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Abstract

Many people believe in the ‘‘Law of Small Numbers,’’ exaggerating the degree to which
a small sample resembles the population from which it is drawn. To model this, I
assume that a person exaggerates the likelihood that a short sequence of i.i.d. signals
resembles the long-run rate at which those signals are generated. Such a person believes
in the ‘‘gambler’s fallacy’’, thinking early draws of one signal increase the odds of next
drawing other signals. When uncertain about the rate, the person over-infers from
short sequences of signals, and is prone to think the rate is more extreme than it is.
When the person makes inferences about the frequency at which rates are generated
by different sources — such as the distribution of talent among financial analysts —
based on few observations from each source, he tends to exaggerate how much variance
there is in the rates. Hence, the model predicts that people may pay for financial advice
from ‘‘experts’’ whose expertise is entirely illusory. Other economic applications are
discussed.
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1. Introduction

Loosely put, the law of large numbers tells us that the distribution of a large random sample from

a population closely resembles the distribution of the overall population. But many people believe

in the ‘‘law of small numbers’’: They exaggerate how likely it is that a small sample resembles the

parent population from which it is drawn. This paper develops a simple model reflecting this error,

and studies how people making this error differ from Bayesians in their inferences. The model

mathematically and intuitively ties the law of small numbers together with other biases, such as the

gambler’s fallacy, the tendency to over-infer from short sequences, and the belief in non-existent

expertise. I use the model to sketch out some possible economic implications of these biases.

In Section 2, I review in some detail the psychological evidence that people systematically depart

from Bayesian reasoning in ways that resemble the law of small numbers, the gambler’s fallacy,

and over-inference of the sort modeled in this paper. The law of small numbers itself was first

labeled and demonstrated by Tversky and Kahneman (1971). An immense literature identifies the

existence and determinants of the related ‘‘gambler’s fallacy’’ (the belief that recent draws of one

signal increase the odds of next drawing a different signal) in both the laboratory and in the field.

A smaller literature demonstrates over-inference from small samples.

In Section 3, I present the model. A person observes a sequence of binary signals of some

underlying quality, such as a sequence of good or bad investments by a financial analyst that signal

her underlying competence, a sequence of good or bad performances by a company that signals its

long-run prospects, or a sequence of good or great movies starring Johnny Depp that signals his

thespian virtues. I assume that each value of the signal is generated randomly from a stationary

probability that I shall refer to as the ‘‘rate’’. The person is a Bayesian and has correct probabilistic

priors about this rate. But: Whereas in reality these signals are generated by an i.i.d. process, the

person believes they are generated by random draws without replacement from an ‘‘urn’’ of� 	4

signals, where the urn contains the proportion of the two values of the signal corresponding to the

rate. This captures belief in the law of small numbers, since it means that the person believes that

the proportion of signals must balance out to the population rate before � signals are observed.

When � $ 4, the person becomes fully Bayesian; the smaller is �c the more he believes in the
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law of small numbers.1

The model leads directly to the ‘‘gambler’s fallacy’’: People expect the second draw of a signal to

be negatively correlated with the first draw. Because we exaggerate how likely it is that a small set

of coin flips yields very close to half heads and half tails, if early flips are disproportionately heads,

the ‘‘law of averages’’ tells us that the next flips are more likely to be tails. And if an observer is

sure that a particular financial analyst invests successfully close to half the time even over short

intervals, then he thinks that an analyst who is successful in her first year has a less than �

2
chance

of being successful next year.

In Section 4, I turn to the crux of the model, which examines inference by a believer in the

law of small numbers who is uncertain about the rate by which signals are generated. Because

such a person exaggerates how likely it is that a short sequence of signals will closely resemble

the rate, he is too confident that the underlying rate resembles a short sequence he observes. If he

believes every pair of flips of a fair coin surely generates one head and one tail, then he believes

that two heads in a row indicates a biased coin. If he believes that an average financial analyst is

successful once every two years, then he believes that an analyst who is successful two years in

a row must be unusually good. I formalize this over-inference result by showing that, after two

signals, a believer in the law of small numbers always has stronger beliefs than he should, and —

what is essentially the same result — that the probability distribution over his possible posterior

beliefs after two signals has too high a variance.

To investigate what the person infers when he observes many signals, I assume he believes that

the ‘‘urn’’ generating the signals is replaced every two periods. Such a deterministic and frequent

replacement of the urn is of course highly artificial. But it serves to capture in a tractable way the

fact that people expect small subsequences of a long sequence to yield signals in approximately the

same proportions as the overall sequence. That is, just as people do not expect the composition of

small samples to differ dramatically from overall population proportions, they also do not expect

to see ‘‘streaks’’ of signals that are not representative of the overall frequency in a sequence.

The person’s theory of streaks implies that the inferences he makes depend not just on the pro-

portions of signals he observes, but also on the precise sequence of those signals. Unlike when

4 While the psychological evidence shows the existence of a cognitive bias, the formal model also lends itself to
a more literal Bayesian interpretation: People may completely understand the nature of i.i.d stochastic processes,
but merely underestimate how common such processes are. Little depends on interpreting anything in the paper as a
cognitive error rather than merely assuming that people have an empirical misconception about what random processes
prevail in the world.
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observing a small number of signals, after observing a long sequence of signals a believer in the

law of small numbers is too likely to believe that the rate is less extreme than it is, and his beliefs

may be too moderate even after an infinite sequence of signals. This is because he does not expect

many long streaks, and is especially surprised to see streaks of rare signals. To explain why he is

observing so many streaks of rare signals, he may come to believe that the true rate is close to 50/50

— even if such a moderate rate doesn’t accord with the overall frequency of the signals. To illus-

trate, suppose an observer is initially uncertain whether a financial analyst is bad, average, or good,

having successful investment years �

e
, �

2
, or �

e
of the time. Suppose the analyst is, in fact, good,

investing successfully �

e
of the time. Eventually, the observer will see all possible pairs of perfor-

mances, including an occasional two unsuccessful years in a row. If the person is an extremely

strong believer in the law of small numbers, he’ll believe that two unsuccessful years in a row by a

good analyst is virtually impossible, and hence will eventually conclude that the analyst is average,

since average analysts are the only ones who often have both two unsuccessful and two successful

years in a row. He believes this despite his surprise that this supposedly average analyst is success-

ful �

e
of the time. This example is extreme, but it does capture the intuition that the false inference

people make from the frequency of streaks may dominate their inference from overall proportions

of signals, to yield a false world view. If a person does not observe the precise sequence of signals,

on the other hand, then he makes the proper inference after a large number of signals.

In Section 5, I suppose a person who believes in the law of small numbers observes a stream of

signals from each of a series of different ‘‘sources’’, and from such observations makes inferences

about the distribution of rates among a large population of sources. Consider again an observer of

financial analysts, and suppose he observes two performances from a large number of analysts — as

he might if he reads an article that lists the performances of a large number of mutual fund managers

over the last couple of years, or if he observed a series of them he has hired for brief durations. The

model predicts that if, in truth, all analysts are average — and a Bayesian with any initial beliefs

would eventually figure this out — the believer in the law of small numbers will infer that some

analysts are good and some are bad. Because he underestimates how often average analysts will

have consecutive successful or unsuccessful years, he interprets what he sees as evidence of the

existence of good and bad analysts. Such ‘‘fictitious variation’’ is a very direct corollary to the

over-inference results, but I consider it to be one of the economically most important implications

of the law of small numbers.
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I extend and apply the fictitious-variation result by presenting a stylized model of investors who

observe a short series of performances by firms, and predict near-term performance from these ob-

servations. While different patterns may also be consistent with the law of small numbers, the model

can predict that—due to the gambler’s fallacy—investors underpredict repetition of short strings of

performances while—due to over-inference—they over-predict repetition of longer strings. This

provides one plausible psychological account of a phenomenon in financial markets—short-term

under-reaction to announcements by firms but medium-term over-reaction—that has recently been

modeled using various rational and quasi-Bayesian models.

In Section 6, I examine inference by a person who decides what signals to observe based on

his earlier observations, so that the sequence of signals a person observes is endogenous. Suppose

a person employs financial analysts one at a time, and decides when to switch analysts based on

both his beliefs about the talent of his current and other analysts. Assuming he observes only the

performance of his current analyst, I show that such a person will eventually become convinced

that average talent is less than it is. The investor switches quickly from an analyst who initially

performs poorly—and when he does so he has over-inferred that the analyst is bad. But he sticks

with an analyst who initially performs well—until he discovers (as he will) that she is average.

Because he corrects his overly positive inference but not his overly negative inference, his beliefs

are biased downward.

A second interesting possibility arises when a person’s information is endogenously determined

because of his decisions: There can be two different long-run steady-state beliefs that a person may

converge on, depending on his initial beliefs and the early signals he observes. This is because

different patterns of behavior in response to different initial beliefs that a believer in the law of

small numbers thinks will both eventually reveal the true underlying distribution can in fact lead to

two different long-run beliefs, even though the believer in the law of small numbers anticipates both

behaviors will reveal the true distribution. If an investor initially believes (correctly) in relatively

little quality dispersion among financial advisors, he will not switch advisors often, and hence will

observe enough of each advisor to learn that she is average. But if he initially believes (falsely)

in wide quality dispersion, he may frequently switch advisors after poor performance, and because

he does not observe as much on average of each advisor, he may end up maintaining his belief in

wide quality dispersion. More generally, different belief and behavior profiles may occur with high

probability, even in single-person environments whose information structure is rich enough such
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that a Bayesian’s steady-state beliefs and behavior would be deterministic and correct.

I conclude in Section 7 with a brief discussion of some of the limits of the model in this paper

and ideas for modifications to rectify these limits and facilitate further economic applications. I

also speculate on the relationship between the law of small numbers and another well-documented

(and seemingly contradictory) bias, ‘‘the hot-hand fallacy’’.

2. Evidence for the Law of Small Numbers

The term ‘‘the law of small numbers’’ was coined by Tversky and Kahneman (1971) to describe how

people exaggerate the degree to which the probability distribution in a small group will closely re-

semble the probability distribution in the overall population. Tversky and Kahneman relate the law

of small numbers to another bias, the representativeness heuristic, and they and other researchers

have emphasized the connection between the law of small numbers, the gambler’s fallacy, regres-

sion errors, over-inference from short sequences, and other mistakes. In this section, I review some

of broad array of evidence that supports the assumptions and results presented in the remainder of

the paper about these various phenomena.

Tversky and Kahneman (1971) provide several examples. For instance, they asked a group of

mathematical psychologists to forecast the likelihood of replication of results in a variety of sce-

narios presented to them. Participants were, for instance, told that a pattern of behavior matching a

theory had been identified as statistically significant in an experiment with 20 subjects, and asked

to predict the likelihood that the pattern of behavior would reappear as statistically significant in

a subsequent experiment on 10 subjects. The respondents greatly exaggerated the likelihood of

replication, apparently exaggerating the likelihood that true theories would show up as statistically

significant in even small samples. Further illustrations provided by Tversky and Kahneman (1971)

indicated that the source of the error was that people fundamentally expect that population propor-

tions reliably show up even in small samples.

Both Tversky and Kahneman (1971) and Abraham and Schulz (1984) told a group of subjects

that the ‘‘mean IQ of the population of eighth graders in a city is known to be 100. You have

selected a random sample of 50 children for a study of educational achievements. The first child

tested has an IQ of 150. What do you expect the mean IQ to be for the whole sample?’’ Tversky and

Kahneman (1971) report that a ‘‘surprisingly large’’ number of subjects believe that the expected
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IQ for the sample is still 100, and Abraham and Schulz (1984) found that 13 out of 22 subjects

guessed 100, while only 3 said 101.

Kahneman and Tversky (1982a, p. 44) illustrate how people expect close to the same probability

distribution of types in small groups as they do in large groups, asking a group of undergraduates

the following question:

A certain town is served by two hospitals. In the larger hospital about 45 babies are
born each day, and in the smaller hospital about 15 babies are born each day. As you
know, about 50 percent of all babies are boys. However, the exact percentage varies
from day to day. Sometimes it may be higher than 50 percent, sometimes lower. For a
period of 1 year, each hospital recorded the days on which more than 60 percent of the
babies born were boys. Which hospital do you think recorded more such days?

Twenty-two percent of the subjects said that they thought that it was more likely that the larger

hospital recorded more such days, and 56% said that they thought the number of days would be

about the same. Only 22% of subjects answered correctly that the smaller hospital would report

more such days.

