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INFERENCE ABOUT VARIANCE COMPONENTS IN THE 
ONE-WAY MODEL* 

BRUCE M. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHILL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUniversity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Michigan and Harvard University 

The estimation of variance components in the one-way model is con- 
sidered from a subjective Bayesian point of view. The situation in  
which the classical unbiased estimate of the between variance compo- 
nent is negative is explored in some detail. Exact and approximate 
posterior distributions are obtained in both the balanced and unbal- 
anced case. Common sense aspects of the problem are emphasized, and 
some contrasts with other approaches. For example, Bayesianly speak- 
ing, a large negative unbiased estimate of the between variance com- 
ponent indicates a n  uninformative experiment in which the effective 
likelihood for that  variance component is extremely flat, instead of 
strong evidence that  the variance component is nearly zero. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. INTRODUCTION 

E SHALL discuss some aspects of the estimation of variance components 
in a random model (Eisenhart Model 11) analysis of variance from a sub- 

jective Bayesian point of view. Particular attention will be givcn to the situa- 
tion in which the classical unbiased estimate is negative. In this paper we shall 
be concerned with the one-way model, balanced and unbalanced, extending 
the results to regression models and to higher dimensional arrays in a later 
report. 

The analysis of variance opens a Pandora's box of problems which constitute 
a real challenge to any and all statisticians and theories of statistical inference. 
Although an enormous variety of models have been proposed for even the most 
simple arrays of observations, there are serious gaps in our understanding of 
the analysis of even the most simple of these models, not to mention design. 
Here the approach will be to focus attention on an extremely simple model, 
a model that can at  best be regarded only as a rough approximation in situa- 
tions of real interest. Nonetheless, if only because the real situations we are 
confronted with are so very much more complcx, it seems essential to look 
closely at the simpler ones. 

We work with the model 

y z l = p + c u , + ~ z j ,  i - l , . * * , I ,  j = l , . . - , J , ,  N = x J , ,  
I 

where a,-N(O, at), ~ , ~ - l \ i ( O ,  uz), and the a, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet j  are mutually independent. 
Although we shall return to this general unbalanced model it is convenient for 
the present to restrict attention to the balance case, J ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= J for all i. In this case 
the statistics 

* This work was partially sponsored by the National Science Foundation, Grant #"SF-GP-12. 

806 

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
M

in
n
es

o
ta

 L
ib

ra
ri

es
, 
T

w
in

 C
it

ie
s]

 a
t 

1
1
:4

7
 2

5
 S

ep
te

m
b
er

 2
0
1
4
 



VARIANCE COMPONENTS I N  T H E  ONE-WAY MODEL 

and 

807 

are sufficient for 8= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa:), where 

It is easily verified that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7.. is normally distributed about p with variance 
(IJ)-1~2+(I)-1u~, and that SSW and SSB are distributed as multiples of chi- 
square random variables, 

u xr(J-1) and (u2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ Ju:)x(z-u, 
2 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

respectively, the three being mutually independent given p, u2 and a:. 
The customary approach to estimation is to view y.. as an estimate of p, 

MXW= [I(J-l)]-l SXW as an estimate of u2, MXB= [I-ll-l SSB as an 
estimate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2+JuE, and (J)-l [MSB-MSW] as an estimate of u:, all being 
unbiased. However, the possibility of negative estimates of uz (which occur 
with substantial probability when c; is small) and the lack of exact and con- 
fusion about proposed approximate confidence intervals for C T ~  (even in the 
balanced case) raise serious questions [3]-[7], [9]-[15], [HI, [20], [24]-[26], 

The aim of this paper is to illustrate Bayesian inference in this problem, and 
to use the Bayesian formulation as a means to discuss certain common sense 
aspects of the situation. Since there is some disagreement as to just what is 
common sense here, such discussion does not seem out of place. 

[29]- [30]. 

2. LIKELIHOOD FUNCTION AND POSTERIOR DISTRIBUTIONS 

Based upon the above model, and writing Pr for what is in fact a density 
function, the likelihood function is 

1 XSTY 2 -1/2 

exp [ - ,1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2 + J ; ~ J  exp [ - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u2)-(N-r)/2 

i 

Letting p(p, u2, a:) be a subjectively chosen prior density, the posterior density 
becomes p"(p, 02, a:) a L ( p ,  u2, a:) p(p, u2, ui)- 
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808 AMERICAN STATISTICAL ASSOCIATION JOURNAL, SEPTEMBER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1965 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We shall be interested both in the situation where the likelihood function is 

sharp or highly concentrated relative to the prior distribution, in which case 
(some) Bayesian credible intervals typically differ but little from (some) 
classical confidence intervals, and also in those situations where although the 
likelihood function is expected to be relatively sharp (on the basis, say, of 
Fisherian information) before the experiment, it in actual fact is not, as for 
example when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMSB<<MSW. The following references discuss and illustrate 
Bayesian inference [ l ] ,  [a], [8], [16], [17], [19], [a l l ,  [22], [23], [28]. 

