
Open Research Online
The Open University’s repository of research publications
and other research outputs

InferCode: Self-Supervised Learning of Code
Representations by Predicting Subtrees

Conference or Workshop Item

How to cite:

Bui, Nghi D.Q.; Yu, Yijun and Jiang, Lingxiao (2021). InferCode: Self-Supervised Learning of Code Representations
by Predicting Subtrees. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), 23-29
May 2021, Virtual (originally Madrid, Spain), pp. 1186–1197.

For guidance on citations see FAQs.

c© 2021 IEEE/ACM

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/ICSE43902.2021.00109

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/doi:10.1109/ICSE43902.2021.00109
http://oro.open.ac.uk/policies.html

InferCode: Self-Supervised Learning of Code Representations

by Predicting Subtrees

Nghi D. Q. Bui∗, Yijun Yu†, Lingxiao Jiang∗,
∗School of Computing & Information Systems, Singapore Management Univerity

{dqnbui.2016, lxjiang}@smu.edu.sg
†School of Computing & Communications, The Open University, UK

{y.yu}@open.ac.uk

Abstract—Learning code representations has found many uses
in software engineering, such as code classification, code search,
comment generation, and bug prediction, etc. Although repre-
sentations of code in tokens, syntax trees, dependency graphs,
paths in trees, or the combinations of their variants have been
proposed, existing learning techniques have a major limitation
that these models are often trained on datasets labeled for specific
downstream tasks, and as such the code representations may
not be suitable for other tasks. Even though some techniques
generate representations from unlabeled code, they are far from
being satisfactory when applied to the downstream tasks. To
overcome the limitation, this paper proposes InferCode, which
adapts the self-supervised learning idea from natural language
processing to the abstract syntax trees (ASTs) of code. The
novelty lies in the training of code representations by predicting
subtrees automatically identified from the contexts of ASTs. With
InferCode, subtrees in ASTs are treated as the labels for training
the code representations without any human labelling effort or
the overhead of expensive graph construction, and the trained
representations are no longer tied to any specific downstream
tasks or code units.

We have trained an instance of InferCode model using Tree-
Based Convolutional Neural Network (TBCNN) as the encoder
of a large set of Java code. This pre-trained model can then
be applied to downstream unsupervised tasks such as code
clustering, code clone detection, cross-language code search, or be
reused under a transfer learning scheme to continue training the
model weights for supervised tasks such as code classification and
method name prediction. Compared to prior techniques applied
to the same downstream tasks, such as code2vec, code2seq,
ASTNN, using our pre-trained InferCode model higher perfor-
mance is achieved with a significant margin for most of the tasks,
including those involving different programming languages. The
implementation of InferCode and the trained embeddings are
available at the link: https://github.com/bdqnghi/infercode.

I. INTRODUCTION

Learning code representations (a.k.a. embeddings) and

building a prediction model for programs have been found

useful in many software engineering tasks, such as classifying

program functionality [1, 2], code search [3, 4, 5], code com-

ment generation [6, 7, 8], predicting bugs [9, 10], translating

programs [11, 12], etc. While offering promising performance

for the tasks, the prior learning techniques have two major

limitations that hinder their performance and generalizability.

• Most code representation models are trained through (semi-

)supervised learning. Humans need to manually label the

data for a specific downstream task, then engineer features

of intermediate representations, and train the models specif-

ically for the task. Such labelling, feature engineering, and

training efforts are specific to one particular task and may

not be easily transferred to other tasks.

• Even though there are techniques [8, 13] aiming to produce

code representations that are transferable to different tasks,

their trained code representations are only for some fixed

units of code, such as tokens, statements, and functions,

and are not flexible to produce embeddings for varying code

units. Such techniques may miss useful information across

different kinds of code units, and the trained representations

may not perform well for various downstream tasks either.

Some other techniques based on graph embeddings [14, 15]

share a similar drawback and in addition need the overheads

of graph construction which may introduce inaccurate infor-

mation in the graphs.

Such limitations have been illustrated in a recent study:

Kang et al. [16] show that the pre-trained code2vec [8]

representation does not perform well for other tasks when it

was trained specifically for the method-name prediction task.

Towards addressing the limitations, the aim of this paper is

to develop a new technique for learning code representations,

and it should be: (1) trainable without any manual human

labeling, (2) flexible in producing embeddings for any code

unit that can be parsed into syntax trees, and (3) general

enough so that its trained representations for code can perform

well for various downstream tasks.

We have two pillars that support the realization of our aim.

One is the large amount of source code available on public

code hosting platforms, such as Github, Bitbucket, Gitlab.

Although the code often lacks accurate labels for downstream

tasks, the syntax of the code itself can be checked relatively

easily by parsers. It is desirable to leverage such unlabeled

data to pretrain the code representations reusable for building

various program prediction models for downstream tasks.

The second pillar is supported by the advances of self-

supervised learning in machine learning [17, 18, 19, 20, 21].

Such techniques enable the training of neural networks without

the need for human labels. Usually, a self-supervised learning

technique reformulates an unsupervised learning problem as a

supervised one by automatically generating virtual labels from

existing (unlabeled) data. The self-supervised task, also known

as a pretext task, guides us to a supervised loss function.

While minimizing the loss function for the pretext task, the

technique also produces intermediate representations for the

data corresponding to the virtual labels. Because the pretext

task can be trained using any data, it is expected that such

representations can carry good information about the diverse

data and be beneficial to a variety of downstream tasks. This

notion of self-supervised learning is very suitable for our

aim. Little effort has been invested in the literature to exploit

the uses of self-supervised learning for code representation

learning. Although some recent work, such as [19], presents

a self-supervised learning paradigm for program repair, it is

designed specifically for this specific task.

Our key idea is thus to train a pretext task suitable for

any source code. Unlike self-supervised learning in natural

language processing and visual learning areas that use words

or object regions as labels, we utilize the fact that it is

relatively easy to obtain the abstract syntax tree (AST) of

any syntactically valid code snippets via parsers and it is also

easy to identify all the subtrees in ASTs, and automatically

use each subtree as the label for the pretext task to predict

the probability of that subtree appearing in a particular AST1.

Fig. 1 illustrates this intuition with an example. The two code

snippets implement the same functionality, i.e. bubble sort. If

we view these two code snippets as two ASTs, there are many

similar subtrees between them. For example, the subtree that

represents the conditional expression arr[j] > arr[j+1]

of the left snippets is similar to arr[i] > arr[i+1]

although the textual information is quite different. This means

that if one can exploit such information, there is no longer

the need for labels to build a representation learning model

for source code. Unlike the recent uses of neural document

embedding models (e.g., doc2vec [22, 23]) for source code

(e.g., [24, 25, 26, 27]), our technique learns subtrees in ASTs

without the overheads and losses of accuracy in constructing

customized graphs from code tokens and node types, although

we are also inspired by the same idea of doc2vec. We also

provide an alternative to graph-based [28, 29] or execution

traces-based [30] embedding techniques as we believe ASTs

are more readily available for all kinds of programming

languages and may have contained all the code information

(although some are hidden).

Based on the key idea, we propose InferCode, a self-

supervised learning technique for source code by predicting

syntax subtrees. As far as we know, we are the first to apply

the notation of self-supervised learning to syntax subtrees and

can produce code representations for any syntactically valid

code snippet without the need of human labelling:

• InferCode can serve as an encoder that maps any parsable

code snippet into a vector representation (embedding), and

1An underlying assumption is that, for such trained representations to
capture code meanings, code snippets with the same semantics should involve
some syntactically similar code elements. Even though two pieces of code
implementing the same functionality can be syntactically different, there could
still be some fine-grained elements in the code or other pieces of code that
use these two that are syntactically similar, especially when the code base is
large.

