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Abstract

This paper presents the inference and reasoning methods in a Bayesian supported knowledge-intensive case-based reasoning

(CBR) system called BNCreek. The inference and reasoning process in this system is a combination of three methods.

The semantic network inference methods and the CBR method are employed to handle the difficulties of inferencing and

reasoning in uncertain domains. The Bayesian network inference methods are employed to make the process more accurate.

An experiment from oil well drilling as a complex and uncertain application domain is conducted. The system is evaluated

against expert estimations and compared with seven other corresponding systems. The normalized discounted cumulative

gain (NDCG) as a rank-based metric, the weighted error (WE), and root-square error (RSE) as the statistical metrics are

employed to evaluate different aspects of the system capabilities. The results show the efficiency of the developed inference

and reasoning methods.

Keywords Bayesian network · Case-based reasoning · Knowledge-intensive system · Uncertain domains

1 Introduction

The main role of the inference and reasoning process in AI

systems is interpreting raw data to generate new information

from the domain knowledge. However, it is not possible to

create a complete model from an uncertain domain. There-

fore, it is necessary to employ a method to make rational

decisions when there is not enough information to prove their

validity.

Looking into the literature, different inference and reason-

ing methods are utilized for working in uncertain domains,

which are weak-theory domains in the sense that relation-

ships between concepts are uncertain. Hence, statements

derived from within domain models are uncertain. The con-

trast would be perfect-theory domains, in which relations

are certain, and statements can be proved true or false. This

lack of certainty means that in order to build a representa-

tive knowledge model, more knowledge is needed to support
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a statement than what would be needed in a proof-oriented

system. A stronger model is also facilitated by an integra-

tion of various knowledge types, with their corresponding

inference and reasoning methods. The system presented here,

BNCreek, serves this purpose by combining case-based rea-

soning (CBR), semantic networks, and Bayesian networks

(BN). CBR has proved its capabilities to work in such areas

[1]. It often employs simple similarity inference methods like

k-nearest neighbors (KNN) to reason about the cases’ similar-

ity. Aamodt et al. [1] integrated a semantic network structure

to the CBR method and developed the Creek knowledge-

intensive CBR system. The semantic network provides the

underlying value propagation for the system. However, in

TrollCreek, the semantic network inference and reasoning

methods are implicit, hidden in the code, and mostly not for-

mally defined. Therefore, formal analysis and comparison

with other inference methods are challenging [2–5].

BNCreek utilizes the Creek advantages as a background

and presents a novel method that makes the inference and

reasoning in uncertain domains more accurate. The need for

a clearly defined semantic and a more formal treatment of

uncertainty led to the incorporation of the Bayesian network

model. Bayesian networks as graphical models include a for-

mally defined inference engine that provides the ability of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13748-020-00223-1&domain=pdf
http://orcid.org/0000-0003-4705-9475


50 Progress in Artificial Intelligence (2021) 10:49–63

reasoning under uncertain conditions by estimating the prob-

abilities for values of the variables that are not observable.

The first attempts to investigate effects of Bayesian anal-

ysis in cooperation with the CBR and the semantic network

inference methods can be found in [6,7].

The study presented in this paper digs deeper into the issue

and specifically focuses on the BNCreek inference and rea-

soning methods. The methods address the problem of failure

diagnosis in uncertain domains.

The integration of CBR, semantic network, and Bayesian

networks facilitate the combination of different kinds of

uncertainty handling, improves the similarity assessment,

and prepares a formal and flexible basis for reasoning based

on probabilities.

The paper is organized into ten parts. Section 2 briefly

describes related studies. Sections 3, 4, and 5 explain the

details of the inference and reasoning in the semantic net-

work, the Bayesian network, and CBR. Section 6 describes

the combined reasoning steps in the system. In Sects. 7 and

8, the oil well drilling knowledge model is presented, and the

conducted experiment and its results are discussed. Finally,

Sects. 9 and 10 discuss and conclude the detailed advantages

and weaknesses of the system.

2 Related work

In BNCreek, the CBR method is employed to cover the lack

of generalized knowledge. The semantic network supports

similarity assessment. It plays an essential role in increasing

the accuracy of inference processes. The Bayesian analy-

sis improves the similarity assessment quality and adds a

formally defined probability-based inference method to the

system. CBR is integrated with the semantic network and

the Bayesian network to make the most out of the domain’s

well-defined parts.

We make a short review of the similarity assessment meth-

ods that are utilized in some CBR-based systems. Then, we

focus on summarizing some related work that utilized the

CBR, Bayesian network, and semantic network methods on

their own or in integration.

Tversky [12] designed a representational similarity model

called the contrast model. The model satisfies five assump-

tions: 1. matching, 2. monotonicity, 3. independence, 4.

solvability, and 5. invariance. It preserves the observed

similarity order and expresses similarity as a contrast of

the measures of the common and the distinctive features:

a ∗ common/(a ∗ common + b ∗ di f f erent). a and b are

the parameters of importance for the common and different

features, respectively.

Several similarity models are characterized by different

values of the parameters in Tversky’s similarity model.

Eisler [13] considered common features over a summation

of case features and investigated a quantitative mechanism of

the subjective similarity for the dimension of a pitch. Greg-

son [14] reduced the contrast model into the ratio of common

features to overall features, while Bush [15] considered the

ratio of common features over the input case features. Their

models provide two possible frameworks for analyzing prob-

lems in stimulus generalization and discrimination.

Richter et al. [16] designed an expert system called Patdex.

They defined a similarity measure to find similar cases for the

fault diagnosis of complex machines. Patdex is another sys-

tem with a similarity model from the contrast model family. It

considers the similarity of attribute values as criteria for com-

mon and different features. In another version of Patdex, a

weighting mechanism is defined as a local similarity measure

that determines the similarity between possible symptom val-

ues.

myCBR [8] is a case retrieval system targeting at devel-

oping customized knowledge models. It provides distance-

based knowledge-intensive similarity measures at two levels

of local and global similarities for attributes and concepts.

Each attribute could have more than one value and sev-

eral similarity measures. The numeric, textual, and symbolic

attributes are covered by data types like Int, Float, Double or

String, and taxonomies, respectively.

Cain et al. [11] combined CBR and explanation-based

learning and proposed a parametrized similarity model. They

utilize the domain model to determine the relevance of a fea-

ture to a case. The partial matching of cases and the reasoning

within the domain model are lacking in their system.