All of our analysis will be based on the assumption of diffuse prior opinion 
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp effectively independent of that for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu i ) ,  or roughly p ( p ,  u2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAut) =p(a2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d). This is not especially restrictive, and leads to the approximate marginal 
posterior density 

m 
2 2  

p”(a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, u,) = [ p” (p ,  ,“ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,Z) Q 

where 

i p =  
C Ji / (a2 + J d )  
i 

is a function of uz/u2. In  the balanced case J i  = J this simplifies to p = 8.. and 

2 -(1-1)12 2 2 Z -(N-I)/2 ssw 2 

P Y U 2 ,  u 3  cx P ( .  , u,)(a 1 exp [ - -1 (u + Ja,) 
2 2  

( 3 )  
mexp [ - sSB 1. 

2(u2 + JUB) 

It is to be noted that equation (3) expresses the fact that independent mea- 
surements have been made of u2 and u2+ Juz, and that the problem of inference 
about a2 and is thus closely related to other problems, for example, inference 
about background and source radioactivity based upon independent readings 
with and without the source present. Thus if Yl=counts without source, 
Yz==counts with source, E(Y1) ‘=XI, E(Y2) =X1+X2, and Y1 and Y z  have in- 
dependent Poisson distributions, then 
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VARIANCE COMPONENTS IN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATHE ONE-WAY MODEL 809 

P”(X1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXZ)/P(X,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX2) 

= Pr( ~ 1 ,  ~2 1x1, A,} = ~‘;l exp[--~11(~1+ ~ 2 ) ‘ ~  exp[-(Al+ ~ 2 1 1 .  

This is essentially equivalent to (3) as far as the likelihood function is con- 
cerned, although there is an interesting difference between inference about A2 

and inference about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat which we will not go into here. 

3. BALANCED CASE 

A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInference on u2 

The marginal posterior density for u2 is 

Now it is instructive to view the factor 

as a partial posterior distribution based solely on the data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgi., and the factor 

as a likelihood function based solely on the deviations y;j-gi.. The over-all 
posterior density is thus p”(g2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc p’(02)L(u2) SSW). The reason for this fac- 
torization is to focus attention on the information about u2 contained in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gi,, which seems often to be overlooked. 

The subtleties involved in inference on 02 stem from the factor p’(a2). When 
$(a2) can be regarded as gentle relative to L(u2( SSW) the principle of stable 
measurement applies and p”(u2) will be nearly proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL(u21 SSW) 
[8, p. 151, [16], [19, Ch. 31, [22, p. 201, [23, Ch. 41, For example, if p’(~~)oru-~ 
(strictly speaking this is impossible, but when stable estimation occurs the 
exact choice of p’ (02)  is immaterial, as is discussed further a t  the end of this 
section) then 

SSW 

[ - -5J p”($) cc (u2)-(I(J-I)/2)-l 

so that u2 is distributed approximately like SSW/x&J-l) where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx; denotes a 
random variable having the chi-square distribution with f degrees of freedom. 
This result is in harmony with the conventional approach under which SSW/uz 
has the chi-square distribution with I ( J -1 )  degrees of freedom for given uz. 
From a Bayesian viewpoint, however, this “stable measurement posterior” is 
merely one (rather simple) posterior distribution that may arise, and we can- 
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810 AMERICAN STATISTICAL ASSOCIATION JOURNAL, SEPTEMBER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1965 

not regard it as having any innate significance, except a t  best as a reasonable 
approximation in some circumstances. Indeed, the factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp’(a2) may not be 
gentle relative to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL(a21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASSW) even though sample sizes are large and L(a21 SXW) 
is quite sharp, and we must be extremely cautious in invoking the stable mea- 
surement approximation. 

