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The recent emergence of A(H7N9) avian influenza 
poses a significant challenge to public health in China 
and around the world; however, understanding of the 
transmission dynamics and progression of influenza 
A(H7N9) infection in domestic poultry, as well as spill-
over transmission to humans, remains limited. Here, 
we develop a mathematical model–Bayesian inference 
system which combines a simple epidemic model and 
data assimilation method, and use it in conjunction 
with data on observed human influenza A(H7N9) cases 
from 19 February 2013 to 19 September 2015 to esti-
mate key epidemiological parameters and to forecast 
infection in both poultry and humans. Our findings 
indicate a high outbreak attack rate of 33% among 
poultry but a low rate of chicken-to-human spillo-
ver transmission. In addition, we generated accurate 
forecasts of the peak timing and magnitude of human 
influenza A(H7N9) cases. This work demonstrates that 
transmission dynamics within an avian reservoir can 
be estimated and that real-time forecast of spillover 
avian influenza in humans is possible.

Introduction
Wild birds, particularly Anseriformes and 
Charadriformes, are thought to be the principal natu-
ral reservoir of low pathogenic avian influenza (LPAI) 
viruses [1,2], as well as the source of influenza A 
viruses infecting all other animals [3]. Indeed, LPAI 
includes nearly all influenza subtypes, and wild bird 
migration can bring viruses to new areas and spe-
cies [1,4]. The LPAI A(H7N9) virus was first identified 
in humans in China in early 2013 [5]. As at 15 October 
2015, 678 confirmed human infections have been doc-
umented, with a case fatality rate of ca 40% [6]. The 
virus most probably originated in wild bird populations 
[7,8], was introduced into domestic ducks and chick-
ens and has since become well established in poultry 
populations in south-eastern China [6]. Transmission 
to humans occurs primarily at live bird markets (LBMs), 

where direct contact between humans and infected 
poultry leads to spillover transmission [9].

Human influenza A(H7N9) infections have been well 
documented by the Chinese government and pub-
lic health authorities. Outbreaks of human influenza 
A(H7N9) cases peak in winter months [10] and geo-
graphical diffusion from the eastern to the southern 
region of China has been observed [11]. As is true for 
most LPAI viruses, influenza A(H7N9) does not pro-
duce significant illness in domestic poultry, imply-
ing that poultry can be infected asymptomatically 
[6]. Consequently, poultry infections are likely to be 
under-reported even though LBMs are being closely 
and actively monitored [12,13]. This limited, partial 
observation of influenza A(H7N9) infection in poultry 
poses a challenge to the study and quantification of 
the transmission potential of H7N9 viruses in poultry 
populations, as well as spillover transmission from 
poultry to humans. However, owing to the transmission 
link between influenza A(H7N9) infection in poultry 
and human infection through LBMs [9], and because 
human influenza A(H7N9) cases have been well docu-
mented, these human cases serve as a sentinel proxy 
for infection rates among domestic poultry.

Mathematical approaches can be used to infer critical 
epidemiological processes and parameters. Traditional 
methods of epidemic curve fitting regard the increase 
in cumulative cases as an exponential with set dou-
bling times [14]. This approach uses surveillance data 
during the early exponential growth period of an out-
break to provide retrospective estimates of R0 [15,16]. 
However, these estimates rely on specific assumptions, 
such as the initial susceptibility of the population and 
the infectious period. In contrast, a Bayesian approach 
[17] can provide continuous estimation of all system 
parameters without specific assumptions and is there-
fore more suitable for nonlinear epidemic modelling. In 
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previous work, we used Bayesian inference methods to 
infer disease transmission dynamics, estimate critical 
epidemiological parameters, and generate forecasts 
of seasonal and pandemic human influenza (i.e. H1N1, 
H3N2, B) in both temperate [18-20] and subtropical 
regions [21].

Here we used human case data and a combined frame-
work of mathematical model and Bayesian inference 
to simulate influenza A(H7N9) virus transmission 
among poultry and generate retrospective forecasts 

of influenza A(H7N9) incidence for both poultry and 
humans in the eastern and southern regions of China 
(Figure 1).