Fig. 1. Example of two code snippets that implement bubble sort in Java that
share similar fine-grained code elements.

this vector can be used for various downstream tasks, such

as code clustering, clone detection, and code search.

• InferCode can serve as a pre-trained model and its weights

can be reused in downstream training of the models for

supervised learning tasks, which can speed up the training

and alleviate the issue of lacking data for a particular task.

• We implement InferCode on top of the ASTs produced

by SrcML [31] and efficient parsers such as fAST [32].

It provides a combined vocabulary of AST node types for

multiple programming languages (e.g., Java, C, C++, C#,

Objective C), which implies that our InferCode can be

polyglot, producing code representations suitable for tasks

involving different languages, such as cross-language code

search, as long as the ASTs for a code snippet can be

recognized by the parser.

We have trained an instance of InferCode based on a large

set of Java code and evaluated the usefulness of the pretrained

code representations in five downstream tasks, three of which

are unsupervised (code clustering, code clone detection via

similarity measurement, cross-language code search, two are

supervised (code classification and method name prediction).

For the three unsupervised tasks, we utilize the vectors produce

by InferCode and different vector similarity metrics to achieve

the goal of each task: For code clustering, our results using

InferCode outperform the best baseline (Code2vec) by 12% in

term of Adjusted Rand Index; For code clone detection, our

results outperform the best baseline (Code2vec) by 15% in

term of F1 score; For cross-language code search, our results

outperform the best baseline (CLIR) on 13% (on average for

multiple languages setting) in term of Mean Reciprocal Rank.

For the two supervised tasks, we utilize the weights of the

pre-trained model from InferCode to fine-tune the specific

prediction model for each task: our results using the fine-

tuning process increases the performance of TBCNN for code

classification by 4% in term of accuracy, which is comparable

to ASTNN, the state-of-the-art model for code classification,

and increase the performance TBCNN for method name pre-

diction by 8%, which is comparable to code2seq, a state-of-

the-art model for method name prediction.

II. RELATED WORK

Self-Supervised Learning has made great progress recently

for visual data [33, 34, 35, 36, 37, 38]: Gidaris et al. [34]

proposed a method to generate different viewpoints of an

image by a number of rotations on certain degrees at random

and formulate the learning part as a multi-class classification

problem over the rotations. This pretext task drives the model

2

to learn semantic concepts of objects as the parameters of

the CNN image encoder; Zhang et al. [35] proposed to use

colorization as the pretext task by giving colours to a grayscale

input image in order to map this image to a distribution over

quantized color value outputs.

There has been tremendous effort in exploring self-

supervised learning in Natural Language Processing (NLP) re-

search [22, 23, 39, 40, 41, 42]. Word2vec [22] is a form of self-

supervised learning, which aims to learn good representation

of words by taking a small chunk of the text of certain window

size. Doc2vec [23] shares the same principle with word2vec,

which aims to use a document to predict the words inside it

so that similar documents will have similar embeddings; Skip-

thought vectors [39] builds a statistical language model by

predicting the neighbouring sentences of a centering sentence;

BERT [40] advances the language models by masking the

words in a text randomly in order to predict them.

Deep Code Learning Models: There has been a huge inter-

est in applying deep learning techniques to software engineer-

ing tasks such as program functionality classification [43, 44],

bug localization [45, 46], function name prediction [47], code

clone detection [44], program refactoring [6], program transla-

tion [11], and code synthesis [48]. Allamanis et al. [49] extend

ASTs to graphs by adding a variety of code dependencies as

edges among the tree nodes, intended to represent code seman-

tics, and apply Gated Graph Neural Networks (GGNN) [50] to

learn the graphs from code; Code2vec [8], Code2seq [13], and

ASTNN [44] are designed based on splitting ASTs into smaller

ones, either as a bag of path-contexts or as flattened subtrees

representing individual statements. They use various kinds

of Recurrent Neural Networks (RNNs) to learn such code

representations. Unfortunately, there is little effort in designing

the source code model with unlabelled data. Yasunaga and

Liang [19] presents a self-supervised learning paradigm for

program repair; surveys on code embeddings [25, 27] present

evidence to show that there is a strong need to alleviate the

demands of labelled data and encourage the community to

invest more into the methods for learning source code with

unlabelled data.

Our approach differs from existing ways to reuse the pre-

trained code learning model: Kang et al. [16] reuse the token

embeddings from Code2vec for downstream tasks only to find

lower performance than simpler word embedding methods like

Word2vec. In contrast, we use the weights of the pretrained

model and the code vector ~v produced by the encoder instead

of the token embeddings.

III. PRELIMINARIES

A. Source Code Representation Learning

Source code representation learning usually contains the

following two phases: (1) representing a code snippet into an

intermediate representation (IR), such as token streams, ASTs,

AST paths or graphs; and (2) designing a neural network

suitable to process such intermediate representations. Such a

neural network can also be called an encoder, which receives

the code IR and maps it into a code vector embedding ~v

(usually a combination of various kinds of code elements),

then ~v can be fed into the next layer(s) of a learning system

and trained for an objective function of the specific task of the

learning system. For example, in Code2vec [8], ~v is a combina-

tion of different AST paths. In GGNN [49] or TBCNN [43],

~v is a combination of AST nodes. A trained model, either

on supervised learning or self-supervised learning task, can

produce ~v. In our work, we will evaluate how the ~v trained on

a self-supervised learning objective function over a large set of

unlabelled data can be made useful for different downstream

SE tasks.

B. Neural Document Embedding Models

Doc2vec [23] is an extension to word2vec [22]. Doc2vec

uses an instance of the skip-gram model called paragraph

vector, which is a distributed bag of words (interchangeably

referred as doc2vec skip-gram) that is capable of learning the

representations of a sequence words of arbitrary lengths, such

as sentences, paragraphs and even whole documents. More

specifically, given a set of documents {d1, d2, ...dn} and a

sequence of words {..., wij , ...} sampled from the document

di, skip-gram learns a D-dimensional embeddings of the

document di and each word wij sampled, i.e., ~vi, ~vij ∈ R
D,

respectively. The model works by considering a word wij to be

occurring in the context of document di and tries to maximize

the following log likelihood function:
∑

j log Pr(wij |di),

where the probability Pr(wij |di) is defined as
exp(~vi·~vij)∑
w∈V

exp(~vi·~w) ,

where V is the vocabulary of all the words across all docu-

ments.

In this paper, we consider ASTs analogous to documents

and subtrees in the ASTs analogous to words in the documents,

and adapt the idea of document embedding to learn the

embeddings of ASTs of any size by using an encoder for the

AST of any parsable code snippets.

C. Self-supervised Learning Formulation

The goal of self-supervised learning is to train an encoder

E such that E can map an object into a vector representation

(embedding). In our case, the embedding ~v is for the AST

representation T of a code snippet C. Training the encoder

E is to learn its parameters (or weights) so that E is able to

produce the embeddings for the code snippets such that the

vectors for the snippets having similar syntactical and semantic

information will be close in the vector space. In visual

learning, Convolutional Neural Networks (CNNs) are usually

chosen as the encoder for images. In NLP, Recurrent Neural

Networks, or recently, BERT, is typically used as the encoder

for text sequences. In our case, we choose Tree-based CNN

as the source code encoder as it has been successfully used

before [43, 51, 52, 53] and justified further in Section VIII.

