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Abstract

Basic Susceptible-Exposed-Infectious-Removed (SEIR) models of COVID-19 dynam-

ics tend to be excessively pessimistic due to high basic reproduction values, which result 

in overestimations of cases of infection and death. We propose an extended SEIR model 

and daily data of COVID-19 cases in the U.S. and the seven largest European countries to 

forecast possible pandemic dynamics by investigating the effects of infection vulnerability 

stratification and measures on preventing the spread of infection. We assume that (i) the 

number of cases would be underestimated at the beginning of a new virus pandemic due 

to the lack of effective diagnostic methods and (ii) people more susceptible to infection are 

more likely to become infected; whereas during the later stages, the chances of infection 

among others will be reduced, thereby potentially leading to pandemic cessation. Based 

on infection vulnerability stratification, we demonstrate effects brought by the fraction of 

infected persons in the population at the start of pandemic deceleration on the cumulative 

fraction of the infected population. We interestingly show that moderate and long-lasting 

preventive measures are more effective than more rigid measures, which tend to be eventu-

ally loosened or abandoned due to economic losses, delay the peak of infection and fail to 

reduce the total number of cases. Our calculations relate the pandemic’s second wave to 

high seasonal fluctuations and a low vulnerability stratification coefficient. Our characteri-

sation of basic reproduction dynamics indicates that second wave of the pandemic is likely 

to first occur in Germany, Spain, France, and Italy, and a second wave is also possible 

in the U.K. and the U.S. Our findings show that even if the total elimination of the virus 

is impossible, the total number of infected people can be reduced during the deceleration 

stage.
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1 Introduction

The 2019 novel coronavirus has proven to be one of the deadliest diseases that the world 

has ever seen. The pandemic has raised substantial challenges globally, disrupting com-

merce and severely impacting national economies as well as imposing harsh pressures on 

the medical sector (Fernandes, 2020). Efforts to shift operations online have met with une-

ven and limited success. As such, it is critical to explore the dynamics of the virus’ spread 

to obtain insights on its impacts and devise ways to reduce or slow its transmission (Yang 

et al., 2020).

The COVID-19 virus broke out in Wuhan China in December 2019, and gradually 

spread across the country. As the magnitude of the problem became evident, the World 

Health Organisation (WHO) launched the 2019 novel-coronavirus (2019-nCoV) emer-

gency, and a strict lockdown strategy and social distancing measures have been imple-

mented in most countries (Huang et  al., 2020; Fernandes, 2020; Sohrabi et  al., 2020). 

Nonetheless, more than 49.1 million people around the world have been affected by the 

virus. The global mortality rate has reached approximately 4%, and approximately 2.24 

million deaths have been recorded (Worldmeters, 2020). The global medical sector is expe-

riencing challenges in their efforts to develop a vaccine, and more than nine months after 

the disease outbreak, the governments are struggling to develop effective plans to ensure 

public health. Since governments across the world have implemented a strict lockdown 

policy, the business sector has been shattered, and economies have faced a substantial rev-

enue loss. Delays in the development of a drug to resolve the issue has raised substantial 

difficulties for the countries around the world (Lai et al., 2020; Choi, 2020; Govindan et al., 

2020).

An expanded form of Susceptible Infectious Recovered (SIR) models, Susceptible-

Exposed-Infectious-Removed (SEIR) models are widely used mathematical models used 

to analyse infection data during the different stages of an epidemic outbreak (Prem et al., 

2020; Pujari & Shekatkar, 2020; Yang et al., 2020). Most early studies have emphasized 

on how to predict the vertical transmission using SEIR mathematical modelling. There are 

two types of transmission of viruses in the human body, namely the horizontal and ver-

tical transmissions. In vertical transmission, virus would transmit from mothers to their 

offspring. In horizontal transmission, virus transmits among individuals of the same gen-

eration and COVID is an example of horizontal transmission. Horizontal transmission 

occurs either by direct contacts (licking, touching, biting etc.), or indirect contacts (vectors 

or fomites) with no physical contact. Note that seminal contributions have been made by a 

number of studies (Fine, 1975; Busenberg et al., 1983; Lu et al., 2002; Alberto d’Onofrio, 

2005) to predict the vertical transmission using SEIR modelling. However, epidemic 

prediction problems dealing with the analysis of diseases that are horizontally transmit-

ted are relatively under-explored. Columbia University applied a SEIR model called the 

Severe COVID-19 model & Mapping Tool to identify the number of hospitalisations, criti-

cal cases, critical care, and deaths and found that inadequate preparations could result in 

4029–11,420 excess deaths due to inaccessible critical care (Branas et al., 2020). Similarly, 

the University of Pennsylvania adopted a diversified approach with its COVID-19 Hospi-

tal Impact Model for Epidemics (CHIME) (https:// penn- chime. phl. io/) model to analyse 

upcoming worst- and best-case scenarios for the total number of coronavirus hospitalisa-

tions, ICU bed and ventilator demand, and the number of days such demands would exceed 

hospitals’ capacities (Santosh, 2020). Efimov and Ushirobira (2020) proposed an uncer-

tainty model to analyse the course of COVID-19 in France, Italy, Spain, Germany, Brazil 

https://penn-chime.phl.io/
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and Russia and investigated social feedback on the pandemic and effects of social isolation. 

The parameters of their SEIR model were identified by using publicly available data in the 

above-named countries, and the developed model was applied for the prediction of virus 

propagation under conditions of confinement. López and Rodo (2020) used exponential 

coefficients to project mortality and recovery rates and found that whereas the former is 

decreasing over time, the latter is increasing.

Recent theoretical developments based on variations of the SEIR model have indicated 

that if constant parameter values are used, the spread of the virus slows down only after the 

majority of the population have been infected or preventive measures are active (Mwalili 

et al., 2020; Pandey et al., 2020; Omori et al., 2020). However, classical SEIR models tend 

to yield pessimistic predictions. Many studies obtained high basic reproduction index val-

ues (depicted as  R0), which caused alarm worldwide when used in basic SEIR models, 

many of which projected that the virus would affect upward of 50% of the world’s popula-

tion. For example, the Medical Research Council (MRC) used a non-pharmaceutical inter-

vention (NPI) SEIR model to reduce the coronavirus mortality rate and projected a worst-

case scenario of more than two million deaths in the U.S. alone (Ferguson et al., 2020a, b). 

