
Econometrica Supplementary Material

SUPPLEMENT TO “INFERENCE BASED ON STRUCTURAL VECTOR
AUTOREGRESSIONS IDENTIFIED WITH SIGN AND ZERO RESTRICTIONS:

THEORY AND APPLICATIONS”
(Econometrica, Vol. 86, No. 2, March 2018, 685–720)

JONAS E. ARIAS
Federal Reserve Bank of Philadelphia

JUAN F. RUBIO-RAMÍREZ
Economics Department, Emory University, BBVA Research, and Federal Reserve Bank of Atlanta

DANIEL F. WAGGONER
Federal Reserve Bank of Atlanta

THIS SUPPLEMENT IS ORGANIZED AS FOLLOWS. Section I shows that using one-sided nu-
merical derivatives can decrease computational time without compromising numerical
accuracy. Section II tests for the variance of the importance sampler weights to be finite.
Section III provides a step-by-step pseudo-code for using Algorithms 1 and 3 in the paper.

I. ONE-SIDED VERSUS TWO-SIDED DERIVATIVES

In Section 7 of the paper, we showed several cases where using one-sided derivatives
decreases computing time considerably. We now show that, at least for the application
described in Section 6 of the paper, this can be done without compromising the numerical
accuracy of either the volume elements or the IRFs.

Consider Figure S.1. This figure shows the histogram of the percent difference between
the volume element associated with the mapping v(g◦fh)|Z

(A0�A+), when computed using
one-sided derivatives relative to when the same volume element is computed using two-
sided derivatives. The percent difference is expressed in terms of the volume elements
computed using two-sided derivatives. The figure shows that most of the percent differ-
ences are smaller than 0.1. These results suggest that it is unlikely to find cases in which
the one- and two-sided derivatives substantially differ.

Next, we show that the percent differences in the volume element reported above do
not affect the IRFs. Figure S.2 plots the percentage point difference between the median
and the bounds of the probability bands of the IRFs obtained using one-sided deriva-
tives and the ones obtained using two-sided derivatives. In all the cases, the percentage
point difference is smaller than 0.1, and the conclusions a researcher would obtain are
unchanged.

II. TESTING THE FINITE VARIANCE OF THE IMPORTANCE SAMPLER WEIGHTS

In this section, we numerically test for the variance of the importance sampler weights
to be finite. In particular, we use the Wald, score, and likelihood ratio (LR) tests as de-
scribed in Koopman, Shephard, and Creal (2009). We run these tests on the importance
sampler weights obtained using Algorithm 3 and used in Section 6 of our paper.

Jonas E. Arias: jonas.arias@phil.frb.org
Juan F. Rubio-Ramírez: jrubior@emory.edu
Daniel F. Waggoner: daniel.f.waggoner@atl.frb.org

© 2018 The Econometric Society https://doi.org/10.3982/ECTA14468

http://www.econometricsociety.org/suppmatlist.asp
mailto:jonas.arias@phil.frb.org
mailto:jrubior@emory.edu
mailto:daniel.f.waggoner@atl.frb.org
http://www.econometricsociety.org/
https://doi.org/10.3982/ECTA14468

2 J. E. ARIAS, J. F. RUBIO-RAMÍREZ, AND D. F. WAGGONER

FIGURE S.1.—Volume elements comparison. The histogram shows the percent difference between the vol-
ume element v(g◦fh)|Z(A0�A+) computed using one-sided relative to two-sided derivatives. The histogram in-
cludes 99 percent of the support of the distribution and it is based on 10,000 independent draws obtained using
Algorithm 3.

The Wald, score, and LR tests assume that the importance sampler weights are inde-
pendent draws from a Pareto distribution characterized by the shape parameter ξ. The
null and alternative hypothesis for the Wald, score, and likelihood ratio tests proposed by

FIGURE S.2.—IRFs comparison. The solid lines show the percentage point difference between the point–
wise median IRFs computed using one-sided relative to two-sided derivatives. The dashed lines and the
dashed-dotted lines show the percentage point difference in point-wise 16th and 84th quantile IRFs computed
using one-sided relative to two-sided derivatives, respectively. The figure is based on 10,000 independent draws
obtained using Algorithm 3.

