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Major Histocompatibility Complex (MHC)
and Immune Response

Because of its remarkable power to deal with
infection, the immune system is central to the
prevention and control of infectious disease.
Immune responsiveness is affected, even con-
trolled, by gene products of the major histocom-
patibility system (1). Many diseases are associated
with human leukocyte antigens (HLAs) (2,3).
Moreover, in some infectious diseases (4-6), the
host immune reactivity, which is responsible for
the pathologic manifestation of disease, has been
correlated with HLA  specificities.

The discovery of the human MHC dates from
the mid 1950s when leukoagglutinating antibodies
were found in the sera of patients who received
multiple transfusions and in the sera of 20% to
30% of multiparous women. In humans, the entire
histocompatibility complex is termed the HLA

complex. Genes coding for HLAs occupy a
segment of approximately 4 centimorgans on the
short arm of chromosome 6. The HLA-A, -B, and
-C genetic loci determine class I antigens; HLA-
DR, -DP, -DQ genetic loci determine class II
antigens. Class I antigens are found on virtually
every human cell; class II antigens are found
chiefly on the surfaces of immunocompetent cells,
including macrophages/monocytes, resting T
lymphocytes, activated T lymphocytes, and
particularly B lymphocytes.

The MHC molecule provides a context for the
recognition of antigens by T lymphocytes. The poly-
morphic binding site of MHC class I and class II
molecules is composed of a ß-pleated sheet flanked
by two alpha helixes. They form a groove that
accommodates one single microbial peptide ligand.

MHC class I molecules bind to peptides
produced by the intracellular degradation of viral
proteins and display them on the cell surface for
recognition by CD8+ T lymphocytes. A class of
white blood cells, the CD8 T lymphocytes, bear
receptors specific for the HLA class I antigens
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Human leukocyte antigens (HLAs) are an inherent system of alloantigens, which
are the products of genes of the major histocompatibility complex (MHC). These genes
span a region of approximately 4 centimorgans on the short arm of human
chromosome 6 at band p 21.3 and encode the HLA class I and class II antigens, which
play a central role in cell-to-cell interaction in the immune system. These antigens
interact with the antigen-specific cell surface receptors of T lymphocytes (TCR) thus
causing activation of the lymphocytes and the resulting immune response. Class I
antigens restrict cytotoxic T-cell (CD8+) function thus killing viral infected targets, while
class II antigens are involved in presentation of exogenous antigens to T-helper cells
(CD4+) by antigen presenting cells (APC). The APC processes the antigens, and the
immunogenic peptide is then presented at the cell surface along with the MHC
molecule for recognition by the TCR. Since the MHC molecules play a central role in
regulating the immune response, they may have an important role in controlling
resistance and susceptibility to diseases. In this review we have highlighted studies
conducted to look for an association between HLA and infectious diseases; such
studies have had a variable degree of success because the pathogenesis of different
diseases varies widely, and most diseases have a polygenic etiology.
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and route pathogens such as viruses. Surface
expression of class I MHC molecules depends on
the availability of peptides that bind MHC
molecules in the endoplasmic reticulum. A
peptide transporter, associated with antigen
processing (TAP), plays an important role in
maintaining adequate levels of peptide (7). The
transporter is a heterodimer encoded by two
genes, TAP1 and TAP2, located in the MHC class
II region. TAP genes belong to the adenosine
triphosphate (ATP) binding cassette super family
of transport proteins, which have two ATP-
binding cassette domains and two transmembrane
domains. TAP genes are polymorphic (8), and
allelic MHC differences may be associated with
disease by altering the peptides that bind class I
MHC molecules. Since human TAP genes are
located between HLA-DP and HLA-DQ, TAP
alleles could result in an apparent disease
association with class II HLA alleles. Class I, i.e.,
HLA-A, -B, and -C molecules, play an important
role in viral infections in the lysis of target cells
by cytotoxic killer T lymphocytes.

MHC class II molecules are highly poly-
morphic membrane glycoproteins that bind
peptide fragments of proteins and display them
for recognition by CD4+ T lymphocytes. The
white blood cells known as CD4 T lymphocytes
are of central importance in defeating the bacteria
and other parasites that live within cells. The
CD4 T lymphocytes are called helper T cells
because they secrete substances that amplify and
control virtually all aspects of immunity. These T
cells have receptor molecules that can recognize
one particular peptide-HLA class II antigen com-
bination. The binding capability of any given
peptide to MHC class II molecules depends on the
primary sequence of the peptide and allelic
variation of the amino acid residues in the
binding site of the MHC receptor. Anchor
residues defining allele-specific peptide motifs
have been identified in the class II binding
peptides. The proposed anchor residues combining
with MHC pockets through their side chains
seem to be a primary requirement for peptide-
MHC interaction. The invariant chain (Ii) plays a
critical role in the assembly, intracellular
transport, and function of MHC class II
molecules (9). In intracellular parasites (e.g.,
Leishmania infections of macrophages), it is the
class II MHC molecules that specifically bind to
receptors on these microbes.

