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Abstract. We develop a statistical methodology to validate the result
of network inference algorithms, based on principles of statistical testing
and machine learning. The comparison of results with reference networks,
by means of similarity measures and null models, allows us to measure
the significance of results, as well as their predictive power. The use
of Generalised Linear Models allows us to explain the results in terms
of available ground truth which we expect to be partially relevant. We
present these methods for the case of inferring a network of News Outlets
based on their preference of stories to cover. We compare three simple
network inference methods and show how our technique can be used to
choose between them. All the methods presented here can be directly
applied to other domains where network inference is used.

Keywords: Network inference, Network validation, News Outlets net-
work.

1 Introduction

Network Inference is a ubiquitous problem, found in fields as diverse as genomics,
epidemiology or social sciences. Elements of a set (e.g., genes, people or news
outlets) are connected by links that represent relations between them (e.g., co-
expression, social contact, similar reporting bias, etc). While we can often observe
the state of the network nodes, the underlying topology of the network is hidden,
and must be inferred based on a finite set of observations of node-states.

Several methods have been proposed to infer this underlying network struc-
ture, in different communities and under different conditions. Examples include
gene regulatory networks [1], biochemical regulatory networks[2] and protein in-
teraction networks[3]. We focus on the general problem of testing, or validating,
the result of this inference. Since often ground truth is missing, validation against
related but different networks, or against networks inferred in different ways, is
the only option or the only viable alternative to costly experiments.

In this paper, we present and study general methods to assess the results of
Network Inference algorithms, from a statistical and machine learning point of
view, and we demonstrate them on a challenging test case: the inference and
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validation of a network of News Outlets, based on content similarity informa-
tion. All the principles and methods are however general, and can be applied to
different domains.

We argue that network inference algorithms need to satisfy two key properties.
First, the inferred network needs to be stable, meaning that networks inferred
on independent data must be similar to each other. Second, it must be related to
any available independent ground truth known or assumed to affect the network
topology. Both these properties can be verified by testing if the inferred network
is similar to a reference network.

For the first property, the reference network would be a network inferred based
on independent data. For example for the network of News Outlets, we show that
our network inference algorithm produces networks that are significantly similar
to each other, when operating on independent datasets. This stability strongly
indicates that the algorithm is capturing a signal, not noise.

For the second property, the reference network would be a network constructed
based on independent ground truth data. For example for the network of News
Outlets we show how the inferred network is significantly related to other—
directly observable—networks of news outlets, such as those based on geographic,
linguistic and media-type similarity.

Hence, both properties are verified by assessing if the inferred network is
related to a reference network. More specifically, we want to verify if the inferred
network is related significantly stronger to the reference network than a random
network would be related to it. This is formalized in statistics by means of the
key notion of statistical significance of a pattern, as expressed by a p-value. In
order for this to be defined, we need to make two choices: a test statistic that
quantifies how related the inferred network is to the reference network, and a
null model for the inferred network.

The test statistic can be defined by quantifying the similarity of the inferred
network to the reference network considered, and we will discuss various options
for this similarity measure. To define the null model we will make use of two
established approaches for random network generation. The choices we explore
in this paper are exemplary, and other choices may be more appropriate in other
applications. We will discuss the implications of these design choices, by com-
paring three different network inference algorithms for the News Outlet network
inference application.

Finally, as a separate validation from a machine learning perspective, we in-
vestigate if we can predict the inferred network topology based on independent
information. In particular, we show how Generalised Linear Models can be used
to ‘explain’ the inferred network in terms of any known ground truth networks
as discussed above.

Our approaches can be readily transferred to social sciences and genomics,
where the availability of ground truth is the key problem when validating network
inference.
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2 Network Validation

The analysis of patterns found in data can generally be validated in two different
ways: either by assessing their significance, or by measuring their predictive
power. In the first case, we are interested in measuring the probability that a
similar pattern could be found in randomly generated data. In the second case,
we are interested in measuring the extent to which patterns found in a subset of
the data, can be found in an independent subset of the data. Of course the two
approaches have many relations, but in this study we will simply address them
separately. We will call them respectively ‘Hypothesis Testing’ and ‘Predictive
Power’ approach.

Notations. A network G = (N , E) is comprised of the set of nodes N =
{N1, N2, ...Nn} and the set of edges E ⊆ N × N , n = |N | is the total num-
ber of nodes of the network and e = |E| is the total number of edges.

