Inference and Learning in Networks of Queues

Charles Sutton
School of Informatics
University of Edinburgh
csutton@inf.ed.ac.uk

Abstract

Probabilistic models of the performance of
computer systems are useful both for predict-
ing system performance in new conditions,
and for diagnosing past performance prob-
lems. The most popular performance mod-
els are networks of queues. However, no cur-
rent methods exist for parameter estimation
or inference in networks of queues with miss-
ing data. In this paper, we present a novel
viewpoint that combines queueing networks
and graphical models, allowing Markov chain
Monte Carlo to be applied. We demonstrate
the effectiveness of our sampler on real-world
data from a benchmark Web application.

1 Introduction

Modern Web services, such as Google, eBay, and Face-
book, run on clusters of thousands of machines that
serve hundreds of millions of users per day.! The num-
ber of simultaneous requests, called the workload, is a
primary factor in the system’s response time. There
are two important types of questions about system
performance. The first involve prediction, e.g., “How
would the system perform if the number of users dou-
bled?” Crucially, this requires extrapolating from per-
formance on the current workload to that on a higher
workload. The second type of question involves diag-
nosis, e.g., determining what component of the system
caused a past performance problem, and whether that
component was simply overloaded with requests, or
whether it requires fundamental redesign.

"http://www.facebook.com/press/info.php?
statistics. Retrieved 3 Nov 2009

Appearing in Proceedings of the 13" International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2010, Chia Laguna Resort, Sardinia, Italy. Volume 9 of
JMLR: W&CP 9. Copyright 2010 by the authors.

Michael I. Jordan
Computer Science Division
University of California, Berkeley
jordan@eecs.berkeley.edu

We view the modeling of the performance of computer
systems as an important case study for machine learn-
ing. Performance modeling is essentially a regression
problem—predicting response time from workload—
but standard regression techniques fall short, because
they extrapolate poorly. Richer models have the po-
tential to extrapolate by exploiting prior knowledge
about the system, but it is difficult to incorporate de-
tailed prior knowledge about a specific large-scale com-
puter system. We wish to incorporate general prior
knowledge about computer systems that is likely to be
useful for extrapolation.

Networks of queues provide a natural general frame-
work for developing prior models of computer systems.
These are classical models that have a 50-year history
of application to systems. They have two key advan-
tages. First, they extrapolate naturally, predicting an
explosion in system latency under high workload. Sec-
ond, the structure of the network can reflect our prior
knowledge about the system.

However, in modern computer systems the issue of
missing data is unavoidable, because exhaustive in-
strumentation of the system state can be prohibitively
expensive. To our knowledge, no previous work in
queueing networks concerns parameter estimation or
diagnosis with missing data.

In this paper, we present a new family of analysis tech-
niques for networks of queues, inspired by a graphical
modeling perspective. We view the queueing network
as a structured probabilistic model over the times that
requests arrive and depart from the system, and con-
sider the case in which some of those are unobserved.
We present a Markov chain Monte Carlo (MCMC)
sampler for the missing arrival and departure times, al-
lowing the parameters to be estimated using Bayesian
inference. Essentially, this viewpoint combines queue-
ing networks and graphical models.

Despite the naturalness of a graphical approach to
queueing networks, and despite the 50-year history
of queueing models, we are unaware of any previous

Inference and Learning in Networks of Queues

work that treats networks of queues within a graphi-
cal modeling framework. Perhaps the reason for this is
that algorithmically, inference is far more complex for
queueing networks than for standard graphical models.
This has two causes: first, the local conditional distri-
bution over a single departure can have many singu-
larities (Section 3.1), and second, the Markov blanket
for a departure can be arbitrarily large (Section 3.2).

On a benchmark Web application, we demonstrate
that queueing networks extrapolate better than stan-
dard regression models (Section 6), and that the sam-
pler can effectively reconstruct missing data, even
when 75% of the data are unobserved (Section 7).

