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Abstract

Regression models in which a response variable is related to smooth functions of some

predictor variables are popular as a result of their appealing balance between flexibility

and interpretability. Since the original generalized additive models of Hastie and Tib-

shirani (Generalized additive models. Chapman & Hall, Boca Raton, 1990) numerous

model extensions have been proposed, and a variety of practically useful computational

strategies have emerged. This paper provides an overview of some widely applicable

frameworks for this type of modelling, emphasizing the similarities between the dif-

ferent approaches, and the equivalence of smoothing, Gaussian latent process models

and Gaussian random effects. The focus is particularly on Bayes empirical smoother

theory, fully Bayesian inference via stochastic simulation or integrated nested Laplace

approximation and boosting.

Keywords Smoothing · Regression · Smoothing parameters · INLA · Boosting ·
Empirical bayes · Reduced rank

Mathematics Subject Classification 62J05 · 62J07 · 62J12

1 Introduction

Since Hastie and Tibshirani (1986, 1990) combined generalized linear models with the

smoothing methods developed in the 1970s and 1980s (see especially Wahba 1990)
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to produce the generalized additive model, there has been a great deal of activity

extending these models and developing alternative computational approaches to their

use. The original GAM was

yi ∼ EF(μi , φ) where g(μi ) = Aiγ +
∑

j

f j (x j i ), (1)

yi is a univariate response variable, EF(μi , φ) denotes an exponential family distri-

bution with mean μi and scale parameter φ, Ai is the i th row of a parametric model

matrix, γ are regression parameters, the f j are smooth functions to be estimated, and

x j is a covariate (usually, but not necessarily, univariate). The original model fitting

method involved estimating the f j by iterative smoothing of partial residuals w.r.t. the

x j : the backfitting algorithm. It was soon realized that models beyond the exponential

family, multivariate models and models with multiple linear predictors could also be

estimated, with Yee and Wild (1996) providing a pioneering reference (see Yee 2015,

for an overview) and further impetus provided by Rigby and Stasinopoulos (2005)

and Stasinopoulos et al. (2007, 2017).

Parallel to the backfitting developments was a recognition that the full practical

benefits promised by allowing flexible dependence on covariates can only be fully

realized if the degree of smoothing of the f j can be estimated as part of model fit-

ting. The first practical methods for multiple smoothing parameter estimation were

provided by Gu and Wahba (1991) and Gu (1992), but these had O(n3) computational

cost (n = dim(y)). By representing the f j using reduced rank spline smoothers, as

suggested in Wahba (1980) and Parker and Rice (1985), Wood (2000) provided a

much more efficient smoothing parameter estimation method. Meanwhile, Fahrmeir

and Lang (2001) exploited the sparse reduced rank P-splines of Eilers and Marx (1996)

for stochastic simulation-based inference with GAMs, while the reduced rank penal-

ized spline approach of Ruppert et al. (2003) employed mixed model fitting ideas, in

which smoothing parameters are treated as variance parameters. The Bayesian and

mixed model approaches exploit a duality between spline smoothing and Gaussian

random effects identified in Kimeldorf and Wahba (1970) and made particularly clear

by Silverman (1985).

Once sound methods had been developed (and subsequently refined) for inference

with GAMs, including inference about the smoothness of the component f j , it was only

a matter of time before these methods were also extended to wider classes of model:

beyond univariate exponential family models to essentially any regular likelihood and

to models in which any or all parameters of a likelihood might depend on separate sums

of smooth functions of covariates (GAMLSS or ‘distributional regression’ models).

See for example Belitz et al. (2015), Klein et al. (2015), Lang et al. (2014), Mayr et al.

(2012), Umlauf et al. (2015), Wood et al. (2016), Wood and Fasiolo (2017). At the

same time alternative computational methods were developed, most notably boosting

(Schmid and Hothorn 2008) and the simulation-free approach to Bayesian inference,

integrated nested Laplace approximation (INLA, Rue et al. 2009, 2017). The lat-

ter allows efficient inference without requiring low rank representations of smooths,

thereby facilitating improved modelling of short-range correlation. There was also

work on the modelling of smooth interactions and multidimensional smoothing of
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various sorts of spatial and spatiotemporal data and on allowing linear functionals of

smooth functions in models.

The purpose of this paper is to provide an overview (albeit scandalously skewed to

my own work) of the theory and computational methods for working with these general

smooth regression models, emphasizing that the different computational strategies are

using essentially the same modelling framework, based on the correspondence between

smoothing and latent Gaussian random field models (and indeed simple Gaussian ran-

dom effects), and the fact that ‘smoothing’ can be induced by an appropriate choice of

Gaussian prior. Similarly, most inference with such models can be viewed as Bayesian

or empirical Bayesian, albeit with some results suggesting good frequentist properties,

and access to some frequentist tools such as AIC and approximate p values. Much of

what is discussed here is available in the R package mgcv, and code for the examples

is supplied as supplementary material.

2 Statistical function estimation

The key statistical concepts for modelling with smooth functions are most easily

explained in the context of a one-dimensional model for smoothing a response variable

y with respect to a predictor variable (covariate), x . Let yi be modelled as an obser-

vation of a random variable with probability (density) function π(yi |μi , θ) where μi

is a location parameter (e.g. E(yi )) and θ a vector of other parameters of the likeli-

hood (e.g. the dispersion parameter of a negative binomial). The interesting part of

our model states that μi is an unknown function of xi ,

μi = f (xi ) or g(μi ) = f (xi ) for i = 1, . . . , n, (2)

where g is an (optional) known smooth monotonic link function, useful for keeping

μi within some pre-defined range (such as (0, 1) or (0,∞)). Assuming that the yi

are independent, given xi , the log-likelihood function for such a model is l( f , θ) =
∑

i log π(yi |μi , θ). But without further structure f̂ = argmax f l( f , θ) is not unique.

Any f corresponding to each μi maximizing π(yi |μi , θ) would have equal likelihood

and f is free to do anything in between xi values.

To obtain uniqueness of f̂ requires more structure. Let us assume that f is smooth.

To make this precise we need a mathematical characterization of smoothness. One

possibility is

A function f is smoother than a function g if
∫

f ′′(x)2dx <
∫

g′′(x)2dx .

There are many alternatives to the integrated squared second derivative, or cubic spline,

penalty,
∫

f ′′(x)2dx , which all lead to essentially the same mathematical structure,

so we lose nothing by sticking with this one for the moment. Notice how the penalty

will be high for a very wiggly curve, but is zero if f is any linear function of x .

We could now remove the ambiguity in f̂ by picking the minimizer of
∫

f ′′(x)2dx

among the maximizers of the log likelihood, but in most cases (with distinct xi values)

the resulting model would then interpolate the xi , yi data so that μ̂i = yi . Interpolation

is rarely a desirable outcome of statistical modelling, since it amounts to ‘fitting the
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noise’ as well as the signal. We need stronger smoothness restrictions on f . These can

be obtained by penalizing the log likelihood using the smoothing penalty, so that we

seek

f̂ , θ̂ = argmax
f ,θ

l( f , θ) − λ

2

∫

f ′′(x)2dx (3)

where λ is now a parameter controlling the balance between smoothness and model

fit in estimation (the 2 is convenient later). The addition of the penalty automatically

means that we select the candidate f̂ that is smoothest in between the xi values, so the

initial lack of identifiability has gone. But from the theory of inequality constrained

optimization you can also see that imposing the penalty is equivalent to putting some

upper bound on the value of
∫

f ′′(x)2dx allowed in the solution, with λ/2 playing the

role of a Lagrange multiplier. This means that we no longer interpolate the data, and

the larger λ is, the more heavily we smooth it.

How do we get from infinite-dimensional functional optimization problem (3) to

something computable? It turns out that if N ≤ n is the number of unique xi , then the

solution to (3) has the form

f̂ (x) =
N
∑

j=1

β j b j (x)

where the β j are coefficients to be chosen to maximize (3), but the basis functions,

b j (x), have known fixed form, which does not depend on λ. In consequence we can

express the n vector of evaluated function values, f (xi ), as f = Xβ where X i j =
b j (xi ), and hence the log likelihood, l, can be expressed as a function of the unknown

coefficients β. The basis functions are of course not unique: if A is any rank N matrix,

then the functions a j (x) =
∑

k A jkbk(x) form an equally valid basis, and in fact the

analytic forms of several such alternatives are known.

From the known b j (x) it also follows that
∫

f ′′(x)2dx = βT Sβ where the elements

of matrix S are fixed and known. To see this let b(x) and b′′(x) denote the vectors of

basis functions, and second derivates of basis functions, evaluated at x . So f (x) =
βT b(x) and hence f ′′(x) = βT b′′(x). It follows that f ′′(x)2 = βT b′′(x)b′′(x)T β and

so
∫

f ′′(x)2dx = βT
∫

b′′(x)b′′(x)T dxβ = βT Sβ, where Si j =
∫

b′′
i (x)b′′

j (x)dx .