INFERENCE BASED ON STRUCTURAL VECTOR AUTOREGRESSIONS 3

TABLE S.I

WALD, SCORE, AND LIKELIHOOD RATIO TESTS

Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald −0�46 −0�56 −0�57 −0�67 −0�58
Score −26�63 −19�22 −17�34 −9�78 −2�57
LR 0�00 0�00 0�00 0�00 0�00

Koopman, Shephard, and Creal (2009) are

H0 : ξ =
1
2

and H1 : ξ >
1
2

because for ξ > 1
2 the Pareto distribution variance does not exist.

We conduct these tests for several thresholds of the importance sampler weights, rang-
ing from the largest 50% to the largest 1% of the importance sampler weights. These
thresholds determine the number of importance sampler weights used to implement the
tests. Table S.I shows the value of these tests for several thresholds in the aforementioned
range—as shown in the first row of the table. The second row of the table shows the Wald
test statistics, the third row shows the score test statistics, and the fourth row shows the LR
test statistics. The 95% critical values for the Wald, score, and LR tests are 1.65, 1.65, and
2.69, respectively. None of the values displayed in Table S.I exceed these critical values.
Hence, these tests indicate that the importance sampler weights have finite variance.

III. NUMERICAL ALGORITHMS

In this section, we provide a step-by-step pseudo-code for using the algorithms devel-
oped in the paper. This description is complemented by the MATLAB R2016a code that
accompanies this Supplemental Material. In what follows, MATLAB’s built-in functions
are denoted in italics format while the remaining functions are denoted in typewriter

format.
Algorithm 1 makes independent draws from the normal-generalized-normal posterior

distribution over the structural parameterization conditional on the sign restrictions. The
pseudo-code given below preserves the notation used in the paper unless stated otherwise.

Algorithm 1

1: Set (ν̃� Φ̃� Ψ̃ � Ω̃) equal to the posterior parameters as described in Section 2.5 of the
paper.

2: Set nd equal to the required number of independent draws from the posterior distri-
bution over the structural parameterization conditional on the sign restrictions.

3: Let cholOmega = h(Ω̃)′; ⊲ The function h denotes
MATLAB’s chol function. We use h instead of chol because users could define h to
be another differentiable decomposition as mentioned in Section 2.3 of the paper. If
h= chol, then cholOmega = chol(Ω̃)′.

4: while draw <= 10 × nd do ⊲ 10 × nd is an educated guess of the number
of independent draws from the orthogonal reduced-form parameterization necessary
to achieve nd independent draws from the posterior distribution over the structural
parameterization conditional on the sign restrictions.

4 J. E. ARIAS, J. F. RUBIO-RAMÍREZ, AND D. F. WAGGONER

⊲ Lines 5–7 implement Step 1 of Algorithm 1.
5: Σ = iwishrnd(Φ̃� ν̃);
6: cholSigma = h(Σ)′;
7: B = kron(cholSigma� cholOmega)× randn(m × n�1)+ reshape(Ψ̃ �m × n�1); ⊲ B

is a draw from a multivariate normal distribution with mean Ψ̃ and variance Σ⊗ Ω̃.
⊲ Lines 8–14 implement Step 2 of Algorithm 1.

8: X = randn(n�n);
9: [Q�R] = qr(X);

10: for j = 1 to n do
11: if (R(j� j) < 0) then
12: Q(:� j)= −Q(:� j); ⊲ This is the normalization stated in Theorem 4.
13: end if
14: end for

⊲ Lines 15–19 implement Step 3 of Algorithm 1.
15: x = [vec(B); vec(Σ); vec(Q)]; ⊲ vec denotes vectorization.
16: y = f_h_inv(x); ⊲ The function f_h_inv corresponds to the mapping f−1

h

described in Section 2.3 of the paper; see below.
17: if Sign restrictions are satisfied then
18: (A0�A+)= (reshape(y(1 : n2)�n�n)� reshape(y(n2 + 1 : end)�m�n));
19: end if