Recall now that p’ (a2)  represents the posterior density of a2 arising from 
measurement of h2=a2+JaE (based only on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi) in conjunction with the 
prior joint density p(u2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa:). It is clear that precise measurement of h2 can lead 
to sharp upper bounds for tail probabilities of the form Pr’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat> C ] and Pr’ 1 a: 
> C }  (where the single prime indicates posterior probability based only on the 
data fji.) since each is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA110 larger than Pr’ { h2> C 1. On the other hand, within the 
set of (a2, a:) for which u2+ Ju: is in reasonable accord with our assumed precise 
measurement of h2, the partial posterior density p’(a2, a:) based solely on the 
gi. will be gentle unless our initial prior opinion as measured by p(a2, a:) is 
sharp. It is as though the precise measurement of h2 tends to sharply restrict the 
space of (a2, a:) to a set in which v2+Ju: is nearly constant and within that 
set preference is effectively governed by p(a2, a:). 

To illustrate, let us suppose that measurement of h2 is so sharp that we 
effectively determine a line a2+ Jaz = h2 = k having probability unity in the 
(a2, a:) plane. Then the joint density of (a2, a:) given the data fj;. is 

2 A 2  2 2  
d a  , a,) if u2 + Ja, = h , 

if not 

and 

Unless there is some rather special prior opinion, such as for example that it is 
highly probable that ah is close to some specified value or that az<a2, etc., one 
would anticipate that in many situations a rather typical prior opinion would 
have p(a2, a:) varying gently along the line a2+ Ja: = k. Thus it is natural to 
expect p’(a2) to be nearly constant in the interval 0 5 a2 5 k, and similarly with 
respect to p’(a2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtc p(@--Ja:, a:) for 0 5 a: I h2/J.  Except in the face of rather 
special prior knowledge, the data gi. for large I will lead one to rather precise 
opinions about h2 = a2+ Ja:, but one will be vague about a2 and a: outside of 
the fact that one will be nearly certain the first is not much larger than k 
and the second than b / J .  

Our discussion so far has been quite symmetric with respect to u2 and Ja:, 
An asymmetry is now introduced by bringing in the likelihood L(a2ISSW) 
based on the deviations yii-fji.. This function tends to point sharply to a 
value P. If $2<<h2 and if p(a2, a:) is gentle along the line a2+ Ja: = h2 then the 
over-all posterior p”(a2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc p’(a2)L(a21 XSW) will be nearly proportional to 
L(u2lXSW) within [0, h2] ,  and except for the truncation effect beyond hz 
[which will be far out in the upper tail of L ( f l  SXW)] we will have essentially 
the stable estimation posterior above (5) .  On the other hand, if $>>,@, then 
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VARIANCE COMPONENTS I N  T H E  ONE-WAY MODEL 81 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p’(a2) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL(u21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASSW) tend to cancel one another in the sense that each is large 
where the other is small. Since L(a21 SSW) points roughly to MSW, while the 
measurement of h2 points roughly to MSB, we see that the condition for such 
“cancellation” is roughly that M S  W>>MSB. 

We shall now assume p ( 2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa:) =pl(u2)p2(u:). This certainly need not be the 
case, but, for example, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2 reflects measurement error on an individual, while zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u: reflects variability of ((true values” between individuals then it is not un- 

natural that opinions about u2 and a: should be roughly independent. We find 

r m  2 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p”(a ) E p”(a , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,) du, 

J O  

It is tempting a t  this point to take pz(az) cc along the lines of Savage 
[23, p. 5.71 and others; however, the integral is then infinite because of the 
pole at zero. This is no real problem since the prior density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ~ ( a : )  ~c (&)-l would 

always be regarded as unrealistic near zero, and only be employed when this 
feature was not crucial in determining the posterior distribution. To avoid 
trouble near zero we shall give at a proper prior distribution, taking 

so that (u;)-l has a gamma distribution with parameters X,/2 and C,/2 chosen 
subjectively. Then 

SSB 2 

eexp [ - -3 du, 
2h2 

(6) 
SSB 

.exp [ - 
2(u2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY) 

and the last integral may be regarded as proportional to the density of a ran- 
dom variable. 

z = x - 1’ = { (r(I-3)/2.SSB/2)-1 - (rAa/2,Jca/2)-1], 
a t  least on the positive half-line, where qS is a random variable having the 
density 
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f ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtx-1e-8t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA! t > o ,  

and X and Y are independent. If C,= K,A,, then 

so we may represent diffuse prior opinion by a choice of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, near zero. However, 
the expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(uz), with suitable A, and C,, can be employed whether 
or not prior opinion about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAut is diffuse. 