Been et al. [9] integrated BN and CBR to model the under-

lying root causes and explanations and introduced a model

called Bayesian Case Model (BCM). They used case-based

classifiers and BN as two interpretable models to identify

the most representative cases and important features. These

cases are the exemplars that are the most representative and

not necessarily the most similar samples to the current situa-

tion. The BCM serves as exemplars for prototype clustering

and subspace learning. Their study is motivated by removing

the gap between the machine learning methods and human

reasoning/learning based on decision-making strategies.

Yuan et al. [10] proposed a probabilistic retrieval method

that avoids the traditional similarity measurement. The effect

of big data technology in CBR analysis motivates their study.

A big case base leads to a heavy and complex computational

similarity assessment task. In order to improve the CBR

efficiency in dealing with the big data analysis, a Bayesian

network is integrated into the CBR system to conduct case

retrieval. The retrieval is performed by obtaining the joint

probability distribution of all problems from the case base

and predicting the solution of a new problem by matching

and identifying all problem distributions by the new case.
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Aha et al. [17] proposed a decision aids tool based on

an integrated BN and CBR problem-solving architecture for

solving multiagent planning tasks. In their system, the task

models are represented with Bayesian networks and experi-

ences with cases. They used their architecture in Navy force

level planning. They focused on multiagent teamwork tasks,

which were characterized by incomplete domain models and

frequent feedback within the decision making process. Each

agent plays a distinct role, and solving a task often relies on

teamwork. Their architecture in a selection–execution loop

uses Bayesian networks to select the actions. It utilizes CBR

to pick a case, implement an action, conduct a learning task

for the network, and update the case base until the goal is

reached.

Generally, it is not easy to distinguish between inference

and reasoning; it would be impossible in some cases. In our

study, the underlying detailed processes are considered as

inference methods. These methods apply some rules to a

knowledge base and derive new information used for the

reasoning process. Any new observation about the domain

could trigger the inference process and lead to new informa-

tion. Our system’s primary similarity assessment method is

partially inspired by Tversky [12].

In addition, it utilizes a knowledge model to generate

explanations for a more accurate retrieval, with some similar-

ities to Cain et al. [11] and Been et al. [9]. BNCreek utilizes

Bayesian analysis as a formal basis to improve the overall

accuracy of the inference and reasoning process, while [9]

employed the BN for classification purposes.

3 Inference and reasoning in the semantic
network

The semantic network structure is represented as an edge-

labeled directed graph to capture and model a real domain as

detailed as possible. In this structure, the nodes are domain

concepts that are denoted by the upper-case letter (C) and

their instances are denoted by lower-case letters (c). The

edges demonstrate the relationships (R) between the con-

cepts. Each relationship is a quadruple of (concept, relation

type, relation strength, concept). The relation type (RT ) is a

label that denotes the kind of relation between two concepts,

e.g., has subclass, has instance, causes, has status and their

reverse like subclass of. The instances of RT are denoted by

(r t). The relation strength (RS) reflects relationship strength

by a real number between 0 to 1. The instances of RS are

denoted by (rs).

A run-through toy example from a cooking domain will

be used as an introductory example. The knowledge model is

built for investigating the ingredient and failures in making

a good dish. The example is used to clarify the system’s

processes and methods. Figure 1 shows a sample of the

knowledge model that has captured and modeled some cook-

ing domain details. It is a toy knowledge model with 46

concepts and 43 edges. It consists of a semantic network,

a Bayesian network, and partial descriptions of three cases

that are connected to the networks (dashed edges). The rela-

tion types and strengths of the relationships are written along

the edges. HS and HSt stand for Has subclass and Has sta-

tus, respectively. Each relationship has a reverse that is not

displayed in the figure. In this example, for the simplicity of

calculation, all relationships’ strengths and their reverses are

set to 0.9. This simplification goes to all the relation types,

but the causal ones. The causal relations present the failures

of using an inappropriate amount of ingredients.

It should be noted that the causal relations and their rel-

evant concepts in addition to forming the Bayesian network

are part of the semantic network as well. This overlap enables

interaction between the two networks.

The concept names in the fourth layer are abbreviated. The

ShCE, BCE, and FCE stand for shrimp cooked enough, beef

cooked enough, and fish cooked enough, respectively. The

UC, OC, L, M, and E stand for undercooked, overcooked,

little, much, and enough, respectively, and followed by the

first letter of its parent. For example, UCSh stands for under-

cooked shrimp and MP stand for much pepper.

Two of the semantic network inference methods are devel-

oped in this system, i.e., inheritance and path following. Both

of the methods are defined based on Touretzky’s [18] defini-

tions.

The inheritance mechanism is a basic inference method

that assigns a semantic interpretation to the relationships of

a semantic network knowledge representation. In a simpli-

fied definition, the inheritance mechanism interprets how the

semantic network relationships inherit over subclass-of rela-

tions, see Definition 1. In Fig. 1, flavoring is a concept with

a property of seasoning food. The pepper concept is a sub-

class of flavoring, so it is assumed that it can season the

food. In general, a concept is described by its typical prop-

erties, which are inherited by more specialized concepts and

instances. The inheritance is not absolute; however, an inher-

ited property may be overridden by a specific, local property

[19].

Definition 1 (simplified inheritance mechanism) If the domain

concept X is a subclass of domain concept Y , it inherits its

properties as long as there is no exceptional information asso-

ciated directly with the concept X .

For example, consider the domain concept Y as a bird and

the domain concept X , its subclass, as an eagle. Therefore,

based on Definition 1, it is assumed that the eagle can fly,

which is correct. In another example, consider the domain

concept X to be a penguin. It is assumed that X inherits Y ’s

properties, but the penguin cannot fly, although it is a bird.

Therefore considering the exceptional information, the pen-
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Fig. 1 Figure illustrates parts of the cooking area knowledge model.
The relation types and strengths are written along the edges. Reverse
relationships are not included. HS and HSt stand for Has subclass, and
Has status, respectively. BCE, FCE, and ShCE stand for beef cooked

enough, fish cooked enough, and shrimp cooked enough, respectively.
The OC, UC, L, M, and E stand for overcooked, undercooked, little,
much, and enough, respectively, and are followed by the first letter of
its parent. For example, LS stands for little salt

guin is still a subclass of birds but it does not inherit the flying

property. Definition 1 is utilized in generating the knowledge

model. It is the basis for the path following method.

Path following is an inference method founded on the

inheritance mechanism and helps to navigate through the

semantic network by generating a path between two concepts.