HLA Association with Infectious Diseases
Infectious diseases are associated with impaired

immunity. Some persons mount very effective
immune responses when given vaccines, while
others respond to vaccines poorly or not at all.
The level of response is determined by several fac-
tors: intensity of infection, factors related to the
intensity of the host immune response, T-cell state,
T-cell function, and perhaps most important, the
genetic factor that interacts with the other factors
to determine the outcome of the disease. Infec-
tious disease research is now focusing on genetic
markers such as allelic forms of HLA molecules.

HLA Association with
Mycobacterial Infections
Genetic factors may control host responses to

Mycobacterium tuberculosis (10-12). Several
investigators have conducted population studies
to determine an association between pulmonary
tuberculosis (TB) and HLA specificities. HLA-
DR2 is associated with the development of
multibacillary forms of both TB and leprosy
(13,14); molecular subtyping of DR2 showed that
the majority of the allele in patients and controls
was DRB1*1501 and DRB1*1502. The frequency
of these molecular subtypes of DR2 in patients
was not skewed, suggesting that the entire DR2
molecule or its closely linked gene(s) may govern
patient susceptibility to pulmonary TB and,
particularly, to drug-resistant TB. When the three-
dimensional structure of the HLA-DR molecule is
elucidated (15), sequencing of class II alleles in
patients with pulmonary TB and drug-resistant
TB could identify an amino acid residue(s)
critical for the binding of a M. tuberculosis-
derived pathogenic peptide(s) responsible for the
detrimental or protective immune response.

HLA alleles also modulate the immune
response that determines the form of leprosy (a
heterogeneous disease caused by Mycobacterium
leprae) that develops in each patient (16,17). At
one pole of the spectrum of leprosy are the
multibacillary lepromatous leprosy (LL) patients,
who are anergic to the antigens of M. leprae, and
at the other extreme are the paucibacillary
tuberculoid leprosy (TT) patients, who exhibit a
good cell-mediated immune response. Humoral
immunity is present throughout the spectrum
but does not seem to provide protection. Between
the two poles are patients with intermediate
features as seen in the borderline lepromatous,
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borderline leprosy (BB), and borderline tuber-
culoid forms (18). An increased frequency of
HLA-DR2 and -DQ1 in LL patients (19) and of
HLA-DR3 in TT patients has been reported (20).
These antigens can be further subdivided into
alleles defined by their amino acid sequence. A
single amino acid substitution may give rise to
alleles with different immunologic properties.
The allele DRB1*1501 showed a stronger asso-
ciation with LL patients than with TT patients
(p < 0.00001). In addition, DQB1*0601 was found
significantly more often in LL patients than in con-
trols (p < 0.00001); DQA1*0103 was more frequent
in the LL group than in the tuberculoid leprosy
group; and DQA1*0102 was selectively increased
in patients with borderline lepromatous leprosy
(Table 1). However, DRB1*0701, DQB1*0201, and
DQA1*0201 were decreased in LL patients
compared with TT patients and controls, and
DQB1*0503 was selectively decreased in TT
patients, suggesting that these alleles might modu-
late the immune response that determines the
form of leprosy that develops in each patient (21).

Table 1. Frequency of HLA class II alleles with significant
differences between leprosy patients and healthy controls

Healthy Leprosy
controls patients

HLA N=47 N=93
alleles N % N % RRa p

DRB1*15 10 21.3 70 75.3 11.3 <0.00001
DRB1*1501   6 12.8 49 52.7   7.6 <0.00001
DRB1*1502   5 10.6 26 27.9   3.2 <0.05
DRB5*0101   6 12.8 49 52.7   7.6 <0.00001
DRB5*0102   5 10.6 26 27.9   3.2 <0.05
DQA1*0102  9 19.1 38 40.9   2.9 <0.05
DQA1*0103 13 27.6 48 51.6   2.8 <0.05
DQB1*0601  8 17.0 56 60.2   7.4 <0.00001
DRB1*0404   5 10.6   0   0.0   0.04 <0.01
DRB1*0701 13 29.8 11 11.8   0.3 <0.05
DRB1*1401   4   8.5   0   0.0   0.005 <0.05
DQB1*0503 16 36.2 14 16.1   0.3 <0.05
aRR = relative risk