So estimation problem (3) becomes the readily computable (see Sect. 5.1)

β̂, θ̂ = argmax
β,θ

l(β, θ) − λ

2
βT Sβ. (4)

2.1 Reduced rank representation of smooth functions

Having reduced the infinite-dimensional optimization to an n (+ dim(θ))-dimensional

optimization is a step forward, but will generally entail O(n3) computational cost.1

1 Actually there are cheaper algorithms when we have only one smooth term, but these do not apply once

we have more than one smooth term in a model.
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Fig. 1 Smoothing with a reduced rank (K = 16) cubic spline basis. Data are open circles. The spline fit is

the thick black curve, which is the sum of B-spline basis functions, b j (x), each multiplied by an estimated

coefficient, β j , illustrated as thin dashed curves. The value of the cubic spline penalty is shown for each of

the 3 increasingly smooth fits

Do we really need n (or N ) coefficients? To answer this we need to consider the two

sources of error in estimating f . The first is the error entailed by approximating f using

a (cubic) spline basis: even if we observed f without error at the xi values and just

interpolated the resulting data, between the data we would have an error proportional

to the 4th power of the spacing between adjacent xi values (de Boor 2001). For evenly

spaced xi (or any reasonably behaved infill process generating xi ) this corresponds

to an approximation error of O(n−4): this is the rate that we have to expect for the

estimation bias. The second error is the regular statistical estimation error, which

cannot be better than O(n−1/2)—so, clearly we have considerable scope for allowing

the bias to increase before it becomes significant relative to the sampling uncertainty.

To exploit this observation, we could decide to pick K evenly spaced xi values from

our full set of n and compute the K cubic spline basis functions that would have been

obtained if these were all the data points we had. We can then use this reduced set

of basis functions to represent f as f (x) =
∑K

j=1 β j b j (x) when modelling our full

data set. The approximation error/bias is now O(K −4), while the sampling error is at

worst O(
√

K/n) (it could be of lower order depending on penalization). This suggests

setting K = n1/9 if we want to minimize the overall error and not have the bias or

sampling error dominating at a worse rate asymptotically. A more careful consideration

of the situation under penalization (e.g. Claeskens et al. 2009) actually suggests setting

K = O(n1/5), but this does not alter the main point, which is that from a statistical

perspective we are not gaining anything useful by using n basis functions (and hence

coefficients), and we might as well use far fewer. If we do this, the cost of solving (4)

typically drops to O(nK 2). Figure 1 shows a rank 16 basis used to smooth 100 data.

2.1.1 Eigen-based rank reduction

Rather than simply picking K ‘nice’ values of xi from which to compute basis func-

tions, we could seek the K basis functions that are ‘best’ in some sense. This idea

leads to reduced rank eigen bases. One general possibility is to form the full basis and

then to form the QR decomposition X = QR followed by the eigen decomposition

UDUT = R−1SR−T . The reparameterization β̃ = UT Rβ corresponds to setting the

penalty matrix S to the diagonal eigenvalue matrix D and the basis function matrix

X to QU. The columns of QU are now interpretable as the evaluated basis functions

123



312 S. N. Wood

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

1
0

x

y

⌠
⌡

f"(x)2
dx = 241000

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

1
0

x

y

⌠
⌡

f"(x)2
dx = 33500

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

1
0

x

y

⌠
⌡

f"(x)2
dx = 350

Fig. 2 As Fig. 1, but using a rank 16 eigen basis. Notice how the scaled basis functions (β j b j (x)—thin

curves) now have an ordering from smooth to wiggly and are no longer compactly supported translations

of each other. Also notice how all basis functions are involved in the wiggly fit on the left, but as the

penalization increases (so that the value of the penalty decreases), the more wiggly basis functions are

shrunk towards zero

under reparameterization, and if the diagonal elements of D are arranged in order of

decreasing magnitude, then the columns of QU will be arranged in order of decreas-

ing wiggliness, since they represent decreasingly heavily penalized components of f .

Hence to obtain a reduced rank basis, we can simply retain the final K columns of QU

and rows and columns of D, which is equivalent to setting all but the last K elements

of β̃ to zero (see, e.g. Wood 2017a, section 5.4.2 for a fuller discussion). While simple

and general, the disadvantage of this approach is that it has an O(n3) set-up cost for

the matrix decompositions. However, for some choices of basis function, an almost

equivalent optimal approximation can be based solely on a truncated eigen decompo-

sition of the S matrix, which can be computed at O(n2 K ) computational cost using

Lanczos methods (Wood 2003). When n is large these eigen approximations are usu-

ally combined with xi selection: for example, a size nr random sample of the original

xi values is selected, and a spline basis is computed for this which is then used as the

basis for obtaining a rank K basis by eigen methods. The idea is that n ≫ nr ≫ K .

Figure 2 illustrates such a basis.

2.1.2 P-splines and all that

The idea of rank reduced smoothing goes back at least as far as Wahba (1980) and

Parker and Rice (1985) and in the GAM context is discussed in Hastie and Tibshirani

(1990), but it was given renewed impetus by Eilers and Marx (1996) and Ruppert

et al. (2003) who provided alternative (but closely related) spline like reduced rank

smoothers that had the advantage of being very easy to set up. In the Eilers and Marx

(1996) case they also had the singular advantage of providing sparse bases and penal-

ties,2 facilitating computational efficiency in the context of Bayesian computation.

The Eilers and Marx (1996) idea is to use a ‘B-spline basis’ (e.g. de Boor 2001) such

as that illustrated in Fig. 1, but replace the associated derivative-based penalty with a

difference penalty on the model coefficients, such as
∑

j (β j+1 −2β j +β j−1)
2 (one is

free to choose the order of difference in the penalty). The simplicity of implementing

this approach has led to a wide range of applications (see Eilers et al. 2015). Actually,

2 That is bases and penalties yielding model matrices and penalty matrices with a high proportion of zero

entries.
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sparse penalties and the ability to freely choose the penalty order are also readily avail-

able when using derivative-based penalties (Wood 2017b) although implementation

requires slightly more code. The Ruppert et al. (2003) approach used the truncated

power basis for splines, with a simple ridge penalty on the coefficients of the trun-

cated basis functions. The advantage of this is that it makes for very easy fitting using

standard mixed modelling software.

2.2 Further inference about smooth functions

How can we estimate the smoothing parameter, λ, or make inferences about f beyond

simple point estimation? A Bayesian view of the smoothing penalty helps. It only

makes sense to penalize a particular definition of smoothness if we believe that cor-

respondingly smooth functions are somehow more probable than wiggly ones. A

Bayesian prior formalizes this:

π(β|λ) ∝ exp(−βT Sλβ/2),

which is immediately recognizable as an improper Gaussian prior on β with mean

0 and precision matrix Sλ: here Sλ = λS, but it will be generalized later. The prior

is improper because Sλ is rank deficient by the dimension of the penalty null space

(the dimension of the space of functions with zero penalty: 2 for the cubic spline

penalty). Combining this prior with our model likelihood, the objective function in (4)

is immediately recognizable as the log joint density of y and β (to within an additive

constant). Hence β̂ is the posterior mode, or MAP estimate.

Given a prior and likelihood we can apply Bayes theorem to get a posterior distri-

bution π(β|y, λ). This only has closed form when the likelihood is Gaussian, but a

simple Taylor expansion about β̂ shows that for arbitrary λ, a Fisher regular likelihood

with suitably bounded second and third derivatives and K = o(n1/3) (see e.g. Wood

et al. 2016, §B.4)

β|y, λ ∼ N (β̂, (Î + Sλ)
−1), (5)

in the n → ∞ limit, where Î is the observed information matrix (Hessian of the

negative log likelihood) at β̂. This result is particularly useful, since it requires only

quantities that we would anyway have to compute in order to maximize (4) by Newton’s

method. Of course if the model is such that K growing at less than n1/3 is not a tenable

assumption, then we would have to use a higher-order approximation or MCMC for

inference about β (see Sect. 5.2).

(5) is useful for computing credible intervals for any function of β. For nonlinear

functions we simulate replicate β vectors from (5) and compute the corresponding

function of each replicate. For linear functions, such as the smooth itself, no simulation

is necessary, because such functions have a directly computable Gaussian distribution.

For example, confidence intervals for f (x) can be computed and have remarkably

good frequentist coverage properties, provided we consider average coverage, over

the range of observed x values (the intervals may over or undercover pointwise at
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Fig. 3 Global annual mean temperature anomalies plotted against year and smoothed with a rank 50 spline

basis using a cubic spline penalty, with smoothing parameter estimated by marginal likelihood (REML)

maximization. The grey band is a 95% credible interval computed using (5). The smooth function estimate

has 11.7 effective degrees of freedom

particular x values, but not when averaged over all x values). Nychka (1988) provides

explanation of why this occurs (or see Wood 2017a, section 6.10.1) and why the

interval performance is rather robust to the choice of smoothing parameter value.

The smoothness prior view also facilitates the empirical Bayes approach of estimat-

ing λ (finding its MAP estimate under a flat prior) as the maximizer of the marginal

likelihood

π(y|λ) =
∫

π(y|β, λ)π(β|λ)dβ.

Notice how the marginal likelihood can be interpreted as the average likelihood of

random draws from the prior π(β|λ). We are choosing λ so that random draws from

the prior have the right level of smoothness to get close enough to the data to have

reasonably high likelihood. Except for the Gaussian likelihood case the integral is

intractable. But since π(y|λ) = π(y|β, λ)π(β|λ)/π(β|y, λ), then when (5) is valid

we can use the approximation

π(y|λ) ≃ πL(y|λ) = π(y|β̂, λ)π(β̂|λ)

πG(β̂|y, λ)
(6)

where πG(β|y, λ) denotes the p.d.f. of Gaussian approximation (5). In fact this approx-

imation is identically a first-order Laplace approximation (see e.g. Wood 2015, section

5.3.1) to the marginal likelihood integral (a proper prior can also be placed on log λ if

needed).