A recent study developed a SEIR model by using polynomial regression to project future 

COVID-19 prevalence based on the number of infection cases in India from January 22 to 

March 30, 2020 and projected that that if no measures are taken, 80% of susceptible indi-

viduals would be infected within several months (Pandey et al., 2020). Mwalili et al. (2020) 

used an extended SEIR model that subdivided the human population into people who were 

susceptible, exposed, asymptomatic infectious, symptomatic infectious and recovered and 

incorporated environmental pathogens as variables to calculate a basic reproduction num-

ber. The resulting value of 2.03 suggests that the pandemic will persist in the absence of 

strong control measures such as physical distancing, wearing of masks and frequent wash-

ing of hands.

In SEIR modelling, the attenuation of the spread of infection with a small number of 

infected people is possible only if the parameters are changed. To overcome this problem 

(He, Peng, et  al., 2020; He, Tang, et  al., 2020) used optimisation methods to fit model 

with real data of infection cases in Hubei. They published a study in June 2020 in which 

they considered single individuals rather than whole populations as a basic unit to analyse 

the non-linear dynamics of COVID-19 propagation. Their SEIR model incorporated hos-

pitalisations, quarantines and external inputs as general control strategies, and an optimisa-

tion algorithm was used to calculate the model parameters that provided the best fit with 

actual data on the number of infected in Hubei province. Their resulting value of 45,563 is 

approximately 0.08% of the population of Hubei; however, as of September 2, 2020, there 

were 6.05 million cases, which represents about 2% of population.

Logistic models are a simplified analysis of infection propagation without respect to 

rate of conversion between susceptible, infected, exposed and recovered. Zhou et al. (2020) 

compared SEIR and logistic models and argued that logistic models are not effective for 

forecasting future pandemic dynamics if the known dynamics are exponential. Mathemati-

cally, logistic model assumes that prediction power and curve fitting of the model depends 

on the historical dataset so logistic model can predict the infection ratio accurately if it is 

controlled by population and growth rate. Carcione et al. (2020) analysed how the value 

of  R0 impacts COVID-19 dynamics assuming that the rate of infection depends on meas-

ures taken and predicted a death toll of approximately 2.7 million infected individuals and 

15,600 casualties in Lombardy, Italy by the end of the pandemic.

Most of the state-of-the-art prediction models utilised to critically and comprehen-

sively understand the spread of COVID-19 have largely proved ineffective, and many 
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have failed to obtain accurate and timely information about hospitals, beds, capacity, 

settings, demographics, population density, poverty rates, and available commodities to 

survive the deadly influx of coronavirus (Pandey et al., 2020; Mwalili et al., 2020; Zhou 

et al., 2020; He, Tang, et  al., 2020; He, Peng, et  al., 2020; Ivanov, 2020a, b). Indeed, 

most have either over- or underestimated the number of viral cases and resulting deaths. 

The above-described studies also fail to provide reasons for epidemic attenuation when 

only a small number of people have been infected due to the adoption of restrictive 

measures, and they do not explain the mechanisms by which infection continues to 

fade even when restrictive measures are cancelled. Moreover, it is difficult to determine 

which measures most contribute to propagation prevention because the methods that 

authorities use to prevent COVID-19 propagation vary from region to region. In particu-

lar, to our knowledge, no study has considered a combination of different resistance lev-

els to the virus among individuals, which may have impacted  R0 at the beginning of the 

pandemic and the efficiency of preventive measures. People who are more vulnerable to 

the virus will cause a high number of cases in the initial stages of a pandemic; however, 

after a significant fraction of such people are infected, the numbers begin to attenuate.

The substantial failure of current strategies highlights the need to rely on diversified 

strategies that are capable of addressing uncertain situations such as coronavirus (San-

tosh, 2020). Accordingly, in this research, we introduce idea of infection vulnerability 

stratification to SEIR modelling. After a critical review of the literature, we decided 

to combine SEIR modelling with agent-based and curve-fitting models. Most of the 

research in this field is aimed at developing COVID-19 model parameter fittings and 

predictions; however, our research aims to uncover the reasons that parameters change. 

Taking into consideration the characteristics of coronavirus and its impacts on the 

world, If we check the historical details of Influenza Pandemic  (also known as "Span-

ish flu"), we see that the highest mortality rate in this pandemic was related to the sec-

ond wave of the disease in 1918. The “second wave” of Spanish Flu was monitored to 

“peak” by the end of November but was followed by yet another wave of this disease 

in the mid-winter period (Cox and Subbarao, 2000). Prediction of the second wave is a 

complicated problem. Researchers usually associate the second wave with the lifting of 

restrictions (Pedro et al., 2020; de Castro, 2020), seasonal factors (Bukhari et al., 2020) 

and tracking people behavior (Grekousis et al., 2021; Edward, 2020), even though none 

of these factors are perfect indicators. Previous studies have explained existing dynam-

ics of epidemic and the key factors affecting the ability to measure it. It is important to 

note that classical SEIR models usually provide pessimistic predictions. Calculations 

using a SEIR model with vulnerability stratification can show that the maximum posi-

tive effects can be achieved with long-lasting but moderate measures. The main chal-

lenge to have an accurate epidemic prediction is the presence of many unknown and 

dynamic factors. In a scientific sense, epidemic can be regarded as an unstable dynamic 

system in which a small change in parameter values can cause a very significant quali-

tative change of dynamics. Therefore, forecasts are usually “approximate”, showing 

various possible development scenarios. In the case of COVID, uncovering the reasons 

that prediction parameters change and analysing the prevalence rate of the disease and 

population behaviour in the second and even later waves are focal points of this study. 

Note that most prior research in this field has focused on developing COVID-19 model 

parameter fittings and predictions. However, different from them, our research aims to 

uncover the reasons that parameters change. Taking into consideration the characteris-

tics of COVID-19 and its impacts on the world, we aim to demonstrate that our models 

are viable and can work effectively and efficiently to rectify external and internal issues. 
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We test vulnerability stratification for the U.S. and the seven most populous European 

countries, and show that the infection vulnerability stratification parameter does not 

affect pandemic dynamics in the early stages; however, it is crucial in later stages. We 

also obtain the optimal strategies for “restrictive measures” and we interestingly show 

that moderately strict measures with a long duration are most effective. This is another 

important contribution of this study.