Given a dataset X , for each data Xi in X, there is a

corresponding pseudo label Pi automatically generated for a

predefined pretext task without involving any human annota-

tion. Given a set of n training data D = {Pi}
n
i=1, the aim is to

minimize the loss function: loss(D) = 1
n

∑n
i=1 loss(Xi, Pi).

We can easily identify subtrees in ASTs as the pseudo labels P

3

Fig. 2. a) Doc2vec’s skipgram model - Given a document d, it samples c words and considers them as co-occurring in the same context of d to learn d’s
representation; (b) InferCode - Given an AST T , it samples s subtrees from T and uses them as the context to learn T ’s representation.

automatically without human annotations so that our learning

technique can be self-supervised.

IV. APPROACH DETAILS

A. Overview

Figure 2 presents a high-level view of our InferCode ap-

proach as an analogy to Doc2vec by treating an entire AST as

a document and treating its subtrees as words in the document.

Given a set of ASTs {T1, T2, ...Tn}, and a set of all subtrees

{..., Tij , ...} of Ti, we represent Ti, Tij by D-dimensional

embedding vectors ~vi, ~vij ∈ R
D, respectively. By considering

a subtree Tij ∈ Ti to be occurring in the context of the AST

Ti, we aim to maximize the following logarithmic likelihood:
∑

j log Pr(Tij |Ti).
Unlike doc2vec, InferCode does not query the embedding

vectors directly from an embedding matrix for the whole

documents; instead, we first encode the entire AST to obtain

the ~vi, then use it to predict the subtrees. The steps of our

technique are as follows:

• For each AST in our dataset, we identify a set of subtrees,

and all of the subtrees are accumulated into a vocabulary of

subtrees (Section IV-B);

• We feed an AST into a Tree-Based CNN (TBCNN) encoder

to produce a code vector ~vi. Then ~vi is used to predict the

subtrees identified in the previous step;

• After the encoder has been trained, we can use it as the

pretrained model for downstream tasks.

B. Process to Identify Subtrees

Fig. 3. Example to generate subtrees from a code snippet

By traversing an AST, every visited node satisfying a certain

condition, e.g., of the type expr, leads to a subtree rooted

at the visited node. In our experiments, we chose to select

the subtrees whose root node is of the types {expr_stmt,

decl_stmt, expr, condition}, We consider these rel-

atively fine-grained code elements because they are usually

meaningful yet small enough to be considered as frequent

“words” in the vocabulary of subtrees from a large code

base. Such small code elements often have similar meaning

when their syntactical structure is similar even though their

textual appearance may be different (due to different identifier

names, such as int n = arr.length versus int m =

x.length). In addition, we also consider the nodes that

represent for a single keyword, such as if, for, while.

Noted that these nodes can be seen as the subtrees with size

= 1.

We do not consider coarse-grained subtrees such as the

whole if, while, for statements, as those subtrees are

often too big so that (1) each of them, as an individual

vocabulary word, may appear too infrequent in the code base

for the encoder to learn a meaningful representation for it

directly; (2) syntactical differences among the big subtrees

do not necessarily mean the corresponding code has different

meanings, while the encoder may have harder time to recog-

nize the semantic similarity among them.

Figure 3 shows a sample bubble sort code snippet written

in Java and the identified subtrees on the right hand side.

This snippet is parsed into an AST, and certain subtrees are

identified automatically. For example, the statement int n

= arr.length contains an expression arr.length. Both

int n = arr.length and arr.length are identified.

C. Learning Source Code Representation

Once we have the subtrees, we can use them to learn the

source code encoder under a self-supervision mechanism. Here

we choose TBCNN [43] as the source code encoder. There

are two major differences between our implementation of

TBCNN and the original design in [43]: we include the textual

information into the node initialization embedding instead of

using only the type information, and we replace the dynamic

max pooling with an attention mechanism to combine node

embeddings. Figure 4 shows an overview of the workflow of

the TBCNN with the modifications we made. There are three

steps to learn the weights of the encoder, which are described

as follows:

• Learning Nodes Representation: This step is to learn

the representation of the node of the input AST T . The

information of the tree will propagate from bottom to top,

i.e., a parent node will accumulate the information of its

descendant in the AST. After the accumulation step, each

node will contain the information of its descendants.

• Aggregating Nodes Information: Since we want to rep-

resent the AST representation of the code snippet into a

4

Fig. 4. Workflow of Tree-based Convolutional Neural Network [43] with 2
modifications: (1) including the token information to initialize the node vector;
and (2) using the attention mechanism to aggregate node’s information

fixed dimension vector ~v, we need to combine all the node

embeddings into one fixed single embedding. We use the

attention layer for this purpose.

• Predicting Subtrees: Once having the vC , we use it to pre-

dict the subtrees extracted from T . Intuitively, this process

is similar to Eq. (III-B), where the task is to predict the

probability of a subtree given the embedding vC .

1) Learning Nodes Representation with TBCNN: We

briefly introduce the Tree-based Convolutional Neural Net-

works (TBCNN, [43]) for processing AST inputs.

A tree T = (V,E,X) consists of a set of nodes V , a

set of node features X , and a set of edges E. An edge in

a tree connects a node and its children. Each node in an

AST also contains its corresponding texts (or tokens) and its

type (e.g., operator types, statement types, function types, etc.)

from the underlying code. Initially, we annotate each node

v ∈ V with a D-dimensional real-valued vector ~xv ∈ R
D

representing the features of the node. We associate every node

v with a hidden state vector ~hv , initialized from the feature

embedding ~xv . In [43], the node is initialized only with the

type embedding. In our case, we initialize the node with a

fusion of the embeddings of its texts and through a linear layer.

The embedding matrices for the texts and types are learn-

able in the whole model training pipeline, formally defined as

Wtype and Wtoken, respectively.

In TBCNN, a convolution window over an AST is emulated

via a binary tree, where the weight matrix for each node is a

weighted sum of three fixed matrices Wt, Wl, Wr ∈ R
D×D

(each of which is the weight for the “top”, “left”, and “right”

node respectively) and a bias term b ∈ R
D Hence, for a

convolutional window of depth d in the original AST with

K = 2d − 1 nodes (including the parent nodes) belong to

that window with vectors [x1, ...,xK], where xi ∈ R
D, the

convolutional output y of that window can be defined as:

y = tanh(
∑K

i=1[η
t
iW

t + ηliW
l + ηriW

r]xi + b), where

ηti , η
l
i, η

r
i are weights calculated corresponding to the depth

and the position of the nodes.

2) Attention Mechanism to Aggregate Nodes: After the

nodes representation has been learned, we need an aggregation

method to combine all the nodes in to one fixed embedding

that represent for the code snippet. Mou et al. [43] use max

pooling to combine the nodes. However, max pooling may

discard a lot of important information, so we replace it with the

attention mechanism to aggregate nodes. Formally, an attention

vector ~a ∈ R
D is initialised randomly and learned simultane-

ously with updates of the networks. Given n node state vectors:

{ ~h1, ..., ~hn}, the attention weight αi of each ~hi is computed

as the normalised inner product between the node state vector

and the global attention vector: αi = exp(~hi
T
·~a)

∑
n
j=1

exp(~hj
T
·~a)

. The

exponents in this equation are used to make the attention

weights positive, and they are divided by their sum to have a

max value of 1, as done by a standard softmax function.