A path is a set of chained relationships where the starting con-

cept of the first relationship is the starting point of the path,

the end concept of any relationship is the start of the next

relationship, and the end concept of the last relationship is

the ending point of the path. In Fig. 1, the chain of {(fish,

subclass of, 0.9, meat)(meat, has subclass, 0.9, shrimp)} is

an example of a path between the fish and shrimp concepts.

Definition 2 formally defines a path based on Touretzky’s

definition.

Definition 2 (Paths) A path P from c1 to cn is an ordered,

loop-free set of chained relationships.

P = (c1, r t1, rs1, c2)(c2, r t2, rs2, c3) . . . (cn−1, r tn−1,

rsn−1, cn). Such that: r ti and rsi are the instances of the

relation type and the relation strength.

The paths which are generated for reasoning in the seman-

tic network are called explanation paths (Epath). They are

generated by following the sequence of relationships between

two concepts. There are two purposes for generating an Epath

in BNCreek. The first one is the explanation that the sys-

tem generates for the user’s benefit, explaining the reasoning

steps and justifying why a particular conclusion was drawn.

The other is the internal explanation that the system con-

structs for itself during the problem-solving process, which

has two types: The general explanations explain the similar-

ity of any two concepts, and the causal explanations explain

the relevance of an evidence to a failure.

Considering Fig. 1, the system explains the partial similar-

ity between little onion (LO) and little garlic (LG) by pointing

to not flavored enough as their common concept and gener-

ates the {(little onion (LO), causes, 0.5, not flavored enough

)(not flavored enough , caused by, 0.99, little garlic (LG))}

as an Epath that can be used as a general explanation or the

user explanation. Consider case1, which has a smelly food

symptom. The {( smelly food, caused by: 0.8, not flavored

enough )} is an example of a causal explanation.

The internal explanations mostly help to improve the

problem-solving quality by working on the cases. A case

is a previously experienced situation that consists of a set

of features. A case feature (F) is a triple of (concept, rela-

tion type, relevance factor). An instance of F is denoted by

( f ). The relevance factor represents the importance of a fea-

ture for a stored case [20]. Cases are considered as domain

situation-specific concepts that are connected to the semantic

network by their features.

There are three types of case descriptions in this sys-

tem. A raw case is an unsolved case that is entered into the

system by the user based on his primary observations. The

pre-processed case is an unsolved case that is modified and

extended during the system process. The modified features

are referred to as inferred features. The third type is the solved
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case, which has a finalized description and a solution. Fig-

ure 2 exemplifies a complete description of case1 for each

of the three aforementioned types. The figure is explained in

detail further in the paper.

An Epath is an explanation path through the knowledge

model. In a comparison of two cases, the Epath is an ordered

set of relationships that starts with a feature of one case,

has some relationships in between, and ends with a feature

of another case, i.e., ( f1i , t1, s1, c2) . . . (cn, tn, sn, f2 j ). Such

that f1i is a feature number i from the first case, and f2 j is a

feature number j from the second case.

All the relation strengths involved in an explanation chain

are combined to form a single explanation strength for an

Epath. The similarity of the two cases may be explained by

several Epaths. In this case, the explanation strengths of all

single Epaths are combined to form the total explanation

strength utilizing Eq. 1, [19,21]. According to this equation,

the similarity of the identical features is explained by the

highest similarity degree, and the similarity of nonidentical

features is weakened as more relationships are followed. The

E X P S( fi , f j ) stands for the explanation strength between

feature fi and f j . RS stands for the relation strength in a path.

P stands for the maximum number of the accepted Epaths

between two features fi , f j , and p fi , f j
is an instance of it.

R and r stand for the number of relationships in a path and

an instance of it, respectively.

E X P S( fi , f j ) = 1 −

P
∏

p fi , f j
=1

(1 −

R
∏

r=1

RSr p) (1)

The explanations are generated by propagating into the

knowledge model along with the relationships between the

two features. Dijkstra’s algorithm [22], as a well-known algo-

rithm for finding the shortest-path with the specific lengths

in a weighted graph, is utilized for this purpose. Any path

between two features potentially could be an Epath. A path

can be accepted as an Epath if it meets some pre-determined

path strength criteria, which are defined by the domain expert.

For example, the paths with a strength higher than 0.5 are

accepted as the Epath in the food domain.

Consider case2 and case3 shown in the knowledge model

of Fig. 1. Let us compute the partial similarity between fea-

ture enough garlic (EG) from case2 and feature little garlic

(LG) from case3. Suppose the strength of an acceptable Epath

must be higher than 0.6. The Dijkstra algorithm extracts

the paths between the two features. The ones with path

strengths>0.6 are approved and listed below as the Epaths.

Ep1: LG–>garlic–>EG. (path strength:0.81)

Ep2: LG–>garlic–> f lavoring–>garlic–>EG. (path

strength:0.64)

Utilizing Eq. 1, the total explanation strength between LG

and EG is: 1 − ((1 − 0.81) ∗ (1 − 0.64)) = 0.93. In a bigger

knowledge model with more details of the domain, the partial

similarity between two concepts like LG and EG could be

a smaller value.

4 Inference and reasoning in the Bayesian
networks

Bayesian inference is the process of updating an uncertain

belief within a domain using Bayes’ theorem when more

information becomes available. Mathematically, Bayesian

inference derives the posterior probability distribution by

renormalizing the product of the prior probability distribu-

tion and the likelihood according to the Bayes’ theorem.

The prior probability distribution is an estimation of the

domain beliefs based on the statistical hypothesis made by

an expert. The likelihood expresses the plausibility of val-

ues that are assigned to the parameters based on the given

information. The posterior probability distribution is a prob-

ability distribution of the domain beliefs conditioned on the

new information obtained from an experiment or an obser-

vation.

p(θ |E) =
p(E |θ) × p(θ)

p(E)
(2)

Equation 2 is the Bayes’ theorem in which p(θ) is the prior

probability of the parameter θ , the p(E |θ) is the likelihood

of the evidence and the p(E) is the probability of the events

that renormalizes the updated beliefs.

Having access to the Bayesian network’s joint distribu-

tion tables and given unlimited time, inference in a Bayesian

network could easily be done by calculating the posterior

probabilities (p(θ |E)) via enumeration. In this way, the

whole joint distributions will join up and then the hidden

variables will sum out. Increasing the network size expo-

nentially increases the joint distribution that results in the

repeated multiplications and makes the process slow. There-

fore, more efficient methods are employed to calculate the

posterior probabilities.