Therefore, building from these current gaps, we pose three research questions that are 

highly relevant in the current COVID outbreak:

RQ1: Can we develop an extended SEIR model to forecast possible pandemic 

dynamics by investigating the effects of infection vulnerability stratification and 

measures on preventing the spread of infection?

RQ2: Can we measure the impact of “infection vulnerability stratification” and 

“dynamics of basic reproduction index” parameters in SEIR model in the dynamics 

of epidemic?

RQ3: What are the roles of optimization of restrictions measures in the prediction of 

pandemic’s second wave to high seasonal fluctuations and a low vulnerability strati-

fication coefficient?

The remainder of this paper proceeds as follows. Section 2 provides a description of the 

dataset and the SEIR model with infection vulnerability stratification. In Sect. 3, we evalu-

ate fluctuations of data and weekly cycles and introduce an approach to filter out those fluc-

tuations. In Sect. 4, we solve the problem of optimizing duration and preventative meas-

ures. Finally, Sect. 5 presents the study’s implications and conclusion.

2  Data description and SEIR modelling

2.1  Dataset description

We used daily data about COVID-19 dynamics in each U.S. state (COVID Tracking Pro-

ject, 2020) and European countries (Open Data, 2020) used. These datasets only contain 

the number of infected and recovered people; we assume that whole population is suscep-

tible. Data for each state was divided by population. Data obtained from (www. covid track 

ing. com Copyright©2020 by The Atlantic Monthly Group, 2020) has errors that could dis-

tort the results, including reducing the number of dead people on some days, empty fields, 

NaN (not a number) values and zero new positive individuals on some days. In order to 

resolve these issues, we replaced empty rows NaNs values (missing values in data set) with 

previous known values, and if there is no value, then we replaced it with zero. Thus, all 

newly infected and recovered statistics will be represented in next day.

The EU’s Open Data website contains the cumulative number of cases and deaths as 

well as the total population in each country in the world, which enables the calculation of 

the number of infected individuals as a fraction of the country’s population. We used data 

from December 31, 2019 (Day 1) to September 13, 2020 for the U.S. and the seven most 

populated European countries. A graphical representation of the data used for analysis is 

shown in Fig. 1.

http://www.covidtracking.com
http://www.covidtracking.com
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2.2  Model parameters

This section provides a description of the dataset and the modified SEIR model with con-

sideration of infection vulnerability stratification. In its most basic form, following Herbert 

(2000), SEIR can be written as follows:

where S, E, I, R represent the fraction of susceptible, exposed, infected, recovered, respec-

tively, β is the  day−1 infectivity rate, α−1 is the daily average incubation period, γ−1 denotes 

the daily average recovery rate. The variables in equation system 1 are subject to the initial 

conditions:

where σ is the initial fraction of infected people.

The average infected person can infect susceptible individuals for γ−1 days; therefore, 

the basic reproduction number can be written as:

 The parameters used in SEIR model are defined in Table 1.

Pandemic growth will occur as long as the value of β exceeds 1, and cumulative num-

ber of infected will grow even during the decay stage. β is the only parameter that can be 

controlled by measures; the duration of the infection and incubation periods is not con-

trolled. The set of measures introduced to reduce β are hygiene and safe behaviour propa-

ganda, social distancing, lockdowns, quarantines, and travel bans. Although those meas-

ures reduce infection rates, most can also be very harmful for economic and social stability.

Based on the classic SEIR model without vulnerability stratification, the value of 

β only depends on active measures to prevent infection spread. If drastic measures are 

necessary to slow the spread of infection, it is assumed they would be necessary until 

the infection’s extinction or the number of susceptible people was reduced through vac-

cination. We propose an alternative approach in this paper: the infection rate depends 

(1)

S
�(t) = −�S(t)I(t)

E
�(t) = �S(t)I(t) − �E(t)

I
�(t) = �E(t) − �I(t)

R
�(t) = �I(t)

(2)S(0) = 1 − �, E(0) = 0, I(0) = �, R(0) = 0

(3)R
0
=

�

�
S(t)

Fig. 1  Dynamics of COVID-19 

propagation
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on the susceptible fraction, representing the probability that people who are prone to 

infection will catch the virus first, following which the infection rate will decrease. The 

idea of the infection rate depending on the fraction of susceptible individuals can be 

represented as in the form of monotonic decreasing function � = �(S) . Introducing an 

unknown function to SEIR substantially complicates fitting because it increases the 

number of degrees of freedom, thereby possibly causing model overfitting. In order to 

overcome problems caused by complexity, we assume that � = �
0
Sk , where k is an infec-

tion vulnerability stratification parameter that can be fitted much more simply than func-

tion (He, Peng, et al., 2020; He, Tang, et al., 2020).

The SEIR model with vulnerability stratification coefficient k is stated as follows:

Table 1  List of variables

Variables, dimension Meaning

S Fraction of susceptible people in the population

E Fraction of exposed people in the population

I Fraction of infected people in the population

R Fraction of susceptible people in the population

t, day Time in days

tmax, day Last day on which data is available

β,  day−1 Infectivity rate

α−1, day Average incubation period

γ−1, day Average period of being infected

R0 Basic reproduction number

k Infection vulnerability stratification parameter

IC (t) Data of cumulative fraction of infected people in the population (fraction of people 

who were ever infected)

IC
n Data of cumulative fraction of infected people after n iterations of filtering

N total number of filtering iterations

I
n

CF
Data of cumulative fraction of infected people after filtration

�ef Effect of infection preventive measures

P(t) Temporal coefficient of measures efficiency

tef, day Duration of time when preventive measures are active

�ef Strictness of measures

Ip Ip = max

t
(I(t))—peak value of infected fraction

R
∞

R∞ = lim
t→∞

R(t)—cumulative value of infected fraction

ti = 14 days; – Average duration of contagiosity (for reverse problem)

te = 5 days Average incubation period (for reverse problem)

td, days Start of deceleration stage of epidemic

Id Ration between exposed + infected fraction of population and non-susceptible frac-

tion at start of deceleration stage

I
cdr

= lim
t→∞

S(td)−S(t)

1−S(t)

Cumulative deceleration infection ratio (ration between number of people infected 

during deceleration stage and before it)



 Annals of Operations Research

1 3

This equation is solved with the initial conditions of Eq. (2); assume that the value of 

β can be controlled by preventive measures, whereas vulnerability stratification cannot 

be controlled. Due to the discrete nature of data modelled by Eq. (4), the Euler method 

with a time-step of one day is used. The resulting numeric scheme is as follows:

Calculations are performed until E(t) + I(t) < � , where epsilon is a small number.