⊲ Line 20 implements Step 4 of Algorithm 1.
20: draw = draw + 1;
21: end while

The function f_h_inv is defined as follows:

1: function f_h_inv(x)
2: B = reshape(x(1 : m × n)�m�n);
3: Σ = reshape(x(m × n + 1 : m × n + n2�n�n);
4: Q = reshape(x(m × n + n2 + 1 : end)�n�n);
5: A0 = h(Σ)−1Q;
6: A+ = BA0;
7: Return [vec(A0); vec(A+)];
8: end function

Algorithm 3 makes independent draws from the normal-generalized-normal posterior
distribution over the structural parameterization conditional on the sign and zero restric-
tions. The pseudo-code given below preserves the notation used in the paper and in the
step-by-step description of Algorithm 1 unless stated otherwise.

The implementation of Algorithm 3 relies on the auxiliary functions: ff_h_inv,
VolumeElement, LogVolumeElement, ff_h, f_h, and ZeroRestrictions. These
functions are described after the algorithm in the order in which they are called.

Algorithm 3

1: Set (ν̃� Φ̃� Ψ̃ � Ω̃) equal to the posterior parameters as described in Section 2.5 of the
paper.

2: Set nd equal to the required number of independent draws from the posterior distri-
bution over the structural parameterization conditional on the sign and zero restric-
tions.

INFERENCE BASED ON STRUCTURAL VECTOR AUTOREGRESSIONS 5

3: Let cholOmega = h(Ω̃)′;
4: while draw <= 10 × nd do ⊲ 10 × nd is an educated guess of the number

of independent draws from the orthogonal reduced-form parameterization necessary
to achieve nd independent draws from the posterior distribution over the structural
parameterization conditional on the sign and zero restrictions.
⊲ Lines 5–14 implement Step 1 of Algorithm 3.

5: Σ = iwishrnd(Φ̃� ν̃);
6: cholSigma = h(Σ)′;
7: B = kron(cholSigma� cholOmega)× randn(m × n�1)+ reshape(Ψ̃ �m × n�1);
8: for j = 1 to n do

9: xj = randn([n + 1 − j − zj�1]);
10: wj = xj/norm(xj);
11: end for

12: w = [w1; � � � ;wn];
13: x = [vec(B); vec(Σ);w];
14: y = ff_h_inv(x); ⊲ The function ff_h_inv denotes the inverse of the

composite function (g ◦ fh) described in Section 4.2 of the paper.
⊲ Lines 15–20 implement Step 2 of Algorithm 3.

15: if Sign restrictions are satisfied then

16: (A0�A+)= (reshape(y(1 : n2)�n�n)� reshape(y(n2 + 1 : end)�m�n));
17: Set uw = |det(A0)|

−(2n+m+1)/VolumeElement(A0�A+);
18: else

19: Set uw = 0;
20: end if

⊲ Line 21 implements Step 3 of Algorithm 3.
21: draw = draw + 1;
22: end while

⊲ Lines 23–29 implement Step 4 of Algorithm 3.
23: imp_w = uw/sum(uw);
24: for draw=1:nd do ⊲ The effective sample size implied by imp_w should be greater

than or equal to nd.
25: is_draw = randsample(1 : size(imp_w�1)�1� true� imp_w);
26: Set (B�Σ�Q) equal to the corresponding is_draw.
27: x = [vec(B); vec(Σ); vec(Q)];
28: y = f_h_inv(x);
29: (A0�A+)= (reshape(y(1 : n2)�n�n)� reshape(y(n2 + 1 : end)�m�n));
30: end for

1: function ff_h_inv(x)
2: B = reshape(x(1 : m × n)�m�n);
3: Σ = reshape(x(m × n + 1 : m × n + n2�n�n);
4: for j = 1 to n do

5: Set ZFj = ZjF(B�Σ� In);
6: end for

7: w = x(m × n + n2 + 1 : end);
8: Q = zeros(n�n);
9: k = 0;

10: for j = 1 to n do

6 J. E. ARIAS, J. F. RUBIO-RAMÍREZ, AND D. F. WAGGONER

11: s = size(Wj�1); ⊲ The matrix Wj is a fixed (n + 1 − j − zj)× n random matrix;
for 1 ≤ j ≤ n. See Appendix A.3 for details.