2.1 Hypothesis Testing

The key idea of hypothesis testing is to quantify the probability that a the value
of a test statistic evaluated on observed data could have been found also in
random data. In our strategy to evaluate network inference algorithms, the test
statistic is the similarity to a chosen reference network, and we denote it as tGR

where GR stands for the reference network. We denote as GI the network inferred
by the inference algorithm. The null hypothesis H0 is that the inferred network
is sampled from some underlying distribution. Hence, the hypothesis test boils
down to quantifying the probability that a random network is at least as similar
to a chosen reference network as the inferred network:

p = PG∼H0 (tGR(G) ≥ tGR(GI)) (1)

For most null hypotheses, it would be impractical to compute the p-value exactly.
However, it can be reliably estimated by sampling a large number K of networks
from the null hypothesis. Then the p-value is measured as the fraction of those
for which the test statistic defined as the similarity to a reference network is
smaller than that for the inferred network, or more precisely:

p ≈ #{G : tGR(G) ≥ tGR(GI)} + 1
K + 1

(2)

If the p-value is small, this means that the inferred network is more similar
to the reference network than expected by chance. Then the null hypothesis is
rejected, as it is unlikely given the evidence. When the null hypothesis is rejected
in this way, the alternative must hold. This means that the inferred network is
significantly different from random networks sampled from the null hypothesis
in its similarity to the reference network, supporting the inference method used
to infer the network. In case that distances are used as test statistics instead of
similarities, the inequality signs in p-value equations should be inverted. Often
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a significance threshold α is chosen, and the null hypothesis is rejected if p < α,
where α is selected depending on the application.

In the following two subsections we will address the issue of selection of a test
statistic and null models.

Test Statistics. As a test statistic we will use the similarity of the inferred
network to a reference network, which we expect to be in some sense related to
it. In this section we will discuss both the similarity measure and the choice of
reference networks.

In literature several approaches have been proposed for the measurement of
similarity between networks [4,5,6]. In the case of comparing two networks GA

and GB that have the same set of nodes N , one can compare the topologi-
cal properties or their link structure. Perhaps the simplest comparison involves
counting how many pairs of nodes have the same linkage status (connected or
disconnected). The edges of each network can be considered as independent sets
of elements and the comparison of networks is reduced to a comparison of sets
of edges. Jaccard distance can be used to compare two sets as a measure of dis-
similarity between them[7]. It is obtained by dividing the difference of the sizes
of the union and the intersection of two sets by the size of the union:

JD(EA, EB) =
|EA ∪ EB| − |EA ∩ EB|

|EA ∪ EB| (3)

This quantity ranges between zero and one, with a value of zero indicating
identical networks, and a value of one indicating no shared edges.

Of course one could define other measures, that consider less local proper-
ties, for example one could count how many triplets of nodes have the same
connectivity status (in this way counting common network motifs [8]), or one
could ignore the specifics of network topology, and focus on the distances be-
tween nodes represented by it. So a comparison of the all-pairs distance-matrix
for each network could lead to a useful similarity measure.

In this study, as test statistic we will use the Jaccard distance from a reference
network.

The choice of reference network is a very important one, as often in network
inference applications we only have access to indirect evidence of the network
topology (this being one of the key motivations for modern network inference).
We have however often access to other networks (or sub-networks) for which the
ground truth can be assumed to be known, and which we expect to be somewhat
related to the network we are investigating.

If the data can be divided into independent sets, for example, we should as-
sume that networks inferred on different parts of the data should be significantly
similar. This can lead both to a bootstrap process, but also to the analysis of
temporal data, as we will discuss in Sect. 3.3. Observing significant similarity to
independently generated networks can provide strong support for a hypothesis,
also in the case of networks generated with completely different types of data,
as we will demonstrate using geographic, linguistic and media-type similarity, to
test the significance of a network of news-media outlets.
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Null Models. Every statistical test aims at answering the following question:
what is the probability that a pattern like the one currently analysed is the
result of chance? Of course this quantity (p-value) can be computed only after
a random process has been specified, to formalise the notion of ‘chance’. The
Null Model has the crucial role of providing a baseline comparison to assess the
significance of inferred patterns.