The aggregated code vector ~v ∈ R
D represents the whole

code snippet. It is a linear combination of the node state

vectors { ~h1, ..., ~hn} weighted by their attention scores:

~v =

n
∑

i=1

αi · ~hi (1)

3) Predicting Subtrees: From the process to extract the

subtrees, we have a vocabulary of all subtrees from our training

dataset. The embeddings of subtrees are learn-able parameters,

formally defined as Wsubtrees ∈ R
|L|×D, where L is the set of

subtrees extracted from the training corpus. The embedding of

subtreesi is row i of Wsubtrees. The predicted distribution

of the model q (l) is computed as the (softmax-normalized)

dot product between the code vector ~v and each of the subtree

embeddings:

for li ∈ L : q (li) =
exp(~vT ·W

subtrees

i)
∑

lj∈L
exp(~vT ·Wsubtrees

i
)

(2)

where q (li) is the normalized dot product between the vector

of li and the code vector ~v, i.e., the probability that a subtrees

li appears in a given code snippet C. This is aligned with

Eq. (III-B) in Doc2vec to predict the likelihood of a word

given a document.

Finally, we need to learn these parameters of Infer-

Code: Wtype, Wtoken, Wt, Wl, Wr ∈ R
D×D, a ∈

R
D,Wsubtrees ∈ R

|L|×D.

D. Usage of the Model after Training

We have presented the pipeline to train InferCode by

predicting subtrees as the labels. Note that in self-supervised

learning, one does not usually care about the performance

of the pretext task. Instead, we care about the weights that

have been learned and the ability of the model to generate the

embeddings. The trained TBCNN encoder of InferCode can be

used to produce an embedding vector ~v for any parsable code

snippet by (1) parsing the code into an AST and (2) feeding the

AST through the encoding step presented in Figure 4 to get the

vector. The weights in the trained model can also be used for

the prediction models in downstream supervised learning tasks

to save training costs and potentially improve their prediction

accuracy. We illustrate the usages in next sections.

5

V. USE CASES

In this section, we briefly describe how InferCode can be

adapted into 5 different downstream tasks.

A. Code Embedding Vectors for Unsupervised Tasks

1) Code Clustering: The task is to put similar code snippets

automatically into the same groups without any supervision.

Given the code vectors ~v produced by the pre-trained Infer-

Code for any code snippets, we can realize the task by defining

a similarity metric based on Euclidean distance and applying

a clustering algorithm such as K-means[54].

2) Code Clone Detection: There are supervised and un-

supervised approaches to detect clones. While deep learning

methods are applied to detect code clones, they require labelled

data to train a supervised learning model [14, 44, 55]. As such,

one needs human annotators to mark the pairs of snippets as

clones, limiting the ability to detect clones by large amount

of the data one can collect.

To alleviate the need of labelled pairwise data to train

supervised clone detectors, we opt to use the unsupervised

approach based on a good similarity measurement: For a

pair of code snippets, we measure the similarity of between

the two vectors by using the cosine similarity; when the

cosine similarity between the vectors are higher than a certain

threshold, we treat the pair as clones. In this work, we choose

0.8 as the threshold.

3) Cross Language Code-to-Code Search: Code-to-code

search is useful for developers to find other code in a large

code base that is similar to a given code query. For example,

a developer working on a task to migrate a sorting algorithm

implemented in Java to another language (e.g., C#) might

want to see if there exists an implementation of the same

sorting algorithm in C#, instead of rewriting the code in C#

from scratch. Existing code-to-code search engine such as

Krugle, Facoy [4], Aroma [56], only consider the searching

problem within one programming language. Considering the

more challenging cross-language search use case, our pre-

trained InferCode model can be more useful. The backbone

of InferCode is ASTs, and we used the ASTs from an

efficient parser for SrcML representations [32] because it is

a combined vocabulary for the AST node types in five main-

stream languages (Java, C, C++, C# and Objective C). Our pre-

trained model can receive SrcML AST structure of any code

snippets within these 5 languages. Given a code snippet in one

language as a query, we aim to retrieve other code snippets

that are functionally similar to the given code snippet in

other programming languages. Since all code snippets can be

represented in the form of vector representations, this problem

can be formalized as the nearest-neighbor query in the vector

space.

B. Fine-Tuning for Supervised Learning Tasks

A paradigm to make use of large amount of unlabelled data

is self-supervised pretraining followed by a supervised fine-

tuning [17, 18], which reuses parts (or all) of a trained neural

network on a certain task and continue to train it or simply

Fig. 5. Code features are learned through the training process of TBCNN
encoder to solve a predefined pretext task. After finishing the training, the
learned parameters serve as a pre-trained model and can be transferred to
other downstream tasks by fine-tuning. The performance on these downstream
tasks is used to evaluate the quality of the learned features.

using the embedding output for other tasks. Such fine-tuning

processes usually have the benefits of (1) speeding up the

training as one does not need to train the model from randomly

initialized weights and (2) improving the generalizability of

the downstream model even when only small datasets have

labels.

As shown in Figure 5, the TBCNN encoder of InferCode

serves as a pretrained model, in which the weights resulted

from the self-supervised learning are transferred to initialize

the model of the downstream supervised learning task.

1) Code classification: Here we use code classification [43]

as a downstream task to demonstrate the usefulness of the fine-

tuning process. This task is to, given a piece of code, classify

the functionality class it belongs to.

2) Method name prediction: We use Method name pre-

diction [8] as the second downstream task. This task is to,

given a piece of code (without its function header), predict a

meaningful name that reflects the functionality of the code.

VI. EMPIRICAL EVALUATION

In this section, we evaluate InferCode on the five use cases

presented in Section V. We want to see to what degree the pre-

trained model is applicable to different use cases even when

the cases involve multiple programming languages.

For the training phase, we reuse the Java-Large dataset that

has been used in Code2vec [8] and Code2seq [13]. This dataset

contains a large number of Java projects collected from Github

(4 million files). For the testing phase, we use different datasets

for each of the task as the test data.

We parse all the files into ASTs using fast [32]. Then we

identify all the subtrees to form a vocabulary of subtrees.

Having the ASTs, and the subtrees as the pseudo labels, we

train the InferCode model by using the softmax cross-entropy

as the objective loss function and choose Adam [57] as the

optimizer with an initial learning rate of 0.001 on an Nvidia

Tesla P100 GPU.

A. Code Clustering

1) Datasets, Metrics, and Baselines: We use two datasets

for this task. The first is the OJ dataset that contains 52,000

C code snippets known to belong to 104 classes [43]. The

second is the Sorting Algorithm (SA) dataset used in [58],

which consists of 10 classes of sorting algorithm written in

6

Java, each algorithm has approximately 1000 code snippets.

Our clustering task here is to cluster all the code snippets

(without class labels) according to the similarity among the

code vectors: For the OJ dataset, we use K-means (K=104)

to cluster the code into 104 clusters; For the SA dataset, we

use K-means (K=10) to cluster the code. Then we use the

class labels in the datasets to check if the clusters are formed

appropriately.

We use the Adjusted Rand Index [59] as the metric to

evaluate the clustering results. Here we present the definition

of Rand Index. Let C be the ground truth class assignment,

and K be the number of clusters assigned by a clustering

algorithm. Let a be the number of pairs of elements that are in

the same set in C and the same set in K; and b as the number

of pairs of elements that are in different sets in C and different

sets in K. Rand Index for two datasets can be defined as:

RI = a+b

(nsamples
2

)
, where the combinatorial number

(

nsamples

2

)

is the total number of possible pairs in the dataset (without

ordering). However, the RI score does not guarantee that

random label assignments will get a value close to zero (esp. if

the number of clusters is in the same order of magnitude as

the number of samples). To counter this effect, Adjusted Rand

Index is defined by discounting the expected RI of random

labelling as followed: ARI = RI−E[RI]
max(RI)−E[RI] .