2 Modeling

Many computer systems are naturally modeled as net-
works of queues. For example, Web services are often
designed in a multitier architecture (e.g., Figure 2) in
which the stateless first tier computes the HTML re-
sponse, and makes requests to a second tier that han-
dles long-term storage, often using a database. In or-
der to handle high request rates, each tier contains
multiple machines that are functionally equivalent.

It is natural to model a distributed system by a net-
work of queues, in which one queue models each ma-
chine in the system. Each queue controls access to a
processor, which is an abstraction that models the ma-
chine’s aggregrate CPU, memory, I/0, etc. If the pro-
cessor is busy with a request, other requests must wait
in the queue. The waiting time, which is the amount
of time spent in queue, models the amount of total
processing time that was caused by workload. The
service time, which is the amount of time the request
ties up the processor, models the amount of time that
is intrinsically required for the request to be processed.

The queues are connected to reflect the system’s struc-
ture. For example, a model for a Web service might
be: Each request is assigned to a random queue in the
first tier, waits if necessary, is served, and repeats this
process at the second tier, after which a response is
returned to the user.

Each external request to the system thus might involve
many requests to individual queues in the network. We
will say that a job is a request to an individual queue,
and a task is a series of jobs that are caused by a single
external request to the system. For example, in a Web
service, a task would represent the entire process of the
system serving an external request. Each task would
comprise two jobs, one for each tier.

In order to define a probabilistic model over the arrival
and departure times of each job, we need to model both
(a) which queues are selected to process each job in a

task and (b) the processing that occurs at each individ-
ual queue. For (a), we model the sequence of queues
traversed by a task as a first-order Markov chain. A
task completes when this Markov chain reaches a des-
ignated final state, so that the number of jobs in each
task is potentially random.

Second, to model the processing at individual queues,
we consider several different possibilities. To describe
them, we must first define some terminology that is
common to all queue types. Each job e has an arrival
time a., which is the time the job entered the queue.
The waiting time of the job in queue is denoted by
we. Finally, once the job is selected for processing, it
samples its service time s.. The service times are mu-
tually independent. Once the service time has elapsed,
the job completes. The time at which this happens is
called the departure time d..

A number of additional variables concern the progress
of tasks through the network. For any job e, we denote
the queue that serves the job as ¢.. Every job has two
predecessors: a within-queue predecessor p(e), which
is the previous job (from some other task) to arrive
at e, and a within-task predecessor 7(e), which is the
previous job from the same task as e. We always have
dr(e) = Ge, meaning that every job arrives immediately
after its within-task predecessor departs.?

Finally, to simplify notation, arrivals to the system as
a whole are represented using special initial jobs, which
arrive at a designated initial queue gy at time 0 and
depart at the time that the task enters the system. In
this representation, we never need to consider arrival
times explicitly, because every job’s arrival time is ei-
ther 0 (for initial jobs), or else equal to the departure
time of the previous job in the task.

In the remainder of this section, we describe three
kinds of queues: first-come first-served queues (FCFS),
queues which employ random selection for service
(RSS), and processor sharing queues (PS).

2.1 Multiprocessor FCFS queues

The first type of queue that we consider is called a K-
processor first-come first-served (FCFS) queue. This
type of queue can process K requests simultaneously,
that is, the queue is connected to K processors. When
all K processors are busy, any additional requests must
wait in queue. Once a processor becomes available, the
waiting request that arrived first is selected for service.

The generative process for the model over departure
times is as follows. For all jobs e that arrive at the

2If we wish to model delays caused by a computer net-

work, we can add queues that explicitly represent the com-
puter network.

Charles Sutton, Michael I. Jordan

queue, we will assume that the arrival times a. have
been generated by some other queue in the network.
So we describe a generative process over service, wait-
ing, and departure times.

First, at the beginning of time, sample a service time
se for each job e from some density f. Then, with the
arrival times and service times for all jobs in hand, the
waiting times and departure times can be computed
deterministically. To do this, introduce auxiliary vari-
ables p. to indicate which of the K servers has been
assigned to job e, the time b.; to indicate the first time
after job e arrives that the server k£ would be clear, and
ce to indicate the first time after e arrives that any of
the K servers are clear. Then the departure times d,
can be computed using the system of equations

ber, = max{de/ | Qe < e and per = k}

Pe = arg min beg Ce = min bgy
ke[0,K) ke[0,K) (1)
de = S0 + Ue Ue = max|a, Ce.