As this example illustrates, the belief in the law of small numbers has often been demonstrated

by showing that subjects are too inattentive to sample size. This inattentiveness, however, manifests

itself in a second way. Though people believe in the law of small numbers, they don’t necessarily

believe in the law of large numbers: While overestimating the resemblance of small samples to the

overall population, people underestimate the resemblance of large samples will have to the overall

population. Kahneman and Tversky (1972), for instance, found that subjects on average thought

that there was a greater than 1/10 chance that, of 1000 babies born on a given day, more than 750

would be male. The actual likelihood is (much) less than 1%. To overstate it a bit, people seem

to have a universal probability distribution over sample means that is insensitive to the sample

size. As Kahneman and Tversky (1972, p. 45) note, this has important implications for inference:

people often infer a lot from statistics reported in percentage terms even from small sample sizes,

but by the same token are not convinced when they should be by huge sample sizes. The results

emphasized below pertain mostly to small-sample inference and prediction. In Section 7 I briefly

discuss whether and how incorporating lack of belief in the law of large numbers might add to or

change the analysis of this paper.

Some of the analysis below concerns inferences people make from observing just a few signals,

but what they infer from long sequences of signals. Bar Hillel and Wagenaar (1991) review the
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extensive evidence for the existence of a ‘‘local representativeness’’ bias, whereby people expect

too few streaks in random sequences. Most such evidence comes from two types of experiments,

production tasks and recognition tasks. In production tasks, people are asked to produce ‘‘random

sequences’’. Typically, they are instructed to produce a series of binary variables that look to them

representative of a sequence that might be generated by a random process such as flipping a fair

coin. Interpreting many of these experiments is potentially problematic, since participants are not

given explicit instruction to produce i.i.d. samples. But participants are typically instructed in a

way that should evoke the desire to produce sequences resembling i.i.d. sequences with which they

are familiar, such as being told to ‘‘generate a random sequence, such as one might expect from a

long sequence of flips of an unbiased coin.’’

In a series of papers that replicate and extend research on production tasks, Rapoport and Bude-

scu (1992, 1997) and Budescu and Rapoport (1994) provide some additional confirmation for the

general patterns reported in Bar Hillel and Wagenaar (1991). They also clarify some issues and

provide a new perspective on such research. Rapoport and Budescu (1992, p. 355) asked sub-

jects to ‘‘simulate the random outcome of tossing an unbiased coin 150 times in succession,’’ while

Rapoport and Budescu (1997, p. 612) asked subjects to ‘‘imagine a sequence of 150 draws with

replacement from a well-shuffled deck, including five red and five black cards, and then call aloud

the sequence of these binary draws.’’2 The switching rate between successive elements of the se-

quence people produced around 58% in each of two experiments. Participants generated too few

long streaks: Of all triplets of successive elements in the sequences subjects produced, around 15%

were identical triplets (compared to the appropriate random average of 25%) and around 4% of four

successive sequences were identical quadruplets (compared to the appropriate random average of

12.5%). Looked at another way, subjects were less and less likely to choose a signal when more

and more of the preceding choices were those same signals. The probabilities that a subject would

produce a signal given that the previous 0, 1, 2, or 3+ signals chosen were that same signal3:

5 In the first experiment, subjects wrote down their sequences, and hence could examine what streaks they had
developed, whereas calling out the sequence in the second experiment presumably made it harder for them to fix the
best pattern for themselves.
6 I derived these numbers from Table 7 of Rapoport and Budescu (1997) as follows. Su+D m E, is simply percentage
of two-tuples that were XY rather than XX; Su+D m DE, is derived as the relative proportion of YXX sequences to
XYX sequences, since this represents the percentage of time the subjects chose to repeat the second element rather
than the first element in triplets where the first two elements differed. Su+D m DDE, was derived as the relative
frequency of YXXX sequences to XYYX sequences; and Su+D m DDD===, was derived as the relative frequency of
XXXX sequences to XXXY sequences. For ease of presentation, the numbers I report are just the simple average of
these numbers as derived from the ‘Observed’ columns of Experiments 1 and 2.

7



Su+D m E, 58.5%
Su+D m DE, 46.0%
Su+D m DDE, 38.0%
Su+D m DDD===, 29.8%

Rapoport and Budescu (1997, p. 615) interpret their experiments as suggesting that about 70%

of subjects exhibit the ‘alteration bias’ discussed here, whereas about 15% seem consistently to

exhibit an ‘inertia bias’ opposite of what is discussed here; the remaining 15% seem inconsistent.

Rapoport and Budescu also develop interesting variations on the production tasks that more

clearly than in previous studies provide subjects incentive to produce i.i.d. sequences. Experi-

ments in Rapoport and Budescu (1992) and Budescu and Rapoport (1994) studied the sequence of

moves chosen by subjects in variants of a ‘matching pennies’ game—two-player, zero-sum games

where players have a clear incentive to choose unpredictably4. Participants made a series of binary

choices against an anonymous other player, and payoffs were realized before they then made an-

other move. They hypothesized that subjects would produce sequences that better resemble i.i.d.

sequences than in their own and previous ‘one-player’ production tasks, because subjects had both

a greater incentive to be successful at randomizing, and were motivated to be unpredictable rather

than needing to interpret the meaning of any randomization instructions. Their hypothesis was con-

firmed: In comparing the typical ‘produce-a-random-sequence’ instructions to their binary-choice

experiments, for instance, alternation probabilities were reduced from 59% to 53% in Rapoport and

Budescu (1992) and from 58% to 52% in Budescu and Rapoport (1994). Hence, the direction of

the bias uncovered in the literature on production tasks appears to be robust, with alteration rates

reduced but remaining statistically significantly greater than 50%. Rapoport and Budescu (1992)

ran a third condition: Where subjects once more were told they were playing a zero-sum matching

pennies game, but each was asked to produce a sequence of 150 choices all at once—and then the

outcome of the game would be determined by matching the sequences of two of the participants. In

this condition, subjects had no incentive to appear random, and since they were also not instructed

to produce the sequence randomly, it is not clear how to interpret their behavior. Subjects in this

condition alternated choices 49.6% of the time, exhibiting a weak inertia effect. Indeed, many sub-

jects produced a very long sequence of one choice followed by a long sequence of the other, and

others alternated in a clear pattern. Such subjects were clearly not trying to be random. Though I

am skeptical that it explains much if any of the pattern, one interpretation of the results might be

7 See also O’Neill (1987) for similar results in a similar setting.
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that subjects expected the others to play randomly. In that case, if subjects mistakenly believed in

local representativeness by other players, then they might ‘insure’ themselves—lowering the vari-

ance in the number of rounds they win—by choosing longer streaks. The problem with this is if

they are aware that others might do the same thing, choosing strongly non-random patterns could

exacerbate variance in wins rather than reduce it.

Research on the local-representativeness bias employing recognition tasks, where participants

are asked to identify which from a menu of sequences appear ‘‘random,’’ yields results very similar

to those from production-task research. Bar Hillel and Wagenaar (1991) report that, in both pro-

duction and recognition tasks, the average ‘‘switching rate’’ is about 60% in representative binary

studies. But the evidence that is most directly relevant to my model is not production tasks or recog-

nition tasks, but from prediction tasks. There is less research on this, but what research there is sup-

ports the view that people exhibit the gambler’s fallacy and local-representativeness bias. Though

he strongly emphasizes the view that production tasks exaggerate the local-representativeness bias,

Kareev (1992), for instance, produces data supportive of the bias.5 He gathered data from about

130 each of 2?_-graders, H|�-graders, and college students. He ran three conditions—the standard

production task of the sort reported above, a ‘‘guessinǵ’’ condition, and a ‘‘guessing-with-feedback’’

condition. His instructions were as follows:

Introduction: ‘‘I will ask you to perform three short tasks. All involve the tossing of a
coin. I have here a 1-shekel coin [both sides of the coin were shown]. It has a tree on
one side and the number 1 on the other. In the following tasks you should say tree or
�, according to what you choose as the appropriate answer.’’
Instructions for the standard task: ‘‘In this task I would like you to flip an imaginary
coin. Let us say that I want to toss a coin 10 times, but I do not have a coin at my
disposal. Tell me what you think might come out on the first toss? the 2

?_? ... The
�f

|�?’’
Instructions for the guessing task: ‘‘I will now toss the coin and cover it. You will have
to guess the outcome and tell me. I will check whether or not you are correct. After 10
tosses I will tell you the number of correct guesses you made.’’
Instructions for the guessing-with-feedback task: ‘‘I will now toss the coin and cover
it. Before each toss you will have to guess the outcome and tell me. After each toss of
the coin I shall tell you if you were correct or not. We shall repeat this 10 times.’’

Kareev (1992, p. 1193) reports average alternation rates for 2?_-graders, H|�-graders, and college

students, as 65%, 62%, and 57% for the standard task, and 56%, 56%, and 53% for the guessing

8 Kareev (1992) frames his results in terms of a theory, similar to Rapoport and Budescu’s (1997) arguments, that the
mispredictions come from memory limitations rather than misunderstanding of statistics.
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task. He does not report the switching rate for the guessing-with-feedback task (the most relevant

for many of the situations below); from graphs elsewhere in the article the results appear very

close to the numbers for the standard task for 2
?_-graders and H

|�-graders, and very close to the

guessing task for college students. Making estimates by eyeballing the graphs from Kareev (1992,

p. 1192), support for the local-representativeness bias is even starker. The following table shows

the percentage of participants in different conditions who chose a sequence of 10 coin flips that had

exactly 5 heads and 5 tails.

Task 5
?_-graders ;

|�-graders college students

Actual 24% 24% 24%

Standard 47% 41% 48%
Guessing 33% 31% 33%

Guessing/Feedback 41% 42% 34%

Percentage of respondents choosing 5-head/5-tail combinations

While taken as a whole the experimental literature clearly supports the prevalence of the gam-

bler’s fallacy and local representativeness, the support is not universal. Experiments in Edwards

(1961) and Lindman and Edwards (1961) provide harder-to-interpret evidence both for and against

the gambler’s fallacy. A group of 120 trainees in the air force were each shown a 1000-long se-

quence of signals L’s and R’s.6 Participants were asked, after each of the first 999 signals, to predict

what the next signal would be.7 Some of the sequences of signals they were shown were generated

by an i.i.d. random process, while others were carefully designed to mimic an i.i.d. sequence.

Different trials were run where the signal proportions underlying probability of one of the signals

was variously .5, .6, or .7. Participants were apparently told neither the probabilities of the two sig-

nals, nor were they told anything about the stochastic process by which the signals were generated.

Hence, as with many other psychological experiments in this area, it is hard to interpret the results.

Edwards reports that he found far less evidence of the gambler’s fallacy than in previous research,

saying that the gambler’s fallacy appears in the first 200 trials, but that in the last 600 trials the

9 Edwards (1961) notes that the population of basic airmen upon which the study was conducted contained few col-
lege attendees, making the set less educated (and presumably less smart) than in the other psychological experiments
reported here. He did, however, screen out potential subjects who scored in the lowest category on the general intelli-
gence test administered to all members of the air force.
: Edwards did not provide a full description of what the subjects were told. But he did report that each subject was
told ‘‘Your purpose is to get as many predictions correct as possible. You will not be able to get all of them correct at
any time during the test. There is no pattern or system you can use which would make it possible to get all of your
answers correct. But you will find that you can improve your performance in the test if you pay attention and think
about what you are doing.’’
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opposite pattern appears.8

There are also problems with interpreting even the supportive data above as conclusive evidence

for the gambler’s fallacy. First, when the underlying probability of a binary signal is 50/50, all pre-

dictions have an equally good chance of being right. Hence, any observed patterns in prediction

are not per se errors. In principle, there is a similar problem with interpreting behavior in zero-sum

game; arguably such data indicate a statistical violation of Nash-equilibrium behavior, but they

don’t prove irrational (non-rationalizable) play, since any pattern of behavior is optimal against

randomization by one’s opponent. There is a more profound problem in interpreting the behavior

in many of the prediction-task (and game-playing) experiments that involve predicting signals that

participants realize are not equi-probable. A well-known experimental finding — discussed by

Edwards (1961) — is a behavior called probability matching. When making a long series of pre-

dictions, or a long series of choices whose payoffs depend on the signals, participants tend to pick

particular outcomes in proportion to the frequency with which they expect the corresponding signal

rather that picking the highest payoff odds. So, for instance, in experiments like Edwards’s sessions

in which participants figure out that the proportions of signals are .7 and .3, they tend to pick the

.7 signal 70% of the time rather than 100% of the time —which would maximize the number of

correct guesses. Because probability matching is a tendency rather than a firm rule (some people

clearly don’t make the error)— it is therefore hard to determine participants’ beliefs in this type of

setting.

Despite such problems, I believe the evidence above strongly supports the prevalence of the

gambler’s fallacy. But there are some experiments that provide even stronger evidence of an error.

In an unpublished manuscript, Gold and Hester (1987) also presented data on the gambler’s fallacy

in variants of a prediction task. Their paper both provides stronger evidence that predictions are

really biased away from fifty-fifty, and provides fascinating evidence clarifying the mind-set of

believers in the gambler’s fallacy.

