0.0%) 0/19 (0.0%) 0/45 (0.0%)

Rhopalidae 1/1 (100%) 1/1 (100%) 1/1 (100%) 1/1 (100%)

Lygaeoidea

Berytidae 0/1 (0.0%) 0/1 (0.0%) 0/2 (0.0%) 0/3 (0.0%)

Blissidae 0/1 (0.0%) 0/1 (0.0%) 0/5 (0.0%) 0/43 (0.0%)

Lygaeidae 0/1 (0.0%) 0/1 (0.0%) 0/1 (0.0%) 0/1 (0.0%)

Rhyparochromidae 0/3 (0.0%) 0/3 (0.0%) 0/3 (0.0%) 0/3 (0.0%)

Pyrrhocoroidea

Largidae 0/1 (0.0%) 0/2 (0.0%) 0/3 (0.0%) 0/3 (0.0%)

Pyrrhocoridae 1/1 (100%) 1/2 (50.0%) 1/2 (50.0%) 1/2 (50.0%)

Total 16/77 (20.8%) 19/108 (17.6%) 34/310 (11.0%) 165/960(17.2%)

Total without Urostylididae 14/75 (18.7%) 14/103 (13.6%) 22/295 (7.5%) 35/822 (4.3%)
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Figure 1 Stinkbugs associated with the Sodalis symbionts. (A) Elasmucha putoni. (B) Aelia fieberi. (C) Dolycoris baccarum. (D) Glaucias

subpunctatus. (E) Lelia decempunctata. (F) Nezara antennata. (G) Palomena angulosa. (H) Picromerus lewisi. (I) Piezodorus hybneri. (J) Cantao

ocellatus. (K) Eucorysses grandis. (L) Poecilocoris lewisi. (M) Urochela luteovaria. (N) Urochela quadrinotata. (O) Urostylis annulicornis. (P) Urostylis

striicornis. (Q) Urostylis westwoodii. (R) Rhopalus sapporensis. Photos by Toru Kawabe (A-D, G, I, L, M and R), Takahiro Hosokawa (E, F, J, K and Q),

Joji Yokozeki (H), Gaku Miyake (N), Nahomi Kaiwa (O) and Yoshishige Shinogi (P).
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biological roles, which are likely condition-dependent ones,

the Sodalis symbionts play for their urostylidid hosts.

Conclusions
In conclusion, our results highlight that the Sodalis symbi-

onts are facultative symbiotic bacteria commonly associ-

ated with diverse insects, as are Wolbachia, Rickettsia,

Spiroplasma, Cardinium, Arsenophonus and other wide-

spread facultative symbionts. In this study, we exhaustively

surveyed diverse stinkbugs in Japan, but, considering the

recent report on the infection prevalence of the Sodalis

symbiont in African populations of the coffee bug Ante-

stiopsis thunbergii (Pentatomidae) [41], the occurrence of

the Sodalis symbionts seems widespread among world’s

stinkbugs and other insects. Future studies should focus

on comprehensive survey of insect groups other than the

heteropteran bugs, and also on effects and consequences

of their infection to the host insects. Comparative studies

on Sodalis-infected and uninfected host insects under the

same genetic background combined with genomic and

molecular biological analyses of the Sodalis symbionts will

provide insights into ecological and evolutionary aspects

of animal-microbe symbioses wherein the associations

may range from free-living through facultative to obligate.

Additional file

Additional file 1: Stinkbug samples examined in this study and

detection of Sodalis symbionts from the samples.
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Figure 2 Phylogenetic relationship between Sodalis symbionts of heteropteran bugs and other insects inferred from 16S rRNA gene

sequences (1204 aligned nucleotide sites). A Bayesian phylogeny is shown with statistical support values (50% or higher) at the nodes:

posterior probabilities of Bayesian analysis/bootstrap probabilities of maximum likelihood analysis. Asterisks indicate support values lower than

50%. Sequences obtained from stinkbugs are highlighted by boldface, wherein collection localities are indicated in parentheses and accession

numbers in brackets.
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