In summary, having obtained a basis and chosen a penalty for f , we can esti-

mate the smoothing parameter, λ to maximize (6), while the model coefficient

estimates/posterior modes given λ are obtained from (4). Bayesian credible intervals

for β and hence f can be obtained using (5). Figure 3 shows a reduced rank spline

computed in this way to smooth the global temperature series. Section 5 gives computa-

tional details alongside fully Bayesian alternatives. Notice how general the inferential
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machinery is here. The Gaussian smoothing prior gives our smooth model the structure

of a Gaussian random effect/field or a latent Gaussian process model or a Gaussian

process regression model: these are different terms for essentially the same thing.

The Bayesian view of spline smoothing dates back to Kimeldorf and Wahba (1970),

with marginal likelihood being used for λ estimation in Anderssen and Bloomfield

(1974), but the real impetus came with Wahba (1983), Wahba (1985) and Silverman

(1985). More recent linkage of mixed models and smoothing is really a rediscovery

of the same ideas.

2.3 Other aspects of inference

Marginal likelihood is not the only approach to estimating λ. Cross-validation chooses

λ to maximize the average model probability of each yi , when that yi was omitted

from the fit, i.e.

lcv(λ) =
∑

i

log π(yi |μ̂[−i], λ)

is maximized, where μ̂[−i] is the estimate of μi when yi is omitted from the fitting data.

Computationally efficient (and invariant) approximations to lcv give rise to generalized

cross-validation (GCV Craven and Wahba 1979) and generalized approximate cross-

validation (e.g. Gu 1992; Wood 2008). Another approach is to obtain an AIC (Akaike

1973) like criterion, by developing an estimate of the KL divergence of the model

from the true model, accounting for penalization, and choosing λ to minimize this.

Attempting to find a computable approximation to lcv or an appropriate AIC lead to

essentially the same criterion to minimize

AIC = −2l(β̂) + 2τ where τ = trace{(Î + Sλ)
−1

Î}.

Since τ takes the role of the number of parameters in AIC, it is natural to interpret it

as the effective degrees of freedom of the model. It is easy to see that the maximum

value of τ is K when λ = 0 and with slightly more effort that as λ → ∞, τ → 2

(the dimension of the null space of S). In between it take intermediate values. A more

detailed consideration of the eigen approximation considered in Sect. 2.1 suggests

that in general there is always3 a reduced rank eigen basis of dimension close to τ

that will yield un-penalized estimates having very similar statistical behaviour to the

penalized estimates with EDF, τ . So in that sense the characterization is reasonable.

Another characterization of τ is as the number of coefficients multiplied by their

average shrinkage as a result of penalization. Anticipating Sect. 3.1, if we sum up

the elements of diag{(Î + Sλ)
−1

Î} corresponding to one smooth, then we obtain its

term-specific effective degrees of freedom. The smooth in Fig. 3 has τ = 11.7.

AIC can be used for model selection in the usual way, but for optimal model selection

behaviour it is necessary to correct τ for λ estimation uncertainty (see Greven and

3 Note that while this applies to smooth function estimates, it does not apply to general Gaussian random

effects where there is no covariate ordering the observations.
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Fig. 4 Additive model example. Top right: relationship between directly measured and remote-sensed

oceanic chlorophyll. Remaining panels: estimates for the model chl ∼ Tweedie with log mean given

by β0 + f1(
√
chl.sw) + f2(bath1/4) + f3(jul.dat) + I(chl.sw = 0)β1, i.e. by a smooth additive

dependence on remote-sensed chlorophyll, sea depth and day of year plus a parameter for when the satellite

reading is zero. Transformations avoid excessive leverage. The relationship between direct and satellite

measurements is strongly seasonally modulated and varies sharply between continental shelf and oceanic

sea bed depths: see Clarke et al. (2006)

Kneib 2010; Wood et al. 2016). Another approach to model selection is to develop

p values for the hypothesis f (x) = 0. It is again necessary to carefully account for

penalization in order to obtain reasonable approximations, but this is also possible

(see Wood 2013a, b).

3 Smooth regression in general

A wide array of models fit within the basic framework of a Fisher regular likelihood

and basis expansions with quadratic smoothing penalties/Gaussian smoothing priors.

3.1 Extension I: additive in several smooth functions

An immediate extension of one-dimensional smoothing model (2) is to leave the

distributional assumptions for yi unchanged, but to allow the location parameter to

depend additively on several smooth functions of predictors, x j , and possibly on some

parametric effects, so that

g(μi ) = ηi where ηi = Aiγ +
∑

j

f j (x j i ), (7)
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Ai is the i th row of a parametric model matrix with parameters γ and ηi is known as

the linear predictor of the model. This extension (essential the generalized additive

model of Hastie and Tibshirani 1986, 1990) is easily accommodated by replacing each

smooth function f j with a basis expansion, and associating a smoothing penalty with

it, exactly as in the single smooth case. Figure 4 shows an example model calibrating

satellite chlorophyll measurements.

The only new issue that we now need to deal with is identifiability: the f j are

only identifiable to within an intercept term. To remove the ambiguity requires a

linear constraint on each f j . To obtain minimum width confidence intervals for the

constrained smooth functions, sum-to-zero constraints are generally used.4 For a single

smooth, f (x), with basis matrix, X, and coefficients, β, the constraint is
∑n

i=1 f (xi ) =
0 or equivalently 1T Xβ = 0. As an identifiability constraint it can be imposed either

by reparameterizing to absorb the constraint into X and S or by adding an extra

quadratic penalty to the penalized likelihood during fitting: βT XT 11T Xβ (since the

penalty is merely removing the lack of identifiability there is no ‘smoothing parameter’

associated with it). Absorbing the constraint requires some routine book-keeping when

subsequently predicting from the model (see e.g. Wood 2017a, §5.4.1).5

Everything else follows as in the one-dimensional case. The f j are replaced by

their basis expansions, so that for the whole model we end up with η = Xβ where

X contains A and the evaluated basis functions for each f j in successive blocks of

columns. Similarly β contains γ and the coefficients for the different f j terms (θ still

denotes extra likelihood parameters). The fitting problem then becomes

β̂, θ̂ = argmax
β,θ

l(β, θ) − 1

2

∑

j

λ jβ
T S jβ, (8)

which only differs from the one-dimensional case in having a penalty/precision matrix

made up of a sum of terms: i.e. Sλ =
∑

j λ j S j (here the individual S j are zero

except for a nonzero block on the diagonal, corresponding to the coefficients for f j ).

Hence inference proceeds exactly as in the one-dimensional case: the move to several

smoothing parameters may complicate computation, but introduces nothing new to the

statistical framework, beyond the fact that when interpreting smooth terms we have

to bear in mind the sum-to-zero identifiability constraints.

3.2 Extension II: beyond one-dimensional splines

The preceding general framework applies equally well when some components are

smooth functions of several variables, and when the quadratically penalized basis

expansions represent something other than a spline. For example, any Gaussian

random effect can be represented as some model matrix columns and a quadratic

penalty/Gaussian prior. Hence such terms can be added to a linear predictor just like

any smooth (giving generalized additive mixed models in the exponential family case).

4 the literature contains many examples of using other slightly simpler to implement constraints, often

accompanied by tremendously wide confidence intervals on the smooth effects

5 See Rue and Held (2005, §2.3.3) for how to maintain basis sparsity with a sum to zero constraint
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Fig. 5 Isotropic spline example. Left: presence (white) or absence (black) of Crested Lark in survey quadrats

in Portugal. Right: logit of the probability of the presence of Crested Lark in a quadrat, from a logistic

regression model in which logit of probability is represented by a reduced rank Duchon spline of spatial

location

The only extension that this might involve is that in general the precision matrix might

not be of the form
∑

j λ j S j that fits directly into the framework discussed so far, and

we might have to consider a nonlinear parameterization of the precision matrix. In

a similar vein, Gaussian Markov random fields can also be represented as a set of

(sparse) model matrix columns and a sparse precision matrix and the same is true for

a variety of Gaussian process regression models.

The generalization of spline smoothing to several dimensions is closely bound up

with how we define smoothness, with the best known generalization being the thin plate

spline functional of Duchon (1977). Consider a smooth function of two covariates,

f (x, z). Letting subscripts denote differentiation w.r.t. a variable, the thin plate spline

smoothing penalty is

∫

fxx (x, z)2 + 2 fxz(x, z)2 + fzz(x, z)2dxdz.

As in the one-dimensional case, the optimizer of the penalized likelihood maximiza-

tion problem with this penalty turns out to have a finite-dimensional representation

in terms of n (or N ) known basis functions. We can also generalize to more than

2 covariates, although there is a technical nuisance that the spline only exists if the

order of differentiation in the penalty increases with the number of covariates (rapidly

leading to inconveniently large penalty null space dimensions). Duchon’s original

paper actually eliminated this nuisance with a modification of the penalty: the result-

ing splines are as straightforward to compute with as the thin plate splines and are

generally preferable in higher dimensions. As in the single covariate case, the use of

n basis functions is excessive from a statistical perspective, and expensive computa-

tionally, so rank reduction is used. Since the selection of a ‘nice’ set of K covariate

points becomes awkward beyond one dimension, the eigen approximations are partic-

ularly appealing. Figure 5 shows a Duchon spline, with first derivative penalization,

modelling probability of presence of Crested Lark in Portugal, as a function of spatial

location, in a logistic regression.