; In fact, in the case where the true probability of each signal is 50%, my understanding of the data is that subjects
are more likely to predict O than U following an O even in the first 200 trials, which suggests that his data contradicts
the gambler’s fallacy even more than claimed. By saying that the gambler’s fallacy appeared in the first 200 trials,
Edwards (1961) and Lindman and Edwards (1961) mean that participants were less likely to guess a signal for higher
n’ s when the previous q A 3 draws were that signal, whereas I have been interpreting the gambler’s fallacy to meet
this criterion for q @ 3 as well. Of course, early in this prediction process, even a Bayesian who believed that the
underlying process is i.i.d. might predict O more often following O than following U, since they will be updating
their beliefs about the probabilities of O’s and U’s. Although Lindman and Edwards (1961) have some data that might
support such as interpretation, it is not clear that this ‘‘inference stage’’ should or would last for 200 periods, and hence
I would view these results as evidence against the gambler’s fallacy as I have modeled it.
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Consider the most interesting of Gold and Hester’s (1987) experiments.9 120 University of

Pittsburgh undergraduates were told that a coin would be flipped 25 times, and were awarded extra-

credit points for their course for their performance in the experiments. While the coin was flipped

by an experimenter in front of the participants, the coin landed too far for the subjects to see, and

the experimenter actually reported a pre-determined sequence of outcomes. The sequence involved

9 red and 8 black realizations in the first 17 flips of a painted half dollar, a black realization in flip

18, followed by 4 red flips in flips 19-22. One set of participants spent 24 minutes before any

of the flips working on some word-search puzzles, and then proceeded with the experiment. A

second set of participants started right away, but the 23rd coin flip was delayed for 24 minutes (the

pretext for doing so was not reported in the paper) to allow the participants to do the same word-

search puzzles. To assure that this second set did not forget the previous flips, all participants were

required to review the flips after flips 11 and 22, with the ‘pause’ group reviewing the realizations

right after their pause and right before the flipping proceeded.

Participants could earn points after every flip. On each flip, they were given a choice between

70 points for sure, or a gamble in which they would get 100 points if the next flip was the winning

color, and 0 points if it was the losing color.10 But half of each group of subjects would get the 100

points if the next flip was a red—the color that had come up in the previous four flips—and half

would get the 100 points if the next flip was black. Hence, the propensity to take the 70 points

revealed beliefs about the odds that the next flip would be red or black, and hence differential rates

for the groups as a function of whether red or black was the winning color would reveal the belief

that a black flip was ‘‘due’’.

For the no-pause group, 24 of 29 subjects who would win with a red flip chose to take the

sure thing, whereas only 8 of 30 who would win with the black flip chose the sure thing. This

clearly indicated a belief that the next flip was more likely black, and hence that subjects exhibited

the gambler’s fallacy. In the pause group, however, 18 of 32 subjects who would win with a red

flip chose to take the sure thing, whereas 13 of 29 who would win with the black flip chose the

sure thing. This too indicated a belief in the gambler’s fallacy—but this tendency was statistically

significantly less than in the no-pause group. Subjects seemed to believe that letting a coin ‘‘rest’’

< All of their experiments used the basic structure of the experiment I describe, and all confirmed the presence of the
gambler’s fallacy among participants.

43 Pre-testing had indicated that subjects would be ‘risk-taking’, and would be roughly indifferent between 70 points
for sure and such a gamble if the odds were 50/50.
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makes it more plausible that a streak would continue.

Not all the evidence for local representativeness come from the laboratory. Walker and Wooders

(1999) find some evidence consistent with the gambler’s fallacy in the play of zero-sum games.

They study final and semi-final matches at Wimbledon so as to get away from the inexperienced

players and low stakes of experimental games. While their paper is not framed as a test of local

representativeness it does provide some confirmation of the ‘‘over-switching’’ phenomenon found

in the laboratory games. Although the authors argue that these top-ranked tennis players maximize

their payoffs more effectively than experimental subjects, they conclude (p. 4) that

Our tests indicate that the tennis players are not quite playing randomly: they switch
their serves from left to right and vice versa somewhat too often to be consistent with
random play. This is consistent with extensive experimental research in psychology and
economics which indicates that people who are attempting to behave truly randomly
tend to ‘‘switch too often.’’

There are several studies demonstrating the existence of the gambler’s fallacy in lottery play.11

Clotfelter and Cook (1993), for instance, examine the number of bets placed on numbers that won

one of Maryland’s lotteries in March and April of 1988. The particular lottery they examined was

a pick-three lottery. Each day the state would randomly draw a triple-digit number. Lottery players

pick a triple digit number, getting a payoff of $500 for every $1 bet if they guess all three digits

correct, in the correct order. People are also allowed to bet on the unordered sequence, getting a

payoff of $80 for every $1 bet if their triple-combination comes up in any order. In both cases, both

the random draw by the state and the betting involved allowed repetition of numbers.

The gathered and reported total number of bets placed on each of the winning numbers during

this period, on all days from two days before, one day before, and 1, 2, 3, 7, 28, 56, and 84 days

after the win. The authors consider the ratio of the number of people betting on each of the winners

for each of the chosen lags to the average of the two days before the number won. The authors

44 We should be cautious in inferring too much from the behavior of lottery players—who are either stupider than
average, or are not out to maximize pecuniary winnings. But I can think of no likely non-pecuniary motivation or
non-expected utility preferences that could explain the particular pattern we see. This appears to be a manifestation of
the gambler’s fallacy. And while lottery players are apt to be stupider than average, playing the lottery is so common
that the cognitive errors exhibited by lottery players are certainly economically relevant. Furthermore, Holtgraves
and Keel (1992) found evidence of local representativeness (and other biases) in a lottery game played hypothetically
by all students in two introductory psychology classes. Although about three fourths of the students reported having
has played the lottery at some point, this group is clearly smarter than the average participant in the U.S. economy.
(The form of local representativeness Holtgraves and Keel (1992) identify is somewhat different than the other lottery
evidence I report here; they show that when asked to pick 3- or 4-digit numbers in a hypothetical lottery of randomly
selected digits, subjects were more likely to pick sequences without repetition than with repetition.
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report the 25th percentile, the median, and the 75th percentile of these ratios for the 52 winning

numbers they gathered. The following is derived from Clotfelter and Cook’s (1993, p. 1524) Table

2:

Days after Winning 25th Percentile Median 75th Percentile
1 day .77 .84 .97
2 days .60 .66 .72
3 days .58 .64 .76
1 week .66 .75 .87
4 weeks .69 .79 .92
8 weeks .72 .90 1.09
12 weeks .74 .93 1.11

Ratio of bets N days after winning to the two-day average before winning

That is, bettors stopped betting on the number immediately after it won, with winning numbers

gradually recovering their popularity over the next 3 months.12,13

As with some of the laboratory data, the very fact that the lottery is random also implies that

people cannot make any mistakes. Since players have no incentive to bet on one number over

another, they might as well mimic a cognitive error. Perhaps, as well, they are actually making

the cognitive errors but would get wise if stakes were involved. Stronger evidence comes from

pari-mutuel betting. Terrell (1994), in fact, conducted a study examining Clotfelter and Cook’s

conclusions in a pari-mutual context. The State of New Jersey runs a pick-three lottery much like

the Maryland lottery that Clotfelter and Cook (1993) examined, except that it is pari-mutual. In

New Jersey, the state divides 52% of money bet on a given day’s pick-three lottery evenly among

those bettors who choose the winning number. Hence, the amount distributed to winners each day

is an indicator of both the number of bettors on that number and the costliness of errors bettors are

making. Tickets cost 50 cents each, so that if equal numbers of bettors choose all numbers, winnings

on a given day should be $260. If the winnings are significantly higher than that, it indicates that

45 I do not believe that the authors discuss the fact that the first-day drop was less dramatic than the second. Perhaps
this occurred because of a lag in the news spreading about a particular number winning.

46 These data provide some evidence distinguishing two hypotheses for behavior resembling what we observe here.
A lot of evidence that people seem to bet on ‘‘losers’’ and avoid ‘‘winners’’ immediately after they lose and win is
interpreted (often, clearly correctly) as reflecting loss aversion. As Thaler and Johnson (1990) show experimentally
and Odean (1995) and Barberis, Huang, and Santos (1999) show in stock-market behavior, decision-makers in risky
settings seek to get back to the status quo, which means they can ride losers. While in many cases one or the other
interpretation is obvious, it is often hard to distinguish whether somebody holds onto a stock that has declined since
they bought it because they hate to realize their losses, (or because they believe ‘‘the law of averages’’ means the stock
will rebound. In this cae, it is implausible tht the numbers reflect loss aversion — at best it may be that those who play
a particular number habitually refrain from betting for a while, more likely (I am surmising) the numbers must reflect
a decreased tendency by losers to bet on assets that recently won.
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too few bettors are betting that number. Terrel (1994) examines the data from 1785 daily drawings

on New Jersey’s pick-three numbers game from 1988 to 1992. Much in the spirit of Clotfelter

and Cook, he examines betting on numbers that have recently won. The following is Table 1 from

Terrel (1994, p. 311), with some rounding and omitting standard derivations, reporting the average

winnings for numbers that repeated within various lags between 1 and 8 weeks, and comparing this

to numbers that last won further ago:

Number Mean

Winners repeating within 1 week 8 $349
Winners repeating between 1 and 2 weeks 8 $349
Winners repeating between 2 and 3 weeks 14 $308
Winners repeating between 3 and 8 weeks 59 $301
Winners not repeating within 8 weeks 1622 $260

All Winners 1714 $262

Average payouts to winning numbers

The pattern clearly replicates that of Clotfelter and Cook (1993), though Terrel compares New

Jersey behavior to Maryland behavior to conclude that the heightened incentives of New Jersey’s

pari-mutuel scheme led to a decrease in the gambler’s fallacy.14 For instance, he calculates that the

one-week-lag winnings that Marylanders would have earned had they bet as they did but played by

New Jersey rules would have been $396 rather than the $349 it was in New Jersey. Put differently,

13% more New Jerseyns bet on a number that won a week earlier than did the Marylanders. But

he also emphasizes that the scope of the error in New Jersey is substantial. From Table 1 it can be

inferred, for instance, that 25% fewer lottery players in New Jersey bet on a number that won a

week ago than typically bet on that number.15

I am familiar with much less evidence on over-inference based on small samples than on the

other biases related to my model. But there is some. A series of experiments by Grether (1980,

1992) and Camerer (1987) has subjects observe a series of draws coming from one of two un-

derlying rates which they do not know, but which they make inferences from the draws. In these

47 Terrell does not discuss the alternative hypothesis that lottery players in Maryland are inherently stupider than those
in New Jersey.

48 For another verification of the gambler’s fallacy in pari-mutuel betting, consider Metzger’s (1985) study of betting
at the race track. Among other biases, she finds that the odds given for long-shot horses late in a day are higher when
a long shot has won earlier in the day than when no long shots have won. Because the odds are continuously adjusted
to reflect the amount of betting, this indicates the bettors anticipated that a long shot winning early means one won’t
win later. Presumably bettors take the view that lightening doesn’t strike twice.
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experiments, the subjects that indicate that making gambles or investments whose attractiveness

depends on their beliefs about an underlying rate. These experiments are careful to explain all as-

pects of the environment to the subjects, involve incentives, markets, and allow for learning. They

all, to varying degrees, provide support for the over-inference hypothesis.

Consider Camerer’s (1987) experiment. A group of undergraduates at the Wharton School at the

University of Pennsylvania, all of whom had both statistics and economics courses, participated

in an asset-market experiment in which they had the incentive to correctly predict an underlying

variable. Subjects observed three draws being drawn with replacement from one of two urns, urn X

which contained exactly twice as many black balls as red balls, and urn Y which contained exactly

twice as many red balls as black balls. The ex ante probability of urn X was .6. After observing the

three draws, the subjects participated in an asset market for assets whose value depended on which

urn was generating the draw of the balls. Hence, they were essentially betting on their posterior

beliefs about the relative likelihood of X and Y.

Results were complicated, but one pattern stood out: When either one out of three or two out of

three balls were red—i.e., when the proportions of the three draws exactly reflected the proportions

of either the X or Y urn—market behavior clearly indicated that subjects were exaggerating the

likelihood that the urn was the one matching the proportion of red and black balls drawn. While

significant over-inference was not found when either zero or three of the balls were red, the strong

results for the more moderate cases indicate over-inference about the underlying rate based on small

samples. Subjects persisted in making the mistake through fifty rounds of repetition.16

There is also field evidence for intertemporal behavior by investors that is interpretable as a

combination of the gambler’s fallacy and over-inference. In Section 5, I show how my model can

help interpret and explain some phenomena in American financial markets that appear to be de-

partures from Bayesian rational expectations. There is extensive research, well summarized by

Barberis, Shleifer, and Vishny (1998), showing that investors in stock markets and other financial

markets seem to 1) under-react in the short term to good and bad news about a firm’s financial

prospects, but 2) over -react to in the medium or longer term to such news. The underreaction is

evidenced in the fact that, as found in Cutler, Poterba, and Summers (1991), the expected return

49 The results also clearly indicate that the over-inference was due to something like the law of small numbers rather
than the (related) phenomenon of base-rate neglect; Camerer notes that had subjects been to neglecting the base rates
of the two urns, the over-inference following two-red/one-black draws should have been more severe than for one-
red/two-black draws, since the 2:1 Y urn had lower likelihood. Grether (1980, 1992) found similar results, while
emphasizing more base-rate neglect and the role of learning and incentives.
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in many financial markets is positively autocorrelated from one period to the next, across periods

of a month, a quarter, or a year. More studies show that the returns to stocks in the short period

following better-than-average unexpected earnings by a firm are higher than the earnings following

worse-than-average unexpected earnings, indicating that the prices of these stocks set be investors

are not immediately taking into account good or bad news. But there is an opposite pattern when

firms or markets perform consistently well or poorly over a longer horizon. Cutler, Poterba, and

Summers (1991) show a slight negative correlation in the returns in markets over horizons of 3-5

years, and Campbell and Shiller (1988) also find that returns are negatively correlated over time.