In the case of validating network patterns, we will need to specify a model of
random network generation. If the observed similarity to a reference network is
found also in randomly generated graphs, then we cannot conclude that we have
found a significant pattern in the given data. In this study we will present two
methods of random network generation, although many others are possible.

Erdös-Rényi Model
The first model is the celebrated G(n, p) Erdös - Rényi model[9]. A graph of n
nodes is generated by connecting nodes randomly. Two nodes have an indepen-
dent probability p to be connected. This probability defines the density of the
graph. Indeed the expected number of edges e is:

e =
(
n
2

)
p (4)

and the distribution of the degree of any particular node N is binomial:

P (deg(N) = l) =
(

n − 1
l

)
pk(1 − p)n−1−l (5)

Switching Randomisation
Although the Erdös-Rényi model is very natural and simple to analyse, it leads
to topologies that are often very different from topologies observed in real world
situations. For example, it does not exhibit the power-law in degree distribu-
tions that is often found in social networks. To remedy this, one can define a
random-network generation model that—by construction—has the same degree
distribution as the inferred network, and yet is randomly sampled from the space
of possible networks. Such models can be created by a switching approach[10].
This method starts from a given graph and randomises it by switching edges
between nodes. If the pairs of nodes A-B and C-D are connected, the model will
switch the connections to create the edges A-D and B-C. The number of itera-
tions is arbitrary but an adequate number is considered 100 times the number
of edges [11].

2.2 Predictive Power

We are interested in the possibility of predicting the network topology based
on other observable properties of the network. If some ground truth information
about the inferred network is known, it is expected to be able to ‘explain’ the ex-
istence of some edges of the network. If more than one ground truth components
are available this knowledge can be combined in order to improve the under-
standing of the inferred network. The combination of ground truth elements can
be made using Generalized Linear Models (GLMs).
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Generalized Linear Models. J. Nelder and R. Wedderburn introduced GLMs
as a way to provide a unified framework for various non-linear or non-normal
linear variations of regression[12]. GLM splits the model for the observed data
Yi into a random and a systematic component through a function called the link
function. Under GLM Yi is assumed to be generated from a distribution function
of the exponential family [13]. The mean μ of the distribution depends on the
independent variables, X, through:

E(Y) = μ = g−1(η) = g−1(Xβ) (6)

where E(Y) is the expected value of Y; η is the linear predictor which is a
linear combination of unknown parameters β; g is the link function; and the
elements of X are typically measured by experimenters. The variance of the
distribution is a function of the mean that can also follow the same exponential
family distribution. The unknown parameters are easily estimated by maximum
likelihood or other techniques.

Network Topology Prediction. The quality of the GLM models and the
accepted ground truth components can be measured based on their power to
predict the topology of the inferred network. Our aim is to measure the ability
of the GLM model to predict the existence of an edge of the network. Using
a methodology similar to this found in supervised classification we separate
the network into a training and test sub-network. The training network is used
to calculate the GLMs parameters. These parameters are combined with the
accepted ground truth and are used to predict the structure of the test network.
A generally accepted accuracy measurement is the Area Under Curve (AUC)
based on the ROC analysis of the predictions on the test set. The separation into
train and test sub-networks is performed multiple times under a cross-validation
scheme in order to reduce bias.

3 Experimental Study

We will illustrate the validation methodology on the specific task of inferring
the network of news outlets that are connected by the same bias in choosing
stories to cover. This case study has many points in common with standard
network inference tasks, for example gene regulation networks (while being easier
to interpret): ground truth is not directly observed, side information is available,
data is noisy, and so on. In this section we also introduce three increasingly
complex network inference algorithms and use our methodology to compare their
output.

3.1 Content-Based Inference of Media Outlets Network

In this application, we are interested in linking news outlets that have similar
interests in choosing stories to cover. In this research a news story is defined as
a set of news articles that cover the same event, practically found as a cluster.
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We analyse a set of 1,017,348 articles gathered over a period of 12 consecutive
weeks starting from October 1st, 2008, from 543 online news outlets, distributed
over 32 different countries, in 22 different languages, including 7 different media
types (e.g., newspapers, blogs, etc). This dataset was created as part of a separate
project, which will not be discussed here[14]. While many of the outlets of interest
offer their content in English language, we machine-translated the content of the
others into English, by using Moses software [15,16].