An obvious feature of the thin plate and other Duchon splines is isotropy. The

penalty is invariant to rotations of the covariate space: we are choosing to treat smooth-

ness in all directions equally. This is often not appropriate. Consider smoothing with
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respect to a distance and time. The thin plate spline treats squared second derivative

with respect to time and squared second derivative with respect to distance ‘equally’,

but simply changing the measurement units for time and distance we will change these

quantities—their relative magnitude is arbitrary.

For smooths of covariates with no natural relative scaling, a nonisotropic construc-

tion is preferable. This can be achieved by applying the usual notion of a statistical

interaction to smooth functions: that is, the effect of one covariate is itself modified

by another covariate. In a parametric model the coefficients describing the relation-

ship between the response and a covariate vary with another covariate. This translates

directly to the smooth function case. For example, consider the basis expansion for a

term f (z) =
∑

j α j a j (z), where the α j are coefficients and the a j (z) are known basis

functions. Suppose that we want a smooth interaction between z and another covariate

x . All that is needed is for the coefficients, α j , to become smooth functions of x , which

we can do using a second basis expansion α j (x) =
∑

k β jkbk(x). Substituting back

in to the original expansion yields f (x, z) =
∑

j,k β jka j (z)bk(x).

Now consider how the model matrix columns for the interaction relate to those of

the corresponding main effect. Let A and B denote the marginal model matrices with

elements Ai j = a j (zi ) and Bi j = b j (xi ). Then the model matrix columns, X, for the

interaction are given by the elementwise products of all possible pairings of columns

of A with columns of B. That is the row-tensor-product or row-Kronecker-product of

A and B. This is exactly the same as the way that any interaction of two main effects

is produced in a linear model.

Smoothing penalties are not a standard part of any interaction, and their set-up

requires some care. Firstly, we need to avoid the arbitrary scale sensitivity of the

isotropic smoothers.6 The way to do this is to have a separate penalty corresponding

to each marginal smooth. For example, if we would use a penalty
∫

f ′′(z)2dz for

smoothing with respect to z in one dimension, then it makes sense to use an average

of the same penalty applied over the whole of f (x, z). We would then produce a

similar penalty for smoothing with respect to x and allow each penalty to have its

own smoothing parameter. The separate smoothing parameters allow the smooth to be

invariant to covariate scaling—any rescaling is effectively absorbed by the smoothing

parameters. There are a number of ways to produce such penalties that are completely

automatic, given a basis and penalty for each marginal smooth: see Wood (2017a,

§5.6) for more. Figure 6 illustrates the tensor product basis and penalty construction

for a two-dimensional case.

The basis and penalty constructions generalize directly to > 2 covariates and to

using isotropic smoothers as marginals—an appealing construction for spatiotemporal

modelling.

3.2.1 Smooth ANOVA

Another standard feature of statistical modelling with interactions is the desire to

separate additive ‘main effects’ from pure interactions, excluding the main effects. In

6 And the pseudoinsensitivity that occurs by ad hoc measures like transforming all covariates to the unit

interval.
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Fig. 6 Tensor product smooth construction example. Left: A smooth function of f (z) is represented using

a spline parameterized in terms of function values at 6 equally spaced knots. These parameters are then

allowed to vary smoothly with x to create a smooth function of x and z. Middle: the smooth variation of

the parameters of f (z) is facilitated by representing each using a spline of x . The construction is in fact

symmetric in x and z. Right: separate smoothness penalties in the z and x directions ensure scale invariance.

We can construct an x penalty by summing
∫

f 2
xx dx along the thin black curves. A separate z penalty is

then constructed by summing the
∫

f 2
zzdz along the dotted curves

standard parametric regression modelling this is achieved automatically by applying

identifiability constraints to the main effect model matrix columns, before using them

to construct the model matrix columns for the interaction. This is unchanged when an

effect is represented using a basis expansion. For example (letting f s with different

arguments be different functions), consider a model term

α + f (x) + f (z) + f (x, z)

If we apply sum-to-zero constraints to the basis expansions for f (x) and f (z) before

we construct the interaction term f (x, z), then we automatically exclude functions of

the form f (x)+ f (z) from the basis for the interaction. This is because the constraints

have eliminated the constant function from the bases for f (x) and f (z), and without

the constant function in the basis for f (x) the interaction term will not contain a

copy of the basis for f (z), while the absence of the constant function from the f (z)

basis similarly puts pay to the copy of the f (x) basis that would otherwise occur

in the interaction. Since the constant functions are in the null space of any sensible

smoothing penalty, their elimination does not change the penalty.

Hence the construction of ‘smooth-ANOVA’ models involves nothing new beyond

standard regression modelling (and generalizes immediately beyond 2 covariates).

Interpretation of the models is slightly different however, since a different penalty

is generally assumed for the main effects + interaction model, as opposed to the

interaction model. For example, a smooth term f̃ (x, z) (without constraints on the

marginals) would have the same basis as a smooth term f (x)+ f (z)+ f (x, z) (where

the marginals are constrained before constructing the interaction). But the smoothing

penalties are, for example

λ1

∫

f̃xx (x, z)2dxdz + λ2

∫

f̃zz(x, z)2dxdz
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Fig. 7 Smooth ANOVA logistic regression model example. The model is logit(p) = f1(dur)+ f2(gly)+
f3(bmi) + f4(dur,gly) + f5(dur,bmi) + f6(bmi,gly) where pi is probability of retinopathy in a

cohort of diabetics; dur, gly and bmi are duration of disease, percent glycosylated haemoglobin and body

mass index. Smoothing parameters estimated by marginal likelihood maximization. Top row: estimated main

effects. Bottom row: estimated interactions (excluding main effects). Data originally from the gss package

of Gu (2013)

versus the clearly different,

λ1

∫

fxx (x)2dx + λ2

∫

fzz(z)
2dx + λ3

∫

fxx (x, z)2dxdz + λ4

∫

fzz(x, z)2dxdz,

Other penalty constructions are possible in which no such difference occurs, but these

have less interpretable penalties. See Fig. 7 and Gu (2013) for a complete treatment

of such models.

3.3 Extension III: linear functionals of smooth functions

Another extension allows linear functionals of smooths as model components (Wahba

1990). An example is ‘signal regression’ (e.g. Marx and Eilers 2005) where a spectrum

or other measured function is used as a covariate. Consider predicting the octane

rating of fuel (expensive to measure) from a near-infrared spectrum from the fuel

(cheaper). The spectrum measures sample reflectance at a large number of closely

space frequencies, ν. A model might be

yi =
∫

f (ν)ki (ν)dν + ǫi

where yi is the directly measured octance rating and ki (ν) the corresponding spec-

trum. f (ν) is a smooth coefficient function to estimate and ǫi a noise term. Because

the model is linear in f (ν) it fits readily into the framework already discussed.
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Fig. 8 Simple signal regression example. Left: 8 (of 60) near-infrared spectra from gasoline samples along

with their octane ratings. The spectra are vertically shifted for clarity, with the octane ratings in the same

order. Since the spectra are cheap to measure, relative to the octane rating, it would be good to predict

the latter from the former. Middle: estimated smooth coefficient function, f , from the model octanei =
∫

f (ν)ki (ν)dν + ǫi where ν is frequency and ki (ν) the i th spectrum. Right: the relationship between

measured and predicted octane

Given a basis expansion f (ν) =
∑

j β j b j (ν), the model matrix elements are

X i j =
∫

b j (ν)ki (ν)dν. Of course in reality the integral is usually replaced by a

discrete sum and some quadrature weights. Figure 8 illustrates the fit of this model.

Other linear functional terms are possible, and such terms can of course be mixed with

more conventional terms.

3.4 Extension IV: several smooth linear predictors

So far we have considered models where only a single location parameter of the

response distribution depends on covariates. There is also nothing to stop us having

a smooth additive linear predictor for several parameters of the response distribu-

tion. For example, if the yi are independent given covariates, we might have yi ∼
D(θ1i , θ2i , . . .) where g j (θ j i ) =

∑

k f jk(x jki ), D denotes a distribution, with param-

eter θ j , g j is a link function, and f jk is a smooth function of covariate x jk . On replacing

the unknown smooth functions with basis expansions and penalties, nothing funda-

mental has changed with this extension. We still have a quadratically penalized log like-

lihood to optimize for the model coefficients, and the smoothing parameter estimation

problem is also similar. As a simple example consider the motorcycle crash data shown

in the left panel of Fig. 12. A model for these data (available in mgcv, for example) is

ai ∼ N ( f1(ti ), e f2(ti ))

where f1 and f2 are smooth functions modelling the expected acceleration and the

log standard deviation of the measured acceleration. Model estimates from fitting in

mgcv, using marginal likelihood maximization to estimate smoothing parameters, are

shown in black in Fig. 12.