A series of articles beginning with De Bondt and Thaler (1985) have shown that the returns to spe-

cific portfolios of stocks that have very poor returns over a period tend to significantly outperform

portfolios with good returns, indicating that investors are too pessimistic about the future prospects

of portfolios that have performed poorly recently.17

As I will show below, such data are consistent and interpretable with my model. But there are

several other models that also explain the data. Barberis, Shleifer, and Vishny (1998) construct a

quasi-Bayesian model of the simultaneous underreaction and overreaction, where they assume that

performance is really a random walk, but that investors believe in either of two false models of the

world—that returns of negatively autocorrelated, or that they are positively autocorrelated. They

show that, given this false model, investor behavior will track the observed pattern of underreaction

and overreaction. While not claiming that their model from psychological evidence, Barberis,

Shleifer, and Vishny (1998) note that it is consistent with the framework developed by Griffin and

Tversky (1992) that combines conservatism—the tendency not to fully absorb new information

(‘underreaction’) with representativeness (‘overreaction’); the second component has an attention

somewhat similar to the law of small numbers and over-inference results in my model. Daniel,

Hirshleifer, and Subrahmanyam (1998), by contrast, build a model based on the well-established

4: There is also some suggestive evidence gathered from financial markets constructed in the laboratory. Andreassen
and Kraus (1990) test the investment patterns of undergraduates in an artificial laboratory experiment with stock series
derived from real world stock performances. Investors in these markets tend to sell after stocks go up and buy when
prices fall, consistent with the gambler’s fallacy. This evidence is inconclusive for many reasons—such behavior is
consistent, for instance, with rational expectations combined with loss aversion and a preference for grabbing gains.
De Bondt (1993) finds evidence in a similarly constructed financial market that investors tend to extrapolate recent
performance of the market, and also collects survey evidence indicating more directly that investors believe too strongly
that trends will continue.
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finding that people tend to be over-confident in the precision of the signals they get.18 Hong and

Stein (1999) are able to explain these patterns by combining that assumption of slow diffusion

of firm-specific information with a relaxation of the rational-expectations assumption, and Hong,

Lim, and Stein (1998) test and confirm a novel prediction of the Hong and Stein (1999) model that

the other models don’t predict. Berk, Green, and Naik (1999) and Barberis, Huang, and Santos

(1999) each provide (very different) rational-choice explanations of the observed phenomena.

I do not know whether my model is psychologically more valid than these other models, nor

do I have a strong intuition at this point that the law of small numbers does or should be expected

to generate the precise patterns we see.19 But just as it may help to unify seemingly disparate

psychological data as deriving from the same underlying phenomenon, however, my model can

help explain some of the anomalies in financial markets as deriving from the same underlying bias

in reasoning. Moreover, the model connects this phenomenon with what may be a more important

bias in financial markets—the exaggerated belief by investors in variance in financial insight, and

the large amounts of money that people pay to obtain this insight.

In addition to laboratory and field statistical evidence, more anecdotal evidence of these biases

abounds. In fact, it often provides grist for the pedagogical mill of statisticians and economists to

cite all the ways that real people (rather than the inhabitants of our traditional economic models)

make errors in their statistical reasoning. The gambler’s fallacy and over-inference from small

samples are very high on the list of most noticeable common errors, amply represented in daily

conversation, as well as in newspaper articles.20

Rarely does a random fluctuation in the stock market get explained as random, nor does a good

game or two by an athlete get explained as random. For instance, in a newspaper sports page, Ortiz

(1999) reports on a basketball game as follows:

4; This over-confidence could, of course, be interpreted in light of the over-inference generated by the law of small
numbers. Daniel, Hirshleifer, and Subrahmanyam (1998) invoke the over-confidence in a different way than I do
below, by assuming that expert investors over-infer from private signals they receive, rather than from the recent,
public performance of the stock.

4< My model makes at least one prediction about the nature of people’s beliefs that destinguishes it from Barberis,
Shleifer, and Vishny (1998): The short-term underreaction does not come from pessimism about a portfolio’s average
performance, but rather from the belief in the gambler’s fallacy. Hence, evidence that people infer too little from the
short-term performance about the long-term performance would reject my model as the only or primary explanation,
whereas evidence that people are not exhibiting inertia in updating their beliefs, but rather implementing their belief in
the gambler’s fallacy in the short run, would indicate that ‘‘conservatism’’ in updating does not explain the phenomenon.

53 The popular book Innumeracy: Mathematical Illiteracy and its Consequences, in which Paulos (1988) becries
widespread misunderstanding of basic mathematics, is largely devoted to errors in statistical reasoning, including the
types of errors discussed in this paper.
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A Sudden Reversal for Coles
Warriors guard is now hitting jumpers with confidence

The body filling out that No.12 in a Warriors uniform is the same one as in the last three
years, the one prone to clanking jump shots and running the offense at a glacial pace.
... Ever since Bimbo Coles got a release from the deepest part of the bench a week ago
... the nine-year point guard has been a changed player. ... Considering Coles’ [sic]
shooting percentage has declined in each of the last five years, to a career-low of 37.9
in 1997-98, the turnaround is stunning [emphasis added]. In the last four games, Coles
has shot 15-for-26 (57.7 percent) ... ‘‘The mind is a crazy thing,’’ Coles said. ‘‘When
you totally lose your confidence, you’re not going to play well. I’m starting to regain
my confidence and going out there and having fun.’’ ... The confidence was especially
evident on the late jumpers, the last of which tied the game 87-87 with 1:33 to play.

In the four games following the stunning four-game turnaround, Coles went 7 for 21 for 33%.

After regained confidence led to his stunning turnaround, Coles apparently either re-lost his con-

fidence — or became over-confident.21 It is very plausible that a player can have significantly

different success from season to season or team to team (Coles had switched teams the previous

season), or even game to game because of changed team compositions or changed position, or dif-

ferent opponents (this headline was written after the Warriors defeated the L.A. Clippers, who were

0-17 at the time, and finished the season with the league’s worst record). Indeed, for the remainder

of the season Cole did improve over the previous year, and finished the season by shooting 137 for

303 (45.2%) following the turnaround, for a year end total of 156 for 348 (44.8%). But the article

made an inference that was statistically unwarranted, yet typical of such articles. The chance of a

37.9% shooter making 15 out of a given 26 shots is about 2%. If (say) 200 NBA players a week

have enough shots to warrant such a headline were they to perform comparably stunning four-game

turnarounds, about one player per day would warrant this headline. It could also be noted that had

Coles remained a 37.9%, i.i.d. shooter, then the chance of him having had a 15-for-26 streak at

some point in his 348 shot season would be about 76 %. Roughly speaking, the standards by which

a four-game performance gets labeled a ‘‘stunning turnaround’’ are such that if most players don’t

experience turnarounds in either direction throughout their career, they will be deemed to have had

a stunning turnaround at least once a season.

While this example of over-inference is typical of sports and financial media analysis, a more

54 Later in the article it was noted, ‘‘Coles was feeling so good, he even tried a play that could have ruined the Warriors’
comeback. ... the Warriors made a defensive stop and Coles attempted a risky fast-break pass [that] was intercepted
...’’ Had the headline been written after such mishaps that actually did ruin the Warriors’ comeback, surely it would
have emphasized Coles’s overconfidence.
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gruesome and more worrying example of the gambler’s fallacy comes from an article in the NY

Times Magazine titled ‘‘How Not to Get Killed on Deadline.’’ Fisher (1999) reports that ‘‘In

‘hostile-environment school,’ foreign correspondents learn how to improve their chances of surviv-

ing kidnappings, cross-fires and other perils of the workplace.’’ The article is about advice given

to journalists by a company called Centurion Risk Assessment Services Ltd. Centurion gives the

following advice to journalists paying for war-survival training: ‘‘In mortar attacks, ... lie down. If

you can, crawl into one of the holes made by a previous shell because — back to the thunderstorm

analogy — lightning rarely strikes twice in the same place.’’ I do not know if, within a journal-

ist’s crawling range, the pattern of mortar attacks exhibits positive or negative correlation.22 But

the metaphor chosen to be persuasive is a commonplace metaphor used to convey intuition for a

commonplace misguided belief in a ‘‘law of averages’’ that says that once a rare event occurs, it

becomes less likely it will reoccur, because such recurrence will throw averages out of whack. The

lightening metaphor is striking: In actuality, heading for the same spot where lightning struck ear-

lier is a bad idea in a thunderstorm, since lightening is more likely to hit a spot it has hit before

than to hit a spot for the first time. Lightening rarely strikes twice, but only because it rarely strikes

once.

3. The Model

Throughout the paper, I consider a situation where each of a finite number of possible rates, w 5

dfc �oc at which an infinite sequence of i.i.d. signals, r|, | ' �c 2���, is generated. Each signal r|

takes on a value of either @ or K, where for each |c RoJKEr| ' @� ' w. Let X denote the set of

rates that occur with positive probability; the rate w occurs with prior probability ZEw� : f, where
S
X
ZEw� ' �. Given wc signals are generated by an i.i.d. process.

The model describes a person who begins with correct prior beliefs about the probability distri-

bution Z over possible rates X and is fully Bayesian. But to capture the belief in the law of small

numbers, instead of understanding that the world is i.i.d., there is a positive integer � such that

for each rate w, the person believes signals are drawn without replacement from an ‘‘urn’’ of size

� consisting of exactly w� @ signals and E� � w�� K signals. To reconcile his belief in finite urns

and to model his belief in ‘‘local representativeness’’ as discussed in Section 2, I assume the person

55 I have sent research assistants to war zones to collect data on this question, but none have reported back.
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believes this urn is renewed after every two draws. That is, in every odd period he believes a first

signal is drawn from an� -signal urn, and in every even period he believes a second signal is drawn

without replacement from the same urn he drew from in the previous period. Assuming instead

that the person thinks there is a constant 50% chance each period that the urn is renewed would

make many aspects of the model less artificial, but also less tractable. As I develop the model, the

advantage of the deterministic renewal of the urn will be clear: While the person doesn’t recognize

the world is i.i.d., he believes that pairs of signals are generated by an i.i.d. process, which vastly

simplifies analysis of his belief formation. Throughout the paper I assume that the person believes

that the first signal he observes is the first signal of a new urn, even if he is aware that previous,

unobserved sequences have been generated.

When � is large, the person perceives the signals to be close to uncorrelated, and his inference

and predictions become that of a Bayesian as � $ 4. But when � is small, the person is very

biased. Suppose, for instance, that an observer is positive that a particular financial analyst invests

successfully with probability �

2
. If � ' e, the observer thinks the analyst has an ‘‘urn’’ of 2 good

years and 2 bad years. Then if the analyst is successful in her first year, the observer thinks that

there is only a �

�
chance that she will have an above-average year the following year.23

To avoid tedious repetition of the phrase ‘‘a person who believes in the law of small numbers’’,

for the remainder of the paper I shall refer to a believer in the law of small numbers as ‘‘Freddy,’’

named for a guy I once knew who believed in the law of small numbers.24

To make the model fully coherent, it must be that Freddy’s prior beliefs always put positive

weight on some rate whose urn contains at least two of both signals. This is necessary and sufficient

to ensure that Freddy believes all sequences of }’s and K’s are possible. Formally:

Definition 1 EZc�� is compatible if:

56 My model closely resembles one previously developed by Rapoport and Busdescu (1997). Their purpose is to
explain ‘‘production tasks’’ of the sort discussed in Section 2 in which people are asked to generate sequences of
numbers that look random. They assume that people do so as if they were choosing signals without replacement from
an urn, but have memories of what they have done shorter than the size of the urn. Hence, their model of production
of signals is a (stochastic and stationary) variant of my model.

More broadly, this paper belongs to a small literature developing ‘‘quasi-Bayesian’’ models of biased information
processing: A person is modeled as having a specific form of misreading of the world meant to correspond to a heuristic
error, but then is assumed to operate as a Bayesian given this misreading. In this sense, it is related to the Barberis,
Schleifer, and Vishny (1998) paper discussed in the previous Section, as well as papers like Rabin and Schrag (1999)
and Mullainathan (1997) which assume that people have the correct model of the world, but misread (or misremember)
the signals they observe.