Articles are preprocessed using stop-word removal, stemming and are vec-
torised using the TF-IDF representation[17]. They are then clustered in order to
form the stories that will be used as the base for the network inference. The dis-
tance of two articles is measured using the cosine similarity[17]. The clustering
algorithm identified on average 974 stories per day.

We used the Best Reciprocal Hit (BRH) clustering method, borrowed from
the field of bioinformatics [18]. The choice of clustering algorithm is not central
to the discussion of this study.

3.2 Three Network Inference Algorithms

We compared three network inference algorithms, all connecting pairs of nodes
that have a sufficiently high level of similarity. While other inference methods
are possible, we focused on this approach here for simplicity. Since we will use
real valued similarity measures, we will also to choose a threshold in order to
derive the linkage structure, and this threshold will control the density of the
resulting graph.

We will assume we have an Outlet-by-Story matrix, indicating which outlets
carried each given news story. There are 543 outlets, and 81,816 stories in total.
Every outlet is hence described by an indicator vector in ‘story-space’.

Method A. The simplest approach is to connect two outlets if they share
some minimum number of stories. If the threshold is set to one, every pair of
outlets that share at least one story are connected. In other words, the similarity
measure between outlets is the scalar product between their indicator-vectors in
story-space. This approach can easily lead to very dense networks since many
stories are shared by the majority of outlets.

Method B. A more sophisticated approach would apply weights to the candi-
date edges of the network. A popular weighing scheme is based on the TF-IDF.
Under this scheme each outlet correspond to a document and each story to a
term. The frequency of story j that belong to outlet k is

fk
j =

sk
j

sk
(7)

where the nominator is the number of times the story appears to the outlet k
and sk is the total number of stories of outlet k. The corresponding inverse outlet
frequency ikj is defined as

ikj = log
n

nj
(8)
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where n is the total number of outlets and nj is the number of outlets that have
story j. Thus, a vector of size J , that is the total number of different stories, is
assigned to each outlet, one weight for each story:

wk
j = fk

j · ikj , j = 1, 2..J (9)

The similarity of two outlets Na and Nb can now be measured as their cosine
similarity:

sim(Na, Nb) =
J∑

t=1

wa
t wb

t (10)

Method C. Another method which is similar to the previous one is weighting
each story with a weight fj based on the frequency of the story, independently
of the outlet that publish it:

fj =
1
nj

(11)

where nj is the number of outlets that have story j. Stories that are found in the
majority of media receive a small weight and stories found in few media receive
higher weight. The maximum weight is 1/2 since we consider as stories clusters
that have articles of at least two different outlets, and the minimum weight is
1/n. If we normalise the above measure to the range of zero to one we get

f ′
j =

2(n − nj)
(n − 2) · nj

(12)

where n is the total number of outlets and we consider two as the minimum
number of outlets that can belong to a cluster. This way measure of similarity
between two outlets Na and Nb is defined as:

sim′(Na, Nb) =
∑J

t=1 f ′
tya(j)yb(j)

∑J
t=1 ya(t)yb(t)

(13)

where yk(j) is one if outlet k has story j and zero otherwise.

3.3 Results

In this section we present the application of our methodology for inferring and
validating the News Outlets network. We show that the network presents stabil-
ity in time using independent datasets, that using some ground truth knowledge
we can select the appropriate inference algorithm, and that finally we can predict
the network structure.

Stability in Time. Figure 1 presents the stability of the network for the 12
consecutive weeks. The dataset of each week is independent of the data of the
other weeks and the first week is used only as reference network. The threshold
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of the three network inference methods was set to produce networks of the same
density of ∼ 5000 edges per week.

To determine the stability of the network inference algorithm, we test whether
an inferred network’s similarity to the inferred network from the previous week
is significant. In order to do this, we carry out two hypothesis tests: one for each
of the possible null models discussed in 2.1. As test statistic we used the Jaccard
Distance. We sampled K = 1000 networks and estimating the p-value as the
fraction of those for which the Jaccard distance with the reference network from
the previous week is smaller than for the inferred network.

The networks inferred by each method are significantly similar (p < 0.001) to
those inferred the previous week with the same method, under both null models.