to malaria antigens. The association between the
HLA class I antigen HLA-B53 and protection
from severe malaria has been well established
(5). This link might be mediated by HLA class I
restricted cytotoxic T lymphocytes (CTL) during
the liver stage of the parasite’s life cycle (22). The
protective association between HLA-B53 and
severe malaria was investigated by sequencing
peptides eluted from this molecule before testing
candidate epitopes from preerythrocytic-stage
antigens of Plasmodium falciparum in bio-
chemical and cellular assays. Among malaria-
immune Africans, HLA-B53 restricted CTL recog-
nized a conserved nonamerpeptide from liver
stage-specific antigen, but no HLA-B53 restricted
epitopes were identified in antigens from other
stages (5). These findings indicate a possible
molecular basis for this HLA disease association
and support the candidacy of liver stage-specific
antigen as a malaria vaccine component.

The association between HLA-DR/-DQ pheno-
types and immune response to circumsporozoite
protein of the human malaria parasite were
investigated in Thai adults (23). Evidence
suggests that human T- and B-cell responses to a
major P. falciparum antigen (Pf RESA) in persons
primed by repeated infections are genetically
regulated (24). To associate T-cell and antibody
responses with the donors’ MHC class II
genotypes, genomic HLA class II typing of DQ
antigens of leukocytes from 145 donors living in
endemic-disease regions of Africa were performed
by restriction fragment length polymorphism
(24). These data imply that the impact of MHC
class II gene products on specific immune
responses to Pf 155/ RESA epitopes is weak and
hard to demonstrate in outbred human popula-
tions naturally primed by infection. The relationship
between class II HLA and immune recognition of
three candidate antigens for a vaccine against P.
falciparum was investigated in persons extremely
heterozygous for HLA class II alleles living in an
endemic-disease area of West Africa (25). One
class II DQA-DQB combination (serologic
specificity DQw2) was particularly common
among these persons. This haplotype was signi-
ficantly associated with higher than average
levels of antibody to a peptide epitope (EENV)6 of
Pf RESA. There was little evidence of association
between HLA class II genotype and cellular
proliferation responses to the antigen tested.

The frequency of HLAs was studied in 62
patients with scabies and 27 patients with

HLA Association with
Parasitic Infections
Because there are significant differences

between malaria-exposed and -unexposed popu-
lations in the frequencies of HLA genes at the A
and B loci, the HLA complex may protect
populations in endemic-disease areas who are
exposed to malaria parasites. The adaptative
mechanisms may be expressed by HLA-asso-
ciated genes that control immune responsiveness
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cutaneous leishmaniasis to evaluate the role of
HLA antigens as genetic markers in the
pathogenesis of these parasitic skin diseases. A
significant statistical association was found
between HLA-A11 antigen and scabies and
between HLA-A11, -B5, and -B7 antigens and
diffuse cutaneous leishmaniasis (26). In another
study, 24 families with one or more cases of
localized cutaneous leishmaniasis from an endemic-
disease region with the highest incidence of
localized cutaneous leishmaniasis in Venezuela
were typed for HLA-A, -B, -C, -DR, and -DQ
antigens and complement factors. The parental
HLA haplotypes segregated at random among
healthy and affected siblings, but in backcross
families significantly higher frequencies of HLA-
A28, -Bw22 or -DQw8 were present in infected
compared with healthy siblings (27). In addition,
HLA-B15 showed a higher frequency among
healthy siblings. Haplotypes Bw22, DR11, DQw7
were also significantly more frequent in infected
than in healthy siblings. No HLA linkage with a
putative localized cutaneous leishmaniasis suscep-
tibility gene(s) could be demonstrated in this
study (27). A case/control comparison of 26 unre-
lated localized cutaneous leishmaniasis patients
and healthy persons of the same ethnic origin con-
firmed the association of HLA-Bw22 and -DQw3
with this disease. The relative risk reached 12.5 for
Bw22 and 4.55 for DQw3. HLA-DQw3 apparently
makes the major contribution as a genetic risk
factor for localized cutaneous leishmaniasis at the
population level. In another study, a statistically
significant association was found between HLA-B5
and -DR3 and schistosomiasis (28).