2.3  Scenario results

This section describes the results of scenarios with different values of the basic SEIR 

parameters and infection vulnerability stratification. This factor often neglected in epidemic 

prediction, thereby causing significant overestimations of possible consequences. Table 2 

shows the effect of applying the parameters in a series of calculations on the infected frac-

tion of the population, which is presented in the last column and can be determined as a 

limit of the fraction of removed at infinity time. The dynamics of infection propagation for 

those parameters are shown in Figs. 2, 3 and 4.

(4)

S
�(t) = −�

0
S

k+1(t)I(t)

E
�(t) = �

0
S

k+1(t)I(t) − �E(t)

I
�(t) = �E(t) − �I(t)

R
�(t) = �I(t)

(5)

S(t + 1) = S(t) − �
0
S

k+1(t)I(t)

E(t + 1) = E(t) + �
0
S

k+1(t)I(t) − �E(t)

I(t + 1) = I(t) + �E(t) − �I(t)

R(t + 1) = R(t) + �I(t)

Table 2  Effect of changing extended SEIR parameters on the final number of infected

β0 α γ k lim
t→∞

R(t)

Variation of incubation period α 0.15 0.05 0.1 0 0.5835

0.15 0.1 0.1 0 0.5845

0.15 0.2 0.1 0 0.5850

0.15 0.4 0.1 0 0.5854

0.15 0.8 0.1 0 0.5857

Proportional variation of infection β and 

recovery γ rates

0.0375 0.2 0.025 0 0.5831

0.075 0.2 0.05 0 0.5842

0.15 0.2 0.1 0 0.5850

0.3 0.2 0.2 0 0.5860

0.6 0.2 0.4 0 0.5871

Variation of vulnerability stratification k 0.15 0.2 0.1 0 0.5850

0.15 0.2 0.1 1 0.3347

0.15 0.2 0.1 2 0.2334

0.15 0.2 0.1 5 0.1221

0.15 0.2 0.1 10 0.0681
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Figure 2 shows the cumulative number of exposed and infected over time depending on 

incubation period duration. The effect of incubation period on the total fraction of infected 

population is within 0.5% in the simulation. A longer incubation period slows down 

Fig. 2  Effect of α change on dynamics of infection propagation

Fig. 3  Effect of proportional changes of β and γ on dynamic of infection propagation
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infection propagation and reduces the peak fraction of infected, thereby preventing health 

system overload. However, a lengthy incubation period also makes tracking the contacts of 

infected individuals more difficult.

Figure 3 shows the effect of proportional change infection and recovery rates. Propor-

tional increases of infection and recovery rates β and γ do not impact the basic reproduction 

number  R0; however, it reduces the duration of infection for each individual and increases 

the chance that they will infect others. Variation in those coefficients has a small effect 

on the final cumulative fraction of infected within 1%. A classical SEIR model assumes 

a constant infection rate for each infected person; however, in real life, the highest risk of 

infection is within the first days after infection, when symptoms are mild and the infected 

person is not yet isolated (He, Peng, et al., 2020; He, Tang, et al., 2020). The results of 

SEIR model simulations cannot be matched with US statistics data because states use sub-

stantially different methodologies of considered individual as ‘recovered’ (Covid Tracking 

Project, 2020). The EU’s statistical data does not include the number of recovered people 

(Publications Office of the European Union, 2020).

Figure 4 shows the effect of vulnerability stratification k on infection spread. At initial 

stages, when the fraction of infected less 1%, the effect of stratification is not significant, 

however, a high value of k reduces infection spread at later stages because people who are 

more prone to infections have already been infected. After  R0 becomes less than 1, infec-

tion propagation begins slowing down. However, the effect of vulnerability stratification is 

difficult to detect during the initial stages of a pandemic. Figure 4 shows that whereas other 

parameters begin to affect epidemic dynamics in early stages, the effect of vulnerability 

stratification is not significant when only a small fraction of people are infected. Vulner-

ability stratification is the only parameter that affects the fraction of people that have ever 

been infected.

Fig. 4  Effect of vulnerability stratification k change on infection propagation
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Figure 5 shows the effect of periodic fluctuations of infection rate within half a year. 

A season multiplier was added to the infection rate 
[

1 + A sin

(

4�t

365

)]

 . It is shown that 

vulnerability stratification had a small effect during the initial stages of the pandemic 

before day 120; however, subsequent dynamics depend on the vulnerability stratification 

coefficient at any value of amplitude of periodic fluctuations of infection rate (Edward, 

2020). If this parameter is high, then there is a decrease in the fraction of new infected 

after day 150 (Fig. 5c, e), and a second wave appears after day 200. Moreover, the scale 

of second wave depends on the vulnerability stratification coefficient; a third pandemic 

wave is possible if the coefficient is low and the amplitude of periodic fluctuations of 

infection rate is high. However, the third wave is weaker than the second, and there is no 

fourth wave at any parameters within the ranges A < 0.5 and k < 10.

Fig. 5  Seasonal effects on pandemic propagation (a, c, e—fraction of new infected; b, d, f—cumulative 

fraction of infected; a, b—A = 0.2; c, d—A = 0.35; e, f—A = 0.5)
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A high amplitude of periodic fluctuations of infection rate slightly increases the peak 

fraction of new infected people per day, and vulnerability stratification significantly 

impacts peak fraction. A high vulnerability stratification coefficient smooths peak value 

fractions at the second and third waves.

Seasonal fluctuations can cause healthcare systems to overload. It is difficult to 

obtain real seasonal fluctuations of infection rate values because a) its shape is not nec-

essarily sinusoidal due to variable weather, and b) infection propagation depends on 

the effectiveness of preventive measures and people’s behaviour, among other factors 

(Edward, 2020). Nonetheless, the obtained results are qualitatively consistent with the 

actual dynamics of the pandemic.

3  COVID-19 data analysis and estimating the dynamics of basic 
reproduction number R

0

This section describes our analysis of real data using our SEIR model with vulnerability 

stratification. Such analysis includes fluctuations in data and weekly cycles and our method 

of filtering out those fluctuations and estimating how the dynamics of basic reproduction 

number R0 change over time.