57 Actually, I have no recollection of Freddy believing in the law of small numbers. But since most people believe in
it, probably Freddy did too.
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1) For all w 5 Xc w� is an integer; and
2) There exists w 5 X such that ��?dw�c E� � w�� o � 2�

Given compatibility, Freddy’s ‘‘Bayesian’’ updating always uniquely determines his beliefs in

all possible contingencies. Note that � � e is required for compatibility.

For given priors Zc let Z�
|
E�|� represent an � -Freddy’s posterior beliefs after history of signals

�|� I will use the notation Z
�

|
E�� throughout to represent beliefs by an � -Freddy following the |-

th signal, but depending on the context, I vary which variables are included as arguments in this

function. Bayesian beliefs are Z"
|
E�|� � *�4�<" Z�

|
E�|�.

The ‘‘gambler’s fallacy’’ is a nearly tautological implication of the model: Because an � -Freddy

believes there are only w� @ signals and E� � w�� K signals when the rate is wc if in an odd period

an @ signal occurs, then if he is positive he is facing rate wc he thinks the probability of an @ signal

next time is less than w�25

Lemma 1 Consider � and w such that w� is an integer and ZEw� ' �. For all even | � 2 and
histories �|32, Z

�

|
Er| ' @mr|3� ' Kc �|32� '

w�

�3�
: w and Z�

|
Er| ' @mr|3� ' @c �|32� '

w�3�

�3�
	 w�

For all odd |, and histories �|32, Z
�

|
Er| ' @mr|3� ' Kc �|32� ' Z

�

|
Er| ' @mr|3� ' @c �|32� ' w�

Lemma 1 shows how the Freddier the person is, the more severe is the gambler’s fallacy. It also

makes manifest the stark contrast between odd- and even-numbered signals. While this contrast

will sometimes assist interpretation of the model by permitting a crisp separation of different effects,

the distinction between even and odd periods is of course completely artificial, and will not be a

focus in the analysis below.26

4. Inference About the Rate

The most interesting implications of the law of small numbers come when Freddy is uncertain

about the true rate and makes inferences from the signals he observes. Suppose, for instance,

that an observer believes there is equal chance a financial analyst can be any of three types, bad,

average, or good, having successful investment years �

e
, �

2
, or �

e
of the time, respectively. What

58 All proofs are in the Appendix.
59 To verify that Freddy expects an average proportion of � d signals if the true state is �, note that he thinks the

probability of getting two d’s out of two signals in � �

�Q�4

Q�4
, and the probability of getting one d is 5� �

+4��,Q
Q�4

> yielding
an average of 5� d’s after two signals.
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does he infer from two successful years of investment in a row by a particular analyst? A Bayesian

thinks such a sequence occurs with probability �

e
�

�

e
'

�

�S
for bad analysts, 2

e
�

2

e
'

e

�S
for average

analysts, and �

e
�

�

e
'

b

�S
for good analysts. But an � ' e-Freddy believes the probabilities are

�

e
�

f

�
' f

�2
if the analyst is bad, 2

e
�

�

�
' 2

�2
if the analyst is average, and �

e
�

2

�
' S

�2
if the analyst

is good. Notice that for each rate, Freddy assigns a lower probability to a streak of two @’s than

a Bayesian assigns because he believes that no matter the rate drawing the first @ means there are

fewer @’s left for the second draw. Of greater interest, however, is that Freddy’s beliefs are too

skewed towards believing the analyst is good, since making one less @ available for the second

draw has a proportionately greater impact when there are fewer @’s to begin with. From his priors,

Freddy forms probabilistic beliefs about the rate given an observed sequence of signals using a

sort of warped Bayes Law — applying Bayes Law with his mistaken beliefs about how likely each

sequence is given an underlying rate. While a Bayesian believes the probability that the analyst is

good is �H

2H
c Freddy believes the probability is 2�

2H
: �H

2H
.

Freddy’s beliefs following longer sequences can also be calculated. While Freddy wrongly be-

lieves that there is negative correlation within odd-even pairs of signals, he believes consecutive

odd-even pairs of signals are distributed i.i.d. Hence, there is a reasonably simple formula deter-

mining Freddy’s beliefs as a function of the number of @@, @K, and KK pairs of signals he observes,

where throughout the paper, the odd-even pair ‘‘@K’’ is meant to be unordered, representing both

@K and K@. Suppose that, after either 2E^ n o n r� or 2E^ n o n r� n � signals, Freddy observes ^

@@ pairs, o @K pairs, and r KK pairs, in some fixed order, possibly followed by one unpaired signal,

consisting of + 5 ifc �j @ signals and �� + K signals. Freddy’s beliefs about the likelihood of that

particular sequence if the rate is w are given by:

Lemma 2 Freddy believes that state w generates the ordered sequence of ^ @@ pairs, o @K E' K@�
pairs, r KK pairs, followed by + 5 ifc j isolated @ signals or 5 5 ifc �jc 5 � � � +c isolated K

signals is Z�
%
E^c oc rc +c 5mw� '

�
w �

w�3�

�3�

�^ �
2w �

E�3w��
�3�

�
o
�
E�� w� � E�3w��3�

�3�

�
r

w
+E�� w�5c where

% ' 2E^ n o n r� n + n 5.

The formula in Lemma 2 is directly derived from the formula in Lemma 1, and is a generalization

of the above example. Implicit in Lemma 2 is the key intuition for how Freddiness affects belief

formation and hence the core intuition in the paper: In each even period, Freddy thinks that one of

whatever signal he observed in the previous period has been removed from the urn, making that
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signal less likely. If that signal does occur again, then Freddy exaggerates how strongly it indicates

that the true rate is one that generates many such signals.

Given his theory of how signal sequences are generated, Freddy’s beliefs are formed by plugging

the formula in Lemma 2 into Bayes’ Law:

Lemma 3 Freddy’s beliefs about the likelihood of rate wW following a E^c oc rc +c 5� sequence of

signals are Z�
%
EwWm^c oc rc +c 5� ' Z

�
%

E^cocrc+c5�wW�ZEwW�S
wMX

Z
�
%

E^cocrc+c5�w�ZEw�
c where % ' 2E^ n o n r� n + n 5 and

Z�
%
E^c oc rc +c 5mw� is derived in Lemma 2.

A simple and uninteresting result is that Freddiness does not affect a person’s inferences from

the first signal:

Lemma 4 For all �c and Zc for all wW, Z�
�
EwWmr� ' @� ' w

W
ZEwW�S

wMX
wZEw�

and Z
�

� EwWmr� ' K� '
E�3w

W�ZEwW�S
wMX

E�3w�ZEw�
.

That is, Freddy’s beliefs after one signal are the same as a Bayesian’s with the same priors.

Combining this result with Lemma 1, Lemma 5 says the ‘gambler’s fallacy’ still holds for the

second signal despite uncertainty about the rate:

Lemma 5 For all � and Zc for all wW, Z�� Er2 ' @mr� ' @� and Z
�

�
Er2 ' Kmr� ' K� are increasing

in ��

Three comments help to interpret Lemma 5 and the other comparative statics on � presented

in the paper. First, because as � $ 4 Freddy becomes a Bayesian, a result on how the degree

of Freddiness affects beliefs is also a comparison of Freddies to Bayesians. When the number

is increasing in � , it means that Freddy has a lower value for that number than does a Bayesian.

Second, the wording in all these results is loose, since changing � typically affects the compatibility

of the model. Noting that if EZc�f� is compatible, so is EZc &�f� for all positive integers &, all

comparative statics on � are proven using a more precise interpretation: Increasing � means

increasing & for a fixed �f, and the limit as � $ 4 corresponds to the limit as & $ 4 for a

fixed �f. Third, most results in this paper can be stated in terms of precise formulas that have

qualitative features of interest. While I state some of the results in terms of these precise formulas
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(as in Lemmas 2, 3, and 4), I present others, such as Lemma 5, in terms of their qualitative features.

The proofs contain the precise formulas.

The first ‘‘over-inference’’ result is that Freddy infers too much about the likely extremity of the

rate from an extreme sequence of signals. Proposition 1 formalizes the result by showing that when

all of the signals are of one type, Freddy exaggerates the relative likelihood of rates that are most

likely to generate that signal. Let �@

|
be the sequence of | @ signals, and �K

|
be the sequence of | K

signals. Then:

Proposition 1 For all | : �, and wcew 5 X such that w : ew ,
Z
�
|

Ew��
@
|
�

Z
�
|

Eew��
@

|
�

and
Z
�
|

Eew��
K
|
�

Z
�
|

Ew��
K
|
�

are both strictly

decreasing in � .

That is, following an extreme sequence of signals, the Freddier is Freddy the more skewed are his

beliefs towards those rates where the signals are more likely. There is a simple corollary concerning

his predictions of signals in odd periods, when the gambler’s fallacy does not kick in:

Corollary 1 For all odd |, Z�
|
Er|n� ' @ m �

@

|
� and Z

�

|
Er|n� ' K m �

K

|
� are both decreasing in � .

Proposition 1 says that following an extreme sequence of signals Freddy infers too strongly that

he is facing an extreme rate. Proposition 2 shows that a similar bias holds after any sequence of

signals where exactly half are @’s and half K’s: In such cases, Freddy exaggerates the likelihood that

the true rate is close to �

2
. Let M

�

2

|
be the set of all |-sequences with exactly the same number of @’s

and K’s. Then:

Proposition 2 For all even | and all �| 5 M
�

2

|
, and for all wcew 5 X such that either w : ew �

�

2
or

w � ew 	 �

2
c
Z
�

|
Ew��|�

Z
�
|

Eew��|�
is weakly increasing in � .

It turns out thatM
�

2

|
c �@

|
c and �K

|
are special types of sequences: It is not true generally that Freddy

necessarily exaggerates the likelihood that the true rate resembles the proportion of signals he has

received when those signals are mixed. For many sequences, the opposite is true. I return to that

issue below.

Propositions 1 and 2 characterize Freddy’s beliefs following given sequences of signals. But

what sequence Freddy observes is stochastic, with likelihoods of observing sequences determined
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by the true rate. I now turn to characterizing Freddy’s possible beliefs as a function of the true

rate. This will allow us to compare the mean and variance of Freddy’s beliefs to a Bayesian’s. Let

.�

|
E�|� �

S
wMX

Z
�

| Ewm�|� � w be the mean value of Freddy’s probabilistic beliefs about the rates

following sequence of signals �|� That is, .�
| E�|� 5 dfc �o is Freddy’s perception of the expected

value of the rate given he has observed �|.
27 Let s�

|cZcw be the probability distribution over the values

of .�
| E�|� if the true rate is w and prior beliefs are Z. Let .�

| EZ� �
S

wMX

S
�|MM|

ZEw��Z�| Ewm�|��w

be the expected mean value of Freddy’s probabilistic beliefs about the rate given the actual prob-

abilistic distribution of rates, and let s�|cZ be the probability distribution over the values of .�
| E�|�

given the probability distribution Z over the rates. Note that the mean of s�
|cZ is .�

| EZ�. While

somewhat cumbersome, notationally and conceptually, the distributions s�|cZ play an important role

in intuiting the implications of Freddiness. They represent the distribution of Freddy’s expected

beliefs about the underlying rate and the actual distribution of rates. If s�|cZ has a higher variance

than the corresponding Bayesian distribution, s"
|cZc then Freddy’s beliefs are too dispersed due to

overinference. If .�
| EZ� 9' .

"

|
EZ�, then belief in the law of small numbers causes biased belief

formation.

It follows from Proposition 1 that for all |, .�
| E�@| � is decreasing in � — Freddy has too high

an estimate of w following a string of @ signals. Similarly, .�
| E�K|� is increasing in � . Hence, it

is trivial that the range of possible beliefs that Freddy might have is decreasing in � : For all |, Zc

and w, the size of the supports of s�
|cZcw and s�

|cZ are decreasing in � . In this sense the variation in

Freddy’s beliefs is too great.

Beyond this, little general can be said about the distribution of beliefs. One of the problems with

doing so reflects a feature of the model that is important in its own right: For many prior proba-

bilities of rates, there may be predictable drift in Freddy’s average beliefs as he gets information.28

Suppose, for instance, that the prior probability of rates is ZW, where ZWEw ' �

2
� ' Z

WEw ' �

e
� ' �

2
�

By the law of iterated expectations, a Bayesian’s expectation of his future beliefs are his current

beliefs: ."
|

EZW� ' D

H
' .