Specifically, human influenza A(H7N9) case data in the 
period from 2013 to 2015 were used in conjunction with 
a model-inference framework that combines a suscep-
tible-infected-recovered (SIR) compartmental model of 
influenza A(H7N9) virus transmission among poultry 
and the ensemble adjustment Kalman filter (EAKF) to 
simulate influenza A(H7N9) virus transmission among 
poultry, estimate critical epidemiological parameters, 

Figure 1
Spatial distribution of human influenza A(H7N9) cases and classification of study regions, China, 19 February 2013–19 
September 2015 (n = 526)
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The human influenza A(H7N9) cases (black dots indicate case locations) in the study area are grouped into the eastern region (Jiangsu, 
Zhejiang, Shanghai and Anhui provinces: pink) and the southern region (Guangdong, Fujian and Hunan provinces: blue). These cases are 
shown in the whole map of China and the enlarged map of the study area. Also shown is the South Sea but with no human cases.
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and generate forecasts of influenza A(H7N9) infections 
for both humans and poultry. 

Methods

Data
From 19 February 2013 until 19 September 2015, a total 
of 526 human influenza A(H7N9) cases were extracted 
from official reports of the National Health and Family 
Planning Commission (NHFPC) in China. Associated 
record attributes included location, observation and 
reporting date, and descriptive information including 
age, sex and contact history.

These records were processed into biweekly counts 
during the 2012/13, 2013/14 and 2014/15 seasons 
and aggregated into two spatial regions, the southern 
region (Guangdong, Fujian and Hunan provinces) and 
the eastern region (Jiangsu, Zhejiang, Shanghai and 
Anhui provinces). This spatial grouping was based on 
the geographical location, common sources for poultry 
and virus spatial transmission patterns among the prov-
inces. Specifically, provinces in the same region are 
geographically conjoined, and influenza A(H7N9) virus 
appeared to diffuse from the eastern region, where 
chicken farming and consumption occur locally, to the 
southern region where chickens are imported from 
northern China (e.g. Hebei and Shandong provinces).

Description of the epidemical model
The epidemical model used for this study simulates the 
transmission of influenza A(H7N9) among poultry as 
well as spillover transmission from poultry to humans. 
The model is described by the following equations:

where S is the number of susceptible poultry, Ic and 
Ih are the number of infectious poultry and humans, 
respectively, N is chicken population size, β is the 
contact rate among poultry, D is the mean infectious 
period, and γ is the scaling factor linking the number 
of infected poultry with human infections. The basic 
reproductive rate, R0, is calculated from the infection 
rate and mean infectious period as R0 = β D, while the 

effective reproductive rate is also determined from 
susceptibility as Re = R0 S / N.

This modelling framework was implemented with the 
assumption of homogenous mixing among chicken and 
human populations, indicating that spillover transmis-
sion from poultry to human was constant through time 
and that no transmission among humans occurred. In 
essence, we used human influenza A(H7N9) case data 
as a proxy for infection among poultry. We took this 
approach because infections among poultry are likely 
to be greatly under-reported and human influenza 
A(H7N9) incidence data are much more reliable.

Description of the ensemble adjustment 
Kalman filter
The EAKF is a sequential Monte Carlo, or data assimi-
lation, method that is used to iteratively update the 
model state variables and parameters with each new 
observation [22]. This update follows Bayes’ rule:

where Zt is the system state, including model variables 
and parameters S, Ic, Ih, D, R0, and yt is the observa-
tion at time t. Formula 4 shows that the updated (i.e. 
posterior) probability distribution is proportional to 
the product of the likelihood of the occurrence of new 
observations given the current system state and the 
prior probability distribution of the system state. The 
EAKF uses an assumption of normality for the likeli-
hood and prior distribution. In doing so, only the first 
two statistical moments are needed to characterise the 
distributions on the right hand side of Formula 4.

The EAKF was selected for iterative Bayesian inference 
in this work because it was already being used for state 
space estimation in the geosciences (e.g. climate and 
weather simulation and prediction) and also in con-
junction with influenza state space models to generate 
seasonal influenza forecasts [18,19,21].