Once we have allowed multiple linear predictors then allowing (low-dimensional)

multivariate responses is also only a small step that does not fundamentally alter the
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fitting problem. See Yee and Wild (1996), Yee (2015), Rigby and Stasinopoulos (2005),

Klein et al. (2014), Klein et al. (2015) and Wood et al. (2016) for various approaches

to distributional and multivariate smooth regression and software (e.g. mgcv offers

several such models, gamlss far more).

3.5 ExtensionV: general dependence on several smooth functions

Having got this far adding generalizations which leave basic fitting objective (8), and

associated inferential framework unchanged, it is worth asking just how general the

framework appears to be? The answer is that we can use basically the same frame-

work for any model in which the likelihood depends on covariates via multiple smooth

functions of those covariates, where ‘smooth function’ is taken to include any term

represented by some model matrix columns with (optionally) a nonnegative quadratic

penalty. Generally we assume that the penalties are linear in the smoothing parameters,

but even this is relaxable, with some loss of numerical robustness. A simple example

that fits into this general framework is the Cox proportional hazards model with a

smooth additive predictor (implemented by the cox.ph family in mgcv), for which

the log likelihood does not have the standard sum-of-independent-terms form of the

models considered in previous sections (unless we are prepared to increase the compu-

tational cost by a factor of n and use an equivalent Poisson likelihood for pseudodata).

Models in which some smooth terms are subject to shape constraint can also be

covered by this extension. A simple approach follows Pya and Wood (2015) and repre-

sents the shape-constrained smooths (including smooth interactions) using a nonlinear

reparameterization of P-splines (Eilers and Marx 1996). The key insight is that shape

constraints such as monotonicity and convexity of a function can be imposed by

applying the constraint to the coefficients of a B-spline basis expansion (e.g. if the

coefficients are increasing with covariate x then so is the resulting spline). A simple

reparameterization imposes such conditions on the basis coefficients, and a quadratic

smoothing penalty on the working coefficients imposes smoothness.7

4 Model checking

Model checking is the search for evidence that our model is detectably and substantially

wrong. In linear modelling, checks are most usefully based on the model residuals,

yi − μ̂i , which should approximate i.i.d. N (0, σ 2) random deviates if the model is

correct. Plots of residuals against covariates and μ̂i can reveal that they are not, as can

QQ-plots, and in some cases plots of autocorrelation functions or variograms. There

are a number of analogues of linear model residuals for more general likelihoods. For

example deviance residuals are based on twice the difference between the maximum

value that the likelihood contribution for yi could have taken, and the (generally lower)

value it took under the model. The sign of yi − μ̂i is often attached to this, when it

7 There is a tendency for the literature on shape-constrained smoothing to contain assertions that smoothing

penalties are unnecessary under shape constraint: there is no theoretical or empirical evidence that this is

true. What is true is that elimination of smoothing penalties makes theorem proving much easier.
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Fig. 9 Simple residual checking example. The plots relate to a Tweedie model of Horse Mackerel egg count

sample data collected by survey ships from the coastal waters of Western Britain, France and Northern Spain:

smooth effects of location, salinity, surface and 20 m depth temperature were included, explaining 70% of

the deviance. The count data are 71% zeroes, as large parts of the survey area returned zero counts: the

zeroes produce the prominent lower bounding curve in the left plot of deviance residuals against square root

of fitted values (which is unproblematic). Middle: a standard normal QQ-plot of deviance residuals for the

model: it appears problematic and might lead to the wrong conclusion that a zero-inflated model is needed.

Right a QQ-plot (with reference band) based on the simulation-based distribution of residuals expected if

the model is correct: this appears largely unproblematic

makes sense to do so. For some models the deviance residuals have approximately

independent N (0, 1) distributions if all is well, which means that they can be checked

in the same way as linear model residuals.

Such residual checks also apply when using smooth models, but there are two issues

to be aware of. Firstly, there are many distributions for which the deviance residual

distribution is far from N (0, 1) even if the model is exactly correct. Low count data

are an example. Neglect of this fact is a key driver of the overuse of zero-inflated

models.8 This problem can be overcome by repeatedly simulating new data from the

fitted model and recomputing residuals, to build up the empirical distribution of the

residuals when the model is correct. Figure 9 gives an example of some checking

plots for count data with a high proportion of zeroes, illustrating the danger of being

mislead by naive interpretation of the plots and data. See also Augustin et al. (2012).

The second problem occurs when the number of model coefficients is large (so

that the p = o(n1/3) assumption needed for a Gaussian posterior approximation is

implausible). In this case the uncertainty in μ̂i becomes a nonnegligible part of the

variability in the residuals, which can again cause the residual distribution to differ from

that under the true μi . Again simulation can help—but this time we have to simulate

new data from the fitted model, and then refit to those data in order to simulate from

the residual distribution.

The checking step unique to smooth models is the need to check the basis dimen-

sions used for function approximation. Usually we look for patterns in the model

residuals with respect to the covariates of the smooth function being checked. If we

find pattern—especially related to positive correlation at small distances—then it could

be that the basis dimension is too small. Variograms are one way to do this. Another

is to compare the mean squared difference between neighbouring residuals to the dis-

8 Although secondary to the even worse error of using the fact that the marginal distribution of the data

has lots of zeroes and does not look marginally Poisson, negative binomial, or whatever.

123



Inference and computation with generalized additive models… 325

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
2
5
0

−
2
0
0

−
1
5
0

−
1
0
0

β^=3.09

β

l(β
)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
2
5
0

−
2
0
0

−
1
5
0

−
1
0
0

β^=2.56

β

l(β
)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
2
5
0

−
2
0
0

−
1
5
0

−
1
0
0

β^=2.41

β

l(β
)

Fig. 10 Newton’s method illustrated for a single parameter,β. The fitting objective, l(β) (i.e. a log likelihood,

penalized log likelihood or log marginal likelihood), is shown as a black curve in each panel. Left: we start

with a parameter guess β̂ = 4 and evaluate l, dl/dβ and d2l/dβ2 at this point. The dashed curve shows the

quadratic function matching l and its first 2 derivatives at β̂ = 4. This quadratic is maximized at β̂ = 3.09,

so this becomes the next estimate. Middle: the evaluation of l(β) and derivatives is repeated at β̂ = 3.09,

and the matching quadratic is maximized again to get β̂ = 2.56. Right: the process is repeated again and is

almost converged

tribution of this quantity under randomization of the residuals (see Wood 2017a, §5.9

and mgcv function gam.check).

5 Computational methods

Writing down model extensions is easy: computing with them in an efficient and stable

manner is more challenging, and this section outlines some alternative approaches.

The preceding discussion implicitly favours an approach that might be termed Bayes

empirical smoothing theory (BEST). It is appropriate when the total number, p, of

model coefficients, β, (smooth coefficients plus random effects) is sufficiently modest

that p = o(n1/3) is a reasonable assumption, leading to asymptotically Gaussian

posterior (5) and a well-founded Laplace approximation to the marginal likelihood.

For small samples, a complex random effects structure, or when p is too large for

the p = o(n1/3) assumption to be reasonable, a fully Bayesian approach is required,

and the choice is then between stochastic simulation and higher-order approximation

for the coefficients, via the INLA method. The latter was designed for the p = O(n)

case, enabling modelling of short-range autocorrelation (exploiting sparse bases and

penalties). When the model structure is uncertain and large numbers of smooth terms

have to be screened for inclusion, then gradient boosting is often effective. Smooth

term estimates are built up iteratively from sums of the oversmoothed versions of each

smooth term, fitted to the gradient of the log likelihood. This approach can elegantly

integrate model selection with fitting.

5.1 Bayes empirical smoothing theory

This approach finds λ̂ by maximizing (6) with respect to λ (or in practice ρ = log λ).

A Newton or quasi-Newton method is usually employed for this purpose. That is we

iteratively maximize quadratic approximations to log πL(y|λ), where the approxima-
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tions are based on derivatives of log πL w.r.t. ρ at each successive trial λ̂. Because (6)

depends on λ via β̂, as well as directly, each step of the optimization for λ̂ requires an

‘inner’ maximization of (8) to find the β̂ corresponding to the current λ̂. Furthermore

we require the derivatives of β̂ w.r.t. ρ, in order to compute the derivatives of log πL

w.r.t. ρ, required by the ‘outer’ iteration: this can be achieved by implicit differentia-

tion. For example, it is straightforward to show that, dβ̂/dρi = −λi (Î + Sλ)
−1Si β̂,

and to differentiate again to get second derivatives. Figure 10 illustrates Newton’s

method. The discussion here is based on Wood (2011) and Wood et al. (2016).

To fix ideas, here is an outline of the algorithm, which is iterated to convergence

1. Given λ̂ = exp(ρ̂) iterate β̂ ← β̂ + (Î + S
λ̂
)−1(dl/dβ − S

λ̂
β̂) to convergence.

2. Compute ∂β̂/∂ρ and ∂2β̂/∂ρ∂ρT , and hence obtain ∂ log πL/∂ρ and

∂2 log πL/∂ρ∂ρT .

3. Set

ρ̂ ← ρ̂ −
(

∂2 log πL

∂ρ∂ρT

)−1
∂ log πL

∂ρ
.