Comparison to Related Networks. In this test, we compare the network
inferred by each of the three Methods, with three other networks, obtained using
independent (but possibly related) information. The first one (Location Network)
linking outlets with the same geographic location; the second one (Language
Network) linking outlets written in the same language; the third one (Media
Type) liking outlets of the same type (e.g., newspaper, magazine, broadcast,
blog, etc). These networks of outlets are formed of several disjoint cliques, and we
expect some of them to relate to the news-choice preference of an outlet. Clearly,
a story that is important and publishable for UK media may be uninteresting
to the French media. Language is also an important factor, independently of the
location of the outlet. For example, we measured that the number of stories that
mention the word ‘Pope’ in Spanish-language media in the USA is three times
larger than in English-language media in the same country. About the influence
of media type, it is worth mentioning that certain stories may reported in blogs
before they appear in mainstream traditional media.

Figure 1 presents the comparison of the content-based network inferred by
Methods A, B, C to the ‘Location’ network. In this case only the Methods B and
C are significant with p < 0.001. Figure 2 presents the case of the ‘Language’
where only Method C yields significant patterns (p < 0.001) over all weeks’
datasets. Finally Fig. 2 illustrates the ‘Media-Type’ case where Method A and
Method C yield significant results (p < 0.001). Only method C present significant
results for all reference networks over all independent datasets and the two null
models that were used to make comparisons. Note that although the distances
between networks seem relative small, they are highly significant.

Selecting Inference Method. The selection of the inference method will be
made based on their ability to create significant results. We selected a signifi-
cance level of 0.001 and based our decision on this. Table 1 compares the three
methods for the 11 weeks’ independent datasets (the first week was used only
as reference network). The numbers represent the number of weeks that the
methods presented significant results with p < 0.001 for the different reference
networks and the two null models. Only Method C presents significant results
for all the performed tests and datasets, performing at least as good as the two
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Fig. 1. Network stability on sequential weeks (on the left) and ‘Location’ reference
network (on the right) for the three network reconstruction methods. Errorbars are
+/− 3 standard deviations over the mean value.

other methods investigated on all tests carried out. We can therefore conclude
that Method C is better than both Methods A and B.

In Figure 3 we report the network of the media outlets obtained with Method
C. To the best of our knowledge, this is the first map of this kind to be published.
The visualisation of the network was made by using the Cytoscape software [19].

Prediction of Edges. We investigated the ability of prediction of an edge
of media outlet network based on the GLM analysis and the three available
ground truth reference networks. For the GLM analysis we adopted the normal
distribution for Yi and the identity link function where μ = Xβ. The accuracy
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Fig. 2. Comparison to the ‘Language’ (on the left) and ‘Media-Type’ (on the right)
reference networks. Errorbars are +/− 3 standard deviations over the mean value.

Table 1. The number of weeks that each Method presented significant results with
p < 0.001. ER stands for the Erdös and SR for the Switching Random Graphs.

Previous week Location Language Media-Type
ER SR ER SR ER SR ER SR

Method A 11 11 1 11 0 9 11 11
Method B 11 11 11 11 11 11 2 11
Method C 11 11 11 11 11 11 11 11
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Fig. 3. A snapshot of the News Media Network. A high threshold is set to produce
more sparse graph for visualisation reasons. This graph contains 351 nodes and 1612
edges. Singletons are omitted. The node sizes are proportional to their degrees.

was measured as the AUC for a 100-fold cross-validation scheme for different
densities of the inferred network. For each inference method two figures are
presented: The first illustrates the accuracy of each ground component if it was
used by itself for predictions compared to using all three, and the second the
accuracy of using pairs of components compared to using all three. Figure 4
present the edge prediction results for the three network inference methods and
under different scenarios: Using all three ground truth networks combined, using
each one of them separately and using all pairwise combinations of them. The
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Fig. 4. AUC accuracy for edge prediction using Method A on the top row, Method
B in the middle row and Method C in the bottom row, based on GLM analysis over
different network densities

best prediction accuracy, 77.11%, over all different network densities, is reached
using all three ground truth networks and the Method C.

4 Conclusions

The validation of network inference results in terms of statistical assumptions
or in terms of related networks, indicates how to handle the common case where
ground truth is difficult to obtain. Concepts from statistical testing can directly



Inference and Validation of Networks 357

provide a framework for assessing and comparing results, algorithms and also
datasets.

Importantly, when one can distinguish in a principled way between two al-
gorithms, then one can also search the hypothesis space for the best possible
network. Future work in this direction will include the design of network in-
ference algorithms that directly optimise the stability and significance of the
output, instead of just choosing between existing heuristic algorithms.
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