All simulations of influenza A(H7N9) transmission and 
incidence among poultry and spillover transmission to 
humans with the model-inference system (i.e. the SIR 
dynamic model and EAKF inference) were run using a 
300-member ensemble of simulations. These simula-
tions were run simultaneously and linked through the 
EAKF. Before integration with the model equations, 
each simulation (i.e. ensemble member) was randomly 
assigned an initial combination of state variables and 
parameters from specified uniform distributions (see 
below). These comprised the initial conditions, or ‘initial 
prior’, for each simulation before integration. Each ini-
tialised ensemble member was then integrated through 
time using the equations of the model; as each simula-
tion has a different initial array of state variables and 
parameters, the trajectory of each simulation differs. 

γ

(1)

(2)

(3)

dt N

dt N D

(4)

1 1
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The ensemble was integrated until the time point of the 
first observation at which the run was halted and the 
EAKF algorithm and observation were used to update 
the ensemble mean and variance of the observed state 
variable (here incidence) according to Formula 4, as 
well as all the unobserved variables and parameters 
[19,22]. The conditions upon halting before the EAKF 
update are termed the ‘prior’; the conditions after the 
EAKF update are termed the ‘posterior’. The mean prior 
and posterior are averages across the ensemble; for 
example, the mean prior and posterior of susceptibility 

(S) is simply the ensemble average value of S before 
and after EAKF updating at a particular point in time.

The use of an ensemble of simulations provided an 
easy means of estimating credible intervals and uncer-
tainties, both for parameter estimates and forecasts. 
Indeed, for the EAKF, the prior and posterior moments 
(i.e. mean and variance) can be calculated directly from 
the average prior and posterior estimates of all the 300 
ensemble members.

Figure 2
Parameter dynamics of H7N9 influenza across seasons for the eastern and southern region, China, 2012–2015
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The described cycle of integration and adjustment was 
repeated for each successive observation, i.e. after 
updating, the posterior was integrated through time 
until the next observation, at which point it became 
the prior. Then the EAKF and observation were used to 
generate a new posterior. Through this iterative updat-
ing process, the estimates of the state variables and 
parameters converge to a combination capable of sim-
ulating the outbreak as observed up to that point. The 
intention was that by optimising the model to simulate 
conditions as observed from the past to present, a bet-
ter forecast of the future can be generated using that 
optimised ensemble of simulation.

Initialisation and simulation with the SIR-
EAKF framework
The state variable-parameter vector of the SIR-EAKF 
framework included optimisation of three variables 
(S, Ic and Ih) and two parameters (D and R0). At the 
beginning of each outbreak, we initialised each simu-
lation (i.e. each ensemble member) using a random 
selection from uniform ranges of the parameters and 
variables (2 < D < 10 days, 0.01 < R0 < 2.0, 0.5 < S0 < 0.6, 
0 < Ic0 < 250). These initial uniform ranges were based 
on prior modelling efforts simulating and forecast-
ing human seasonal influenza [18,20]. In addition, as 
the transmission potential of influenza A(H7N9) virus 
among poultry is not well described, a broad initial prior 

Figure 3
SIR-EAKF simulations of human H7N9 influenza across seasons and regions, China, 2012–2015
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range for R0 was used; however, note that the EAKF 
in the presence of observations can adjust the model 
parameters and variables to values outside these ini-
tial ranges. A Latin hypercube sampling approach was 
used to generate a near-random initial prior sample 
across this multidimensional distribution of parameter 
and variable values.

Multiplicative inflation was used to increase the 
ensemble variance of all model variables and param-
eters by 2% before EAKF adjustment. Inflation is com-
monly applied to ensemble Kalman filters in order to 
avoid ‘filter divergence’, the situation in which the 
variance across the ensemble of simulations has con-
tracted so much that the EAKF updating algorithm 

Figure 4
Forecast accuracy for all seasons and example forecasts of H7N9 influenza in the southern region, China, 2013/14 season

0

20

40

60

80

100

Relative forecast week

Pe
rc

en
t p

re
di

ct
in

g 
pe

ak
 +

/−
1 w

ee
k 

(%
)