For the baselines, if we treat source code as text, the self-

supervised learning techniques in NLP can also be applied for

code. As such, we include two well-known baselines from

NLP, Word2vec [22], and Doc2vec [23]. We also include

another baseline from [60], a state-of-the-art method to learn

sentence representation. This method uses a Sequential De-

noising Auto Encoder (SAE) method to encode the text into

an embedding, and reconstruct the text from such embedding.

We also compare with two baselines for code modeling,

Code2vec [8] and Code2seq [13]. Code2vec works by training

a path encoder on bag-of-paths extracted from the AST. The

path encoder will encode the paths into an embedding ~v, then

use ~v to predict the method name. Code2seq shares a similar

principle, but ~v is used to generate a textual summary of code.

In either case, we use the path encoders of Code2vec and

Code2seq to produce the code vectors and also perform the

same clustering process as InferCode.

2) Results: Table I shows the results of code clustering

using different models. InferCode performs the best for both

datasets. The NLP methods, however, underperform other code

learning methods. This is reasonable because both Code2vec

and Code2seq capture structural information from code, while

NLP methods treat code as text sequences. We will provide a

deeper analysis of the clusters by providing visualizations of

the vectors produced by different methods (see Section VII-A).

B. Code Clone Detection

1) Datasets, Metrics and Baselines: We use two datasets

in two languages. One is the OJ Dataset again that contains

52,000 C/C++ programs. The other is the BigCloneBench, a

Java dataset that has been widely used to benchmark code

TABLE I
RESULTS OF CODE CLUSTERING IN ADJUSTED RAND INDEX (ARI)

Model
Performance (ARI)

OJ Dataset (C) SA Dataset (Java)

Word2vec 0.28 0.24

Doc2vec 0.42 0.29

SAE 0.41 0.31

Code2vec 0.58 0.51

Code2seq 0.53 049

InferCode 0.70 0.62

clone detection techniques, which consists of projects from

25,000 projects, covering 10 functionalities and including

6,000,000 true clone pairs and 260,000 false clone pairs. For

the OJ Dataset, we followed the process in Zhang et al. [44] to

construct a set of code pairs for clone detection based on pair-

wise similarity measurement, so-called OJClone: We choose

500 programs from each of the first 15 programming problems

in OJ. It would produce a total of 1.8 million clone pairs

and 26.2 million non-clone pairs, which are extremely time-

consuming for comparison. So that we randomly select 50000

samples clone pairs and 50000 non-clone pairs for measuring

the performance of various clone detectors.

We use the well-known Precision, Recall, and F1 scores.

Since the task is unsupervised, in this paper we compare

InferCode only with unsupervised clone detectors that do not

require labeled data (although the pretrained InferCode can

also be applied to supervised clone detection). The baselines

include Deckard [61], SourcererCC [62], DLC [63], and a de-

tector using the code vectors extracted from Code2vec [8, 16]

and the same cosine similarity threshold used for InferCode.

2) Results: Table II shows the overall precision, recall and

F1 for InferCode and other baselines. The detector based

on InferCode has the highest recall (except for SourcererCC

whose precision is relatively low). Overall in terms of F1, it

outperforms other unsupervised clone detectors.

Note that we do not compare with techniques such as

Oreo [55], CCD [14], ASTNN [44] because they use super-

vised learning techniques to build clone classifiers. We believe

that the code embeddings or the weights from the pretrained

InferCode can be used for training supervised clone classifiers

too, and with further improvement on self-supervised learning

techniques such as improving the encoder, the auto-identified

labels, and the loss function, the performance of unsupervised

code clone detection may also get close to supervised ones.

We leave these evaluations for future work.

TABLE II
RESULTS OF CODE CLONE DETECTION IN PRECISION, RECALL AND F1

Methods
BigCloneBench (Java) OJClone (C)

P R F1 P R F1

Deckard 0.93 0.02 0.03 0.99 0.05 0.10

DLC 0.95 0.01 0.01 0.71 0.00 0.00

SourcererCC 0.88 0.02 0.03 0.07 0.74 0.14

Code2vec 0.82 0.40 0.60 0.56 0.69 0.61

InferCode 0.90 0.56 0.75 0.61 0.70 0.64

7

C. Cross Language Code-to-Code Search

1) Datasets, Metrics, and Baselines: Given the implemen-

tation of an algorithm in one language, this task is to search

for other implementations of the same algorithm written in

other languages. So we need a dataset that contains multiple

implementations of algorithms in different languages. We

construct such a codebase by searching from the Rosetta Code2

and other code from GitHub: We collect code in Java, C, C++,

C# from Rosetta Code which results in around 3000 samples,

then we collect 5000 random program files from Github for

each of the languages and mix them with the samples.

For instance, for Java, we collect a large set of Java projects

from Github that have at least 10 stars. There is a possibility

that the collected GitHub projects contain implementations

of the algorithms in the Rosetta Code. So we perform a

simple text filtering to exclude all the files that contain a

token of any of the algorithm name. Let us take 3 algorithms

as examples (Bubble-sort, Singly-linked-list-Traversal, Yin-

yang3): We exclude any file that contains any of these tokens:

{bubble, sort, singly, linked, list, traversal, yin, yang}. Then

for the remaining Java files, we sample a subset of 5000 files

and mix them with the Java implementations of the algorithms

from the Rosetta dataset. We do the same for C#, C++, C, and

obtain in total about 23,000 files in our search code base.

With the constructed code base, we perform the evaluation

for cross-language search as follows: For each of the 3000

code files from Rosetta Code, say a bubble sort implementation

written in Java, we use it as the query to retrieve other files

containing top-K similar code. Here we choose K = 10 in this

evaluation. The ideal query results should only return a list of

code snippets that are from Rosetta Code but implement the

same bubble sort algorithm in C++, C#, and C; other results

would be considered as false positives. Since our assumption

is that there is only one relevant result for the query, we

use the well-known Mean Reciprocal Rank (MRR) as the

metric to evaluate the actual query results. This task can be

formulated as the information retrieval (IR) problem and the

neural IR techniques are widely applied recently for textual

data [64, 65, 66], we include Word2vec, Doc2vec, CLIR [66],

a cross-lingual information retrieval system for text. We also

follow Sachdev et al. [5] to include ElasticSearch, a fuzzy text

search baseline. Although there are recent methods designed

specifically for code-to-code search, such as Facoy [4] and

Aroma [56], they are designed only for monolingual code

search, thus we do not compare with them directly.

2) Results: Table III shows the results for InferCode and

other baselines. The performance of InferCode is the best

among all the models. ElasticSearch, on the other hand,

performs the worst; this is expected because ElasticSearch is

a simple fuzz text search technique not designed to capture

structural information of code.

2http://www.rosettacode.org, https://github.com/acmeism/RosettaCodeData
3These are taken from the names of the algorithms at https://github.com/

acmeism/RosettaCodeData/tree/master/Task

TABLE III
RESULTS OF CROSS-LANGUAGE CODE-TO-CODE SEARCH IN MEAN

RECIPROCAL RANK (MRR)

Approach
Performance (MRR)

Java C# C++ C

ElasticSearch 0.13 0.18 0.22 0.21

Word2vec 0.33 0.36 0.30 0.32

Doc2vec 0.32 0.34 0.38 0.30

CLIR 0.29 0.32 0.34 0.39

InferCode 0.57 0.45 0.51 0.54

D. Fine-Tuning for Supervised Learning Tasks

1) Datasets, Metrics, and Baselines:

a) Code Classification: We again use the OJ Dataset for

this task. We split this dataset into three parts for training,

testing, and validation by the ratio of 70:20:10. Out of the

training data, we feed X% to the neural model, where X = 1,

10, 100. We then initialize the neural model either randomly

or with the weights from the pre-trained InferCode. Therefore,

we have four settings for training the supervised model for

comparison: fine-tuning the TBCNN encoder with 1%, 10%,

or 100% of the labeled training data respectively, and the

randomly initialized model. Using only 1% or 10% is to

demonstrate that given a pre-trained model, one only needs

a small amount of labeled data to achieve reasonably good

performance for the downstream task.