A study of the association of HLA class I
antigen frequencies in 52 patients with kala-azar
and 222 unrelated healthy controls in Iran found
HLA-A26 to be statistically significant (p = 0.004)
(29). This indicates a high risk of contracting the
disease for HLA-A26 positive persons and a
remarkable influence of this antigen on the
prevalence rate of kala-azar.

The significance of susceptibility/protection
correlations between HLA and parasitic diseases
has been established by serologic typing methods.
To improve the accuracy of MHC-disease
associations, we have used a DNA-based HLA
typing method, namely polymerase chain
reaction with sequence specific oligonucleotide
probes, for the molecular typing of kala-azar
patients in India (30). To study the possible
association at the molecular level of HLA class I

(A and B) as well as class II (DR) antigens in kala-
azar patients, we typed patients with kala-azar
by polymerase chain reaction with sequence
specific oligonucleotide probes and compared the
antigen frequencies with healthy family-based
controls. On the basis of the distribution of alleles
in each sample, percentage phenotype and geno-
type frequencies were calculated for both control
and kala-azar patients. Statistical analysis using
the Transmission Disequilibrium Test was carried
out to assess the association of different HLA
allelic specificities with kala-azar patients. No
significant association between any of the HLA
class I or class II antigens was found. We will
conduct a linkage analysis study based on the
data from typing the above-mentioned case/
controls. The findings might lead to a new
dimension in the study of HLA association with
parasitic infections: genetic markers, such as HLA,
that are sufficiently polymorphic (as measured
by their heterozygosities) can be used in linkage
and association analysis to detect Mendelian
segregation underlying disease phenotypes (31).

Comprehensive analysis of HLA associations
with infectious diseases has allowed precise
definition of susceptibility and protective alleles
in large populations of different ethnic origins. Of
great interest in the fine dissection of molecular
mechanisms leading to parasitic diseases, these
studies also provide the genetic basis for
identification of the subset of persons at risk
for subsequent infection. Infectious diseases
may have exerted significant pressure on the
development and maintenance of HLA
polymorphism (32). Widespread and frequently
fatal parasitic diseases such as malaria have
selectively maintained certain gene frequencies
in endemic-disease areas (33).

Although HLA associations with parasitic
diseases have provided clues to pathogenesis, the
molecular basis of these associations has not yet
been defined. The determinant selection hypo-
thesis, which states that associations result from
the ability of a particular HLA type to present a
critical antigenic peptide, has been difficult to
investigate because, for most disease associations,
the relevant antigen is unknown. Recently, the
identification of characteristic sequence features in
peptides eluted from HLA class I molecules
(34,35) suggested that the relevant antigen might
be identifiable by assessing cellular immune
responses to peptides containing such motifs
among antigens that are candidates for mediating
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HLA disease associations. With the development
of modern techniques of the HLA assembly assay
(36), relevant peptides can be synthesized; it can
then be determined whether they have any func-
tion as CTL epitopes during immune responses.
Such studies will elucidate the HLA associations
with parasitic infections and the molecular basis
of these associations and facilitate the develop-
ment of vaccines for these infectious diseases.

HLA Association with
Viral Infections
The associations of viral diseases with HLA

alleles have not been studied extensively. However,
mechanisms by which HLA molecules determine
the immune response to viral peptides have been
well studied as part of efforts to develop safe and
efficient virus vaccines. Successful development
of vaccines against viral infections depends on
the ability of inactivated and live virus vaccines
to induce a humoral immune response and produce
antiviral neutralization antibodies. Additionally,
virus vaccines that induce a cellular immune
response leading to the destruction of virus-
infected cells by CD8+ CTLs may be needed to
provide protection against some viral infections.
Antiviral CD8+ CTLs are induced by viral pep-
tides presented within the peptide binding grooves
of HLA class I molecules on the surface of infected
cells. Studies in the last decade have provided an
insight into the presentation of viral peptides by
HLA class I molecules to CD8+ T cells.

Herpesvirus saimiri, an oncogenic, lympho-
tropic, gamma-herpesvirus, transforms human
and simian T cells in vitro and causes lymphomas
and leukemias in various species of New World pri-
mates. An open reading frame of the H. saimiri
genome encodes a heavily glycosylated protein
that is secreted and binds to heterodimeric MHC
class II HLA-DR molecules (37). These results
indicate that the open reading frame can function
as an immunomodulator that may contribute to
the immunopathology of H. saimiri infection.