−8 −4 0 4 8

Relative to observed peak Relative to predicted peak

A. Peak week

0

20

40

60

80

100

Relative forecast week
Pe

rc
en

t p
re

di
ct

in
g 

pe
ak

 +
/−

25
%

 m
ag

ni
tu

de
 (%

)

−8 −4 0 4 8

B. Peak magnitude

50 100 150 200 250 300 350

0

10

20

30

40

50

60

Time (day)

Nu
m

be
r o

f h
um

an
 in

fe
ct

io
ns

C. Initiated 4 weeks before peak

50 100 150 200 250 300 350

0

10

20

30

40

50

Time (day)

Nu
m

be
r o

f h
um

an
 in

fe
ct

io
ns

D. Initiated 2 weeks before peak

50 100 150 200 250 300 350

0

10

20

30

40

50

Time (day)

Nu
m

be
r o

f h
um

an
 in

fe
ct

io
ns

E. Initiated with peak
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the red x are future observations which were not used in the model optimisation. The black and green lines are the mean trajectory of the 
ensemble and areas shaded grey and green are the 5th and 95th percentiles of the ensemble posterior for simulation and forecast periods, 
respectively.
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effectively ignores the observations and model simu-
lations diverge from the truth [22]. The 300-member 
ensemble simulations were repeated 10 times each 
season to account for stochastic effects due to the 
random selection of initial conditions. The average of 
the 10 repeated runs, each made up of a 300-member 
ensemble simulation, was used to derive mean poste-
rior estimates of the model parameters.

Parameter estimation
Several epidemiological parameters are critical for 
characterising the transmission potential of infectious 
diseases. The basic reproductive number R0, defined 
as the number of secondary infections an infectious 
host would produce in a completely susceptible popu-
lation, signals the potential of an infectious agent to 
start an outbreak as well as the transmissibility of a 
virus in the absence of intervention. The effective 
reproductive number Re quantifies the transmission 
force during the actual outbreak and can be used to 
monitor the impact of control strategies. An Re > 1 indi-
cates epidemic growth, while an Re < 1 indicates that 
sustained transmission cannot persist and that an out-
break will subside.

Epidemiological parameters, namely β, D, R0 and Re, 
were estimated for each of three seasons and two 
regions from the start of the season to the last two-
week period with a recorded case. In a given season, 
the posterior mean and interquartile range of Ic, Ih, β, 
D, R0 and Re were estimated at the time of maximal 
epidemic forcing or the time point of highest transmis-
sion potential, i.e. the two-week period with the high-
est effective reproductive number. The level of initial 
susceptibility, however, was defined as and estimated 
for the two-week period with maximal susceptibility. 
We have previously presented parameter estimates at 
these key time points in studies of seasonal influenza 
[18,20]. The prior and posterior means during each 

outbreak for each variable and parameter were also 
recorded (Figure 2).

Parameter estimate changes during the entirety of an 
outbreak were used to inspect filter adjustment. Such 
parameter changes over time may reflect changes 
in the estimation or actual changes to the parameter 
values. For the former, the observations contain noise 
and the estimation of the parameters by the EAKF is 
neither perfect nor instantaneous; consequently, the 
parameter estimates move through time. For the latter, 
actual shifts in parameter value can occur, e.g. repre-
senting changing contact rates and control measures, 
as the pathogen moves through different subpopula-
tions and/or geographical areas.

Sensitivity analysis
The parameter estimates were inferred using a scal-
ing γ, representing a rate of spillover transmission 
from chicken to human, equal to 300. This value was 
selected following tests with γ ranging from 100 to 
1,000 in increments of 100. For each value of γ, mean 
human case forecast error was used to calculate total 
outbreak root mean squared error (RMSE) and correla-
tion, as well as attack rate error, peak weak error and 
peak magnitude error between observations and the 
predicted estimates. A ranking approach was used to 
identify the scaling with the lowest error. Specifically, 
for each metric (RMSE, correlation, attack rate error, 
peak weak error and peak magnitude error), the scaling 
levels were ranked. The scaling with the highest overall 
rank, i.e. γ = 300, was selected and used in all simula-
tions and forecasts presented here.