Obtaining parameters values is the first step of the analysis. As indicated above, the 

EU dataset does not include information about the dynamics of recovery; therefore, it is 

impossible to obtain the numbers of currently infected people (Publication Office of the 

European Union, 2020). The U.S. conducts daily tracking of statistics about COVID-19 

dynamics (The Covid Tracking Project, 2020). A prediction of future COVID dynamics 

can be obtained by solving the reversal problem based on the SEIR model. The duration 

of incubation period cannot be derived from the data on these websites. Researchers have 

obtained different values for the duration of the COVID-19 incubation period (Novel Coro-

navirus (2019-nCoV) Situation Report); whereas WHO reported an incubation period from 

2–10 days. China’s National Health Commission estimated it as 10–14 days and the Cent-

ers for Disease Control and Prevention estimated it as 2–14  days (Coronavirus Disease 

2019-COVID-19). Statistical research based on data obtained from Wuhan showed aver-

age incubation period equal to 5.2 days (Qun Li, Guan, et al., 2020; Li, Sun, et al., 2020). 

Based on the data above, we propose a value of � = 0.2 day−1.

The next step is retrieving matching data for the model variables (equation system 1). 

At the beginning of the modelling, the number of infected people was divided by the cor-

responding national population to obtain a fraction. Then, the number of infected people 

was calculated as the difference between cumulative infected, cumulative recovered and 

dead people. The results were used to obtain statistical data for the fractions of infected and 

recovered people I(t) and R(t). U.S. states that lacked data on the number of recovered indi-

viduals were excluded from the analysis. As mentioned in (The COVID Tracking Project, 

2020):

States provide very disparate definitions on what constitutes a ‘recovered’ COVID-

19 case…Types of ‘recovered’ cases include those who are discharged from hospi-

tals, released from isolation after meeting CDC guidance on symptoms cessation, or 

those who have not been identified as fatalities after a number of days (30 or more) 

post disease onset. Specifics vary for each state or territory.
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Therefore, the fraction of recovered individuals varies from state to state. Worldwide data 

for the number of cases, deaths and population of each country can be found in (US States 

Census Bureau, 2020, https:// www. census. gov/ data/ tables/ time- series/ demo/ popest/ 2010s- 

state- total. html).

We propose a simplified model that assumes that the number of infectious people is 

equal to number of newly infected within the last 14 days, as symptoms are typically mild 

on the first day after infection and there is higher chance that the infected did not take 

measures to prevent virus spread.

Calculating the number of exposed people is not a trivial endeavour. Obtaining data 

for the exposed fractions using incubation known fraction of infected and the incubation 

period fraction can be written as E(t) =
1

�

+∞

∫
0

exp (−��)I(t + �)d� . This formula causes 

exponentially decreasing error depending on the number of days available after the cur-

rent day. In order to estimate the number of exposed people, it is assumed that the num-

ber of infected people for periods after the last available day for which data are available 

can be calculated using the formula I
(

t > t
max

)

= I(t).

The number of cases in the U.S. has fluctuated over time. Such fluctuations can be a 

source of panic because even if there is no stable trend in the growing number of new 

cases, this number will increase on some days. In order to investigate the nature of those 

fluctuations, we can analyse the structure of equation system 1.

Next, we can investigate possible fluctuations in the SEIR model using the analysis 

of ordinary differential equations. This analysis will show periodic epidemic dynamics 

based on the basic SEIR model (equation system 1).

Assuming that the infection spread is not wide and therefore E + I + R ≪ 1 , equation 

system 1 becomes linear. The fraction of recovered is outside the scope of this analysis. 

A linearised system of equations for the exposed and infected population fraction can be 

depicted as:

 Initially, there are no exposed people and only a small fraction of infected individuals, 

thereby matching the initial conditions in the formula: E(t) = 0  and I(t) = �.

Unlike the number of infected people, the number of exposed cannot be monitored; 

therefore, we exclude E(t) from the system and transform it to a second-order differen-

tial equation. Differentiating the second equation of system 6 and adding it to second 

equation multiplied by α results in

Based on first equation of (6), substitute E
�

(t) + �E(t) = �I(t)

This equation has two common solutions in exponential form.

Analyse its characteristic equation

This is a quadratic equation in which the discriminant takes the form of

(6)
E
�(t) = �I(t) − �E(t)

I
�(t) = �E(t) − �I(t)

(7)I
��

(t) + �I
�

(t) = �E
�

(t) − �I
�

(t) + �
2
E(t) − ��I(t)

(8)
I
��(t) + �I

�(t) = −�I
�(t) + ��I(t) − ��I(t)

I
��(t) + [� + �]I�(t) + [�[� − �]]I(t) = 0

(9)�2 + [� + �]� + [�[� − �]]I(t) = 0

https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html
https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html
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The common solution of the differential equation can be written as

If the expression under the square root is negative, solution will have form

This solution can fluctuate; however, it cannot grow exponentially. An exponentially 

growing solution can only be obtained if the exponent is real. Neglect the lower expo-

nent and obtain a solution in the form of

Solution (13) is the only exponential growing solution for SEIR model. Periodical 

solution (12) is a product of exponentially decreasing and periodical function.

In contrast to the mathematical model, infection rates can change over time in real 

life. Such changes can be related to the following factors related to weekly cycles: a) 

delays in reporting new cases (cells containing zeros and NaNs in the table from [9] 

indicate the existence of this factor); b) delays in requesting medical care in cases of 

mild symptoms and c) infection risk depending on the day of week, such as work days 

(this factor effect was smoothed by the incubation period of COVID-19). As demon-

strated above, there is not sufficient data to calculate effective parameter values for 

every day using statistical data due to different interpretations of the definition of being 

‘recovered’. In this situation, the value of β in a classical SEIR model will substantially 

depend on a standard definition; however, the value of  R0 does not depend on a com-

mon interpretation of ‘recovered’ if we assume that an individual is only contagious for 

14 days. Based on this assumption, the reproduction index can be rendered as

where IC is the cumulative fraction of the infected population (people who ever had 

COVID-19), t
i
= 14 , i.e. the average duration of contagiosity, days; t

e
= 5 , i.e. the average 

incubation period in days. Formula (14) is based on the assumption that the total number of 

infected people.