The over-all posterior distribution of u2 thus may be regarded as a weighting 
of pl(u2)L(u2[ SAW) by the density of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, the resulting function being normalized 
to  have unit area on the positive half-line. Although 2 can clearly be negative, 
only the portion of its density for u2 2 0  is relevant to the over-all posterior dis- 
tribution of u2. Since both the mean and mode of Z are roughly M S B  - JC,/X,, 
this quantity locates the center of the distribution of 2. When it is negative, 
then the density of 2 will be monotonically decreasing for g"0, and the effect 
of the information supplied by the gi. is to  modify the partial posterior p1(u2) 

L(u21 SSW) based upon the yij-gi. alone by giving the greatest weight to  
small u2, and thus tending to  move opinions downward. When MSB-  JC,/A, 
> O  then the density of 2 will have only a portion of its left tail below zero, 
and there is a possibility of obtaining an extremely sharp posterior p"(u2). 

Now it is clear that  a great variety of situations are possible, and that the 
posterior distributions are in general analytically cumbersome. Although there 
are some natural approximations, and one such will be described in Section 3B 
where the distributional form of Z again arises in connection with u:, the point 
of view taken here is that such approximations need only play a minor role in 
the analysis of data. For it is ordinarily a minor computing task to  plot the 
posterior distributions corresponding to  one or perhaps several choices of 
prior. After such plotting an approximation may be chosen in order to simplify 
the description of the posterior, but this is not essential. The real need for ap- 
proximations in Bayesian theory is in the planning of an  experiment, for ex- 
ample in the choice of sample sizes, which we shall not discuss in this paper. 

We shall consider one other form of diffuse or gentle prior, namely p(u2, ~ 2 )  
cc ( U ~ ) - ~ ( U ~ + J U ~ ) - ~  for u2>0, uz 20, which as pointed out by Tiao and Tan [as] 
can be obtained by the method of Jeffreys. Although the J in this prior depends 
upon the sample size and would thus seem inappropriate, our point of view is 
that this prior is simply a convenient analytical form only to be used when in 
fact it makes little difference what the exact choice of prior is because of the 
sharpness of the likelihood function. We find for this prior D
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF,(t) is the cumulative distribution function of chi-square with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn de- 
grees of freedom. Note that this differs from the earlier stable estimation pos- 
terior only in the factor FZ-~(SSB/U~),  which is a monotonically decreasing 
function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2, concave for u2 <SXB/(I+l) and convex for u2>SSB/(I+1). 

If in (7) we put SSB = O ,  then 

ssw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{ - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT} ’ 

p”(u2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(uz)- (zJ- l ) /z - l  

so that posteriorly U ~ N S S W / X ~ ( Z J _ I ) ,  as was noted by Tiao and Tan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[as] .  This 
is a disturbing result. For if I is large then an XSB near zero would, based 
upon the gi. alone, lead to a strong opinion that u2 is “small.” On the other hand, 
a large XXW would, based upon the yij--qi. alone, lead to a strong opinion 
that uz is “large.” These two separate sources of information can thus lead to 
very different opinions about u2. Surely in the extreme case where XSB is very 
small and SSW is very large one is reluctant to accept u2-sXW/&-,, as 
describing over-all posterior opinion about u2. It should be pointed out that it 
is not simply this result (which after all was based upon an improper prior) that 
is in question, but really any way of combining the two divergent sources of 
information, if we keep to the original model. We shall consider this question 
further in connection with the example of Section 3D. 

A remark about the choice of prior may be appropriate here. In a rather 
abstract sense Bayesian theory supposes that an individual has a unique set of 
opinions a t  a given time, and thus a unique prior distribution of the parameters. 
Nonetheless the prior is never known with complete accuracy, and there is 
always a good deal of flexibility in the exact choice. Furthermore, when an 
informative experiment has been performed in the sense that the likelihood 
function is quite sharp relative t o  the prior, then the posterior distribution is 
essentially proportional to the likelihood function (i.e., we have stable estima- 
tion), and within wide limits the exact analytical specification of the prior is 
immaterial. In  such circumstances certain conventional “diffuse” priors are 
convenient (like that of Jeffreys) although largely arbitrary. When the pos- 
terior distribution depends crucially upon the prior, as we shall see it does in 
inference upon a: when <O, then no merely conventional prior can be used. 
In a certain sense this makes the prior seem to depend upon the data. I n  fact, 
however, it is only the degree of care we take in approximating our prior, not 
the prior itself, that depends upon the data. 