Retrospective forecasts
Retrospective forecasts were run for the seasons 
2012/13, 2013/14 and 2014/15 for the eastern region 
and for the last two seasons for the southern region. 
The model-inference system was again implemented 

Table 1
Estimates of key epidemiological parameters and variables for H7N9 influenza, China, 2012–2015

Region Season Re maximum 
(IQR)

R0 at 
maximal Re 

(IQR)

D at 
maximal Re 

(IQR)

β at 
maximal Re 

(IQR)

  S maximum   
% (IQR)

Eastern 
(Jiangsu, Zhejiang, 
Shanghai, Anhui)

2012/13 1.56 
(1.53–1.59)

1.94 
(1.92–1.96)

3.95 
(3.76–4.13)

0.49 
(0.47–0.51)

80.72 
(79.34–82.47)

2013/14 1.34 
(1.30–1.38)

1.81 
(1.79–1.83)

5.69 
(5.37–6.05)

0.32 
(0.30–0.33)

73.98 
(72.41–75.51)

2014/15 0.86 
(0.84–0.87)

1.32 
(1.31–1.33)

5.94 
(5.90–6.02)

0.22 
(0.21–0.23)

64.86 
(64.19–65.55)

Southern 
(Guangdong, Fujian, 
Hunan)

2013/14 1.08 
(1.04–1.09)

1.59 
(1.56–1.63)

5.60 
(5.41–5.69)

0.28 
(0.27–0.29)

69.45 
(68.80–70.37)

2014/15 1.06 
(1.05–1.07)

1.62 
(1.61–1.64)

5.29 
(5.18–5.43)

0.31 
(0.30–0.32)

68.94 
(67.01–70.54)

IQR: interquartile range.
The posterior means and IQR of the number of chicken infections (Ic), chicken-to-chicken contact rate (β), the infectious period (D) and the 

basic reproductive rate (R0) were estimated at maximal epidemic forcing (maximal Re). The level of initial susceptibility (S) was defined and 
estimated in the two-week period with maximal susceptibility.
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using 300-member ensembles and reinitialised with 
randomly selected variable and parameter combina-
tions at the beginning of each season. All simulations 
and forecasts were repeated 10 times for each outbreak 
and were initialised with a random selection of param-
eter and variable values, as described above. Forecasts 
were generated beginning with the two-week period of 
the first recorded case and repeated every 2 weeks fol-
lowing the generation of a new posterior. Specifically, 
for the eastern region, separate ensemble forecasts 
were run from the 4th to 9th, 2nd to 17th and 3rd to 9th 
two-week period for the 2012/13, 2013/14 and 2014/15 
seasons, respectively; for the southern region, fore-
casts were generated from the 3rd to 19th and 5th to 
12th two-week period for the last two seasons.

To evaluate the accuracy of our SIR-EAKF system, we 
determined two measurements: the peak week and 
peak magnitude, or the percentage of ensemble mean 
trajectories predicting human influenza A(H7N9) case 
peak timing within ± 1 week of the observed peak week, 
and peak magnitude within ± 25% of the observed peak 
magnitude. These two indices were then plotted as a 
function of the relative forecast week, i.e. the week of 
forecast generation minus either the observed or pre-
dicted peak week, to show the relationship between 
predictive skill and lead time.

The combined SIR-EAKF system was coded in R. These 
codes are available from the corresponding author 
upon request.

Results
The mean posterior estimates of human influenza 
A(H7N9) incidence produced by the model-inference 
system matched the observed influenza A(H7N9) 
human case counts well (Figure 3).

These simulations captured the timing and magnitude 
of the epidemic. Mean posterior estimates of R0 ranged 
from 1.327 to 1.941 (Table 1) with the highest and low-
est estimates occurring in seasons with the largest and 

smallest numbers of human cases, i.e. the 2012/13 and 
2014/15 seasons in the eastern region, respectively. 
The mean infectious period D was estimated at 5 to 
6 days for outbreaks during the seasons 2013/14 and 
2014/15. For the first human influenza A(H7N9) out-
break in 2012/13 in the eastern region, the estimate 
for D was much lower (mean: 3.95 interquartile range 
(IQR): 3.76–4.13) and the estimate of β, the contact 
rate among poultry, was higher (mean: 0.49/day; IQR: 
0.47–0.51/day).