In order to reduce fluctuations, the daily average per week value of  R0 was calculated 

using the following formula

(10)D = [� + �]2 + 4[�[� − �]]

(11)

I(t) = C1 exp

(

−[� + �] +

√

[� + �]2 + 4[�[� − �]]

)

+ C2 exp

(

−[� + �] −

√

[� + �]2 + 4[�[� − �]]

)

(12)

I(t) = C1 exp (−[� + �]t) cos

(

t

√

[� + �]2 + 4[�[� − �]]

)

+ C2 exp (−[� + �]t) sin

(

t

√

[� + �]2 + 4[�[� − �]]

)

,

(13)I(t) = C1 exp

(

−[� + �] +

√

[� + �]2 + 4[�[� − �]]

)

(14)R0(t) = tinf

I
C
(t) − I

C
(t − 1)

I
C

(

t − 1 − t
e

)

− I
C

(

t − 1 − t
i
− t

e

) ,
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where t0 represents Apr 20, 2020, j = 0–6, i.e. the day of the week, and n = 19.

The results of weekly fluctuations in the U.S. and the seven European countries based 

on data from (US States Census Bureau, 2020, https:// www. census. gov/ data/ tables/ 

time- series/ demo/ popest/ 2010s- state- total. html) are shown in Table 3. Those values are 

normalised.

Table 3 shows that in most countries, the highest number of cases are registered from 

Thursday–Saturday. The weekly fluctuations are widest in Germany, France and Italy, 

whereas the lowest fluctuations are observed in Russia and Turkey.

The average weekly  R0 can be used for correction purposes. The corrected value of 

 R0 can be calculated as

where mod is the remainder following division by seven.

Fluctuations are caused by various factors. Strong data fluctuations hinder the inves-

tigation of pandemic dynamics. In order to resolve fluctuation problems, we used an 

alternative approach of filtering real data IC(t) based on an iterative algorithm.

where In

C
(t)  represents data after n iterations of filtering, N is the total number of itera-

tions of filtering algorithm, and �  is the relative allowed data change due to filtering. A 

side effect of this filtering is introducing the relative error � to the cumulative fraction of 

infected.

Dynamics of R
0
(t)  for the U.S. and European countries based on filtered data are 

shown in Fig. 6. In all countries, a high value of  R0 can be seen in the initial stages of 

the pandemic. This is caused by the lack of diagnostic knowledge when the virus first 

began to spread, which caused underestimations of case numbers. Following the early 

(15)R0,j =
1

n

n−1
∑

i=0

R0(t0 + 7i + j)

(16)R
cor

(t) =
R

cor
(t)

R0,mod(t,7)

(17)

I
0

C
(t) = I

C
(t)

I
n+1

C
(t) ← min

(

max

(

I
n

C
(t − 1) + 2I

n

C
(t) + I

n

C
(t + 1)

4
, (1 − �)I

C

)

, (1 + �)I
C

)

I
CF
(t) = I

N

C
(t)

Table 3  Relationship between  R0 fluctuations and the day of week

Day Monday Tuesday Wednesday Thursday Friday Saturday Sunday

USA 0.9382 0.9062 0.9470 1.0023 1.0610 1.0970 1.0409

Russia 0.9976 0.9945 0.9800 0.9783 1.0053 1.0224 1.0145

Turkey 0.9907 0.9827 0.9922 1.0056 1.0100 1.0099 0.9972

Germany 0.7442 0.8614 1.0553 1.1888 1.2469 1.0776 0.8259

France 0.7792 0.9148 1.0603 1.1184 1.2270 1.0950 0.8119

United Kingdom 0.8986 0.8823 0.9568 1.0626 1.1052 1.0863 1.0029

Italy 0.9561 0.8448 0.8846 1.0289 1.1135 1.1068 1.0647

Spain 1.1156 1.1008 1.0109 1.1545 1.0420 0.7240 0.8621

https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html
https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html
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phase, there are fluctuations and a trend of decreasing  R0. The least squares method is 

used to obtain the basic reproduction number without the effect of collective immunity 

R00 and coefficient of infection vulnerability stratification k. The minimised function 

takes the form of:

Fig. 6  R0 estimations in the U.S. and top European countries (Day0 = Dec 30, 2019)
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The results of model fitting using the least squares method are shown in Table  4. 

Because reliable data about the effectiveness of government-imposed restrictions is 

practically impossible to obtain, this was not used as prediction variable. There is sig-

nificant variation in k. Fitting real data to negative values of k means that other factors 

have more effect than vulnerability stratification.

Day 0 corresponds to December, 30 2019. There are no data for the first days, follow-

ing which  R0 values are high due to a lack of diagnostics and unpreparedness to fight a 

new virus. When diagnostics improve, the number of infected people detected increases. 

Delays in diagnostics efficiency were exacerbated by the need to produce a sufficient 

number of tests, and a lack of preventive measures caused virus propagation during the 

initial stages.

The results for different countries vary widely. The highest k values were obtained 

for Russia and Turkey. The high k value in Russia was caused by the slow decrease in  R0 

over time. The cumulative fraction of infected in Turkey is small; therefore, there would 

be smaller changes than in other countries. The U.S. and U.K. have vulnerability strati-

fication coefficients near zero;  R0 first decreases but then slowly begins to increase. The 

situation in Germany, Spain, France and Italy is worse; the increase of  R0 above 1 over 

time is a sign of a possible second wave.

Analysis of the basic reproduction index shows that its value is stable around 1 in the 

U.S. and Russia following the initial outbreak period. Other countries that managed to 

reduce  R0 below 1 later experienced an increase, which is expressed to varying degrees 

in different countries. The worst situation is in Spain. Germany and Turkey show small 

increases in  R0.

The above findings evince that the basic reproduction index depends on factors not 

explained by SEIR model with constant parameters Those factors can be either external 

or related to the efficiency of preventive measures, which are only things that can be 

controlled in a pandemic situation. Possible factors influencing a second wave include 

low viral resistance, partial collective immunity (with consideration of vulnerability 

stratification), people’s behaviour, and authoritative actions.

(18)

t
2

∑

t=t
1

[

R
00

(

1 − I
C(t)

)k
− R

0(t)

]2

→ min

Table 4  Basic reproduction index 

without the effects of collective 

immunity and vulnerability 

stratification coefficient of the 

U.S. and European countries

Country R00 k Cumulative fraction of 

infected at September 13, 

2020

United States 1.1917 13.99 0.0197

Russia 1.8155 131.18 0.0072

Turkey 1.6103 203.42 0.0035

Germany 0.6869 − 151.69 0.0031

France 0.7977 − 108.40 0.0056

United Kingdom 1.1811 39.82 0.0055

Italy 0.4704 − 189.58 0.0047

Spain 0.8394 − 34.98 0.0121
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4  Optimisation of restricting measures

Authorities can adopt measures to reduce infection rates during a pandemic; however, 

such policies are usually only temporary. A multi-criteria optimisation problem can be 

established, solving which yields the optimal restricting measures (Edward, 2020).