Cytotoxic T cells that recognize dengue virus
peptides have been reported (38). Analysis of
HLA class I haplotype-restricted peptides showed
that HLA-A2 and -A68 motifs were abundant
compared with nonpeptides with HLA-A24, -B8,
and -B53 motifs. Studies by Zeng et al. (39)
suggest that the T-cell response to dengue virus
is restricted by the HLA-DR15 allele. Becker (40)
developed an approach to priming antiviral CD8+

CTLs that may provide cellular immune protec-
tion from flavivirus infection without inducing the
humoral immune response associated with
dengue fever shock syndrome. He proposed using
synthetic flavivirus peptides with an amino acid
motif to fit with the HLA class I peptide binding
group of HLA haplotypes prevalent in a given
population in an endemic-disease area as an
immunogen. These synthetic viral peptides may
be introduced into the human skin by using a
lotion containing the peptides (Peplotion) and sub-
stances capable of enhancing the penetration of
these peptides into the skin to reach Langerhans
cells. The peptide-treated Langerhans cells,
professional antigen presenting cells, may bind
the synthetic viral peptides by their HLA class I
peptide binding grooves. Antigens carrying
Langerhans cells can migrate and induce the
cellular immune response in the lymph nodes.

Transmission of human immunodeficiency
virus 1 (HIV-1) from an infected woman to her off-
spring during gestation and delivery is influenced
by the infant’s MHC class II DRB1 alleles. Forty-
six HIV-infected infants and 63 seroreverting
infants, born with passively acquired anti-HIV
antibodies but not becoming detectably infected,
were typed by an automated nucleotide-sequence-
based technique (41). One or more DR-13 alleles,
including DRB1*1301, 1302, and 1303 were found
in 15.2% of those becoming HIV-infected and
31.7% of seroreverting infants (p = 0.048); this
association was influenced by ethnicity. Upon
examining for other allelic associations, only the
DR2 allele DRB1*1501 was associated with
seroreversion in Caucasian infants. Among these
infants, the DRB1*03011 allele was positively
associated with HIV infection.

Molecular mimicry, where structural proper-
ties borne by a pathogen “imitate” or “simulate”
molecules of the host, also appears to be an
important mechanism in the association of HLA
molecules with viral disease. Molecular mimicry
takes different forms in the molecular biology of
HIV-1 (42). Molecular mimicry between HIV
envelope proteins and HLA class II molecules
may lead to autoimmunity against CD4+ T cell
expressing class II molecules (43). Bisset (44)
states that both the HIV-1 gp 120 envelope and
Mycoplasma genitalium adhesion proteins share
an area of significant similarity with the CD4-
binding site of the class II MHC proteins.
Interaction with this triad could contribute to T-
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cell dysfunction, T-cell depletion, Th1-cell–Th2-
cell shift, B-cell proliferation, hyperglobulinemia,
and antigen-presenting cell dysfunction.

HLA-DR has been evaluated as a marker for
immune response related to human cytomega-
lovirus infection (45); this virus plays a role in
chronic inflammatory reaction in inflammatory
abdominal aortic aneurysm. In the fibrously
thickened adventitia of this aneurysm, human
cytomegalovirus-infected cells and HLA-DR
positive cells were more frequently encountered
than in that of atherosclerotic aneurysms and
control cases (p < 0.01).

An estimated 250 million people throughout
the world are chronically infected with hepatitis
B virus, the primary cause of chronic hepatitis,
cirrhosis, and hepatocellular carcinoma in endemic-
disease areas (46,47). Because HLA class I
antigens contain viral peptides, they may be
important targets for immune mediated hepato-
cytolysis by CD8+ CTLs in hepatitis B virus
infection (48). Davenport et al. (49) have shown
that HLA-DR13 is associated with resistance to
hepatitis B virus infection. Prognosis may be
quite different among patients infected with
hepatitis C virus: a chronic liver disease occurs in
half the patients, while the other half exhibits no
signs of histologic progression of liver damage.
The host immune responses may play an
important role in such different outcomes. To
identify human CTL epitopes in the NS3 region of
hepatitis C virus, Kurokohchi et al. (50) modified
an approach using recombinant protein and the
ability of short peptides to bind to class I MHC
molecules. They identified a cytotoxic T-cell
epitope presented by HLA-A2 in the hepatitis C
virus NS3 region. A study conducted by Peano et
al. (51) establishes that HLA-DR5 antigen
appears as a protective factor against a severe
outcome of hepatitis C virus infection.