12: wj = w(k+ 1 : k+ s);

13: M̃j =

⎡

⎣

Q(:�1 : j − 1)′

ZFj

Wj

⎤

⎦;

14: [K�R] = qr(M̃′
j);

15: for i = n − s + 1 to n do

16: if R(i� i) < 0 then

17: K(:� i)= −K(:� i);
18: end if

19: end for

20: Kj = K(:�n − s + 1 : n);
21: Q(:� j)= Kjwj ;
22: k= k+ s;
23: end for

24: x = [vec(B); vec(Σ); vec(Q)];
25: y = f_h_inv(x);
26: end function

1: function VolumeElement(A0�A+)
2: Return exp(LogVolumeElement (A0�A+))
3: end function

1: function LogVolumeElement(A0�A+)
2: Dfx = NumericalDerivative(ff_h); ⊲ The function
NumericalDerivative is available in the code that accompanies this Supplemen-
tal Material.

3: Dhx = NumericalDerivative(ZeroRestrictions);
4: N = Dfx × null(Dhx);
5: Return 0�5 × LogAbsDet(N′ × N); ⊲ The function LogAbsDet computes the

log of the absolute value of the determinant of a square matrix.
6: end function

1: function ff_h(x)
2: Use the function f_h to obtain (B�Σ�Q) form x.
3: for j = 1 to n do

4: Set ZFj = ZjF(B�Σ� In);
5: end for

6: w = zeros(
∑n

j=1 n− (j − 1 + zj)�1);
7: k = 0;
8: for j = 1 : n do

9: s = size(Wj�1);

10: M̃j =

⎡

⎣

Q(:�1 : j − 1)′

ZFj

Wj

⎤

⎦;

11: [K�R] = qr(M̃′
j);

INFERENCE BASED ON STRUCTURAL VECTOR AUTOREGRESSIONS 7

12: for i = n − s + 1 to n do

13: if R(i� i) < 0 then

14: K(:� i)= −K(:� i);
15: end if

16: end for

17: Kj = K(:�n − s + 1 : n);
18: w(k+ 1 : k+ s) = K′

jQ(:� j);
19: k= k+ s;
20: end for

21: end function

1: function f_h(x)
2: A0 = reshape(x(1 : n2)�n�n);
3: A+ = reshape(x(n2 + 1 : end)�m�n);
4: B = A+A−1

0 ;
5: Σ = (A0A′

0)
−1;

6: Q = h(1
2(Σ+Σ

′
))A0; ⊲ See Appendix A.2 for details.

7: Return [vec(B); vec(Σ+); vec(Q)];
8: end function

1: function ZeroRestrictions(A0�A+)
2: nzeros = 0;
3: for j = 1 : n do

4: nzeros = nzeros + size(Zj�1);
5: end for

6: z = zeros(nzeros�1);
7: k = 1;
8: for j = 1 : n do

9: s = size(ZFj�1);
10: z(k : k+ s − 1)= ZFj(:� j);
11: k= k+ s;
12: end for

13: end function

REFERENCE

KOOPMAN, S. J., N. SHEPHARD, AND D. CREAL (2009): “Testing the Assumptions Behind Importance Sam-
pling,” Journal of Econometrics, 149, 2–11. [1,3]

Co-editor Elie Tamer handled this manuscript.

Manuscript received 9 June, 2016; final version accepted 5 December, 2017; available online 20 December, 2017.

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28201803%2986%3A2%2B%3C1%3ASTIBOS%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/koopman2009testing&rfe_id=urn:sici%2F0012-9682%28201803%2986%3A2%2B%3C1%3ASTIBOS%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/koopman2009testing&rfe_id=urn:sici%2F0012-9682%28201803%2986%3A2%2B%3C1%3ASTIBOS%3E2.0.CO%3B2-R

	One-Sided versus Two-Sided Derivatives
	Testing the Finite Variance of the Importance Sampler Weights
	Numerical Algorithms
	Reference