We use the accuracy metric widely used for classification

tasks. As the baselines, we include the ASTNN [44] trained

from scratch, which is a state-of-the-art model for code

classification on the OJ dataset, and TextCNN [67] and Bi-

LSTM [68] trained with 100% of the training data, which are

widely used for text classification.

b) Method Name Prediction: We use the Java-Small

dataset widely used as a benchmark for method name predic-

tion and has been used in Code2vec [8] and Code2seq [13].

This dataset has already been split into three parts, namely

training, testing, and validation. We perform the same eval-

uation protocol as the code classification task by fine-tuning

the model with 1%, 10%, and 100% of the labeled training

data, in contrast to random initialization of the model without

fine-tuning. To predict the method name, we follow Code2vec

to use the code vector ~v to predict the embedding of a method

name from a lookup table (see Section 4.2 in Code2vec [8]).

We measure prediction performance using precision (P), recall

(R), and F1 scores over the sub-words in generated names,

following the metrics used by Alon et al. [8]. For example,

a predicted name result_compute is considered as an

exact match of the ground-truth name computeResult;

predicted compute has full precision but only 50% recall;

and predicted compute_model_result has full recall but

only 67% precision.

2) Results: Table IV shows the results for code classifica-

tion. Fine-tuning on 10% of the training data gets comparable

results with the NLP baselines. Fine-tuning on 100% of the

training data gets comparable with ASTNN, a state-of-the-art

model for code classification on the OJ dataset.

8

TABLE IV
RESULTS OF CODE CLASSIFICATION IN ACCURACY WITH FINE-TUNING

(FT) ON THE OJ DATASET

Approach FT (1%) FT (10%) FT (100%) Supervised

InferCode 70.4% 87.6% 98.0% 94%

TextCNN - - - 88.7%

Bi-LSTM - - - 88.0%

ASTNN - - - 97.8%

TABLE V
RESULT OF METHOD NAME PREDICTION IN F1 WITH FINE-TUNING (FT)

ON THE JAVA-SMALL DATASET

Approach FT (1%) FT (10%) FT (100%) Supervised

InferCode 20.31% 30.54% 43.33% 35.67%

Code2vec - - - 18.62%

Code2seq - - - 43.02%

Table V shows the results for method name prediction. We

get a comparable result with Code2seq when fine-tuning with

100% labeled data.

E. Summary

InferCode outperforms most of the baselines across five

tasks, including three unsupervised ones (code clustering, code

clone detection via similarity measurement), cross-language

code-to-code search), and two supervised ones (code classifi-

cation and method name prediction).

Note that this does not mean that the TBCNN encoder in

InferCode is better than ASTNN, Code2vec, or Code2seq, as

those neural models can be used as the encoder in InferCode

too. It only means that pre-training a model on large unla-

beled data using self-supervised learning to predict subtrees

can produce more transferable models while maintaining the

performance of such models for various code learning tasks.

The performance of the self-supervised learning models

may be improved further with different encoders. We leave

those explorations for future work.

VII. ANALYSIS

This section analyses the effects of various parameters on

the performance of different tasks.

A. Cluster Visualization

To help understand why the vectors produced by InferCode

are better than the vectors produced by others, we visualize

the vectors of the programs from the OJ dataset that have

been used for the code clustering. We choose the embeddings

produced by Doc2vec, Code2vec, and InferCode for the first

9 classes of the OJ dataset, then we use T-SNE [69] to

reduce the dimension of the vectors into two-dimensional

space and visualize. As shown in Figure 6, (1) the vectors

produced by InferCode group similar code snippets into the

same cluster with clearer boundaries, and (2) The boundaries

among clusters produced by Doc2vec and Code2vec are less

clear, which makes it more difficult for the K-means algorithm

to cluster the snippets correctly. This is aligned with the

performance of the code clustering task (Table I). Also, we

observe that some points marked in the same color (e.g., red)

are somewhat far away from each other even in the vectors

from InferCode, while they are supposed to be close according

to the ground truth. This could indicate further improvement

to Infercode can be made in future work.

B. Effect of Textual Information in TBCNN

The original TBCNN in Mou et al. [43] does not include

textual information in AST nodes to initialize the node em-

bedding. In our implementation, we include the textual infor-

mation by fusing it with the node type information through

a linear layer. To help understand the effect of such a fusion

process, we perform an ablation study by training InferCode

with different initialization information on the Java-Large

dataset and perform the evaluations on the three unsupervised

tasks: code clustering (CC), code clone detection (CCD), and

cross-language code-to-code search (CLCS) with the same

settings for each of the tasks in Section VI. Table VI shows

the results of this study. Using only type or token information

will result in worse performance for all three tasks.

TABLE VI
EFFECTS OF DIFFERENT INITIALIZATION METHODS

Task Dataset Metric
Initial Information

Type Token Combine

CC OJ ARI 0.57 0.28 0.70

CCD BigCloneBench P 0.45 0.49 0.90

CLCS Rosetta Stone MRR 0.18 0.39 0.57

C. Alternative Choices to the Pretext Task Labels

There are a few alternatives when we use subtrees as the

pseudo labels for the pretext task in InferCode. One can easily

replace the subtrees with tokens so that the code vector ~v can

predict the tokens of the code snippets (similar to Doc2vec),

or one can use all the method names as the pseudo labels and

train the ~v to predict the names, similar to Code2vec [8]. In

this section, we perform an ablation study to measure how

different types of labels can affect performance. As shown in

Table VII, the performance using the subtrees as the labels is

the best while using tokens as the labels result in the worst

performance. Although using the method name can result

in reasonable performance, it is still worse than using the

subtrees. An explanation for this is that by predicting method

names, the model is forced to learn some incorrect patterns

due to similar names in the code base that actually refer to

different code. For example, Jiang et al. [70] found that a

large number code snippets contain similar method names but

the actual implementations of the method bodies are different,

but their code vectors would be forced to predict the similar

method names, thus these vectors will be close in the vector

space despite that they should not be. This is a potential reason

to make the model trained by predicting method names a worse

choice for pretext task than using subtrees.

VIII. DISCUSSION

A. Choice of Encoder

In this section, we want to discuss our choice on the decoder.

We choose TBCNN because of its ability to capture structural

9

Fig. 6. Visualization of the Code Vectors of the Programs from 9 classes in the OJ Dataset produced by InferCode, Code2vec and Doc2vec

TABLE VII
EFFECTS OF DIFFERENT WAYS TO SET UP LABELS OF THE PRETEXT TASK

Task Dataset Metric
Label

Token Method Name Subtree

CC OJ ARI 0.23 0.58 0.70

CCD BigCloneBench P 0.45 0.81 0.90

CLCS Rosetta Stone MRR 0.32 0.41 0.57

features of code that lie in ASTs and the modification we

made to TBCNN can also capture textual information into

the model. There are many neural network designs that can

be used as a replacement of the TBCNN encoder, such as

ASTNN [44], Code2vec [8] or GGNN [49]; however, most

of them, especially the graph-based models, are unable to

scale and generalize for different programming languages. For

example, we can use the path encoder of Code2vec to encode

the AST paths into the code vector ~v and infer the subtrees.