Bayesian network inference employs two classes of exact

and approximate algorithms. The exact BN inference algo-

rithms analytically compute the conditional probability dis-

tribution over the variables of interest. They guarantee the

correct answer to the query. The approximate BN inference

algorithms use an estimation of posterior probabilities for the

Bayesian analysis. Both the exact and approximate inference

algorithms are NP-hard [23,24]. The exact inference could

be applied to a large range of problems, while in more com-

plex and bigger domains, the approximate algorithms may

be used, although they do not guarantee the correct answer.
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Fig. 2 Figure illustrates the three changing steps for a case consisting of a raw new case (a), a pre-processed case (b) and finally a solved case (c)

In the current version of BNCreek, the exact BN inference is

applied.

A common exact BN inference algorithm is called Vari-

able Elimination. The algorithm implicitly constructs the

joint probability distribution given the evidence. Then, it

sums out the unwanted variables and constructs a marginal

distribution over the variables of interest. This process avoids

dealing with bigger joint probability distributions and repet-

itive computations. However, Variable Elimination is query

sensitive. It means for each query, the entire algorithm must

run again [25].

One of the most popular exact Bayesian network infer-

ence algorithms is the Junction tree algorithm from Lauritzen

and Spiegelhalter [26]. Junction tree inference is not query-

oriented and can be applied to general graphs. It executes two

runs of the Variable Elimination to hold a set of pre-computed

factors and then answers any marginal queries quickly. There

is no computationally cheaper approach to conduct the exact

inference on a general arbitrary graph that shows the algo-

rithm’s efficiency. It generalizes Variable Elimination to the

simultaneous execution of a large class of queries with the

same basic form of computation in all directions at once.

These properties made the junction tree inference algorithm

a powerful candidate as an inference method in our system

[27,28].

In order to implement the Bayesian inference methods,

UnBBayes framework is employed. The UnBBayes utilizes

the Junction tree algorithm for inferencing in a Bayesian net-

work. It is an open-source Java-based Bayesian package for

modeling, learning, and reasoning upon probabilistic net-

works [29].

As mentioned before, the inference process considers the

values of the evidence (symptoms) and computes the pos-

terior probability distribution of the beliefs by conditioning

upon the evidence. The Bayesian inferences will be used to

reason in the knowledge model via a flow of information

through the network in any direction in three types [30].

1. Reasoning from symptoms to cause (diagnostic rea-

soning). This reasoning occurs in the opposite direction of

the network arcs. It updates the system beliefs about specific

failures (causes) by observing new symptoms. In Fig. 1, if a

case has smelly f ood as a symptom, the system beliefs will

update the LG and L On as related causes.

2. Reasoning from the causes to the symptoms (predictive

reasoning). This reasoning occurs in the direction of the net-

work arcs when new information regarding a possible cause

updates the system’s beliefs. In Fig. 1, if a case has LG as

an inferred feature, the system beliefs will be updated for

not properly cooked. One benefit of predictive reasoning is

increasing the accuracy of the similarity assessment. It should

be noted that the current system announces a set of failures

with their probability degrees as a case solution. There are

two ways for an unsolved pre-processed case to have a feature

with a failure relation type: 1) when some inferred features

are added to the case by the system as a prediction and 2)

when the failure comes from the expert to the case as a pre-

diction.

3. Reasoning about the mutual causes of a common effect

(intercausal reasoning). This reasoning occurs in the network

arc direction when two independent causes have a common

effect. If new information about one of the causes is acquired,

the other cause’s probability will be updated, and the other

cause will be explained away. In Fig. 1, L On and M On cause

Not f lavoredenough. If a case has L On as one possible

cause (inferred by the system or predicted by an expert), the

system beliefs will explain away the LG as another possible

cause.

5 Inference and reasoningmethods in CBR

Inference and reasoning quality in CBR is based on its built-in

similarity model. The similarity measure in the retrieve pro-

cess is used to quantify the degree of resemblance between a

pair of cases [31]. Two types of similarity models in CBR sys-
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tems are considered here. The first type is the distance-based

similarity models, and the second is the representational

similarity models. The distance-based models calculate the

similarity between cases by computing the distance between

the constituting objects of the cases. The representational

approaches index the input case similar to the structure of the

case base or connect the input case into the graphical struc-

ture of the case base and compare the cases. Some systems

utilize a combination of the two types of similarity mod-

els [31]. Similarity assessment plays an essential role in the

retrieval process of the CBR cycle [20].

5.1 Similarity assessment

One of the interpretations of an explanation is a method for

reasoning. With this interpretation, generating an explanation

is inferring a chain that is a good explanation of the similarity

of the two features.

Therefore, the similarity of casei = ( fi1, fi2, . . . , fin)

and case j = ( f j1, f j2, . . . , f jm) depends on the number

of common features and the explanations’ strengths for non

identical ones.

The total similarity measure in BNCreek is a ratio model,

which is normalized between 0 and 1. The model is based

on the Creek similarity model. The underlying assumptions

are:

1. The similarity is a reflective relation, i.e., sim(x, x) is

equal to one.

2. The similarity is not necessarily a symmetric relation,

i.e., sim(x, y) is not necessarily equal to sim(y, x).

A mathematical model measures the similarity between

the two cases. It sums up the multiplication of local similari-

ties by the relevance factors of the retrieved features. To keep

the total similarities comparable, the degrees are normalized

by summing up the relevance factors of the retrieved case.

Equation 3 shows the similarity model of the input case

C I N and the retrieved case CRE . RF stands for the relevance

factor. It is a positive value for each feature that is set by the

expert and measures the importance of any feature for that

specific case. The E X P S( fi , f j ) stands for the explanation

strength between coupled features fi from C I N and f j from

CRE . n and m are the number of features in the input and

retrieved cases, respectively [1].