2.2 Processor-sharing (PS) queues

A markedly different model is the processor-sharing
(PS) queue [Kleinrock, 1973]. A PS queue models a
system that handles multiple jobs simultaneously via
time sharing. To understand this queue, imagine the
system in discrete time, with each time slice having a
duration At > 0. When a job e arrives at the queue, it
samples a service time s.. Then, at each time slice ¢, all
of the N(t) jobs in the system have their service times
reduced by At/N(t). Once the remaining service time
of a job drops below zero, it leaves the queue. Finally,
to get the PS queue, take At — 0.

The PS queue can be expressed as a generative model
similarly to the FCFS queue, except with a different
system of equations to convert from service times to

departure times. This is
de 1 N
Se = /ae W dt, N(t) = ; l{ae<t}1{t<de}'
(2)

The first equation is a statement of the procedure just
described for determining a departure time in a PS
queue. (The integral arises from taking the limit At —
0.) The second equation is the definition of N(t).

2.3 Random selection for service

In a queue that employs random selection for ser-
vice, instead of the earliest job being selected from the
queue for service, a job is selected randomly among
all those that are waiting. This type of queue can be
handled in a similar manner to FCFS queues, except

that the analogous equations to (1) are more complex
(details omitted).

2.4 Summary

We now summarize the generative process for a net-
work of queues. First, for every task, sample a path
of jobs and queues from a Markov chain. Second, set
the arrival times for all initial jobs to 0. Third, sam-
ple each service time s, independently from the service
density for g.. Finally, compute the departure times
by solving the system of equations: (a) for every queue
in the network, the equations in (1) or (2), as appro-
priate (the queues need not all be the same type), and
(b) for all non-initial jobs, dr(c) = a.. We will call this
system of equations the departure time equations.

This is the entire description of the generative model
underlying a network of queues. The key insight here is
to view the queueing network as a deterministic trans-
formation from service times to departure times, via
the departure time equations. The distinction between
service times and departure times is important statis-
tically, because while the service times are all iid, the
departure times have complex dependencies.

The network can be interpreted as a graphical model
if the order in which jobs arrive and depart at each
queue is known. For example, for FCFS queues the
model contains nodes for the service time, arrival time,
departure time, and auxiliary variables for each job.
The parents of each node are the other variables in the
departure time equation that concern it. If the arrival
and departure orders are unknown, then the model
cannot be usefully described by a graph (Section 3.2).

Finally, we derive the joint density over the vector
d = {d.}. Let s(d) be the function defined by solv-
ing the departure time equations for s with fixed d,
and analogously s.(d) for a single job e. To derive
the density, we need the Jacobian of the function
s. It can be shown that the Jacobian is a product
I1. J(ge,de), where J(ge,d.) = 1 for FCFS queues,
but J(ge,de) = N(d.)~! for PS queues. The joint is

p(d) = [T /(4. de) f(se(a)). 3)

3 Inferential Problem

In this section, we describe the inferential setting.
First we explain the nature of the observations. If
the departure and path information for every job were
observed, then the service times could be computed de-
terministically by reversing the departure time equa-
tions, and parameter estimation is straightforward.

In computer systems, however, complete data is not
generally available. In a system that receives millions

Inference and Learning in Networks of Queues

of requests per day, the overhead required to record
detailed data about every request can be unaccept-
able; thus, in practice it is common to reduce the data
by subsampling. To model this process, we assume
that whenever a task arrives at the system, it is cho-
sen for logging with some probability p. If the task
is selected, its arrivals, departures, and queue infor-
mation is recorded for every job. We also record a
counter for each observed job that indicates the num-
ber of unobserved tasks that preceded it. This provides
information about the workload. More sophisticated
observation schemes are left for future work.