GGNN is similar, one can pre-train the GGNN over a self-

supervised learning task. Although the graph representation

proposed by Narayanan et al. [28], Allamanis et al. [49] has

been shown to work well on tasks such as supervised clone

detection, code summarization, variable name prediction, etc.,

choosing the suitable edges to be included in the graph

representations for such tasks can be time-consuming and not

generalizable. LambdaNet [71] is another graph-based model

that also contains semantic edges designed specifically for

the type prediction task. As such, it is not straightforward to

transfer a pre-trained graph learning model through different

code learning tasks and it is not easy to scale the graph

representation of code into multiple languages. Similar reasons

can also be applied for path-based models, such as Code2vec

and Code2seq, or execution trace-based models [30]. On the

other hand, TBCNN is designed to receive the AST directly

with minimal engineering effort to process it. AST is relatively

easy to produce accurately for most programming languages

given their grammars, thus building a tree-based learning

model on top of ASTs implies that we can have a model that is

easier to generalize across languages, which is the advantage

to choose tree-based models over others. Note that this is not to

say that other models do not perform well on the code learning

tasks; they can still perform well when training data and time

are specially utilized, and they may be used together with each

other as the encoder in the self-supervised learning framework

to improve the performance for various tasks further. We leave

all the exciting explorations for future work.

B. Assumption on Predicting Similar Subtrees with Opposite

Meaning

InferCode works on the basis of the key assumption that

code snippets containing similar subtrees have the same mean-

ings. There are instances where code snippets can have the

opposite meaning even if they have the same subtree, e.g.,

”A < B” vs. ”B < A.” This issue is addressed by modifying

the TBCNN to encode the information of the tokens. Note

that the original TBCNN Mou et al. [43] only encodes the

node type information. With this change, the TBCNN can

distinguish both syntactic and semantic information better

than the original version, as implied by the results shown in

Table VI.

IX. CONCLUSIONS

We have proposed InferCode, a self-supervised learning

technique for source code learning on unlabeled data. Along

with the document embedding principle that similar documents

contain similar words, our working intuition is that similar

ASTs should have similar subtrees to predict using a code

embedding learnt from the ASTs. We first train a tree-based

CNN on large scale datasets, then reuse it as a pre-trained

model for the InferCode encoder to map any AST into an

embedding vector for downstream tasks, such as code cluster-

ing, code clone detection, or code-to-code search. Evaluation

of these tasks shows that the embeddings produced by the

InferCode encoder outperform the other baselines with signif-

icant margins. Furthermore, the weights of the self-supervised

pretrained model can be used for subsequent supervised fine-

tuning, which outperforms the supervised models trained from

a scratch. In the future, we will explore other choices of the

encoder and adapt InferCode to other SE tasks such as bug

localization, defect prediction, variable name prediction, etc.

ACKNOWLEDGEMENTS

This research is supported by the Singapore Ministry of Ed-

ucation (MOE) Academic Research Fund (AcRF) Tier 1 grant

and RISE Lab Operational Fund from SIS at SMU, Singapore

MOE AcRF Tier 2 Award No. MOE2019-T2-1-193, Royal

Society projects (IES/R1/191138, IES/R3/193175), EPSRC

STRIDE project (EP/T017465/1), and Huawei Trustworthy

Software Engineering Lab. We also thank the anonymous

reviewers for their insightful comments and suggestions, and

thank the authors of related work for sharing data.

10

REFERENCES

[1] R. Nix and J. Zhang, “Classification of android apps and

malware using deep neural networks,” in International

Joint Conference on Neural Networks, May 2017, pp.

1871–1878.

[2] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-

scale malware classification using random projections

and neural networks,” in IEEE International Conference

on Acoustics, Speech and Signal Processing, 2013, pp.

3422–3426.

[3] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in

40th ICSE, 2018, pp. 933–944.

[4] K. Kim, D. Kim, T. F. Bissyandé, E. Choi, L. Li, J. Klein,

and Y. L. Traon, “FaCoY: a code-to-code search engine,”

in ICSE, 2018, pp. 946–957.

[5] S. Sachdev, H. Li, S. Luan, S. Kim, K. Sen, and S. Chan-

dra, “Retrieval on source code: A neural code search,” in

2nd ACM SIGPLAN International Workshop on Machine

Learning and Programming Languages, 2018, p. 31–41.

[6] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code

comment generation,” in ICPC, 2018, pp. 200–210.

[7] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and

P. S. Yu, “Improving automatic source code summariza-

tion via deep reinforcement learning,” in 33rd ASE, New

York, NY, USA, 2018, p. 397–407.

[8] U. Alon, M. Zilberstein, O. Levy, and E. Ya-

hav, “Code2vec: Learning distributed representations of

code,” in POPL, 2019, pp. 40:1–40:29.

[9] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect

prediction via convolutional neural network,” in IEEE

QRS, 2017, pp. 318–328.

[10] Y. Zhou, S. Liu, J. K. Siow, X. Du, and Y. Liu, “Devign:

Effective vulnerability identification by learning compre-

hensive program semantics via graph neural networks,”

in NeurIPS, 2019, pp. 10 197–10 207.

[11] X. Chen, C. Liu, and D. Song, “Tree-to-tree neural

networks for program translation,” in NeurIPS, 2018, pp.

2547–2557.

[12] X. Gu, H. Zhang, D. Zhang, and S. Kim, “DeepAM:

Migrate apis with multi-modal sequence to sequence

learning,” in IJCAI, 2017, pp. 3675–3681.

[13] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq:

Generating sequences from structured representations of

code,” in ICLR, 2019.

[14] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional

code clone detection with syntax and semantics fusion

learning,” in 29th ISSTA, 2020, pp. 516–527.

[15] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detect-

ing code clones with graph neural network and flow-

augmented abstract syntax tree,” in 27th SANER, 2020,

pp. 261–271.

[16] H. J. Kang, T. F. Bissyandé, and D. Lo, “Assessing the

generalizability of code2vec token embeddings,” in 34th

ASE, 2019, pp. 1–12.

[17] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learn-

ing algorithm for deep belief nets,” Neural computation,

vol. 18, no. 7, pp. 1527–1554, 2006.

[18] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton,

“A simple framework for contrastive learning of visual

representations,” ICML’20, pp. 1597–1607.

[19] M. Yasunaga and P. Liang, “Graph-based, self-supervised

program repair from diagnostic feedback,” ICML’20, pp.

10 799–10 808.

[20] C. Doersch and A. Zisserman, “Multi-task self-

supervised visual learning,” in ICCV, 2017, pp. 2051–

2060.

[21] A. Kolesnikov, X. Zhai, and L. Beyer, “Revisiting self-

supervised visual representation learning,” in CVPR,

2019, pp. 1920–1929.

[22] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,

and J. Dean, “Distributed representations of words and

phrases and their compositionality,” in NeurIPS, 2013,

pp. 3111–3119.

[23] Q. Le and T. Mikolov, “Distributed representations of

sentences and documents,” in ICML, 2014, pp. 1188–

1196.

[24] H. Wei and M. Li, “Supervised deep features for soft-

ware functional clone detection by exploiting lexical and

syntactical information in source code,” in IJCAI, 2017,

pp. 3034–3040.

[25] B. Ingram. (2018) A comparative study of various

code embeddings in software semantic matching. https:

//github.com/waingram/code-embeddings.

[26] H. Aman, S. Amasaki, T. Yokogawa, and M. Kawahara,

“A doc2vec-based assessment of comments and its appli-

cation to change-prone method analysis,” in 25th APSEC,

2018, pp. 643–647.