Practical Details: 1. To ensure convergence, the Hessian matrices, −∂2 log πL/∂ρ∂ρT

and Î + Sλ, must be perturbed to be positive definite if they are not already. Also the

update steps taken at steps 1 and 3 must be (repeatedly) halved if they decrease (8)

or log πL , respectively. 2. Convergence occurs when the derivatives of the penalized

log likelihood w.r.t. β are near zero (step 1. iteration) or when ∂β̂/∂ρ ≃ 0 (whole

iteration). 3. Starting β̂ from its previous value, or from β̂+�ρT ∂β̂/∂ρ, ensures rapid

convergence at step 1. 4. Indefiniteness at step 2 can be dealt with using a pivoting

approach when obtaining the Cholesky factor of Î+Sλ. 5. Quasi-Newton optimization

can be substituted for optimization w.r.t. ρ. 6. A final numerical unpleasantness is that

the Gaussian prior and the approximate Gaussian posterior used in log πL involve two

log determinant terms that have to be computed: log |Î + Sλ| and log |Sλ|+.9 Naïve

computation of these can fail badly, especially when some smoothing parameters tend

to infinity, as they may legitimately do if some terms should be ‘completely smooth’.

The difficulty then is that the eigenvalues of Sλ or Î + Sλ can become so disparate

in size that the smaller values lose all precision, so that the evaluation of the log

determinant similarly loses all precision. There are two alternative solutions to this

problem. Alternative 1: if Sλ is block diagonal with only one smoothing parameter per

block, then the log determinant can be computed blockwise without problem, but when

blocks have multiple smoothing parameters (e.g. tensor product smooths), then it is

possible to automatically reparameterize to recover stability (see Wood 2011, 2017a,

§6.2.7). Alternative 2 recognizes that the log determinants only need to be evaluated

in order to check that the Newton steps are increasing log πL , rather than diverging.

An alternative is to check that the less numerically problematic directional derivative

9 |Sλ|+ is a generalized determinant—the product of the nonzero eigenvalues of Sλ.
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�ρT ∂ log πL/∂ρ is not too negative at the proposed ρ̂, as this would indicate that we

have overstepped the maximum (Wood et al. 2017).10

Once we have β̂ and λ̂ we can use (5) for further inference. On occasion we may

want to adjust this result for smoothing parameter uncertainty. The simplest correction

(Wood et al. 2016) is to set the covariance matrix for β|y to

Vβ = (Î + Sλ)
−1 − ∂β̂

∂ρ

(

∂2 log πL

∂ρ∂ρT

)−1
∂β̂

T

∂ρT
.

A useful application of this correction is in the calculation of the AIC, where we set

the effective degrees of freedom to τ = tr(Vβ Î), to avoid the problems otherwise

caused by neglecting smoothing parameter uncertainty in AIC computation.

5.1.1 Automatic differentiation, less differentiation and BEST

The numerical approach sketched out above requires 3rd- or 4th-order derivatives of

the model log-likelihood with respect to its parameters, depending on whether we

use quasi-Newton or Newton’s method. This acts as an impediment to the imple-

mentation of new model likelihoods, since the derivatives must first be found and

then implemented carefully to avoid numerical instability (via cancellation error, for

example). There are two approaches to easing the burden: find methods that require

fewer derivatives, or automate the differentiation.

An approach that avoids the higher-order derivatives is a generalization of the

method of Fellner (1986) and Schall (1991), which alternates Newton updates of β̂

given λ̂ with updates

λ j ← tr(S−
λ S j ) − tr{(Î + Sλ)

−1S j }

β̂
T

S j β̂
λ j .

tr(S−
λ S j ) is the formal expression for the derivative of the log generalized determinant

log |Sλ|+ w.r.t. λ j . It is of course not computed by forming S−
λ explicitly: for example,

for terms with a single smoothing parameter λ j , tr(S−
λ S j ) = rank(S j ). Wood and

Fasiolo (2017) show that the approach approximately optimizes the Laplace approx-

imate marginal likelihood πL , and discuss convergence properties. Clearly it only

requires first and second derivatives of the model log likelihood, but we lose access to

information on smoothing parameter uncertainty.

Alternatively we can seek to automate the differentiation process. An obvious

approach is to use a symbolic algebra package to obtain the derivatives of the log

likelihood and to try to automate the process of turning those derivatives into code.

The generalized extreme value distribution is an example in which the derivative sys-

tems are very tedious to attempt to deal with in a nonautomated way. In consequence

10 Alternative 2 does not carry the same convergence guarantees as 1 and does not work with quasi-Newton

optimization of smoothing parameters. Quasi-Newton methods maintain an approximation to the Hessian

or its inverse and require careful step length control to maintain positive definiteness of this approximation.
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the gevlss log likelihood in mgcv was produced by symbolic differentiation in

Maxima, export of the resulting Maxima expressions to R and auto-translation and

simplification in R. This works, but still required manual intervention to recode some

expressions in more stable, less cancellation or overflow prone manners.

The less obvious approach to automation is to use automatic differentiation (AD).

This eliminates the ‘maths-to-code’ translation of derivatives, by differentiating the

computer code implementing the derivatives directly. It should not be confused with

approximate evaluation of derivatives by finite differencing. AD methods apply the

chain rule directly to the computer code implementing the evaluation of a function.

See Wood (2015, §5.5) for an introduction. Given libraries for AD the complete BEST

approach can be implemented for any model by simply coding up the log likelihood:

the TMB package in R does just that (Kristensen et al. 2016). For nonstandard models

in particular this is a compelling option. The downside is that AD carries overheads

that can reduce efficiency, and for large-scale models in particular, one may have to

work quite hard to maintain enough sparsity to avoid high memory costs. There is also

no guarantee that the AD derivatives will avoid cancellation and overflow instabilities

any more easily than ‘hand coded’ derivatives.

5.2 Full Bayes

The BEST approach estimates the smoothing parameters, λ̂, and performs further

inference with these values fixed or uses simple corrections for their uncertainty. It

also uses simple Gaussian approximations to the posterior distribution of β. We only

have strong theoretical backup for this approach when n is large and the assumption

p = o(n1/3) is reasonable. In particular for situations in which the model effective

degrees of freedom is fairly large in proportion to the sample size, or the sample size is

small, the approximations are likely to show nonnegligible errors, and a fully Bayesian

approach is needed. There are two main approaches at present: stochastic sampling or

higher-order approximation.

5.2.1 Stochastic sampling

For a fully Bayesian approach we will need a prior for λ, so that the joint prior

for all the model parameters is now π(β|λ)π(λ). Let us write β and λ in a single

parameter vector ϑ . We can simulate from the posterior distribution π(ϑ |y) using the

Metropolis Hastings algorithm. Firstly assume that we have some distribution q(ϑ ′|ϑ)

from which to generate proposal values, ϑ ′, for the parameters, given current values,

ϑ . The sampling algorithm is as follows.

Set ϑ to any possible value and repeat the following steps

1. Generate a proposal ϑ ′ ∼ q(ϑ ′|ϑ) and a U (0, 1) random deviate u.

2. Set ϑ ← ϑ ′ if (computing on log scale to avoid underflow)

log u ≤ log π(y|ϑ ′) + log π(ϑ ′) + log q(ϑ |ϑ)

− log π(y|ϑ) − log π(ϑ) − log q(ϑ ′|ϑ)

123



Inference and computation with generalized additive models… 329

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.0

−
0
.6

−
0
.2

0
.2

x0

s
(x

0
,4

.0
6
)

0.2 0.4 0.6 0.8

0
.2

0
.4

0
.6

0
.8

te(x1,x2,16.84)

x1

x
2

−3

 −3 

 −2 

 −2 

 −1 

 −1 

0 

 0 

 1 

 1 

 2 

 3 

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.0

−
0
.6

−
0
.2

0
.2

x3

s
(x

3
,0

.6
9
)

0 2000 4000 6000 8000 10000

−
0
.6

−
0
.2

0
.2

0
.4

0
.6

iteration

f(
.1

,.
5
,.
9
)

Fig. 11 Simple stochastic simulation example. Sampling from the posterior of yi ∼ Gamma(μi , φ),

log μi = f0(x0i ) + f1(x1i , x2i ) + f2(x3i ) was performed using JAGS (Plummer 2003), set up using

the jagam function in mgcv (Wood 2016). The leftmost three panels show posterior mean estimates for

the functions (with credible intervals for f0 and f2) . The rightmost plot is a trace plot showing the simulated

values of f0 at x0 = 0.1, 0.5 and 0.9

3. Store the current ϑ .

The stored ϑ vectors form a nonindependent sample from π(ϑ |y). Because the samples

are not independent and the initial ϑ may be improbable, we discard some samples

from the early part of the iteration, only retaining those from the point at which the

simulated chain of values appears to have settled down to the centre of the posterior

distribution. All other inferential questions are then addressed using this sample from

the posterior. See Fig. 11 for an example.

Practical details: 1. Computational efficiency rests on the nontrivial task of finding

a proposal distribution, q, that takes large steps likely to be accepted. 2. Nothing in

the algorithm prevents us from updating only some parameters at each iteration: such

block updating can make it easier to find good proposals. If we propose from the

distribution of the updated parameters, conditional on the other parameters, we have

Gibbs sampling. 3. An obvious approach is to base q on (5): a) We could use (5)

as a fixed proposal, independent of the current simulated ϑ . But then the chain can

get ‘stuck’ in regions that are much more probable under the posterior than under

the proposal (making it heavier tailed can help). b) We can use (5) as the basis for

a random walk proposal centred on the current ϑ . Usually the covariance matrix is

shrunk in this case. c) We might base blockwise proposals on approximate versions of

(5) built only from the information in that block. 4. Greater efficiency can be gained

using hybrid/Hamiltonian Monte Carlo methods which augment ϑ with some auxiliary

momentum variables, giving each component of ϑ the tendency to keep going in the

direction of increasing probability.