We take a Bayesian approach to inference. Let E =
{(¢e, Ge,de)} be the arrival, departure, and queue in-
formation for all jobs in the system, and O C E be the
information for the subset of tasks that are observed,
and U = F — O. Two posterior distributions are of
interest. First, if 6 is the vector of parameters for the
service distributions, we will be interested in the pos-
terior p(8]O) over model parameters. Second, we are
also interested in the posterior p(w.|O) over the wait-
ing times w, of individual jobs, because this can be
interpreted as our posterior belief over how much of
the response time was caused by workload.

In the rest of this section, we explain several compli-
cations in queueing models that make sampling from
the posterior difficult, and which provide strong design
constraints on the inference algorithm.

3.1 Difficulties in Proposal Functions

A natural idea is to sample from the posterior distribu-
tion over the missing data using either an importance
sampler, a rejection sampler, or Metropolis-Hastings.
But designing a good proposal is difficult for even the
simplest queueing models, because the shape of the
conditional distribution varies with the arrival rate.
To see this, consider two independent single-processor
FCFS queues, each with three arrivals, as shown:

Case 1 Case 2
(]
L S b

The horizontal axis represents time, the vertical ar-
rows indicate arrival times, and boxes represent ser-
vice times. The interarrival and service distributions
are exponential with rates A and u, respectively.

For each of these two queues, suppose that we wish
to resample the arrival time of job 2, conditioned on
the rest of the system state, as we might wish to
do within a Gibbs sampler. In Case 1, the queue is
lightly loaded (A < p), so the dominant component
of the response time is the service time. Therefore,
the distribution as = dy — Exp(u) is an excellent pro-
posal for an importance sampler. In Case 2, however,

Panel 1

A
Server Server
B 2 |4 6

Panel 2

Panel 3 Panel 4
Server | 1 ~|4 | | 5 | Server I §
2 3 6 2 |34 5

Figure 1: A departure with a large Markov blanket.

this proposal would be extremely poor, because in this
heavily loaded case, the true conditional distribution
is Uniffa;;as]. A better proposal would be flat until
the previous job departs and then decay exponentially.
But this is precisely the behavior of the exact condi-
tional distribution, so we consider that instead.

3.2 Difficulties Caused by Long-Range
Dependencies

In this section, we describe another difficulty in queue-
ing models: the unobserved arrival and departure
times can have complex dependencies. Modifying one
departure time can force modification of service times
of many later jobs, if all other arrival and departure
times are kept constant. In other words, the Markov
blanket of a single departure can be arbitrarily large.

This can be illustrated by a simple example. Con-
sider the two-processor FCFS queue shown in Figure 1.
Panel 1 depicts the initial state of the sampler, from
which we wish to resample the departure d; to a new
value df, holding all departures constant, as we would
in a Gibbs sampler, for example. Thus, as d; changes,
so will the service times of jobs 3-6.

Three different choices for dj are illustrated in pan-
els 2—4 of Figure 1. First, suppose that d falls within
(d1,d2) (second panel). Then, this shortens the service
time s3 without affecting any other jobs. If instead dj
falls in (do, d4) (third panel), then both jobs 3 and 4
are affected: job 3 moves to server B, changing its ser-
vice time; and job 4 enters service immediately after
job 1 leaves. Third, if d} falls even later, in (ag,ds)
(fourth panel), then both jobs 3 and 4 move to server
B, changing their service times; job 5 switches proces-
sors; and job 6 can start only when job 1 leaves. Fi-
nally, notice that it is impossible for d} to occur later
than dg if all other departures are held constant. This
is because job 6 cannot depart until all but one of the
earlier jobs depart, that is, dg > min[d}, d5]. So since
ds > dg, it must be that dg > dj.