B. Inference on at 

The posterior density for r~: is 

Along the lines of the previous discussion we first take 
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so that  

Further, taking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp l (a2)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a2)-’ (we could just as well have chosen a proper gamma 
density) we have 

P ’ Y 4  P2(u:)P’(a:) 

where 

Let now zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ r - s i z , s ~ s i z  and Y = T11(J - l ) / 2 . s~~ /2  have independent gamma dis- 

on the positive half-line, the posterior density ~ ” ( a i )  oc pz(a:)p’(a2,) may be 
regarded as a truncation from below a t  zero of the distribution of Z together 
with a weighting by pZ(&.  We shall henceforth regard p’(& as proportional 
to  the density of Z on the whole real line, using the fact zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApz(a2,) =O for a: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< O  to 
yield the required truncation at zero. 

It is p’(a2) that  plays the role of a likelihood function (actually a marginal 
likelihood) in the formation of the marginal posterior density p”(a:). Since the 
distribution of Z depends upon I ,  J ,  S S B  and SSW, these four quantities de- 
termined by the data are parameters for p’(a2). The important thing to see is 
that the form of the posterior p”(& depends crucially upon the place where 
the truncation at zero occurs in the function p’ (a i ) ,  and this in turn depends 
upon the above four parameters. I n  particular, since the random variable Z 
has a unimodal density p’(a2,) with mode roughly at &:= J-I(MSB - M S W ) ,  
it follows that when &:<to the function p’(az) will be monotonically decreasing 
in the interval &O, with maximum a t  ai=O. Since p “ ( a i )  =O for ui <O only 
this interval is of interest. 

Thus we see that a negative &: leads to a likelihood factor with maximum 
at a: = 0 and decreasing monotonically in a:, The over-all import of such data is 
thus to  give relatively more weight to small a: in the posterior than in the 
prior, and this is presumably in accord with some frequentistic interpretations 
of negative &:. However, when we ask further how the degree of sharpness 
with which p’(az) is peaked at zero (which determines how strongly the data 
suggest that a: is small) depends upon the magnitude of the assumed negative 
&:, we come to a divergence of viewpoint. For when &:= J-I(MSB-MXW) <0, 

then the larger is SSW (and hence keeping SSB, I and J fixed, the more nega- 
tive is 8:) then the flatter is the function p’(a:). In  fact, if all other quantities 
are held fixed, 

tributions. Then since p’(& is proportional to  the density of Z= J-l(X-’- Y-’ ) 
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so that the posterior is the same as the prior, and in this sense the experiment 
has been completely uninformative about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat! 

To prove this we first note that 

where 

if and only if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMSW> [1+2LI(J--l)]MSB or &:<-2BMSB/IJ(J-l), and 
when this occurs p’ (at )  decreases monotonically from its value a t  zero. From 

(8) it follows easily that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

a In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP’(G> 
lim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, 

u 2 t a  a& 

the limit being approached monotonically from below. Further, an asymptotic 
expansion as 

simultaneously for all a: in any finite interval for sufhciently large SSW, and 

2 
d In  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp’(ua) 

is then monotonically increasing within such intervals from its negative value 
(9) at u2,=0. Since also 

it follows that p’(a2) becomes “flat” (measured by logarithmic derivative) as 
SXW zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 0 0 ,  and this in turn implies 

2 
lim p l l (az)  = p2(u i ) ,  for all a,, 

sswt * 

where both p”(& and p2(a:) are here assumed normalized to have unit area. 
Convergence in distribution is then easily shown. It is worth observing that 

as SSB 40, 

a In pl(u2a) I 
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decreases to 

if both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI and J are large, which indicates that the more negative zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA62 is for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$xed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SSW, then the stronger is the indication that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa: is small. 

One way of seeing the implications of these results is to compare zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp’(ut) with 
an exponential exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[-fez]. For fixed SSW the decreasing function p’(a2) is 

most concentrated near zero when SSB = 0, and in this case 

is an increasing function of ui, so p’(a2) is “flatter” than 

in the sense that 

When IJ IZMSW is small we may thus be able to quickly appraise the over-all 
influence of the data upon our prior opinion about ui,  and see that the pos- 
terior is essentially the same as the prior. 