The β(E X P S( fi , f j )) function is defined from input

domain E X P S( fi , f j ), such that β(E X P S( fi , f j )) will be

equal to one when E X P S( fi , f j ) is not zero. For any coupled

explained features, the β function keeps the result normal-

ized. The α coefficient is a real number that is multiplied to

the β function and controls its intervention amount. α con-

trols the denominator extent which results in controlling the

total degrees of similarities. In this version of BNCreek, the

most efficient number for the alpha coefficient is determined

by testing various numbers for any new studying domain or

a new case base.

sim(C I N , CRE )

=

∑n
i=1

∑m
j=1 E X P S( fi , f j ) ∗ RF f j

α ∗ (
∑n

i=1

∑m
j=1 β(E X P( fi , f j )) ∗ RF f j

)+
∑m

j=1 RF f j

(3)

Consider the pre-processed case1 as a new case and the

solved case2 as a retrieved case illustrated in Figs. 2 and 4,

respectively. We want to calculate their total similarity. Let

us suppose, an acceptable path strength should be higher than

0.5 and consider the α coefficient equal to 1.

The explanation strengths (E X P S( fi , f j )) of the cou-

pled features are multiplied to the relevance factor of

the retrieved case features, i.e. f j , based on Eq. 3 as

follows: ((E S, E S) = 1 ∗ 0.5 + (ShC E, OC F) =

0.91 ∗ 0.55 + (LG, E L) = 0.98 ∗ 0.5 + (E P, E L) =

0.94 ∗ 0.5 + (not flavored enough, E L) = 0.95 ∗ 0.5 +

(smelly food, E L) = 0.76∗0.5+ (LG, EG) = 0.93∗0.5+

(E P, EG) = 0.94 ∗ 0.5 + (not flavored enough, EG) =

0.89∗0.5+ (smelly food, EG) = 0.63∗0.5+ (E B, E O) =

0.82 ∗ 0.5 + (ShC E, overcooked) = 0.66 ∗ 0.9) = 5.6.

The final value for α ∗ (
∑n

i=1

∑m
j=1 β(E X P( fi , f j )) ∗

RF f j
), which is the first part of the denominator is as follows:

1∗(1∗0.5+1∗0.55+1∗0.5+1∗0.5+1∗0.5+1∗0.5+1∗

0.5+1∗0.5+1∗0.5+1∗0.5+1∗0.5+1∗0.9) = 6.45. The

second part of the denominator, i.e.,
∑m

j=1 RF f j
is equal to

3.45. Therefore, the total similarity of the case1 and case2

is (5.6/(6.45 + 3.45)), which is equal to 56%.

5.2 Retrieve

To perform the retrieval in BNCreek, we are given a set of

solved failure cases c1, . . . , cn in a case base (C B), a simi-

larity measure (SI M) and a new case (NC). The goal is to

retrieve the (ci ) that maximizes the SI M measure for the

NC .

The retrieve process conducts the Bayesian reasoning and

computes the similarity in association with the structural rea-

soning in five steps: 1. conduct a Bayesian inference, 2.

update case descriptions, 3. update the knowledge model

strengths, 4. generate explanations, and 5. compute the sim-

ilarities.

Conduct a Bayesian inference: The system enters the raw

case symptoms to the Bayesian network module and triggers

the Bayesian inference. It results in the network posterior

distribution that is dynamic in nature, i.e., the probabilities of

the dependencies change for any new entered case. Figure 3

shows a small part of the Bayesian network beliefs before and

after propagating the symptom. The smelly food, not flavored
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Fig. 3 Part of the Bayesian beliefs before (prior, to the left) and after
(posterior, to the right) applying the symptoms into the network. The
smelly food is the evidence node that is shown in blue. The example is
adapted from [6]

enough, little garlic, and little onion probabilities on the left

side are 70%, 67%, 60%, and 60%, respectively. While after

propagating the evidence on the right side, they are 100%

(shown in blue as the evidence node), 76%, 63%, and 63%,

respectively. The observed changes in the network beliefs

reflect the effect of customizing the network’s beliefs for any

new case.

Update case descriptions: This step extracts informative

knowledge from the knowledge model and adds it to the case

description.

It extracts the causes of the case symptoms utilizing the

posterior distribution. Several causes could be extracted for

any symptom. A threshold for the numbers of extracted

causes will be determined by the expert based on the knowl-

edge model size. The system modifies the case description

by adding the causes as inferred features. The updated case is

referred to as a pre-processed case. Figure 2 shows the case1

as a raw and then modified case, referred to as a pre-processed

case.

Update the knowledge model strengths: Causal strengths

of the semantic network are adjusted dynamically based on

the Bayesian posterior beliefs. The other relationships do not

change.

Generate explanations: This step utilizes the semantic net-

work reasoning and explains the partial similarities between

the case features.

Compute the similarities: This step utilizes the adjusted

causal strengths, the pre-processed case description, and

generated explanations and computes the total similarity

between the input case and cases in the case base. In our

example, the total similarity between case1 and case2 is equal

to 56% and the total similarity between case1 and case3 is

equal to 71%.

Fig. 4 Tables illustrate the solved case2 and solved case3

5.3 Reuse

The reuse section in this system is a model-based adaptation

process. The reuse process as the second part of the Aamodt

and plaza 4R CBR cycle [20] considers the retrieved cases’

solutions and generates an appropriate solution for the new

case. In this system, the adaptation term refers to all modifi-

cations made on the retrieved cases’ solutions to tailor them

to be as efficient as the new case’s solution. For simplicity,

the adaptation term is even used in rare situations that no

changes are necessary for a solution to be presented as a new

case solution.

The system adapts previous solutions to a new case in two

main phases: 1. adding potential candidates and 2. removing

false candidates.

5.3.1 Adding potential candidates

The system performs the adding candidates phase by apply-

ing two strategies for two circumstances:

Transfer failures: This strategy considers the solutions of

the first h best similar cases and modifies their features’ rele-

vance factors using the corresponding causal strengths from

the knowledge model. The causal strengths in the knowl-

edge model are dynamically changed by propagating any

input cases’ symptoms, leading to the unicity of the causal
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strength for any new case. For different domains, a different

number of cases are needed. In this version, different values

should be examined to determine the best number. Second,

the transfer failures strategy adds the modified solutions into

the initial solution list.

Inferred failures: This strategy is invoked right after the

transfer failures strategy. First, it considers each feature of the

new case and generates causal explanations with maximum

length m to explain the nearest failures’ relevance. The expert

determines the number of m. Second, the inferred failures

strategy automatically sets the extracted failures’ strengths

based on the corresponding causal explanations and adds

them into the initial solution list.

5.3.2 Removing false candidates

This phase modifies the potential solution list. It applies two

strategies in two circumstances:

The expert distinction: This strategy modifies the potential

solution list by applying some pre-implemented rules. The

rules are derived to capture the expert principles regarding

the domain specifications. For example, some failures have

an impact on the occurrence probability of the other failures.