"

f
EZW� for all |. Yet it can be shown that .e

2
EZW� ' ��b

D�2
	

D

H
. That is, on

5: And hence HQ
w

+kw, is Freddy’s estimated probability that the signal in the next odd period will be an d=
5; Freddy, of course, does not understand this drift: Because Freddy is a Bayesian with the wrong model of the world,
he obeys the law of iterated expectations in the sense that his own expectation of future beliefs are his current beliefs.
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average Freddy will after two signals believe that w is lower than he believed when he started.29

To disentangle overinference from such drift in beliefs, many results will be easier to formulate

and interpret when limiting analysis to symmetric prior beliefs, defined as follows:

Definition 2 A distribution Z is symmetric if for all _ 5 dfc �
2
oc ZE�

2
n _� ' ZE�

2
� _��

It is easy to verify that .�
|
EZ� ' �

2
for all |c �c and symmetric prior distributions Z, since Freddy

forms opposite beliefs for �| and ��

|
that switch @’s and K’s, and �| and ��

|
are equally likely given

symmetric priors. That is, we know in such cases that s�
|cZ will be symmetric with mean �

2
. Indeed,

focusing on symmetric distributions, a strong result can be stated for two or three signals. Namely,

if one person (Freddy) is Freddier than a second person (Freddy), then the distribution the former’s

(that is to say, Freddy’s) expected beliefs after either two or three signals is unambiguously more

dispersed:

Proposition 3 For all symmetric distributions Z and all e� : �c s�
2cZ is a mean-preserving spread

of s
e�

2cZ and s�
�cZ is a mean-preserving spread of s

e�
�cZ�

Propositions 1, 2, and 3 together constitute the main ‘‘over-inference’’ results of the paper, which

say that Freddy infers too much from a short sequence of signals. Propositions 1 and 2 indicate that

for all possible combinations of two signals, Freddy believes too strongly that the underlying rate

is that which most resembles the observed signals. Proposition 3 then says that the distribution of

the mean of Freddy’s beliefs has too high a variance after two or three observations of the signals.

The analysis of Freddy’s beliefs after longer sequences of signals is considerably more compli-

cated. Propositions 1 and 2 show that Freddy over-infers that the rate is extreme from an extreme

sequence of signals, and over-infers that the rate is close to �

2
from a 50/50 sequence of signals.

When Freddy has observed just two signals, these are the only types of sequences he can observe.

But longer sequences of signals typically don’t fall into either of these categories. For many other

5< To verify both of these assertions, it can be shown that a Bayesian with priors �
�
� @

4

5

�
@ �

�
� @

6

7

�
@

4

5
will

form posterior beliefs �4
5

�
� @

4

5
mdd

�
@

7

46
> �
4

5

�
� @

4

5
mde

�
@

7

:
> and �4

5

�
� @

4

5
mee

�
@

7

8
> where a 7-Freddy will

form beliefs �7
5

�
� @ 4

5
mdd

�
@

4

7
> �7

5

�
� @ 4

5
mde

�
@

7

:
> and �7

5

�
� @ 4

5
mee

�
@ 4= Given �> the sequence dd will actually

be generated 4

5

�
4

5

�5
.

4

5

�
6

7

�5
@

46

65
of the time, de (@ ed) will be generated 4

5
5
�
4

5

�5
.

4

5
5
�
4

7

� �
6

7

�
@

47

65
, and ee

will be generated 4

5

�
4

5

�5
.

4

5

�
4

7

�5
@

8

65
of the time. Hence, the Bayesian’s expected posterior beliefs about how

likely � @
4

5
is �45

�
� @

4

5
m�

�

�
@

46

65

�
7

46

�
.

47
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�
7

:

�
.

8
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�
7

8

�
@

4

5
> whereas the 7-Freddy’s expected beliefs are
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types of sequences, in fact, Freddy may underestimate the likelihood that the rate closely corre-

sponds to the proportion of signals in the sequence.

To illustrate this, consider again an observer who thinks an analyst might be any of three types,

bad, average, or good, having successful investment years �

e
, �

2
, or �

e
of the time. Suppose that

the analyst is in reality, good — she invests successfully �

e
of the time. If Freddy knew just this

aggregate statistic, then he would reach the obvious and correct conclusion — that this analyst

is good. Suppose that Freddy observes the sequence of 6 successful followed by 2 unsuccessful

performances, @@@@@@@@KK. Despite the fact that S

H
'

�

e
of the signals are @’s, a e-Freddy perceives

this sequence as surely coming from w ' �

2
rather than w ' �

e
� This is because he thinks an odd-even

streak of 2 straight K’s is impossible when w ' �

e
, when these two signals are drawn from an urn

containing 3 @’s and 1 K. In a 4-Freddy’s mind, good analysts simply aren’t unsuccessful two years

in a row.

The fact that Freddy infers too much from unexpected ‘‘streaks’’ of two signals in a row means

that after observing a good analyst for a long time, Freddy will almost surely observe all possible

pairs of signals — two successful years of investing, one successful and one bad, and (less often)

two unsuccessful years in a row. Hence, he will almost surely infer that the analyst is average —

since the only type of analyst who can have both two unsuccessful years and two successful years

in a row are average ones. He believes this despite his surprise that this supposedly average analyst

is successful �

e
of the time.

In fact, quite generally Freddy is prone to believe the rate is less extreme than it is after observing

a very large number of signals. To see this, note that the proportion of @@, @K, and KK pairs given the

true rate w
W and an infinite number of observations equals almost exactly EwW�2 @@’s, 2wWE��w

W� @K’s,

and E��w
W�2 KK’s. Having received these proportions, therefore, Freddy thinks that this distribution

was generated by the rate w that is most likely to generate such proportions. Lemma 6 derives

Freddy’s limit beliefs from his maximum-likelihood estimate of the rate:

Lemma 6 Suppose the true rate is w
W

� Then *�4|<" Z
�

|
Eew m Z� ' � for all Z such that ZEew� : fc

where ew ' @h}4@ wMX

��
w �

w�3�

�3�

�EwW�2 �
2w �

E�3w��
�3�

�2E�3wW�wW �
E� � w� �

E�3w��3�
�3�

�E�3wW�2
�

.

Lemma 6 says that as the number of signals observed becomes arbitrarily large, Freddy’s beliefs

converge to certainty about the rate.30 More interestingly it can be shown that ew is never further

63 The Lemma is of course well-posed only if there is a unique maximand, which I shall assume there is.
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away from �

2
than is wW�Combined with the example above, this shows that Freddy never thinks that

the rate may be more extreme than it is, but sometimes thinks that it may be strictly less extreme.

Because it is an important result, and surprisingly hard to prove, this corollary to Lemma 6 is worth

stating as Proposition 4:

Proposition 4 Suppose � is even. If the true rate is wW : �

2
, *�4|<" Z

�

|
Eew� ' � for some ew 5

d�
2
c wWo� If the true rate is wW 	 �

2
, *�4|<" Z

�

|
Eew� ' � for some ew 5 d�

2
c wWo� If the true rate is wW ' �

2
,

*�4|<" Z
�

|
Eew ' �

2
� ' ��

The logic behind these results is that Freddy observes more streaks than he expects, and that

the frequency of streaks of rare signals is especially surprising to him. While Freddy thinks such

streaks are unlikely no matter the underlying rate, he believes that a moderate rate better explains

the streaks on both sides than does an extreme rate. Thus, the unexpected streakiness of the signals

can outweigh the mean frequency of signals in determining Freddy’s beliefs.31

Despite its generality and (once we’ve retrained our intuitions) intuitive basis, my guess is that

the ‘‘conservatism’’ identified by Proposition 4 is not, in pragmatic terms, that important. More

generally, there are reasons to be cautious about interpreting the relevance of limit results, and in

fact this may be a good juncture to point out an important feature of the model that applies to all the

limit results in this paper. When Freddy’s limit beliefs are different than a Bayesian’s the difference

depends on the fact that Freddy places exactly zero probability on the stochastic structure of the

world being as it actually is. If Freddy placed any positive probability on the world being i.i.d.,

then he would eventually come to believe it is i.i.d. This is because the pattern Freddy observes

surprises him immensely in almost every case, and all limit results involve Freddy choosing the least

implausible of two unlikely explanations, rather than providing an explanation he finds plausible.

This observation in turn brings up an important methodological issue that comes up in many

quasi-Bayesian models. Taking these models at face value, there are typically many ways for a

sufficiently sophisticated person to see that he must be making an error. In the model in this pa-

per, for instance, Freddy should figure out that his theory of negative autocorrelation is wrong.

There are three related reasons why, in my view, this does not render the model irrelevant. First,

64 In the model of this paper, with the urn renewal after every two periods, I have not found examples where Freddy’s
beliefs do not converge to the true rate �

� when plq ^��Q> +4� �
�,Q ` � 4. I do not know if there are such examples.

But in the considerably more complicated model that has 3-period renewal and Q @ 433> �� @ =<: will eventually be
rejected in favor of beliefs that � @ =<9, even though Freddy will never observe a sequence that he considers impossible
if � @ =<:=
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though obscured by the modeling techniques, the quasi-Bayesian approach is meant as a model of a

boundedly-rational person. The reasoning needed to correct the error is often as difficult as, or more

difficult than, that needed to avoid the error in the first place. Second, the model itself is simplified

to keep it tractable for the analysts; in a realistically complicated model identifying the mistake

is likely to be much more complicated. Third, empirically people don’t correct this error. The

evidence in Section 2 is from the behavior of either smarter-than-average, more-educated-than-

average 20 year olds in reasonably naturalistic experimental settings, or from ‘‘the real world.’’

Existing evidence shows not that these people make these errors before they know better, but rather

that they make these mistakes given their past experience. The hypothesis that reasoning will be

ubiquitously Bayesian given realistic experience levels is what is tested and rejected by these data.

So far I have shown that Freddy’s beliefs are on average too extreme after a small number of

signals, and not extreme enough after a large number of signals, as formalized by the notion that

Freddy is biased towards believing in an overly moderate rate after an infinite number of signals.

But there is one form of over-inference that holds even after observing a long sequence of signals:

While Freddy may be underconfident that the rate is as extreme as the proportion of signals he

gets would seem to indicate, he is prone to be overconfident that the true rate is consistent with the

overall direction of the signals rather than the opposite. Formally, Proposition 5 states that given

any symmetric prior distribution Z, whenever the majority of signals in the sequence �| are @’s,

Freddy will, for any w : �

2
c exaggerate the relative likelihood that the rate is w rather than � � w:

Proposition 5 For all symmetric Z, rates w : �

2
such that ZEw� : fc and histories �| yielding more

@ signals than K signals,
Z
�
|

Ew��|�

Z
�

|
E�3w��|�

is decreasing in � .

The intuition for Proposition 5 is that when comparing w to � � w, Freddy is comparing two

equally extreme rates, and hence does not favor either as an explanation for the surprising pat-

tern of streaks being observed. With no countervailing effect, the over-inference from the relative

frequency determines the nature of the error.

Of course, the pattern of signals can only affect Freddy’s beliefs if he observes this pattern. I

now turn to a different case — where Freddy does not observe, or does not attend to, the precise

sequence in which his signals arrive. In this case, Freddy can only infer from the frequency of the

two signals, and hence he will eventually discover the true rate. To formalize this, let Z�t|�E�m%@c %K�

be an � -Freddy’s beliefs from a set of %@ @ signals and %K K signals, %@ n %K ' |c when he does
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not observe the sequences of those signals. Let s�
t|�cZcw be an � -Freddy’s distribution of mean

beliefs after | signals given priors Z and rate realization w� Proposition 6 says that if Freddy does

not observe the sequence of signals, he will come to be certain and correct about what the true rate

is.

Proposition 6 For all Zc wW and �c *�4|<" s�
t|�cZcwW ' Z

W where ZWEwW� ' ��

Beyond this, I have little to say about what Freddy believes when he doesn’t observe the sequence

of signals.32 For ease of analysis, and because the more interesting results occur when Freddy can

observe the sequence of signals, and because I am often more interested in Freddy’s inferences

based on a small number of signals, I shall in the following two sections consider the case where

Freddy does observe the signals.

5. Inference about the Distribution of Rates

In this section I explore what Freddy comes to believe about the distribution of rates when he

observes signals from a large number of different rates. For instance, Freddy may over the course of

his lifetime form beliefs about the distribution of talent among financial analysts based on observing

a small number of performances from each of many analysts. Let R be Freddy’s prior beliefs over

the set of probability distributions Z, that might prevail. Let � be a sequence of signals Freddy

observes, � be the number of signals Freddy observes for each draw of a rate, and @tt�4i that

Freddy observes infinitely many different draws. I shall refer to each draw of a rate as a source.