We have so far discussed only the case 62<<0, when the truncation leaves 
only the monotonically decreasing portion of p’(u2). Since E ( 2 )  ~ 6 2 )  Var 
(2) = [ 2 / I P ]  [MSB2+MSW2/J]  it follows that a positive 6; may lead to a 
situation in which only a small portion of the area under p’(a2) lies to the left 
of zero and is cut off by the truncation. In  this case it will sometimes suffice 
to approximate p‘(a2) by a normal density with the same mean and variance. 
Even when the truncation occurs precisely at the mode of p’(a2) a normal ap- 
proximation may be suitable, although now only the half of the normal density 
above its mean will be used. As remarked earlier in connection with u2, such 
approximations are primarily useful in planning the experiment, since the like- 
lihood factor ~ ’ ( 0 : )  and the posterior p”(u2) can always be obtained numeri- 
cally. 

We note that Var (2) increases with MSW, so that when MSB>MSW 
(and thus 62>0), a large MSW leads to a relatively spread out posterior dis- 
tribution centered near 6:. Both this and our earlier result that large SSW 
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leads to  a flat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp’(ui)  when 3:<0 are reflections of the fact that  before the data 
are taken, the larger u2 is, the greater the variance of the random variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$2. 
Bayesianly, after the data are taken, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMSW plays much the same role as  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2 did 
prior to  the data. 

Finally, if we use the Jeffreys prior p(u2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu:) = (2 ) - l (u2+Ju? , ) - l ,  then the 
posterior distribution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuz is that  of the random variable 

truncated from below a t  zero. This distribution, censored instead of truncated 
from below at zero, has also been proposed as a fiducial solution [ll], [14]. 
Our viewpoint is that  when 8:<0, and particularly when MSW is large, this 
distribution (even truncated, and certainly when censored) is inappropriate as 
a measure of posterior opinion. For we have seen that in this case the data 
are extremely uninformative, that  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp”(& =p2(uz ) ,  and since one is left with 
his prior density it is inappropriate to  use a merely formal prior such as that  
of Jeffreys. From our point of view such a formal prior is only useful as a con- 
venient but more or less arbitrary choice made from a collection of priors all 
of which essentially yield the likelihood function (normalized in some way) 
as posterior distribution. When, as in the present case with $z<<O, the likelihood 
factor is flat relative to  the prior (the reverse of “stable estimation”), it becomes 
crucial to carefully assess the prior. 

C. Inference on &/u2 and p 

We consider now inference on ?= u2/u2 and p based upon the prior zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 2  2 -1 2 (-Xa/Z)-l 

P ( P ,  9 @a> ~c (u ) (ua) 
exp [- $1 

a 

We find (see Section 4 for details) the posterior density 

Note that if we had chosen A, =0, C, = 0, corresponding to  the prior zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u:)-’, then 

1 -(1-1)/2 

(T2)>-’ (7’ f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7) 
q ” ( T 2 )  Cc 

o( (.2)-1 

[SXB + SSW(I + J T 2 ) ] ( r J - 1 ” 2  
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would be improper. However, the difficulty arises only at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2 near zero, where 
the prior cannot be viewed as realistic, and sometimes can be avoided 
by the simple device of truncating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg”(T2) at some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE > O ,  or alternatively by 
approximating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(T”>-’ by (.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, 
which yields the same result as if we had chosen the Jeffreys prior to begin 
with. In  the latter case we find 

( r2 + +)(I(J-1)/2)-1 

____ gI’(7.2) 
[SSB + SSW(1 + JT~) ] ( ’~ -~) ’~  

which states that 
2 

SSW XI (J-1) 
(1 + J?) = -y-- 

SSB XI-1 

truncated from below a t  SSW/SSB, or 

truncated from below at MSW/MSB, in some but not complete harmony with 
tradition. Here FI(j-1) ,‘-I denotes a random variable having the truncated F 
distribution with the indicated degrees of freedom. We also note that  in the 
balanced case with A, = C, = 0, that given r2, 

SSB 

[ssw + ixG11u2 
has the chi-square distribution with I J -  1 degrees of freedom. 

make the approximation 
Now let us consider the situation M S B I M S W .  To gain insight we shall 

with F truncated from below at MSWIMSB (the approximation of course may 
sometimes be poor) and find 

Pr  

Pr 

b f S B  - < F * - )  
Pr - 

where here P’* has ail ordiiiary F’ distribution with the above degrees of freedoin. 
Now, dependiiig on the degrees of freedom, uiiity may be either more or less 
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than the 50th percentile of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF*. However, in the present case, with numerator 
degrccs of freedom larger than denominator, unity is always less than the 50th 
percentile, the latter approaching unity as both degrees of freedom grow large. 
If MSB <MS W then the probability Pr” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2 5 t l i  for intervals of given 
length will be maximal when to = 0, and 

Further, if we take the limit as M S W I M S B  goes to 0 0 ,  then 

which is a proper probability distribution. When I and J are large it is thus 
clear that a large ratio M S W I M S B  leads to  a strong opinion that r2 is very 
small. Since in this case the truncation occurs far out in the tail of the F dis- 
tribution, in practice it would not be clear how seriously to  take this limiting 

distribution in viea- of the strong dependence upon the tail of F.  
When MSWIMSB 2 1, Pr” 10 5 r2 5 tl 1 may be quite large for even small tl. 