These type of dependencies between the failures identifies

by domain experts. The system considers each failure from

the first phase result and removes the ones which break the

rules.

Removing weaker candidates: This strategy considers the

adjusted probabilities of each failure in the potential solu-

tion list and removes the less probable failures. An expert

determines a threshold for deciding if a failure is weak or

not.

Finally, the modified solution from the second phase is

presented to the user as the input case solution.

Consider pre-processed case1, solved case2, and solved

case3, from Figs. 2 and 4, respectively. Let us find a solu-

tion for case1. First, we form the potential list by transferring

the solutions of case3 and case2 as the first two most simi-

lar cases, {overcooked meat, little garlic, little onion}. To

make the case solution comparable to similar cases, the

system renames the overcooked fish to overcooked meat.

We assign the causal strength from the new case posterior

beliefs to the list elements, {overcooked meat: 0.4, little

garlic: 0.63, little onion: 0.63}. Then, the system infers

the failures which are close enough to the symptoms of

case1 from the knowledge model and adds them to them

the list as inferred failures. For example, consider {smelly

food as a symptom of case1. The causal paths from it to

the close enough failures are smelly food–>...–>overcooked

shrimp: (path strength=0.12), smelly food–>...–>little garlic:

(path strength=0.47),smelly food–>...–>not flavored enough

: (path strength=0.76). The inferred failures are added to the

list, {overcooked meat: 0.4, little garlic: 0.63, little onion:

0.63, not flavored enough : 0.76}. The failures that are already

in the list keep their strengths. According to the expert’s

rules, the system removes the items that are entered on the

list while they are not relevant to the new case. little onion:

0.63 removes as onion is not part of ingredient, {overcooked

meat: 0.4, little garlic: 0.63, not flavored enough : 0.76}.

overcooked meat: 0.4 has a very small possibility and will be

removed. The final solution is {little garlic: 0.63, not flavored

enough : 0.76}.

6 Inference and reasoningmethod in
BNCreek

Figure 5 illustrates the combined inference and reasoning

process of the system. The process aiming to derive a proper

solution is triggered by the symptom list of a new case.

The whole process could be divided into two sections of

retrieve and reuse from the CBR method. The Bayesian net-

work reasoning and the semantic network reasoning are the

subprocesses of it.

As the first step of reasoning in the retrieval process,

the Bayesian network reasoning methods update the system

beliefs by propagating the events (new case symptoms). Then

the semantic network reasoning methods generate the nec-

essary explanations and compute the similarity between the

new case and the case base. The final result is a descending

order list of the retrieved cases.

The reasoning in the reuse process gets the retrieved cases

as input. The role of the Bayesian network reasoning sub-

process is to update the potential solutions’ beliefs based on

the new case specifications. The semantic network reasoning

methods, as the next subprocess, generate causal explana-

tions between the new case symptoms and the candidate

failures. The result of the reuse process is a list of failures

that will be presented to the user as a solution.

7 Oil well drilling knowledgemodel

Oil well drilling problems frequently occur because of the

complexity and variety of the geological formations. Each

well may experience both similar and new problems during

the drilling operation. While drilling is an expensive opera-

tion, access to the experts to solve problems and knowledge

acquisition in offshore and onshore rigs is limited, so each

failure causes a lot of expense [32].

To extract the oil and gas, a drilling rig that rotates a

drill string with a bit attached cuts into the rock and bring

petroleum oil hydrocarbons to the surface. This process is

called wellbore drilling. To prevent destabilization of the rock

in the wellbore walls and lifting rock cuttings to the surface,

drilling fluid and mud, that is essentially a mixture of water
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Fig. 5 Figure illustrates the system reasoning process flow chart

and clay is pumped down the inside of the drill pipe and exits

at the drill bit and circulates back to the surface outside the

drill pipe.

The drilling domain model constitutes the knowledge fun-

damental to the domain. It describes the drilling process

concepts, properties, and the relationships between con-

cepts such as hierarchical structures, functional relations,

and causalities. The model gives detailed knowledge and

understanding to the system that helps an efficient similarity

assessment.

The drilling operation is a widespread process contain-

ing approximately 300 properties described by observable

or measurable descriptors. Some of the concepts describe

simple internal properties (e.g., Cuttings On Shaker (i)). The

others represent the non-normal situations, i.e., symptoms

(e.g., Cuttings Initial Concentration High (s)) and their causes

(e.g., Accumulated Cuttings (f)). There are about 20 or so

significant single causes for about 100 non-normal drilling

operation situations and many relevant combinations. Diag-

nosing the failures is a complicated problem because the

values of drilling properties are interdependent. Besides, one

symptom may have more than one cause that led to the diag-

nosis of more than one failure. This situation introduces a

level of complexity that is difficult to handle with traditional

methods. Due to the problem’s complexity, it is not possi-

ble to cover all scenarios without intervening the probability

theory.

The knowledge model consists of 350 drilling domain con-

cepts and more than 1000 relationships between them, which

makes it a very detailed ontology. Forty-five drilling failure

cases are generated by an expert. The cases are utilized as

queries (input cases) to evaluate the system.

8 System evaluation

We evaluated the presented inference and reasoning method

using an experiment from the oil well drilling domain. The

system is evaluated in two aspects. First, a quality assessment

is performed that evaluates the system’s ability to pick out the

most important cases. A quantity assessment is then done to

evaluate the system’s ability to measure the correct similarity

degree between two cases. In this regard, the BNCreek rea-

soning method is compared by simplified versions of seven

relevant methods or systems. They can be classified into three

types: The systems with distance-based similarity measure,

the systems that follow Tversky’s [13] contrast similarity

model, and the systems that compute the similarity assisted

by a knowledge model.

8.1 Experimental set-up

We utilized myCBR [8] (Version: 3.1betaDFKIGmbH). The

case base, including 45 cases, is constructed. Three attribute

collections named failures, internal concepts, and symptoms,

which are subclasses of a concept collection representing

drilling concepts, are defined. Each case, in turn, is consid-

ered as a query. To create a CBR application with myCBR, the

weighted sum similarity measure is utilized as a local–global

approach. For the local part, the attributes are divided into a

set of weighted local similarity measures. The three types of

attributes, i.e., failures, internal concepts, and symptoms, are

set to the weights as 0.9, 0.7, 0.7, respectively. Equation 4 is

utilized as the global similarity measure for calculating the

final similarity value.

sim(q, c) =

n
∑

i=1

wi ∗ simi (qi , ci ) (4)

For each case consisting of n attributes, sim(q, c) is the

similarity between a query q and a case c. simi and wi denote

the local similarity measure and the weight of attribute i , and

Sim represents the global similarity measure [33].