Charles Sutton, Michael I. Jordan

Algorithm 1 Update dependent service times for a
departure change in K-processor FCFS queue

Algorithm 2 Update dependent service times for an
arrival change in K-processor FCFS queue

function UPDATEFORDEPARTURE(eq)
// Input: eq, job with changed departure
stabilized — 0
e« p~'(en)
while e # NULL and not stabilized do
ber — bp(e),k Vk € [O,K)
e k(p(e) < dp(e)
stabilized < 1 if b = old value of b. else 0
Ce «— MiNge(o, K] bek
10: pe «— argminge(o, k] bek
11: Se «— de — max|ae, ce|
12: e« p (e

4 Sampling

In this section, we describe the details of the sampler.
We focus on sampling from the posterior p(U|O) over
the departure times for unobserved jobs. Once that
sampler is in place, adding a Gibbs step for the pa-
rameters 6 is straightforward. Exact sampling from
the posterior is infeasible even for the simplest queue-
ing models, so instead we sample approximately using
Markov chain Monte Carlo (MCMC).

We use the slice sampler of Neal [2003]. Slice sam-
pling is an MCMC method that, for our purposes, can
be viewed as a “black box” for sampling from univari-
ate continuous densities. Its key advantage is that it
requires the ability only to compute the unnormalized
conditional density, not to sample from it or to com-
pute its normalizing constant. At each iteration, for
each unobserved departure time d., we want to sam-
ple from the one-dimensional density p(de|E\.), where
E\, means all of the information from F, except for
de and a,-1(c) (which must be equal). But since slice
sampler only requires the density up to a constant, it
is sufficient to compute the joint p(de, E\.) = p(E),
which is much simpler. In the following sections, we
describe how to compute the joint density.

4.1 Overview

The joint density, given in (3), is a product over all
jobs. Computing this product naively would require
O(N) time to update each job, so that each iteration
of the Gibbs sampler would require O(N?) time. This
cost is unacceptable for the large numbers of jobs pro-
cessed by a real system. Fortunately, this cost can be
circumvented using a lazy updating scheme, in which
first we generate the set of relevant jobs A that would
be changed if the new value of d. were to be adopted.
Then the new density is computed incrementally by
updating the factors in (3) only for the relevant jobs.
Notice that a job is relevant either if its service time
changes, or if its Jacobian term changes.

1: function UPDATEFORARRIVAL(eo, aOld)
2: // Input: eq, job with changed arrival

3: // Input: aOld, old arrival of job e

4: // Update arrival order p due to eg

5: aMin < min[ac,, aOld]

6: aMaz — max[ac,, aOld]

7: E « all jobs arriving within aMin ...aMaz
8: // First change jobs that arrive near eg

9: for alle € F do

10: ber < bo(e),k Vk € [0, K)
LI e k(p(e)) <= dp(e)

12: Ce +— Minge(o, k] bek

13: Pe < arg minke[o,K] bek

14: se « de — max|ae, cc]

15: // Second, propagate changes to later jobs
16: e « p ' (LASTELEMENT(E))

17: stabilized < 1 if b. = old value of b. else 0
18: if not stabilized then

19: UpPDATEFORDEPARTURE(e)

Algorithm 3 Update dependent service times for an
arrival or a departure change in a PS queue.

1: function RELEVANTJOBS(e, aOld, dOId)

2: // Compute set of jobs that are effected by change to
the job e

3: // Input: e, job with changed arrival or departure

4: // Input: aOld, dOld, old arrival and departure times

of e

a < minfa., aOld)

d «— max]d., dOld]

return {€'|(a.,d.) intersects (a,d)}

—_

function UPDATEJOBS(e, aOld, dOId)

2: // Update dependent jobs for an arrival or a departure
change to the job e

3: // Input: e, job with changed arrival or departure

4: // Input: aOld, dOld, old arrival and departure times
of e

5: Recompute N(t) for new arrival and departure times
of e

6: A «— REVELANTJOBS(e, aOld, dOId)

7: for all ¢’ € A do

de/ 1
’ dt
e H/a, N (@)

*®

Therefore, computing the unnormalized density re-
quires computing the jobs whose service time would
be affected by a change to a single departure. This
amounts to setting de and ar-1() to the new value
and propagating these two changes through the de-
parture time equations, yielding new service times for
all other jobs in the queues g, and g-1(c).