See Wood (2015, ch. 6) for MCMC basics and e.g. Fahrmeir and Lang (2001),

Fahrmeir et al. (2004), Lang and Brezger (2004) and Lang et al. (2014) for more on

this approach.

5.2.2 INLA

Stochastic sampling becomes increasingly difficult as the dimension increases. Rue

et al. (2009) realized that there is a rather efficient way to obtain very accurate

approximations to the marginal posterior distributions of model coefficients with no

simulation. The original integrated nested Laplace approximation (INLA, Rue et al.

2009; Lindgren et al. 2011; Martins et al. 2013; Rue et al. 2017) is closely tied to
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sparse representation of effects as Gaussian Markov random fields (GMRF), but the

ideas can also be extended to the nonsparse case.

INLA obtains the marginal distribution of β and hyperparameters (including

smoothing parameters), ϑ , from

π(βi |y) =
∫

π(βi |ϑ, y)π(ϑ |y)dϑ and π(ϑi |y) =
∫

π(ϑ |y)dϑ−i (9)

where a subscript ‘−i’ denotes a vector without its i th element. Laplace approxima-

tions are used for the distributions in the integrands, and the integrals are evaluated

using relatively coarse numerical quadrature (see Rue et al. 2009, especially §6.5).

Alternatively we might choose to skip the integration step, simply setting ϑ to its

posterior mode.

The posterior of ϑ is approximated using the same first-order Laplace approxima-

tion (6) employed in the empirical Bayes approach

π̃(ϑ |y) ∝ π(β̂, y,ϑ)/πG(β̂|y,ϑ)

where β̂ is the maximizer of π(β, y,ϑ) and πG(β|ϑ, y) = N (β̂, H−1) where H

is the Hessian of − log π(β, y,ϑ) w.r.t. β at β̂. Since πG is evaluated at its mode

the approximation is simply π(θ |y) ∝ π(β̂, y,ϑ)/|H|1/2. β̂ and the Hessian are

identically those used in BEST.

The most important step in INLA is the approximation

π̃(βi |ϑ, y) ∝ π(β̃, y,ϑ)/πGG(β̃−i |βi , y,ϑ), (10)

where β̃ maximizes π(β, y,ϑ) given the constraint β̃i = βi , and πGG is a Gaussian

approximation to π(β−i |βi , y,ϑ). Following the empirical Bayes route, we could

approximate π(βi |ϑ, y) directly from πG(β|ϑ, y), but this would involve evaluating

a Gaussian approximation in the distribution’s tails, where it is often inaccurate. In

contrast (10) only requires the evaluation of a Gaussian approximation at its mode and

is therefore much more accurate. At worst, a relative error in πGG at its mode produces

an equivalent relative error in (10): in comparison for the marginal based on πG the

error simply grows as we move into the tails. Finally, the approximate π(βi |ϑ, y) is

always renormalized in practice: this is easily done for a one-dimensional function

and eliminates any constant error due to inaccuracy of πGG at its mode.

If πGG is based directly on the mode and Hessian of log π(β−i |βi , y,ϑ) then (10) is

exactly the Laplace approximation to
∫

π(β, y,ϑ)dβ−i , and the informal discussion

of approximation error, above, can be formalized (Shun and McCullagh 1995; Rue

et al. 2009). But direct evaluation of the required Hessian for each βi is computationally

prohibitive. Computationally efficient approximations to the Laplace approximation

are required. One possibility is to base πGG on the conditional density implied by πG ,

in which case the Hessian is constant and

β̃−i = β̂−i + 	−i,i�
−1
i,i (βi − β̂i ), (11)
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Fig. 12 Distributional regression and INLA example. Left: the grey circles show acceleration, a, of the

head of a crash test dummy against time, t , in simulated motorcycle accidents. A model for the data is

ai ∼ N ( f1(ti ), e f2(ti )). The partially obscured continuous black curve shows the f̂1 using the BEST

approach, while the black dashed lines denote the corresponding 95% CIs for f1. The overlayed grey

curves are the 0.025, 0.1, 0.5, 0.9 and 0.975 quantiles of the posterior for f1 computed using the INLA

approach. Right: similar plot for f2

where 	 = H−1. This results in the approximation π(βi |ϑ, y) ∝ π(β̃, y,ϑ), which

is demonstrably a substantial improvement on directly using the marginal from πG .

Better approximations are possible, however. Rue et al. (2009) use (11), but also

approximate the dependence on βi of the Hessian of log π(β−i |βi , y,ϑ). They offer

two alternatives. The first exploits the heuristic that only elements of β−i showing

sufficiently high correlation to βi according to πG need be considered when approx-

imating how the Hessian varies with βi : this leads to relatively efficient computation

for GMRF models. The second, faster and recommended, approach replaces the log

determinant of the required Hessian with a first-order Taylor approximation about β̂.

The required log determinant derivative is fairly cheap for GMRF models.

The Rue et al. (2009) strategies are inefficient for nonsparse reduced rank basis

expansions, but Wood (2019) provides an alternative for this case. The key is to note

that the Cholesky factor of H−i,−i can be obtained by cheap, O(p2), update of the

Cholesky factor of H. This immediately gives a computationally efficient means to

find the exact β̃−i by improving (11) using modified Newton updates based on a fixed

Hessian H−i,−i . Hence one of the approximations in the Rue et al. (2009) method is

removed. The second thing that it permits is to approximate the required Hessian matrix

by a BFGS update of H−i,−i . The log determinant of this update is very efficiently

computed, and the log determinant is bounded between that of H−i,−i and the true

Hessian. Figure 12 shows an example distributional regression fit where there are

noticeable differences between BEST and INLA. The computations used the ginla

function in mgcv.

5.3 Boosting

A rather different approach to smooth model estimation uses boosting (e.g. Tutz and

Binder 2006; Schmid and Hothorn 2008; Robinzonov and Hothorn 2010; Mayr et al.

2012). Boosting is a forward selection strategy, in which smooth model components

are iteratively built up from over-smoothed versions, fitted to generalized residuals
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Fig. 13 Univariate smoothing of Gaussian data, shown in grey, via boosting. Top row: several boosting

steps, each showing the current estimate as a thick black–grey curve and previous estimates as thin black

curves. At top right the initial estimate is just the base learner applied directly to smooth the data. Bottom

row: the base learner is used to smooth the residuals (grey) from the panel immediately above. The resulting

smooth (thin black) is added to the previous function estimate (black–grey curve, panel above) to give the

updated function estimate shown in the upper row of the next column to the right. Notice how the estimate

successively improves, while the residuals become de-correlated

of the model. It can be viewed as a variation of the backfitting method (Hastie and

Tibshirani 1986) for additive model fitting.

The ‘oversmoothed versions’ of the smooth terms are generally termed ‘base learn-

ers’, and the fitting to residuals is done by least squares. For example, if f is a simple

single penalty smooth with basis matrix X and penalty S, and g denotes some gener-

alized residuals, then the over-smoothed version of f is given by

f̃ = Ag where A = X(XT X + λbigS)−1XT .

λbig is large enough that f̃ has very low effective degrees of freedom (perhaps 1-2

more than its null space dimension). A is known as the ‘smoother’, ‘influence’ or

‘hat’—matrix (for efficiency reasons it is not calculated explicitly, of course). The

‘generalized residuals’, g, are the partial derivatives of −2× the log likelihood w.r.t.

the elements of f̃ , given the model fit so far. For a model with a single linear predictor,

these are simply the derivatives with respect to the linear predictor, at its current

estimate. For a model with multiple linear predictors then the generalized residuals

for a term f j are the derivatives w.r.t. the linear predictor that it is part of.

Boosting cycles through the base learners, and in most cases we would choose the

single base learner that leads to the biggest increase in likelihood at each cycle, and

add this to the fitted model. In this way boosting can integrate model selection and

fitting, since some base learners may never occur in the model. For a more concrete

understanding of how it works, here is the algorithm for the case of a single linear

predictor, and see Fig. 13.
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A[ j] is the smoother matrix for f j , M the number of smoothers and η the linear pre-

dictor. Initialize η̂ = f̂1 = · · · = f̂M = 0. Iterate the following until some convergence

criteria is met.

1. Compute gi = −2∂l/∂η̂i for all i .

2. For j = 1, . . . , M …

(a) Compute f̃ j = A[ j]g
(b) Compute α j = argmaxαl(η̂ + αf̃ j ).