We utilized TrollCreek [1] (version: 0.96devbuild). Troll-

Creek is an implementation of Creek. It is the background

system from which BNCreek is further developed. So their
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basic setups share many similarities, with the main difference

that BNCreek adds the Bayesian network module. BNCreek

is compared with TrollCreek to investigate the effect of the

Bayesian network module.

We implemented Tversky [12] contrast similarity model.

Eisler [13], Gregson [14], Bush [15], and Patdex [16] are

instances of the Tversky model, such that the common fea-

tures factor (a) and the different features factor (b) for each

of the systems are different. The Eisler similarity model has

a = b = 1/2, the Gregson similarity model has a = b = 1,

the Bush similarity model has a = 1, b = 0 and the Pat-

dex similarity model a = 1, b = −2. We focused on

the similarity measure of each system and implemented a

very simplified version of them; some other possible speci-

fications of them were ignored. As the BNCreek similarity

measure is inspired by the Tversky similarity model, it is

compared with the systems with Tversky-based similarity

measures to investigate the effect of utilizing a knowledge

model in the similarity assessment process.

We also implemented a simplified version of the Cain

[11] system. Its similarity assessment is a combination of

the nearest neighbor algorithm by the effect of case features’

relevant degrees achieved from the domain knowledge. The

relevant degrees are considered equal to the relevance fac-

tors of the solved cases in the BNCreek system. BNCreek is

compared with the Cain system as they both employ a knowl-

edge domain and a Bayesian network in their case retrieval

process.

Forty-five drilling failure cases are run on all the systems

using leave-one-out cross validation. The case base split into

45 subsets, each containing only one case. In each evaluation

cycle, the test case is taken as a description of a new problem.

For the quantitative assessment, to keep the consistency

of the similarity degrees, the predicted scores are normalized

between 0 to 1.

8.2 The qualitative assessment

We have examined the retrieved cases rank that illustrates the

system’s ability to retrieve the most important cases in the

correct order.

8.2.1 Evaluation metrics

We utilized normalized discounted cumulative gain (NDCG)

metric in four different cutoffs { cut@5, cut@10, cut@15,

cut@20 } that demonstrates the quality of the generated

ranked list. The higher values for NDCG reveal the higher

performance of the retrieve process.

Fig. 6 Four diagrams show { cut@5, cut@10, cut@15, cut@20 } of
NDCG rank for BNCreek, Cain, Eisler and Patdex systems

8.2.2 Results

In Fig. 6, we report on NDCG at four ranks { cut@5, cut@10,

cut@15, cut@20 }. The horizontal axis shows the studies

systems and the vertical axis shows the values for the correct

ranks. BNCreek and Cain were the two best systems with

the ranking scores { 0.7020, 0.7100, 0.7366, 0.7654 } and {

0.6909, 0.6966, 0.7215, 0.7540 }, respectively. The second

bests systems were, Eisler and Patdex with the ranking scores

{ 0.5150, 0.5873, 0.6180, 0.6654 } and { 0.4182, 0.4623,

0.5276, 0.5716 }, respectively. The BNCreek NDCG score

was the highest in all cuts which reveals the efficiency of the

Bayesian analysis.

8.3 The quantitative assessment

The above-ranking measures only evaluate the correct posi-

tions of the retrieved cases relative to each other and do not

value the system’s accuracy in capturing the correct degree

of similarity. Here, we have a quantitative focus on the sys-

tems similarity model that investigates the correctness of the

similarity degrees.

8.3.1 Evaluation metrics

Two statistical metrics: root square error (RSE) and weighted

error (WE) were applied to measure the accuracy of the sim-

ilarity degrees against the ground truth.

The RSE metric measures the general fitness of the esti-

mated similarity degrees against the expert predictions. It

calculates the error based on the differences between the real
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and predicted values. It indicates the summation of the diver-

gence between each of the actual points from the predicted

values. The smaller error illustrates a better overall prediction

of the ground truth. It is calculated as
√

�(i − j)2. Such that,

i and j are expert predictions and studied systems estimations,

respectively.

In the case retrieval studies, correct retrieval of the higher

ranked cases is very important. Higher similarity degrees in

most systems are more critical as they belong to the more sim-

ilar cases. For example, approximating the similarity degree

of 80 with an absolute error of 8 is much worse than approx-

imating the similarity degree of 10 with the absolute error of

8. This argument is based on the fact that a case with similar-

ity degree of 10 may not be an important case for the experts

while deciding between two cases with 80 or 87 as similar-

ity degrees could be important, and therefore, more accuracy

for assessing more similar cases is required. To implement

this fact, we have multiplied the absolute errors by the expert

predictions as a weight. The utilized weighted error consid-

ers a more significant error for the incorrect estimations of

the more similar cases. The formula is �|i − j | ∗ i , such

that, i and j are expert predictions and the studied systems’

estimations, respectively.

8.3.2 Results

We used RSE as a measure for accuracy. The system with

the lowest RSE would be the most accurate one. The WE

is utilized to measure the local accuracy of the system in

recognizing the first similar cases correctly. The system with

the lowest WE has higher local accuracy.

Table 1 shows the RSE and WE values for the six studied

systems that are compared with BNCreek, TrollCreek, Eisler,

Patdex, myCBR, and Cain in five cuts { 1 best case, 5 best

cases, 10 best cases, 35 best cases, 45 best cases }. The first

two systems with the fewest errors are BNCreek and Eisler.

The RSE and WE for BNCreek are { 1.366, 3.497, 4.543,

8.860, 10.393 }, { 5.875, 31.561, 50.296, 92.242, 101.928

} and for Eisler are { 1.441, 4.479, 6.198, 7.943, 8.304 },

{ 7.058, 43.629, 73.635, 107.874, 111.769 }, respectively.

The system with the highest errors is myCBR with RSE and

WE of { 3.403, 8.220, 10.811, no data, no data }, { 14.904,

79.798, 130.44, no data, no data }, respectively. The other

three systems have different scores for different cuts. The

RSE and WE for Patdex are { 2.904, 6.110, 7.197, 10.047,

11.364 }, { 13.638, 59.531, 84.831, 125.071, 134.597 } and

for Cain are { 2.653, 6.376, 8.324, 10.390, 10.851}, { 12.638,

64.593, 101.829, 148.36, 153.29 } and for TrollCreek are {

2.881, 6.684, 8.823, no data, no data }, { 13.386, 67.216,

109.73, no data, no data }, respectively.