[27] Z. Chen and M. Monperrus, “A literature study of embed-

dings on source code,” arXiv preprint arXiv:1904.03061,

2019.

[28] A. Narayanan, M. Chandramohan, R. Venkatesan,

L. Chen, Y. Liu, and S. Jaiswal, “graph2vec: Learn-

ing distributed representations of graphs,” CoRR, vol.

abs/1707.05005, 2017.

[29] M. Tufano, C. Watson, G. Bavota, M. Di Penta,

M. White, and D. Poshyvanyk, “Deep learning similar-

ities from different representations of source code,” in

15th MSR, 2018, pp. 542–553.

[30] K. Wang and Z. Su, “Blended, precise semantic program

embeddings,” in PLDI’20, p. 121–134.

[31] M. L. Collard, M. J. Decker, and J. I. Maletic, “srcml: An

infrastructure for the exploration, analysis, and manipu-

lation of source code: A tool demonstration,” in ICSM,

2013, pp. 516–519.

[32] Y. Yu, “fast: flattening abstract syntax trees for effi-

ciency,” in ICSE’19, pp. 278–279.

[33] A. Mahendran, J. Thewlis, and A. Vedaldi, “Cross pixel

optical-flow similarity for self-supervised learning,” in

Asian Conference on Computer Vision, 2018, pp. 99–116.

[34] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised

representation learning by predicting image rotations,” in

11

ICLR’18.

[35] R. Zhang, P. Isola, and A. A. Efros, “Colorful image

colorization,” in ECCV, 2016, pp. 649–666.

[36] B. Korbar, D. Tran, and L. Torresani, “Cooperative

learning of audio and video models from self-supervised

synchronization,” in NeurIPS, 2018, pp. 7763–7774.

[37] D. Kim, D. Cho, and I. S. Kweon, “Self-supervised video

representation learning with space-time cubic puzzles,” in

AAAI, vol. 33, 2019, pp. 8545–8552.

[38] B. Fernando, H. Bilen, E. Gavves, and S. Gould, “Self-

supervised video representation learning with odd-one-

out networks,” in CVPR, 2017, pp. 3636–3645.

[39] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Ur-

tasun, A. Torralba, and S. Fidler, “Skip-thought vectors,”

in NeurIPS, 2015, pp. 3294–3302.

[40] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,

“BERT: Pre-training of deep bidirectional transform-

ers for language understanding,” in NAACL’18, p.

4171–4186.

[41] L. Logeswaran and H. Lee, “An efficient framework for

learning sentence representations,” in ICLR’18, pp. 1–16.

[42] T. Kenter, A. Borisov, and M. de Rijke, “Siamese CBOW:

optimizing word embeddings for sentence representa-

tions,” in ACL’16, p. 941–951.

[43] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Con-

volutional neural networks over tree structures for pro-

gramming language processing,” in AAAI, 2016.

[44] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and

X. Liu, “A novel neural source code representation based

on abstract syntax tree,” in 41st ICSE, 2019, pp. 783–794.

[45] M. Pradel and K. Sen, “Deepbugs: A learning approach

to name-based bug detection,” ACM on Programming

Languages, vol. 2, no. OOPSLA, p. 147, 2018.

[46] R. Gupta, A. Kanade, and S. Shevade, “Neural attribution

for semantic bug-localization in student programs,” in

NeurIPS, 2019, pp. 11 861–11 871.

[47] P. Fernandes, M. Allamanis, and M. Brockschmidt,

“Structured neural summarization,” in 7th ICLR, 2019.

[48] M. Brockschmidt, M. Allamanis, A. L. Gaunt, and

O. Polozov, “Generative code modeling with graphs,” in

7th ICLR, 2019.

[49] M. Allamanis, M. Brockschmidt, and M. Khademi,

“Learning to represent programs with graphs,” in ICLR,

2018.

[50] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated

graph sequence neural networks,” in ICLR, Nov. 2016.

[51] L. Mou, H. Peng, G. Li, Y. Xu, L. Zhang, and Z. Jin,

“Discriminative neural sentence modeling by tree-based

convolution,” in EMNLP, 2015, pp. 2315–2325.

[52] N. D. Bui, L. Jiang, and Y. Yu, “Cross-language learning

for program classification using bilateral tree-based con-

volutional neural networks,” in NL4SE@AAAI’18, 2018.

[53] H. Yu, W. Lam, L. Chen, G. Li, T. Xie, and Q. Wang,

“Neural detection of semantic code clones via tree-based

convolution,” in 27th ICPC, 2019, pp. 70–80.

[54] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D.

Piatko, R. Silverman, and A. Y. Wu, “An efficient k-

means clustering algorithm: Analysis and implementa-

tion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,

no. 7, pp. 881–892, 2002.

[55] V. Saini, F. Farmahinifarahani, Y. Lu, P. Baldi, and C. V.

Lopes, “Oreo: Detection of clones in the twilight zone,”

in 26th ESEC/FSE, 2018, pp. 354–365.

[56] S. Luan, D. Yang, C. Barnaby, K. Sen, and S. Chan-

dra, “Aroma: Code recommendation via structural code

search,” ACM on Programming Languages, vol. 3, no.

OOPSLA, pp. 1–28, 2019.

[57] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” in ICLR’15.

[58] B. D. Q. Nghi, Y. Yu, and L. Jiang, “Bilateral dependency

neural networks for cross-language algorithm classifica-

tion,” in SANER’19, pp. 422–433.

[59] J. M. Santos and M. Embrechts, “On the use of the

adjusted rand index as a metric for evaluating supervised

classification,” in International conference on artificial

neural networks, 2009, pp. 175–184.

[60] F. Hill, K. Cho, and A. Korhonen, “Learning distributed

representations of sentences from unlabelled data,” in

NAACL’16, p. 1367–1377.

[61] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard:

Scalable and accurate tree-based detection of code

clones,” in 29th ICSE, 2007, pp. 96–105.

[62] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V.

Lopes, “SourcererCC: Scaling code clone detection to

big-code,” in 38th ICSE, 2016, pp. 1157–1168.

[63] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk,

“Deep learning code fragments for code clone detection,”

in 31st ASE, 2016, pp. 87–98.

[64] L. Wang, J. Lin, and D. Metzler, “A cascade ranking

model for efficient ranked retrieval,” in 34th SIGIR, 2011,

pp. 105–114.

[65] S. Wan, Y. Lan, J. Guo, J. Xu, L. Pang, and X. Cheng,

“A deep architecture for semantic matching with multiple

positional sentence representations.” in AAAI, vol. 16,

2016, pp. 2835–2841.

[66] I. Vulić and M.-F. Moens, “Monolingual and cross-

lingual information retrieval models based on (bilingual)

word embeddings,” in 38th SIGIR, 2015, pp. 363–372.

[67] Y. Kim, “Convolutional neural networks for sentence

classification,” p. 1746–1751.

[68] M. Schuster and K. K. Paliwal, “Bidirectional recurrent

neural networks,” IEEE Trans. Signal Process., vol. 45,

no. 11, pp. 2673–2681, 1997.

[69] L. v. d. Maaten and G. Hinton, “Visualizing data using t-

sne,” Journal of Machine Learning Research, vol. 9, no.

Nov, pp. 2579–2605, 2008.

[70] L. Jiang, H. Liu, and H. Jiang, “Machine learning based

recommendation of method names: how far are we,” in

34th ASE, 2019, pp. 602–614.

[71] J. Wei, M. Goyal, G. Durrett, and I. Dillig, “Lamb-

danet: Probabilistic type inference using graph neural

networks,” in ICLR’20.

12