For example, if both degrees of freedom are large, then 

Pr”(0 5 r2 I t l )  = 2 Pri l  I F” i 1 + J t l )  

and if tl=J-l this is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Pr( 1 5 F * 5 2 )  which will be very near unity. 
Inference on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is based on the result (see Section 4 for details) that, given 

r2, d G H ( p - g . , )  has the Student t distribution with n=N+X,-1 degrees of 

freedom, and 

C, SSB 
- I S S W + T + Y  

while, if further zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, = C ,  = 0, then 

given r2, where here 

SST = SSB + SSW = C (yij - IJ..)’, 
i.i 

and t(N-1) is a random variable having the t distribution with N - 1 degrees of 
freedom. Thus, we obtain simple conditional credible intervals on p, given 9, 
and obtain over-all posterior probabilities by integrating with respect to  
g”(r2). In  any event, since for each given r2 it is clear that  the posterior expec- 
tation of p is g.., this is also true unconditionally, and in fact the posterior 
distribution of p is symmetric about 8.. . 
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D. An Example and Discussion 

We shall consider a rather extreme example in order to bring out most clearly 
the nature of our results. Suppose that I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 5, J = 10, MSW = 2500, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMSB = .01, 
and thus &: = 1/10 (.01- 2500) = - 250. Then 

(a) Inferenceupon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuE/u2 can be based upon the limiting distribution (12) 
as MSWIMSB goes to ~ 0 ,  so that Pr”i0_<T2<cIdata} =1-(1+10~)-~, 

which is .99 if c = .9, and the data provide a strong indication that r2 < 1. 

(b) Since - IJ/2MSW = - .01 and SSW is sufficiently large, the likelihood 
factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp’(& is “flatter” than the exponential exp[--.01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat], and thus 
within the inverval0 < U; 5 10 the likelihood ratio p ’ ( O ) / p ’ ( u z )  5 exp [.1] 

-1.1. Within this interval the likelihood factor and hence the data 
modify the prior pZ(c:) only slightly. Generally speaking in this kind of 
situation the prior density p2(& must be carefully evaluated if the 
model is not rejected and decisions are to be based upon knowledge 

(c)  Based upon (7) we find a2~ssw/x~ ,=112500 /x~ ,  and the posterior 
expectation of u2 is about 2300. As discussed earlier the discrepancy 
between the inference based upon the 5;. alone and that based upon 
the yij-gi. alone is disturbing. Thus h2-SSB/xi = .04/x;, so that 

of u:. 

which is quite near unity if c > 10. But 

Pr’fu > c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI yij - gi.1 = Pr{XSW/X45 > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc ]  = Pr{Xt6 < 112500/cj 
2 2 

which is also quite near unity if say c<lOOO. In  a situation such as 
this one is forced to face up to the real uncertainties concerning the 
model. This is not at all inconsistent with Bayesian philosophy since 
real opinions about data never precisely correspond to any model, and 
even a very small prior doubt of the model can be enormously magnified 
by extreme data. When such data occur there is no alternative but to 
broaden the model, often along the lines suggested by the data. In this 
example it is natural to consider constraints, either deterministic or 
probabilistic, that tend to keep the Qi nearly equal. It is important to 
see that extreme data cannot in themselves cause rejection of the model 
(except of course if the observations are literally impossible), but rather 
that they may give heavy weight to alternative models which were 
never before the experiment regarded as totally implausible. Although 
the Bayesian theory of models is in a primitive form, some useful ideas 
have been presented [l], [a], [17, Ch. V and VI]. 

(d) Using (13) we have, given ?, 

[SST zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf J T ~ S S W ] ~ ~ ~  t ( N - 1 )  
P-5.. + 

N ( N  - 1) 
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= j j . , + ~ ~ ( l + 1 0 r 2 ) 1 ~ 2 t ~ 9 ,  and the posterior distribution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is sym- 
metric about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjj... Depending upon the amount of work we wish to do 
we can alternatively either integrate out zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2, replace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2 by its posterior 
expectation making some allowance for uncertainty about r2, or simply 

make use of rough bounds such as 455Var (pIdata)<llX45. 