Assuming that restrictions reduce the infection rate coefficient, then

where P(t) is the temporal coefficient of measures intensity, which equals 1 at time of max-

imum implementation and 0 when all measures are cancelled. The level of intensity of 

measures can be expressed as:

Problem of choice restrictions can be formulated as multi-criteria problem (Rabois-

son and Lhermie, 2020). We use following criteria for multi-criteria problem

tef  is the duration of time when preventive measures are active;

�ef  denotes the strictness of measures;

Ip = max

t
(I(t)) represents the peak value of the infected fraction; and

R∞ = lim
t→∞

R(t) is the cumulative value of infected fraction.

The first two criteria represent the costs of measures, and last two relate to the 

effects of measures. Peak value is important because the risk of negative consequences 

increases if it exceeds health system capacity.

4.1  Scenario 1

The intensity of preventive measures is constant during the entire period they are active. 

This is similar to the prevention measure model in Edward, (2020):

4.2  Scenario 2

De Castro (2020) investigates effects of confinement cancelling in Germany and Spain. 

The author shows that slower removing of confinement reduces the peak number of 

infected and number of deaths. Making reference to De Castro (2020), we have Scenario 

2. In which preventive measures have their maximum intensity at the start, following 

which the intensity linearly decreases over time:

(19)�(t) =
[

1 − �ef P(t)
]

�
0
Sk(t)

(20)P
(

t1 < t < t1 + tef

)

> 0, �ef

(21)P(t) =

{

1, t1 < t < t1 + tef

0, otherwise

(22)P(t) =

{

t1+tef −t

tef

, t1 < t < t1 + tef

0, otherwise
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There is no single method for the scalarisation of multi-criteria problems. Pareto 

optimisation is the only reliable method to exclude ineffective solutions. However, if 

rules enable us to choose between two solutions, then that allows to exclude some of 

the solutions from the Pareto set. We assume that the cost of measures is growing faster 

than linear by �ef  and linear by tef   because if multiple measures can be adopted, then 

the least costly ones will be adopted first. This assumption can be used to make a choice 

between solutions:

If tef 1, �ef 1 < tef 2, �ef 2 and tef 1, �ef 2 , then tef 1, tef 2  should be ignored when making a deci-

sion about Pareto efficiency.

Figure 7 shows the results of modelling preventive measures of various intensities and 

durations. The following parameters were used for the calculations:

Figure  7a shows measures with constant intensity and Fig.  7b combines linearly 

decreasing efficiency with doubled duration. The correlation between the peak and the 

total number exceeds 99%. It can be seen that the most effective result can be obtained 

with long-term but moderate measures. Weak preventive measures do not slow down infec-

tion propagation, and whereas overly strict measures can reduce  R0 below 1, they cannot 

be maintained for a lengthy period due to economic concerns, and infection propagation 

resurges after their cancellation. When measures are moderate, the basic reproduction num-

ber becomes less than 1 when there are fewer infected people; therefore, the total number 

of cases during pandemic decay is reduced. The results of modelling preventive measures 

(23)
(

tef 1, �ef 1, Ip, R
∞

)

,
(

tef 2, �ef 2, Ip, R
∞

)

(24)�0 = 0.15, k = 5, � = 0.2, � = 0.1

(25)R
0
=

�
0
Sk

�
S

Fig. 7  Effects of preventive measures at k = 5 (a with constant intensity of preventive measures; b with lin-

early decreasing measures)
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with consideration of the increasing value of vulnerability stratification are shown in Fig. 8. 

The key effects are the same as in Fig. 7. Real time control of the intensity of preventive 

measures is challenging due to the following issues: a) the incubation period causes feed-

back delays; b) fluctuations in number of cases, which can be smoothed, although doing so 

would also delay feedback; c) the unpredictable effects of the environment on infection rate 

(e.g. weather, seasonal changes); and d) the difficulty of making a quantitative estimation 

of the effectiveness of preventive measures. Despite these complications, using qualitative 

effects of typical scenarios is useful for decision-making, as Figs. 7 and 8 show that the 

effects of preventive measures depend on their maximum duration.

The dependence of total and peak numbers of infected individuals on the value of k is 

shown in Fig. 9. The impacts of preventive measures with constant intensity for 150 days 

and linearly decreasing efficiency for 300  days were tested. Figure  9 demonstrates that 

the total and peak number of infected logarithmically depends on infection vulnerability 

coefficient [k + 1]. Linearly intensive preventive measures are more effective than constant 

Fig. 8  Effect of preventive measures at k = 10 (a with constant intensity of preventive measures, b with lin-

early decreasing measures)

Fig. 9  Effects of preventive measures at different values of k (a effects on total number of infected, b effects 

on peak numbers of infected)
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intensity measures. The peak number of infections is more strongly affected by preventive 

measures than the total number.

There are two main ways to halt a pandemic: elimination of the virus and reducing the 

basic reproduction index below 1. Neither of these solutions is possible over the long term 

in the absence of preventive measures. A pandemic cannot continue when there are nei-

ther infected nor exposed people; however, this elimination scenario does not appear to be 

realistic in the near future in the case of COVID-19. The latter is possible with measures 

such as improving healthcare (with better diagnostics, treatments, and a vaccine), social 

insurance (to support people with symptoms so they do not have to work) and collective 

immunity. Reducing basic reproduction index below 1 is a more reliable means of fighting 

a pandemic because it is resistant to the emergence of newly infected people. If a strat-

egy of collective immunity is adopted, then a certain fraction of the population is likely to 

recover from infection. After the basic reproduction index has been reduced to 1, the num-

ber of actively infected people ceases to grow and the deceleration stage of the pandemic 

begins. However, this does not signal an end of the pandemic because the cumulative num-

ber of infected people will continue to increase depending on the values of the SEIR model 

variables at the start of the deceleration stage. Thus, minimising the cumulative number of 

infected individuals depends on deceleration stage. Assuming that pandemic dynamics are 

quasi-stationary at the start of the deceleration stage, we can calculate

Therefore, we can derive from (4) that

Based in the assumption of quasi-stationary pandemic dynamics, we can derive the frac-

tions of exposed and infected people:

The sum of the left side of Eq. (27) is

The dynamics of the pandemic deceleration stage comprise a system of differential equa-

tions (Eq. 4) and initial conditions depending on the parameters
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where k is the coefficient of stratification of infection vulnerability and Id is the fraction of 

infected and exposed at the start of deceleration phase.