So each type of queue requires two algorithms: a
propagation algorithm that computes the modified set
of service times that results from a new value d. =
ar-1(e), and a relevant job set algorithm that computes
the set of jobs A whose factor in (3) has changed. Next

Inference and Learning in Networks of Queues

L

Rails

LIl

Rails database

LIl

Rails

Database

Figure 2: Architecture of the Cloudstone Web appli-
cation (left). Figure adapted from Sobel et al. [2008].
Right, queueing model of Cloudstone application.

we describe these algorithms for FCFS queues (Section
4.2) and for PS queues (Section 4.3). RSS queues are
omitted for lack of space.

4.2 FCFS Queues

The propagation algorithms for the FCFS queue are
given in Algorithm 1 (for the departure times) and Al-
gorithm 2 (for the arrival times). These algorithms
compute new values of borg, Uer, Cor, Per, and s, for all
other jobs €’ and processors k for all other jobs in the
queue. The main idea is that any service time s,/ de-
pends on its previous jobs only through the processor-
clear times b, (., of the immediately previous job p(e).
Furthermore, each b.; can be computed recursively as
bk = dy(e) if k= py(e) and beg = by(e), otherwise.

The relevant job set for the FCFS queue is simply the
set of jobs whose service times were updated by Algo-
rithms 1 and 2.

4.3 PS Queues

The propagation algorithm for the PS queue is given
in Algorithm 3. The same algorithm is used for arrival
and departure changes. For this algorithm to be ef-
ficient for large N, a special data structure is needed
to store the step function N(t), the number of jobs in
the queue at time ¢t. By using two sorted lists, one for
arrival times and one for departure times, N (t) can be
computed efficiently by binary search.

The relevant job set algorithm is RELEVANTJOBS in
Algorithm 3. It requires a data structure for interval
intersection. Our implementation uses a treap.

5 Experimental Setup

Cloudstone [Sobel et al., 2008] is an application that
has been recently proposed as an experimental setup
for academic research on Web 2.0 applications, such as
Facebook and MySpace. The application was devel-

RMSE

Linear regression | 258. ms
Quadratic regression | 250. ms
Power law regression | 194. ms

Single queue 1-processor RSS | 1340. ms
Network 1-processor RSS 168. ms
Single queue 3-processor FCFS | 71.7 ms
Network PS | 234. ms

Table 1: Extrapolation error of performance models of
Cloudstone. We report root mean squared error on the
prediction of the response time under high workload,
when training was performed under low workload.

oped by professional Web developers with the inten-
tion of reflecting common programming idioms that
are used in actual applications. For example, the ver-
sion of Cloudstone that we use is implemented in Ruby
on Rails, a popular software library for Web applica-
tions that has been used by several high-profile com-
mercial sites, including Basecamp and Twitter.

The architecture of the system (Figure 2) follows com-
mon real-world practice. The apache Web server is
used to serve static content such as images. Dynamic
content is served by Ruby on Rails. In order to han-
dle a large volume of requests, multiple copies of Rails
are run on separate machines; each is indicated by a
“Rails” box in Figure 2. Because the Rails servers
are stateless, they access data on a shared a database
running on a separate machine.

In our setup, we run 10 copies of Rails on 5 machines,
two copies per machine. We run the apache server,
the load balancer, and the database each on their own
machine, so that the system involves 8 machines in all.

We run a series of 2663 requests to Cloudstone over
450s, using the workload generator included with the
benchmark. A total of 7989 jobs are caused by the
2663 requests. The workload is increased steadly over
the period, ranging from 1.6 requests/second at the
beginning to 11.2 requests/second at the end. The
application is run on Amazon’s EC2 utility comput-
ing service. For each request, we record which of the
Rails instances handled the request, the amount of
time spent in Rails, and the amount of time spent in
the database. Each Cloudstone request causes many
database queries; the time we record is the sum of the
time for those queries.