The susceptibility of the chicken population was high 
in earlier outbreaks and dropped to around 65% in 
more recent outbreaks. For the effective transmission 
number Re, which quantifies the transmission force 
during the outbreak, the mean posterior estimates 
were greater than 1 during four of the five outbreaks 
analysed here, indicating a clear transmission poten-
tial among LBM poultry. The Re estimate was highest 
during the initial outbreak in 2012/13 when the two 
associated parameters, R0 and susceptibility, were 
also highest. The scaling factor γ, selected by the 
rank correlation approach (see Methods) mapped the 
observed human cases to simulated poultry infections 
and indicated that the daily poultry-to-human spillo-
ver transmission rate was low, around 3.3 × 10-3 per 
infected LBM chicken.

Estimates of all parameters remained stable dur-
ing the seasons 2013/14 and 2014/15 in the southern 
region where outbreaks were of similar severity in 
both epidemic waves. However, there was an apparent 
decrease in R0, Re, β and susceptibility from the first 
to the third outbreak in the eastern region, which was 
in accordance with the change of outbreak severity in 
this region.

The accuracy of the forecast for peak timing and mag-
nitude increased as the week of forecast initiation got 
closer to the observed and predicted peak (Figure 4).

Table 2
Forecast accuracy for H7N9 influenza in all seasons, China, 2013–2015

Relative forecast lead time (weeks)
−10 −8 −6 −4 −2 0 2 4 6 8 10

Proportion predicting peak ± 1 week (%) 
Relative to observed peak 1.59 1.50 2.00 15.33 64.84 89.67 93.33 98.50 99.34 99.34 99.34
Relative to predicted peak 1.17 1.33 1.67 17.33 42.92 60.83 88.67 95.67 98.50 99.34 99.34
Proportion predicting peak ± 25% magnitude (%) 
Relative to observed peak 2.00 2.17 11.00 25.50 91.67 98.33 98.33 99.00 99.08 99.08 99.08
Relative to predicted peak 2.00 2.00 11.00 44.75 62.67 98.00 97.42 98.33 99.08 99.08 99.08

Accuracy was measured as the percentage of ensembles predicting the week with the most human cases of influenza A(H7N9) within ± 1 week 
of the observed peak week and the peak magnitude of human H7N9 influenza cases within ± 25% of observed peak magnitude. The values are 
the same as those in Figure 4 and presented as a function of the forecast lead time from 10 weeks before to 10 weeks after the observed and 
predicted peak timing.
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Specifically, the percentage of forecasts predicting the 
peak week within ± 1 week increased sharply from 6 
weeks ahead of the observed peak week and reached 
90% when a forecast was generated at the observed 
peak. For peak magnitude, the percentage of forecasts 
predicting the peak magnitude within ± 25% of the 
observed magnitude increased from 8 weeks before 
the observed peak, and almost all forecasts were accu-
rate when predicting at the observed peak. However, 
as knowledge of the observed peak was unavailable 
for real-time forecasting, we also present overall accu-
racy as a function of predicted lead time. Here, the 
accuracy was 43% and 63% at 2 weeks lead time and 
61% and 98% at 0 weeks lead time for peak timing and 
magnitude, respectively (Table 2). Example forecasts 
are also presented in Figure 4.

Discussion
Our findings indicate that data assimilation methods 
and a simple epidemic model can be combined to infer 
the transmission dynamics of H7N9 influenza in both 
chicken and human populations using only human 
infection data. Moreover, the model-inference system 
can produce accurate predictions of the peak timing 
and magnitude of human infections.