We emphasize that in this artificial example there can be no prior opinions 
about the parameters, since neither the data nor the parameters have any 
meaning. Our purpose was merely to indicate the form which inference will 
tend to take. In  any real problem the prior can always be assessed, although 
perhaps with difficulty. 

4. THE UNBALANCED CASE 

We shall now deal with the estimation of u2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAot, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2=ot/02 and p in the 
general unbalanced case. Our approach will be to work directly with the bi- 
variate posterior distribution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA($, r2) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p,  r2), since the conditional pos- 
terior distributions of 2, ot and f i ,  given r2, take on standard and relatively 
simple forms. 

Based upon the approximate posterior density (2), and letting 

we obtain the posterior density 

gI’(a2, 7 2 )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cc 

X 

K 

X 

The marginal posterior density of 7 2  is then 

- l / 2  

2 [ ? 1 + J i  Jir2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ( r  2) -A. 12- 1 n: (1 + Jirz)-1’2 

while the conditional posterior density of o2 given r2 is 

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
M

in
n
es

o
ta

 L
ib

ra
ri

es
, 
T

w
in

 C
it

ie
s]

 a
t 

1
1
:4

7
 2

5
 S

ep
te

m
b
er

 2
0
1
4
 



822 AMERICAN STATISTICAL ASSOCIATION JOURNAL, SEPTEMBER 1965 

Hence, given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2, the variable 

and 

so that each of these posterior probabilities is the integral of the chi-square 
probability of an interval whose endpoints are functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2, with respect to 
the posterior distribution of r2. Various approximations are available, the 
simplest, which is appropriate when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg’’(9) points sharply to a value ?>O,  
being 

Pr“{to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2 _< t l )  = Pr”(to 5 0 2  _< t l J  7 2  = P ]  

and 

the latter probabilities being evaluated from the chi-square distribution. Even 
when g”(?) is not particularly sharp these approximations will be appropriate 
if the endpoints of the interval for x2(N-h,-1) are relatively gentle functions of r2. 
In general, however, we must be prepared to perform the integration, perhaps 
numerically, and towards this end we shall now examine g” (T2 )  more closely. 

Write 

g”(72) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0: 
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where g1(r2) and [g2(r2)]-’ are the numerator and denominator of g”(r2), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Li zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ji-l. Verify that  

so that g1(r2) decreases montonically from gl(0) = m to g l (m)  =O. 
Next we find (see also Wald [27]) 

= - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ai. - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP I 2  
(T2  + LJ2 7-2 + Li 

so that 

to 

where here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a = (CJ<a*.>/CJi. 

Thus g”(T2) is the product of monotonically increasing and decreasing factors, 
typically goes to zero as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2 goes to  zero or infinity, and has a unique mode say 
at P. By various approximations we can judge the posterior probability of 
intervals about ‘i2 (or better centered a t  the posterior mean or median), and 
thus determine approximate credible intervals. It is also natural to  approximate 
~ ” ( 7 2 )  by an F density (with degrees of freedom to be fitted), since g”(r2) is 
of this form in the balanced case. 

Now we turn to  inference about p. If g”(p, u2, r2) is the joint posterior density 
of (p ,  u2, ~ 2 )  then 

g”(p, 7-2)  = L W g r y p ,  u2, 7 2 ) d U Z  

(T2)--Xa/2-1 n(1 + J i T 2 ) - ” 2  
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( r2) - (A&)-1 II(1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJir2)--1/2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N 

Since 

then 

where 

Now let x = & H ( p - i i ) ,  n=N+X,-1. Then, given r2, the conditional pos- 
terior density of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is 

x 2  -(n+1)/2 

P ” ( X  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI OC {1 + --} ’ 

so that & H ( p -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG) has (conditional on ?) Student’s distribution with 
n = N+X, - 1 degrees of freedom. 

By numerical integration or other approximation methods we can obtain the 
unconditional posterior distribution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ;  for example, if g”(r2) is sharply con- 
centrated at say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe2, then we can act as though it were known that  r2 = e2 making 
some rough allowance for the residual uncertainty about r2. 

We note that the unbalanced case offers only more complexity in the form of 
the posterior distributions, and no fundamental difficulties. 
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