In addition to the general and local accuracy evaluation,

we analyze the system’s accuracy to estimate the similarity

degrees of the first ten best cases individually. We calculated

the squared errors (SE) for all retrieved cases that are set in

the first to tenth positions separately.

Figure 7 shows the SE values’ plot versus the first to tenth

rank positions for the six systems we are studying. The hor-

izontal axis shows the position of the first ten best cases and

the vertical axis is the error value for each system in all ten

positions. The BNCreek and TrollCreek diagrams, marked

with the blue circles and red triangles, have the lowest and

the highest errors according to the SE measure, respectively.

The other six systems show medium-level errors.

9 Discussion

In the BNCreek system, the Bayesian and semantic net-

work inference methods are integrated and form a rather

complex inference approach. The combined underlying

inference method is developed to perform a Bayesian sup-

ported knowledge-intensive, case-based reasoning that uti-

lizes model generated explanations in its Retrieve and Reuse

phases.

In Fig. 6, for all four cuts of NDCG, BNCreek showed

high performance for the correct ranking of the retrieved

cases. The Cain system was the best after the BNCreek, with

remarkable differences by Eisler and Patdex. The similarity

measure of all four systems is inspired by Tversky [12]. In

addition, BNCreek and Cain utilize Bayesian analysis for

solving problems. We consider their success as a credit for

utilizing the Bayesian analysis for problem solving in uncer-

tain domains.

In Table 1 for the RSE values, BNCreek has almost the

lowest error in all cuts in comparison with the other systems,

which indicates the influence of the knowledge model and

Bayesian inference on similarity assessment efficiency. The

Eisler system showed a better performance in the middle and

weak cuts, which shows BNCreek’s weakness in capturing

the similarity degrees of the medium similar cases.

According to the obtained RSE and WE values, BNCreek

and Eisler showed the lowest general or local errors while

myCBR had the highest error. In comparing BNCreek and

myCBR, the remarkable difference is the knowledge model

approach that is not employed in myCBR. However, Troll-

Creek employed the knowledge model approach while it does

not have the Bayesian analysis and showed an intermedi-

ate performance for error measures. We argue that both the

knowledge model and Bayesian analysis were essential and

beneficial for BNCreek’s lower errors.

BNCreek’s general domain model is a combination of

the causal and associative models. They are connected with

the causal and structural relations, respectively. Similar to

Cain and TrollCreek, BNCreek’s similarity assessment takes

advantage of employing domain knowledge. It uses the

domain knowledge to calculate partial similarity degrees for
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Table 1 RSE and WE for
BNCreek, TrollCreek, Eisler,
Patdex, myCBR, and Cain in
five cuts {1 best case, 5 best
cases, 10 best cases, 35 best
cases, 45 best cases}

01 best case BNCreek TrollCreek Eisler Patdex myCBR Cain

RSE 1.366 2.881 1.441 2.904 3.403 2.653

WE 5.875 13.386 7.058 13.638 14.904 12.638

0 5 best cases BNCreek TrollCreek Eisler Patdex myCBR Cain

RSE 3.497 6.684 4.479 6.110 8.220 6.376

WE 31.561 67.216 43.629 59.531 79.798 64.593

10 best cases BNCreek TrollCreek Eisler Patdex myCBR Cain

RSE 4.543 8.823 6.198 7.197 10.811 8.324

WE 50.296 109.73 73.635 84.831 130.44 101.828

35 best cases BNCreek TrollCreek Eisler Patdex myCBR Cain

RSE 8.860 No data 7.943 10.047 No data 10.390

WE 92.242 No data 107.874 125.071 No data 148.36

45 best cases BNCreek TrollCreek Eisler Patdex myCBR Cain

RSE 10.393 No data 8.304 11.364 No data 10.851

WE 101.928 No data 111.769 134.597 No data 153.29

Fig. 7 Square error (SE) of the
first ten ranked cases for the
eight systems. The results are
for the drilling experiment. The
x-axis illustrates the ten retrieval
positions of the best cases

nonidentical features while Cain uses the domain knowledge

to determine the relevance of features. Moreover, BNCreek

utilizes the dynamic causal strengths that are the results of

the Bayesian analysis. The model partly acquires the dynamic

inputs from the Bayesian inference. The dynamic structure

is treated as a posterior distribution of the causal relation

strengths. We rely on the expert predictions to estimate the

rest of the relation strengths. The Cain system, unlike its high

performance in case ranking, was one of the systems with a

middle score for error measures.

In Fig. 7, the SE values trend for each system can be related

to the system’s specific features. For example, Bush, Eisler,

and Gregson, which are direct instances of Tversky’s simi-

larity model, showed a similar trend in all ten ranks. In the

drilling experiment, Bush and Eisler overlapped. Although

the BNCreek similarity model is inspired by the Creek sys-

tem, its trend in the first two ranks is not similar to TrollCreek.

The small SE values of BNCreek in the first and the last ranks

that belong to the most and the least similar cases are accept-

able, but the system performance for the medium similar

cases is not good. This demonstrates its weakness in assess-

ing the medium similar cases.

10 Conclusions and future work

In order to make inferencing on the data, acquiring knowl-

edge, representing the obtained knowledge, and reasoning

on it, semantic network and Bayesian network analysis are

employed. They are formally defined underlying inference

and reasoning, and knowledge representation methods. They

both effectively contribute to BNCreek system’s reuse of

situation-specific knowledge components by case based rea-

soning.
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Our system is examined by an experiment in oil well

drilling as an example of a real-world, weak-theory, uncer-

tain domain. The system’s performance in problem-solving

in this domain has been measured by the normalized dis-

counted cumulative gain (NDCG) as a rank-based metric.

The obtained results show the positive effect of employing

a knowledge model and a Bayesian analysis to increase the

system’s general performance.

The local performance of the system regarding its accu-

racy in assessing the similarities is measured by the root

square error (RSE), weighted error (WE), and squared error

(SE) as the statistical metrics. The obtained results have

verified the effect of causal explanations in improving the

similarity assessment accuracy.

Improving the system accuracy in assessing the similarity

of the medium level cases will be the first step in our future

work.
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