Let Z�Rc�E�� be Freddy’s beliefs about the possible distribution of rates after observing an infinite

sequence � of� sources. Let }��ERc Z� be the probability distribution over Freddy’s beliefs Z�Rc6E��

when Freddy observes � signals per source if the true probability distribution of rates is Z�

65 I do not know, for instance, if Freddy necessarily over-infers the extremity of the rate if he does not observe the

sequence of signals. I conjecture but have not proven that the following is true. Consider �>e� 5 � such that � A e�. For

all i{d>{ej such that {d

{d.{e
A �>

�
Q

{d.{e
+�mi{d>{ej,

�
Q

{d.{e
+e�mi{d>{ej,

is strictly decreasing in Q . For all i{d> {ej such that {d

{d.{e
? e�>

�
Q

{d.{e
+e�mi{d >{ej,

�Q
{d.{e

+�mi{d >{ej,
is strictly decreasing in Q . In two cases Freddy’s inferences clearly do not depend on whether or

not he observes the precise sequence: when the signals are all the same, or when all but one are the same. In either
case, Freddy can figure out exactly which combinations of pairs of signals he has received even if he does not directly
observe them. Likewise, when Freddy observes exactly two signals, it clearly does not matter if he observes the order.
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If � is very large, then after any given history of signals Freddy may form accurate or conser-

vative beliefs about the distribution of rates. To return once more to our earlier example, if the true

distribution of talent has positive proportions of good, average, and bad analysts, who perform well

�

e
c �
2
c and �

e
of the time, then for reasons outlined in Section 4, a 4-Freddy who observes an infinite

number of performances by each analyst will eventually come to believe that they all are average.

An 8-Freddy, on the other hand, will come to believe the correct distribution, since if he observes an

infinite number of predictions from an analyst, he will figure out that analyst’s true type. If Freddy

observes an infinite number of signals, but not their sequence, from an infinite number of people,

then he will come to discover the true distribution for sure, precisely paralleling Proposition 4.

Of greater interest is what happens when Freddy observes a large number of analysts, but only

observes a small number of predictions from each analyst. Suppose that Freddy only observes 2

predictions from each of a large number of analysts. The result about over-inference following two

signals translates readily into a belief that there is more variation in rates than there really is:

Proposition 7 For all � 	 4 and symmetric Z such that Z Ew ' �� 	 �

2
c there exists a strict

mean-preserving spread of Zc eZc such that if REeZ� : f and REZ� ' � � REeZ�c then }
�

2
ERc Z� ' R

W

where RWEeZ� ' �c and there does not exist a hZ such that Z is a strict mean-preserving spread of hZ
such that REZ� : f but }�

2
ERc Z� ' R

WW where RWWEhZ� : f�

Proposition 7 says that when observing two signals per source, Freddy may come to believe there

is more dispersion in rates than there really is, but will never come to believe there is less dispersion

in rates. Hence, when Freddy does not observe many predictions by each financial analyst, he will

believe in more variation in expertise than really exists. By contrasting Proposition 7 to Proposition

4, we can see beliefs depend crucially on the number of signals observed for each rate. Proposition 7

shows that Freddy always exaggerates variance if he observes only two signals per source, whereas

Proposition 4 indicates he underestimates variance if he observes a large number of signals per

rate.33

For the remainder of the paper I turn to specific examples and applications of the model. To

illustrate more concretely the intuition of some of the above results, and to facilitate analysis of

some economic applications, consider the simple class of symmetric distributions of the sort used

66 I do not know what happens if there is no variance in the world and Freddy observes a large but finite number of
signals from each source. I conjecture that the following result might hold: For all Q ? 4> for all P ? 4> then if
the true distribution is �� such that ��

�
4

5

�
@ 4, there exists a e� such that e�

�
4

5

�
? 4 and a s such that jQ

P
+s> �, @ s

�

where s
� +e�, @ 4.
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in all of the above illustrations: Freddy has symmetric beliefs over probability distribution of X '

i�
2
� _c �

2
c �
2
n _j, where _ 5 Efc �

2
�, and beliefs ZEw ' �

2
� _� ' ZEw ' �

2
n _� ' ^ and

ZEw ' �

2
� ' � � 2^� Let ^W be the true distribution, and let Freddy’s prior beliefs over the possible

probability distributions over types be RE^�� Assume Freddy observes two signals per source.

Even more specifically, consider X ' i�

e
c �
2
c �
e
j. If Freddy observes proportion o @@ pairs, r KK

pairs, and ��o�r @K pairs, what does he infer? The following chart indicates the true probability of

each of these pairs of signals for each rate, and an � -Freddy’s perception of those probabilities. In

the last line is the true proportion of the pairs of signals as a function of ^c and Freddy’s perceptions

of how many pairs there should be as a function of ^.

True Frequency of Pairs N-Freddy’s Predicted Frequency
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This chart can be used to derive Freddy’s perceived distribution of rates, ĥc as a function ^c the

actual distribution of rates. If Freddy believes that Z
�
w ' �

e

�
' Z

�
w ' �

e

�
' ĥc then he expects to

observe2�3� ĥ

e�3e
@K signals. Given he observes �

2
�

^

e
@K pairs where ^ is the probability of w ' �

e
and

w '
�

e
c Freddy’s beliefs satisfy 2�3� ĥ

e�3e
'

�

2
�

^

e
, yielding the result that ĥ' �3�

�
^ n

2

�
�

Notice that ĥconverges to ^ as � converges to infinity: As Freddy becomes closer and closer to

Bayesian, his beliefs are closer and closer to accurate. But for all � 	4c ĥ: ^ G Freddy always

thinks there is more variation than there is. Note in particular that even if ^ ' f, ĥ : f for all

� 	4� In the extreme, when � ' ec Freddy believes that no analyst is average even when they

all are.34

I now turn to a starker and even more tractable example that will serve as a template for many

further examples. Suppose that there is a distribution over three possible rates, X ' ifc �
2
c �jc

and ZEw ' f� ' ZEw ' �� ' ^c ZEw ' �

2
� ' � � 2^ is the true distribution, for ^ 5

�
fc �

2

�
�

Consider a 4-Freddy. Freddy understands that rate w ' � always generates @’s and rate w ' f

67 Again, these results and intuitions are only for the case where P is small. If Freddy observes more than two
signals from each source, on the other hand, he may eventually come to believe there is no variance even when there
is. Indeed, given� @ i 4

7
> 4
5
> 6
7
j> if Freddy’s beliefs after observingP signals each from an infinite number of sources

is represented by ht+P> t,> then for all t> olpP$4 ht+P>t, @ 3=
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always generates K’s. They differ only in their beliefs about the probability which w '
�

2
generates

sequences. Whereas w '
�

2
actually generates pairs @@c @Kc and KK in proportions �

e
c �
2
c and �

e
c 4-

Freddy thinks it generates them in proportions �

S
c 2
�
c and �

S
. Hence, Freddy thinks that when the

distribution is ZEw ' f� ' ZEw ' �� ' ĥc he’ll see @@ or KK pairs ĥE��nE��2ĥ��
S
n ĥEf� ' �

S
n 2

�
ĥ

of the time, and @K pairs 2

�
�

e

�
ĥ of the time. If the distribution is ^c then he will actually observe

@@ pairs ^E�� n E� � 2^��
e
n ^Ef� ' �

e
n �

2
^ of the time. Hence, setting �

S
n 2

�
ĥ'

�

e
n

�

2
^c we see

that in the limit as Freddy observes two signals each from an infinite number of rates, he will come

to believe ĥ' �

H
n

�

e
^c as we can see setting once more, for all ^ 5 dfc �

2
�c Freddy exaggerates how

common the extreme rates are.

But now suppose that, in the same population of sources, Freddy observes four signals each from

an infinite number of sources.35 Freddy’s beliefs about the likelihood of all combinations of four

signals are as follows:

Probability of the sequence if w ' �

2

# Permutations Actual Likelihood 4-Freddy’s Perceived Likelihood

@@ @@ � �

�S
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S
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�S
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S
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�S
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�
�

�

�
' �S

�S

@@ KK 2 2

�S
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S
�

�

S
' 2

�S

In the next Table, Freddy expects the frequencies in the right-hand column when ZEw ' f� '

ZEw ' �� ' ĥc whereas he actually observes the frequencies in the left-hand column when the true

distribution is ^:

68 Studying the case where � @ 4 or � @ 3 obscures the more general possibility that Freddy underestimates the
frequency of extreme rates, since in this case he will never observe any surprising counter-signals if the true rate is
extreme, and hence here he will never come to underestimate the variance in distribution.
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Actual distribution of sequences given ^ Freddy’s perceived distribution given ĥ
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ĥ

To derive what Freddy’s eventual beliefs will be from the above table, we must confront a possi-

bility not seen in the earlier examples: That Freddy cannot form any beliefs to explain the distrib-

ution he sees. While Freddy expects, for instance, to see twice as many foursomes of i@Kc @Kj than

i@@c @Kjc irrespective of ^c he is perplexed to see roughly equal numbers. Hence, Freddy must form

beliefs by choosing among an array of very implausible explanations for the pattern he observes.

To see what this inference process involves, imagine that Freddy receives 16 quadruplets of signals

in exactly the expected proportions according to ^c from which he tries to estimate ^. It can be

shown that Freddy would update his beliefs towards the ĥ that maximizes the likelihood function

uEĥ� �

%�
�

�S
n

�.

�H
ĥ

�
2E �

�S
n .

H
^�

� ~ � E�� 2ĥ�
.

H
3

.

e
^

&f
c

where ~ is a term that does not depend on ĥ� When he observes 1600 or 16,000 quadruplets in these

proportions — which he will — then he comes to believe firmly in ĥ� This yields the solution that

after a very large number of observations, Freddy believes:

ĥ'

D

��S
n

S�

SH
^�

Notice that if ^ ' fc then ĥ'
D

��S
G If there is no variation, Freddy comes to believe that there

is. Indeed, for all ^ 	 �

2
Freddy exaggerates variance. To use an example I will return to, if ^ ' �

.
c

Freddy will believe ĥ' 2�

��S
: �

.
� Freddy gets things exactly right when ^ ' �

2
� While again noting

that the result might be reversed if Freddy both makes lots of observations from each source, and

his priors assign positive probability to some w 5
�
�

2
c�
�
, the result does capture the intuition that

Freddy is likely to exaggerate the prevalence of extreme rates.

The fact that Freddy tends to exaggerate the variance in rates has implications for the assumption,

emphasized throughout Sections 3 and 4, that Freddy starts with correct priors and has mistaken be-
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liefs solely due to erroneously updating his beliefs after observing signals. But results here suggest

that we should not expect Freddy’s ‘‘priors’’ to be correct after all: When Freddy has previously

inferred the distribution of rates from small numbers of observations of each source, he will have

overly dispersed prior beliefs about the rates for each new source he is facing. Hence, Freddy not

only over-infers because of a bad updating rule, but because of bad priors. He’ll infer too much

about the extreme talent of a newly-hired financial analyst not only because he’ll infer too much

from small samples, but because when he hires her he exaggerates how likely it is that she is tal-

ented. Hence, Freddy’s propensity to over-infer is even more severe than suggested in Section 4.

This is most interesting after one signal: While Lemma 4 of Section 4 indicates that Freddy’s in-

ferences after one signal are the same as a Bayesian’s, here we see that Freddy is likely to have

over-dispersed beliefs even after one signal.

To illustrate this point (and to build the foundation for a later point), consider the situation just

discussed, where 4-Freddy has observed four signals each from a large number of sources, where

ZEw ' �

2
� ' D

.
c ZEw ' f� ' ZEw ' �� ' �

.
c and had original priors with support X 5

�
fc

�

2
c �
�
�

Freddy will believe after observing one @ from a new source that the probability he is facing rate

w ' � is
2�

��S
u�

2�

��S
u�n

bf

��S
u

�

2

'

2�

SH
� ���HIc whereas a Bayesian with correct priors of ^ ' �

.
c believes she

is facing rate w ' � with probability
�

.
u�

�

.
u�n

D

.
u

�

2

'

2

.
� 2H�SI�

I use this example to turn to an issue I have de-emphasized since Section 3: what Freddy pre-

dicts about future signals. Freddy’s mispredictions about coming signals implicates not only over-

inference but also the gambler’s fallacy. The numbers ���HI and 2H�SI represent Freddy’s beliefs

about the rate, not his prediction of the next signal. Freddy predicts that the 2nd signal following

one @ will be an @ with probability 2�

SH
��n eD

SH
�� � DD�bI� A Bayesian, by contrast, predicts that the

next signal will be @ with probability 2

.
� �n D

.
�
�

2
� Se��I� The reason that Freddy underestimates

the probability of an ensuing @ is because of his belief in the gambler’s fallacy; he figures that if

the analyst is average, then her next performance will be K with probability 2

�
�

Following 2 @’s, Freddy will believe he is facing rate w ' � with probability
2�

��S
u�

2�

��S
u�n

bf

��S
u

�

S

'

2�

�H
�

Sf�DIc and hence predict a third @ with probability 2�

�H
E��n �D

�H
E�
2
� � Hf��I� A Bayesian thinks he is

facing w ' � with probability
�

.
u�

�

.
u�n

D

.
u

�

e

'

e

b
� ee�eIc and hence predicts a third @ with probability

e

b
E�� n D

b
E�
2
� � .2�2I� That is, while Freddy underestimates the probability of a second @ in a row,

he exaggerates the probability of a third @ in a row. This is partly because in predicting the signal

following renewal of the urn, the gambler’s fallacy does not kick in. But the second reason Freddy

36



now exaggerates the likelihood of a repeat signal is that the bias towards over-inference is even

more severe with two signals than one. Indeed, consider Freddy’s prediction after three initial @’s.