6 Prediction

In this section we demonstrate that networks of queues
can effectively extrapolate from the performance of the
system at low workload to the worse performance that

Charles Sutton, Michael I. Jordan

RMSE
25% 50%
Wait = 0 ‘ 62.3 ms
Linear regression 80.4 +1.0 ms 80.2 +0.8 ms
Network of queues (PS) | 50.0 3.5 ms 28.5 +3.3 ms

Table 2: Error in determining service times. The error
measure shown is the root mean squared error on the
predicting of service times in the full data. The small
numbers indicate the standard deviation over ten rep-
etitions with different observed jobs.

occurs at higher workload. This prediction problem
is practically important because if the performance
degradation can be predicted in advance, then the sys-
tem’s developers can take corrective action.

We compare the extrapolation error of a variety of
models. To do this, we estimate model parameters
during low workload—the first 100s of the Cloudstone
data described in Section 5—and evaluate the models’
predictions under high workload—the final 100s of the
data. The workload during the training regime is 0.9
req/sec, whereas the workload in the prediction regime
is 9.8 req/sec. During the training period, the average
response time is 182 ms, while during the prediction
period the average response time is 307 ms. The goal
is to predict the mean response time over 5 second in-
tervals during the prediction period, given the number
of tasks that arrive in the interval.

We evaluate several queueing models: (a) single-
processor RSS, (b) a network of RSS queues, (¢) a sin-
gle 3-processor FCFS queue, and (d) a network of PS
queues. The service distributions are all exponential.
The networks of queues use the structure in Figure 2.
We also consider several regression models: (a) a linear
regression of mean response time onto workload, (b)
a regression that includes linear and quadratic terms,
and (c) a “power law” model, that is, a linear regres-
sion of log response time onto log workload.

The prediction error of all models are shown in Table 1.
The best queueing model extrapolates markedly better
than the best regression model, with a 63% reduction
in error. Interestingly, different queueing models ex-
trapolate very differently, because they make different
assumptions about the system’s capacity. This point is
especially important because previous work in statis-
tics has considered only the simplest queueing models,
such as 1-processor FCFS. These results show that the
more complex models are necessary for real systems.

A second difference between the regression models and
the queueing model is in the types of errors they make.
When the regression models perform poorly, visual in-
spection suggests that noise in the data has caused

the model to oscillate wildly outside the training data
(for example, to make negative predictions). When
the queueing models perform poorly, it is typically be-
cause the model underestimates the capacity of the
system, so that the predicted response time explodes
at a lower workload than the actual response time.

7 Diagnosis

In this section, we demonstrate that our sampler can
effectively reconstruct the missing arrival and depar-
ture data. The task is to determine from the Cloud-
stone data which component of the system contributes
most to the system’s total response time, and how
much of the response time of that component is due
to workload. Although we measure directly how much
time is spent in Rails and in the database, the mea-
surements do not indicate how much of that time is
due to intrinsic processing and how much is due to
workload. This distinction is important in practice:
If system latency is due to workload, then we expect
adding more servers to help, but not if latency is due
to intrinsic processing. Furthermore, we wish to log
departure times from as few tasks as possible, to min-
imize the logging overhead on the Rails machines.

We model the system as a network of PS queues (Fig-
ure 2): one for each Rails server (10 queues in all) and
one for the database. The latency caused by apache,
by the load balancer, and by the network that con-
nects all of the component is minimal, so we do not
model it. The service distributions are exponential.

Figure 3 displays the proportion of time per-tier spent
in processing and in queue, as estimated using the slice
sampler from 25%, 50%, and 100% of the full data. Vi-
sually, the reconstruction from only 25% of the data
strongly resembles the full data: it is apparent that
as the workload increases from left to right, the Rails
servers are only lightly loaded, and the increase in re-
sponse time is due to workload on the database tier.

To obtain a quantitative measure of error, we group
time into 50 equal-sized bins, and compute the mean
service time for each bin and each tier of the system.
We report the root mean squared error (RMSE) be-
tween the reconstructed service times and the service
times that would have been inferred had the full data
been available. We perform reconstruction on ten dif-
ferent random subsets of 25% and 50% of the jobs.
We use two baselines: (a) one that always predicts
that the response time is composed only of the service
time (denoted “Wait = 0”) and (b) a linear regression
of the per-job waiting time onto the workload in the
last 500 ms. Results are reported in Table 2.