Epstein-Barr virus, a member of the
herpesvirus family, has been associated with
virus replication (infectious mononucleosis, oral
hairy leukoplakia) as well as neoplastic conditions
such as nasopharyngeal carcinoma, B-cell lym-
phoma, and Hodgkin disease associated with
viral latency. An influence of CTL response on
Epstein-Barr virus evolution was first suggested
by the finding that virus isolates from highly
HLA-A11–positive Asian populations were speci-
fically mutated in two immunodominant A11
restricted CTL epitopes (52). Additionally,
B35.01-restricted CTL responses in white donors

reproducibly map to a single peptide epitope (53).
However, most Epstein-Barr virus isolates from
a population where B35.01 was prevalent (in the
Gambia) either retained the CTL epitope
sequence or carried a mutation that conserved
antigenicity; changes leading to reduced anti-
genicity were found in only a minority of cases.
Two epitopes for Epstein-Barr virus specific
CTLs restricted by the common allele HLA-B7
were identified by Hill et al. (54).

The level of serum HLA class I antigens
markedly increases during the course of viral
infections such as those caused by cytomega-
lovirus, hepatitis B virus, hepatitis C virus, HIV-
1, and varicella-zoster virus (55-57). During HIV-
1 infection, the level of serum HLA class I antigens
correlates with disease stage and represents a good
prognostic marker of disease progression (55).

HLA Association with
Bacterial Infections
Vaccines based on recombinant attenuated

bacteria represent a potentially safe and effective
immunization strategy. A carrier system was
developed by Verjans et al. (58) to analyze in vitro
whether foreign T-cell epitopes, inserted in the
outer membrane protein PhoE of Escherichia coli
and expressed by recombinant bacteria, are effi-
ciently processed and presented through HLA class
I and II molecules by infected human macrophages.

A well-defined HLA-B27 restricted cytotoxic
T-cell epitope and an HLA-DR53 restricted T-
helper epitope of the fusion protein of measles
virus were genetically inserted in a surface-
exposed region of PhoE, and the chimeric proteins
were expressed in E. coli and Salmonella
typhimurium. Macrophages infected with recom-
binant bacteria presented the T-helper epitope to
a specific CD4+ T-cell clone but failed to present
the CTL epitope to the specific CD8+ T-cell clone.
Phagocytic processing of intact bacteria within
infected macrophages was essential for antigen
presentation by HLA class II. Nascent HLA
class II molecules were also required for the
presentation of the T-helper epitope to the CD4+
T-cell clone by infected macrophages.

HLA associations may also link various
diseases; for example the HLA-B27 association
for ankylosing spondylitis, Reiter disease,
reactive arthropathy, and acute anterior uveitis
indicate that these disorders may share a
pathogenic pathway. According to the molecular
mimicry hypothesis, antigens carried by a
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particular pathogen may resemble a certain HLA
allomorph. As the person carrying this allomorph
is unresponsive to it, it is susceptible to the
disease caused by the pathogen. For example,
some investigators believe that one of the anti-
gens of Klebsiella resembles HLA-B27 and that
pathogen is responsible for ankylosing spondylitis
(59). In most patients who have an acute attack of
anterior uveitis, a common ocular disease charac-
terized by inflammation of the iris and ciliary
body, the only clues to the pathogenesis of this
disease are its close association with the genetic
marker HLA-B27 and the likely triggering role of
a variety of gram-negative bacteria (60). HLA-B27
acute anterior uveitis appears to be a distinct
clinical entity frequently associated with the
seronegative arthropathies, such as ankylosing
spondylitis and Reiter syndrome.

Sasazuki (61) showed that low responsiveness
to streptococcal cell wall antigen was inherited as
an HLA-linked dominant trait. The immune sup-
pression gene for streptococcal cell wall was in
strong linkage disequilibrium with particular alleles
of the HLA-DQ locus. This shows that the HLA-
linked immune suppression genes exist in humans
to control low response to natural antigens.

Table 2 lists the associations that have been
established between various HLA factors and
certain infectious diseases. Only the antigens
showing statistically significant associations are
indicated. Because some persons are unresponsive
to certain critical epitopes of the pathogens
presumably responsible for certain infectious
diseases, particular HLA alleles occur more fre-
quently in patients with certain infectious diseases
than in healthy persons; therefore, researchers
associate these diseases with certain HLA
alleles. This article has summarized the findings
from population genetic analysis and from studies
of the association of immune response mechanisms
of infectious diseases and HLA.
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