3. Find k = argmax j l(η̂ + α j f̃ j ).

4. Set η̂ ← η̂ + αk f̃k , and f̂k ← f̂k + αk f̃k .

Practical details: (1) Without step length optimization at 2b, term selection is over-

sensitive to the base learner λs, although these should anyway be chosen to ensure

similar complexity for each base learner. (2) Uncertainty estimates and a stopping

criterion are needed. We can bootstrap the original data, maintain a separate linear

predictor for each bootstrap replicate and terminate when the average error in pre-

dicting data omitted from the bootstrap resamples is minimized. The replicate linear

predictors at termination provide uncertainty estimates.11 (3) For multiple linear pre-

dictors, compute a g vector for each linear predictor at step 1, and make sure that we

use the one of these corresponding to f j at step 2a. (4) The f̂ j estimates typically end

up more complex than any individual base learner, and the effective degree of free-

dom of the base learners has little or no influence on the complexity of the final term

estimate. However, it is not possible to obtain a fit more complex than the unpenalized

basis would allow.

The major advantage of boosting relative to other approaches is the ability to effi-

ciently use, and perform model selection with, a very large number of smooth model

terms.

5.4 Big datamethods

Big data problems are only statistically interesting when they also require large models,

and in this case the main challenge is to find computational methods that are feasible

on the computer hardware generally available for modelling. If the number of data,

n, and number of coefficients, p, become large, then there are two obvious problems.

The first is that the storage for the model matrix is O(np), while the computations

involving it are generally O(np2). For example, naively implemented the n = 107,

p = 104 air pollution model example in Wood et al. (2017) would require about 1

terabyte just to store the model matrix in double precision and weeks of computing

time to fit a model.

The first step in solving both problems is to exploit special structure in the model

matrix to reduce both the storage and computing costs. There are two alternatives.

1. Use sparse bases and penalties so that the model matrix and penalty matrices

contain mostly zeroes. There is much work on exploiting sparsity in matrix com-

11 We must choose whether step 3 is repeated for each bootstrap replicate, or whether we simply use the k

chosen for the full dataset in each replicate. The latter is efficient, but neglects the term selection uncertainty.
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putation (see Davis 2006), and the INLA software of Rue et al. (2009) makes very

effective use of this approach. Note, however, that exploitation of sparse matrices

is not simply a matter of substituting sparse routines for dense ones. The curse

of sparse matrix computation is infill: the fact that many operations on sparse

matrices will result in a dense matrix. It takes effort to avoid this.

2. Recognize that most covariates take only a finite number of discrete values, and

even if they are truly continuous there is no real statistical loss associated with

discretizing to O(n1/2) bins. This means that the model matrix for a smooth term

can be represented by a modest sized matrix of unique rows plus an index vector

giving the unique row corresponding to each full model matrix row. This obviously

saves storage, but it can also be exploited to greatly reduce the cost of computing

with products involving the model matrix, as first proposed for single smooths

by Lang et al. (2014) and generalized to models with multiple smooths by Wood

et al. (2017) and Li and Wood (2019). To maintain statistical performance the

covariates are discretized separately (discretizing jointly onto a multidimensional

grid is much easier, but requires overly coarse discretization). bam in mgcv can

use this approach.

Exploiting the model matrix structure is typically not sufficient on its own: further

high-performance computing is usually needed and both mgcv’s bam and the INLA

software do this. Here it is important to be aware of a third problem. Modern computers

are memory bandwidth limited: the rate-limiting process is not how fast the multiple

cores of a CPU can perform floating point operations, but how quickly the data can

be fetched from main memory (RAM) to the CPU in order to be computed with. The

issue is serious: it can take 20 times as long to fetch an item of data as to perform a

floating point operation with it.12 In hardware this bottleneck is partially ameliorated

by cache memory: a small amount of super-fast access memory between the main

memory and the CPU. To exploit the cache we need to arrange computations so that

most required data are in the cache before being used: the way to do that is to structure

things so that data that need to be reused are reused as soon as possible. In practice this

means that fitting methods need to be dominated by matrix computations that are block

oriented, meaning that they can be broken down into operations involving submatrix–

submatrix operations (rather than matrix-vector), where the whole submatrices fit in

cache. Matrix products and Cholesky decomposition can be structured to be almost

entirely block oriented, while QR and eigen decompositions are more problematic.

If we develop block-oriented fitting methods (as in Wood et al. 2017) then we will

be able to get high performance using either an optimized BLAS or parallelization,

or a combination of the two. Note, however, that bandwidth limitation problems are

exacerbated by multicore computing, since multiple cores clamouring for data have

an even higher capacity to saturate the data channels and now have to share the cache.

This is the reason that multicore BLAS performance is usually disappointing relative

12 If you doubt this, try comparing the speed of a matrix cross-product using the reference BLAS and an

optimized BLAS, such as openblas: the difference is down to structuring the code to get around the

latency problem.
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to a single core BLAS, and that parallelizing using a single-core BLAS also tends to

give poor scaling.

Big data, big model methods are still an active area of research. For example, at time

of writing, the methods of Wood et al. (2017) are able to deal with larger model–data

combinations than seems possible with other approaches, but they are limited to GAM

like model structures and are not yet usable with the extensions discussed in Sects. 3.4

and 3.5.

6 Model selection

As mentioned above, within the BEST framework, AIC and term specific p val-

ues can be computed and used for stepwise model selection. Boosting integrates

model selection and fitting, albeit from a prediction error minimization perspective.

Model selection in the fully Bayesian setting is somewhat less straightforward, but the

deviance information criteria (DIC, Spiegelhalter et al. 2002) is often used in practice

as an analogue of AIC.

In fact much of what is traditionally thought of as model selection is carried out

by smoothing parameter estimation, but for smooths, λ j → ∞ usually produces

an f̂ j in the null space of the smoothing penalty, rather than resulting in f̂ j = 0.

One possibility is to associate an extra penalty with each smooth, designed to penalize

functions in the null space of the smoothing penalty towards zero. To this end, consider

the smoothing penalty matrix eigen decomposition S = U
UT , where the columns

of U are eigenvectors and 
 is a diagonal matrix of eigenvalues. Let U0 denote the

eigenvectors corresponding to zero eigenvalues. Then λ0β
T U0UT

0 β is a penalty on

the null space of λβT Sβ and if λ, λ0 → ∞ then the corresponding smooth will be

estimated as zero, i.e. it will be ‘selected out’ of the model.

Such selection penalties can be included for all smooth terms in a model, so that

λ estimation controls not only the complexity of terms, but whether they contribute

to the model at all. In practice some terms may be estimated as close, but not exactly

equal, to zero, and a decision threshold is needed: e.g. we might exclude terms with

effective degrees of freedom < 0.1. Sometimes we might want smoother, simpler

models than GCV or marginal likelihood selects by default. Computing the GCV, AIC

or marginal likelihood as if the sample size were smaller than it actually is achieves

this. In mgcv function gam, increasing the parameter gamma above its default of one

does this: e.g. log(n)/2 achieves BIC like model selection.

When there are large numbers of terms to screen for inclusion in the model, then

selection penalties and conventional stepwise methods are computationally costly. By

contrast boosting retains efficiency, but in the context of screening large numbers of

effects its inability to drop a term, once included, is not optimal. A useful alternative

is to repeatedly alternate a few steps of boosting, for ‘forward selection’ of new terms

for inclusion in the model, with a fit of the model with all currently selected terms,

using selection penalties to allow ‘backwards selection’.
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7 Beyond likelihood

It is also possible to extend smooth regression methods to cases where we are interested

in a loss function other than a regular likelihood. Obvious examples are provided by

robust loss functions or the ‘pinball loss’ used in quantile regression (where we want

to directly model some specified quantile of the response distribution). Fasiolo et al.

(2017) shows how to use the belief updating framework of Bissiri et al. (2016) to do this

in a well-founded manner. The idea is that we can use a general loss to update a prior to a

posterior, just as we would use a likelihood, but to do so we now have to choose the ‘loss

rate’ setting the relative weighting of the loss and the prior. The main challenge is to

find well-founded means for selecting the loss rate. Note that in the quantile regression

case the pinball loss can be identified with the log likelihood of an asymmetric Laplace

distribution, and there are several papers using this to perform inference for quantile

regression using standard Bayesian or penalized likelihood methods, while ignoring

the selection of the loss rate. This is invalid since the asymmetric Laplace is mis-

specified as a probability model, and this mis-specification tends to become extreme

as we move away from the median quantile (of course there will be cases where the

model fits appear sensible despite the mis-specification, but counter examples can

always be found).

8 Conclusions

The basic framework, outlined above, represents smooth functions in regression mod-

els using basis expansions, with associated quadratic penalties on the basis coefficients

designed to control smoothness of the functions during estimation/inference. If we

view the penalties as being induced by Gaussian priors on the basis coefficients, then

Bayes theorem allows us to perform further inference based on the posterior distri-

bution of the coefficients, while smoothing parameter inference can be based on the

marginal likelihood (the basis coefficients being integrated out). Supplementing this

Bayesian outlook with some frequentist model selection tools leads to a quite prac-

tically useful framework for a wide variety of models, and depending on taste and

exact practical needs we may choose to use empirical Bayes, stochastic simulation

or higher-order Bayesian approximation methods for inference. The aim of this paper

was to emphasize the basic unity of the model and inferential frameworks, which

sometimes appear rather more different than they really are in the literature. But as

in regression modelling more generally, in the high-dimensional case in which there

are many effects to screen then quite different approaches tend to be useful: gradi-

ent boosting is an example that offers computational efficiency while being general

enough to use with almost all the model extensions considered here.

What future developments are likely in this area? I do not know, but the further

development of methods for large models of large data sets, multivariate data and

short-range auto-correlation seem likely to feature prominently.
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