Peak value is out of scope of this model because it was reached prior to the decelera-

tion stage. We can solve the system of differential Eqs. (4) with the initial conditions in (30) 

depending on parameters k and Id.

The following parameter values can be used for modelling: �0.15, � = 0.2, � = 0.1

In order to analyse tendencies of the deceleration stage, a cumulative deceleration infection 

ratio in following form can be used:

The nominator of expression under limit represents the fraction of the population that 

has been infected during the deceleration stage, and the denominator represents the frac-

tion of the population infected prior to the deceleration stage. The results of modelling are 

shown in Fig. 10.
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Fig. 10  Relationship between the 

cumulative deceleration infection 

ratio and summary fractions of 

infected and exposed individuals 

at the start of this stage
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Figure  10 demonstrates, that the fraction of infected population can be substantially 

reduced by lowering the fraction of actively infected individuals at the start of the decel-

eration stage. The blue line ‘100%’ represents the limiting case when all people who are 

not susceptible are either exposed or infected (none removed). This case is not realistic; 

rather, it represents the theoretical upper bound. The red line ‘10%’ is the best match for 

the results of modelling presented in Table 3. Other lines evince the potential of further 

decreasing the number of infected people during the deceleration phase.

Coefficient of infection vulnerability stratification k does not have a substantial impact 

on the deceleration infection ratio, particularly when the fractions of infected and exposed 

are not high at the start of deceleration. On other hand, a high value of k reduces the cumu-

lative fraction of infected population; therefore, when I
cdr

  does not change, it tends to lead 

to a proportional decrease in the total number of infected.

This section has presented an analysis of the relationship between the duration and 

intensity of preventive measures and the total fraction of infected people. Weak preventive 

measures have little-to-no effect, whereas excessively strict measures temporarily reduce 

the fraction of active infected; however, the epidemic will eventually resume. The highest 

effectiveness is achieved by implementing moderate long-term measures, which reduce the 

fraction of active infected population at the moment when  R0 becomes less than 1 due to 

vulnerability stratification. We have shown that decreasing the fraction of the infected and 

exposed population by the start of deceleration helps to reduce the total number of infected 

individuals.

5  Conclusion

In this paper, we have proposed a modified SEIR model to analyse the dynamics of the 

COVID-19 pandemic and investigate how the model’s parameters affect those dynam-

ics of s well as control strategies. A modified SEIR model with discrete time was used to 

model the effect of vulnerability estimation in combination with preventive measures. Our 

proposed model shows that ignoring preventing safety measures such as social distancing, 

frequent hand washing, mask wearing and non-essential travel has devastating effect on 

those who are most susceptible to the COVID-19 virus. Even if total elimination of the 

virus is currently impossible, the total number of infected people can be reduced during 

the deceleration stage. Our findings show a positive relationship between the cumulative 

deceleration infection ratio and summary fractions of infected and exposed individual at 

the start of pandemic deceleration. As we have shown, variations in vulnerability stratifica-

tion did not impact the dynamics of the initial stage of the pandemic; however, the virus 

propagation rate decreases after the people most vulnerable to it have been infected. This 

factor cannot be predicted at the start of a pandemic; however, it has a significant impact on 

infection rates during later stages. Based on infection vulnerability stratification, we dem-

onstrate effects brought by the fraction of infected persons in the population at the start 

of pandemic deceleration on the cumulative fraction of the infected population. We inter-

estingly show that moderate and long-lasting preventive measures are more effective than 

more rigid measures, which tend to be eventually loosened or abandoned due to economic 

losses, delay the peak of infection and fail to reduce the total number of cases.

R0 values were calculated using statistical data on the number of COVID-19 cases 

in the U.S., Russia, Turkey, Germany, France, U.K., Italy, and Spain. The high value of 

the basic reproduction index during the initial stages of the pandemic was attributed to 



 Annals of Operations Research

1 3

underdeveloped diagnostics and knowledge of the virus, which resulted in an exploding 

of number of infections, the underestimation of the number of cases, and the overestima-

tion of  R0. Those high  R0 values caused panic worldwide when used in basic SEIR mod-

els, which projected that the virus would affect more than 50% of the world’s population. 

Classical SEIR models usually provide pessimistic predictions. Calculations using a SEIR 

model with vulnerability stratification showed that the maximum positive effects can be 

achieved with long-lasting but moderate measures. Overly strict measures, which can 

reduce the basic reproduction index below 1; however, these are often economically unten-

able, and there is nothing to prevent a resurgence of infections after they are eventually 

lifted.

We anticipate that a second, more severe wave of the novel coronavirus is likely to occur 

in the fall and winter of 2020. Therefore, it is critical for us to prepare for that wave in 

advance. Government and health agencies can use our results to limit the resurgence of 

COVID-19 and to inform future decision-making to prevent further devastation. In this 

research, we looked at the problem from mathematical modelling perspective and investi-

gated several conditions. The least squares method was used to calculate the vulnerability 

stratification coefficients of eight countries, and negative coefficients in Germany, Spain, 

France, and Italy were related to infection rate increases due to the loosening of preventive 

measures and other external factors. Our findings indicate the possibility of a second wave 

of the pandemic in those countries. The vulnerability stratification coefficients in the U.S. 

and U.K. were found to be near zero, thereby suggesting the possibility of either a second 

wave or a slowing down of infection propagation in those countries. Russia and Turkey 

evinced higher positive coefficients and are deemed to be the country’s most likely to expe-

rience slowdowns.

The main limitation of this study is the lack of data with which to evaluate the statistical 

significance of factors impacting pandemic dynamics. Changes in seasonal infection rates, 

the effects of preventive measures, and infection vulnerability stratification cannot be dis-

tinguished because related data are only available for a single year. In addition, the number 

of cases recorded depends on criteria for who is tested for coronavirus, which varies across 

countries. Future research will be based on new data of  R0 dynamics; which may enable us 

to better distinguish the effects of restrictions and other factors.
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