The estimated potential of chicken-to-human spillover 
transmission was low, even with the high transmission 
rate among poultry. Specifically, estimates of R0 were 
greater than 1 and the mean contact rate among poultry 
was 0.326 across all seasons and regions, whereas the 
daily chicken-to-human infection rate reflected by the 
linkage parameter γ indicated that the mean number of 
human infections per infectious chicken was 3.3 × 10-3. 
Our estimates of R0, among poultry were similar to 
those of past pandemic influenza viruses in humans 
(e.g. 1.2–2.3 for influenza A(H1N1)pdm09) [23], which 
implies that influenza A(H7N9) has the potential to 
cause pandemics in chicken populations. This result is 
similar to earlier findings [24]; however, our estimates 
for three other parameters, the mean infectious period, 
the basic reproductive rate and the chicken-to-human 
infection rate, were smaller, which may be due to the 
finer spatial and longer temporal scales used in this 
study, as well as the difference in modelling approach. 
Specifically, our study used a dynamic model, Bayesian 
inference framework and regional bi-weekly counts of 
human infections, covering three epidemic waves. Our 
findings thus represent more detailed, localised and 
long-term patterns of transmission dynamic than ear-
lier work using least-square methods in conjunction 
with daily human infection data at the beginning of the 
outbreak at a national scale [24].

The dynamic patterns of influenza A(H7N9) differed in 
the two regions studied here, although with the limited 
number of outbreaks available for validation, these dif-
ferences must be interpreted with caution. The trans-
mission potential among chicken flocks and initial 
susceptibility decreased across three seasons in the 
eastern region, but remained stable in the southern 

region. These differences were dynamically consist-
ent with observed outbreak severity in both regions 
and may have been caused by a difference in control 
methods implemented by the government. In the east-
ern region, approaches such as closing of LBMs [25,26] 
and halting live poultry trade were implemented dur-
ing the early stages of the outbreaks. This probably 
reduced chicken-to-human exposure and chicken-to-
chicken mixing and consequently may have attenu-
ated the severity of the outbreak. On the other hand, 
for southern provinces such as Guangdong (where LBM 
closure was implemented later, in the second half of 
February 2014), co-circulation of a diverse array of 
avian influenza subtypes as well as multiple strains 
of H7N9 and H9N2 influenza viruses has been docu-
mented. This abundance of viruses creates an environ-
ment primed for influenza reassortment, resulting in 
diversified and more adaptive genotypes and a higher 
risk of infections in both poultry and humans [27,28] 
and may therefore keep susceptibility high and stable 
across seasons.

The mean estimate of D, the mean infectious period, 
for the 2012/13 outbreak in the eastern provinces was 
lower (3.95) than for the later outbreaks, which ranged 
from 5.29 to 5.94. Given the limited number of total 
outbreaks investigated, the exact causes for this dif-
ference are difficult to pinpoint; however, factors could 
include actual changes to the virus between the first 
and later outbreaks, errors in the observed number 
of cases or errors in the estimation process. That the 
2013/14 and 2014/15 outbreaks yielded consistent 
estimates, including similar values for D and β, and 
decreasing maximal S over time suggests that these 
findings are credible.

Our inference and forecasting framework was imple-
mented with a simple SIR model and the assumption of 
homogeneous mixing among human and chicken popu-
lations, i.e. a constant chicken-to-human transmission 
rate. Our model only simulated chicken-to-chicken and 
chicken-to-human transmission (Formulas 1–3) and did 
not consider environmental transmission. Given the lim-
ited data on infection and transmission among poultry, 
inferred distinctions of alternate transmission modes, 
i.e. chicken-to-chicken vs environment-to-chicken, are 
likely to be poorly constrained. Further, prior attempts 
to simulate these different pathways suggest that the 
rates of chicken-to-environment shedding are low [29]. 
Loss of immunity was not modelled either, as birds 
are either slaughtered or, when infection is suspected, 
culled, as required by the Chinese government [30].

Despite these shortcomings, the combined model-
inference system matched the observations well, and 
provided sensible estimates of key epidemiological 
parameters, including rates of chicken-to-human spill-
over infection. The analyses revealed the transmis-
sion potential of H7N9 influenza among poultry, the 
stability and changes of that transmission potential 
over time, and that real-time forecasting of influenza 
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A(H7N9) incidence in both human and poultry is pos-
sible. In the future, such methods could be applied in 
real time to newly emerged avian influenza subtypes.
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