The MCMC sampler performs significantly better at

Inference and Learning in Networks of Queues

500 — 500 500
400 -| 400 400 IDB wait
300 300 — 300 .
Response N A .)\ DB service
time (s) 200 200 200 | \A Rails wait
100 — 100 100 . .
Rails service
0 T T T] 0 T T T] 0~ T T T]
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Time (s) Time (s) Time (s)
25% 50% 100%

Percentage of tasks observed

Figure 3: Reconstruction of the percentage of request time spent in each tier, from 25% tasks observed (left),
50% tasks observed (center), and all tasks observed (right). The x-axis is the time in seconds that the task
entered the system, and the y-axis is estimated latency.

reconstruction than the baselines, achieving a 25% re-
duction in error for 25% data observed, and a 54% re-
duction in error for 50% data observed. Linear regres-
sion performs poorly on this task, performing worse
than the trivial “Wait=0" baseline. Interestingly, the
performance of linear regression, unlike the queueing
network, does not improve with additional data. This
supports the idea that the poor performance of linear
regression is due to limitations in the model.

8 Discussion

In the computer systems community, there has been
recent interest in modeling Web services by queueing
networks [Urgaonkar et al., 2005, Welsh, 2002]. Pre-
vious work in statistics [Heggland and Frigessi, 2004,
Fearnhead, 2004, Jones, 1999] has considered param-
eter estimation in single-processor FCFS queues, but
does not consider more complex queueing models, or
networks of queues. The single-processor FCFS queue
simplifies the situation considerably from the more
general models considered here. In practice the more
sophisticated models are essential for accurately mod-
elling real systems, as shown in Section 6.

Another related research area is network tomography
[Castro et al., 2004], which concerns problems such as
estimating link delays in a network solely from mea-
surements of the end-to-end delay. This is a markedly
different inferential problem from ours, in that the net-
work tomography literature does not focus on how
much of the link delay is caused by workload. For
this reason, in our setting the observed data always
includes the number of requests in the system, a mea-
surement that is usually assumed to be unavailable in
the network tomography setup.

Finally, the current work can be viewed as a coarse-

grained generative model of computer performance.
More detailed models could be of significant interest.

Acknowledgements

This research is supported in part by gifts from Sun
Microsystems, Google, Microsoft, Amazon Web Services,
Cisco Systems, Cloudera, eBay, Facebook, Fujitsu Labs
America, Hewlett-Packard, Intel, Network Appliance,
SAP, VMWare and Yahoo! and by matching funds from
the University of California Industry/University Coopera-
tive Research Program grant COMO07-10240.

References

R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu.
Network tomography: Recent developments. Statistical
Science, 2004.

P. Fearnhead. Filtering recursions for calculating likeli-
hoods for queues based on inter-departure time data.
Statistics and Computing, 14(3):261-266, 2004.

K. Heggland and A. Frigessi. Estimating functions in indi-
rect inference. Journal of the Royal Statistical Society.
Series B, 66(2):447-462, 2004.

L. K. Jones. Inferring balking behavior from transactional
data. Operations Research, 47(5):778-784, 1999.

L. Kleinrock. Queueing Systems: Theory and Applications.
Wiley Interscience, New York, 1973.

R. M. Neal. Slice sampling. The Annals of Statistics, 31
(3):705-741, 2003.

W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen,
H. Wong, S. Patil, A. Fox, and D. Patterson. Cloud-
stone: Multi-platform, multi-language benchmark and
measurement tools for Web 2.0. In First Workshop on
Cloud Computing and its Applications (CCA), 2008.

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi. An analytical model for multi-tier internet
services and its applications. In SIGMETRICS, 2005.

M. Welsh. An Architecture for Highly Concurrent, Well-
Conditioned Internet Services. PhD thesis, University of
California, Berkeley, 2002.