Now he thinks he is facing w ' � with probability
2�

��S
u�

2�

��S
u�n

bf

��S
u

�

�2

'

eS

S�
� .D�eIc and hence predicts

the next signal to be an @ with probability eS

S�
E��n �D

S�
E�
�
� � H��SI� The Bayesian thinks 3 @’s implies

he is facing w ' � with probability
�

.
u�

�

.
u�n

D

.
u

�

H

'

H

��
� S��DIc and predicts a fourth @ with probability

H

��
E�� n D

��
E�
2
� � Hf�HI� After this longer sequence, even when the gambler’s fallacy is operative,

over-inference about the rate overwhelms it and leads to exaggerated prediction of repeated recent

signals.36

If we disentangle odd-even effects from the trend, it seems that from a short extreme sequence

Freddy underestimates repetition of a signal, but from a longer extreme sequence he exaggerates

the likelihood of repetition. This indicates that the law of small numbers might provide an intuitive

explanation for a financial anomaly that has recently received attention: DeBondt and Thaler (1990)

and others have argued that investors seem irrationally to under-react in the short run to news

about a firm’s financial health, and over-react in the medium run to news. While there are several

alternative rational-choice and quasi-Bayesian models, noted in Section 2, that might explain this

phenomenon, the law of small numbers can also provide an account of it. To see how my model

may lead to similar predictions about behavior, consider the following environment. I assume all

investors live infinitely, and they invest at random in one stock for 4 months, and then move on to

another stock, etc., never reinvesting in earlier stocks. Their eventual beliefs about the distribution

of underlying quality of stocks is determined as derived above, where an @ signal is a postitive

shock to a firm’s value and K is a negative shocks, where in actuality these shocks to not predict

more positive or negative shocks. A given company lives infinitely, with the same number of

potential investors each month observing them, with a turnover rate of �

e
of investors each period.

The performance of all stocks is i.i.d., with D

.
of stocks having underlying quality w ' �

2
, and �

.
each

are w ' � and w ' f�

I now examine average beliefs by investors observing a company, as a function of the company’s

recent history. Consider all the possible histories of the company that next year’s investors can ob-

69 Once again, investigating the case of � 5

�
3>

4

5
>4
�

obscures a key countervailing intuition. If the sequence

observed represents the true rate � 5 + 4
5
>4,> eventually a Bayesian will come to believe in that rate, and Freddy will

either believe it or underestimate its extremity. In either case, combined with the gambler’s fallacy, Freddy will under-
predict repetition of the dominant signal relative to a Bayesian. With that substantial caveat in mind, the lesson here
is perhaps that Freddy’s propensity to over-predict repetition of recent signals rather than under-predict it increases in
the medium-run observation of streaks.
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serve in which the most recent performance has been an @ G i>@c >@@c >K@c >@@@c >K@@c >@K@c >KK@j c

where > represents the fact that the investor did not observe the previous sequence. The following

table summarizes the relevant numbers derived from the results calculated above:
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From this table, and from the assumption that equal numbers of new investors regenerate every

4th period, we can compare the beliefs of Bayesians versus 4-Freddies averaged among the four

relevant cohorts of observers, about the next signal The following table derives the average likeli-

hood that the next signal is an @ among investors who have observed 0, 1, 2, or 3 of the most recent

performances, as a function of what those performances have been.
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While not numerically dramatic, the table reveals the pattern discussed: For ‘‘short’’ sequences

of recent performance — a streak of one or two @’s — an investment pool of Freddies will under-

react to the string. But for a ‘‘long’’ sequence — 3 or more @’s in a row — an investment pool of

Freddys will over-react — exaggerating the likelihood that the observed firm is good.

I do not wish to claim that this pattern inheres in the logic of the law of small numbers; it depends

on the many parameters of the model.37 But the logic of the model seems to lead naturally to this

6: On the other hand, neither do we know whether empirically observed investor behavior inheres in the logic of the
market — it too may exist only because of the prevailing constellation of market parameters.
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pattern if the true variance in performance is small and investors do not make too many observations

of each firm.

6. Inference Based on Endogenous Observations

Thus far in the paper I have assumed that what Freddy observes is independent of the realization

of the signals he has observed earlier. But people often choose what to observe, and do so in part

based on their beliefs they have formed from earlier observations. Because the inferences they have

made influence their information gathering, therefore, the law of small numbers can influence not

only how people interpret signals, but also which signals they observe. In the examples I work out

in this section, Freddy will no matter his behavior observe an infinite number of signals, and these

signals will be consistent with only one underlying distribution of rates. Hence, a Bayesian would,

independent of his behavior, always converge on full understanding about the world, and a unique

long-run behavioral pattern.

To illustrate how Freddy’s choice of behavior may influence his belief formation, suppose he

believes that there is some variance in the usefulness of interacting with certain people; he thinks,

for instance, that some financial analysts provide profitable advice while others don’t. Now suppose

Freddy quits employing analysts when he thinks the expected benefit of searching for a better one

exceeds the benefit (net of transactions costs) of sticking with the current one.

In such contexts, it is likely that Freddy will come to believe that analysts are worse than they

truly are. The intuition is straightforward: Freddy is likely to switch analysts after a short sequence

of negative signals and stay with his current analyst after a short sequence of good signals. Because

Freddy switches after over-inferring an analyst is bad, but sticks around to correct his beliefs when

he over-infers that an analyst is good, he will end up exaggerating the prevalence of bad analysts.

Consider again the example of a world where all financial analysts are successful �

2
of the time,

but Freddy believes it is possible that there are also some analysts who are always or never suc-

cessful. Suppose that Freddy employs an infinite sequence of analysts to help him invest, where

he has the opportunity to switch analysts after two signals, and must switch after four signals.

Assume—crucially—that Freddy observes the performance of only those analysts that he hires.

Let the signal r| ' @ correspond to successful investment by the analyst, and r| ' K correspond

to unsuccessful investment. Assume that Freddy wishes to maximize
S
"

|'�
B
|
�Er|�c where �E@� ' �
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and �EK� ' f� That is, Freddy wishes to maximize the present discounted sum of his money, where

he earns more if the analyst he has hired is successful than if she is unsuccessful. Assume that B is

very close to 1, so that Freddy wants to maximize average per-period payoff.38

Before investigating which switching behavior Freddy chooses, I first address the question of

what he will come to believe as a function of his switching behavior. Freddy forms some beliefs

Eĥ@c ĥK�c where he believes that proportion ĥ@ of the analysts are good Ew ' ��, ĥK are bad Ew ' f�,

and � � ĥ@ � ĥK are average Ew ' �

2
�. These beliefs will be determined by what Freddy observes.

If Freddy never switches after two signals, he will always observe four signals, and Section 5

shows that his eventual beliefs will be ĥ@ ' ĥK '
D

��S
� To see what happens when Freddy switches

after a KK pair, but not otherwise, notice that out of every 16 analysts Freddy employs, he observes

on average one E@@c @@�c one E@@c KK�, two E@Kc KK�c four E@@c @K�c four E@Kc @K�c and four EKK� combi-

nations. The fact that Freddy abandons an analyst after KK means that one fourth of the time he will

observe just KK from an analyst, rather than four signals. Eleven of these sixteen sequences involve

mixes of @’s and K’s and hence can only be generated by w ' �

2
� The sequence E@@c @@� can be gener-

ated by either w ' �

2
or w ' �c and KK can be generated by w ' �

2
or w ' f� If 4-Freddy believes that

the distribution is E^@c ^K�c he believes the frequency of the 11 mixed sequences is 2b

�S
E�� ^@ � ^K�c

the frequency of E@@c @@� combinations is �

�S
E� � ^@ � ^K� n �^@ '

�

�S
E� n �D^@ � ^K�c and the

frequency of KK pairs is �

S
E� � ^@ � ^K� n ^K '

�

S
E� � ^@ n D^K�� From this it can be shown that

Freddy will come to believe ĥ@ '
b

2�2
and ĥK '

2D

2�2
.39 Freddy’s beliefs will be the same if he instead

switched after both KK and @Kc because Freddy will see the same proportions of E@@c @@� and EKK�

combinations as when he switches only on KK; he’ll see different mixed combinations of signals,

but all mixed combinations mean the same thing to Freddy—that he is observing rate w ' �

2
for

sure. Because these are the only non-mixed sequences he observes, they are the only thing that

determines his beliefs.

Just as when Freddy never voluntarily switches, when Freddy fires analysts after bad perfor-

6; The assumption that Freddy can or must switch after even periods is important, and perhaps leads to misleading
conclusions. Suppose Freddy could switch after one signal, and had to switch after 2 signals. Then the Gambler’s
Fallacy is likely to dominate his behavior. As such, depending on his beliefs, he is likely to voluntarily switch after
observing an d signal, but not after observing a e — since he thinks his current analyst is likely to revert to mean. If
Freddy were observing many more signals per analyst, and (more importantly) were making decisions about whether
to stay with an analyst for a while, then even if the exact timing of Freddy’s switch is determined by his belief in the
Gambler’s Fallacy, his bigger-scale decision about how long to remain with an analyst will likely be dominated by his
belief about the analyst’s general merits. Fleshing out this logic in a more complicated model would be difficult, and
hence focusing on the two-period/four-period model serves as a useful way to capture these issues.

6< These are the beliefs that maximize +4� td � te,
44 +4� td .7te,

7 +4 . 68td � te, =
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mance, he believes there is variance in expertise where there is none. But here Freddy forms biased

beliefs, because he is switching from ‘‘bad’’ analysts before he has found out that they aren’t really

that bad, but sticking with ‘‘good’’ analysts — long enough to discover they aren’t that good. Notice

also that now Freddy exaggerates the variance even more: Both ĥ
@

and ĥK have gone up. Intuitively,

Freddy is now observing fewer signals from each analyst, which generally raises his perception of

variance.

To figure out Freddy’s expected average payoffs from different behaviors is somewhat compli-

cated, and has a somewhat complicated connection to his actual payoffs.40 Letting � be the cost

of premature switches, and assuming forced switches are free, then it can be shown that Freddy’s

perceptions of payoffs are as follows:

If never switch: 4 . ht@ � htK �
�

2
=

If switch after ee: ��n��ĥd3��ĥe3S�

��nĥ

d3Dĥe

If switch after ee or de: .n�.ĥd3.ĥe3S�

.nDĥd3ĥe

Finally, these payoffs can be calculated when ĥ@ ' ĥK '
D

��S
c and for ĥ@ '

b

2�2
c ĥK '

2D

2�2
:

ht@ @ htK @
D

��S
ht@ @

b

2�2
> htK @

2D

2�2

Never switch 23�

2

bb3DH�

��S

Switch after ee �DfS3H�S�

�e.S

�bb32�2�

efS

Switch after de or ee �ff23H�S�

b.2

2S.32�2�

2.e

From this last table, Freddy’s potential switching strategies can be determined. The table can

be used to make three relevant statements. When Freddy has beliefs ĥ@ ' ĥK '
D

��S
, he refrains

from voluntary switching if and only if � :
2D

.H
r ��2� When Freddy has beliefs ĥ@ '

b

2�2
and

ĥK '
2D

2�2
c he refrains from switching if and only if � : �b2�

DD�f
r ��D. Finally, if Freddy prefers to

73 First, if Freddy switches after the first pair proportion { of the time, then the proportion of pairs, |, that are first
pairs will be given by | @ |{.+4�|,4, since there is a | chance his pair was new last time, yet he switched, and 4�|

chance he was old last time, and forced to switch. Hence, | @ 4

5�{
= If Freddy plans to switch on ee only, then he expects

to switch proportion 4

9
+4� htd � hte,. hte of the time, so that his perceived proportion of new pairs will be 9

44.htd�
h8te

.

Freddy perceives the average payoff from a new pair to be htd � 5. +4� htd � hte, � 4 @ 4 . htd � hte= He perceives the
payoff from an old pair that followed an de initial pair to be 4= He perceives the expected payoff of an old pair following

an initial dd pair to be 4.44ht
d
�hte

4.8htd�hte
= Freddy thinks the proportions of overall pairs that will be 2qg pairs following initial

dd and de pairs will be 4.8htd�hte

44.htd�8hte
and 7�7htd�7hte

44.htd�8hte
respectively. So Freddy’s expected average payoff from switching

following ee pairs can be calculated to be 44.46htd�44hte�9F

44.htd�8hte
. Now suppose Freddy’s strategy is to switch except after

dd= Then Freddy believes that proportion 9

:.8htd�hte
of pairs will be new pairs, with expected payoff 4. ht

d
� hte> and

proportion 4.8htd�hte

:.8ht
d
�hte

of signals will be 2qg pairs following dd initial pairs, with expected payoffs 4.44htd�hte

4.8ht
d
�hte

= Hence,

Freddy’s perception of payoffs from this switching strategy will be :.4:htd�:hte�9F

:.8htd�hte
= Freddy’s expected average payoff

from never switching voluntarily will be 4. htd � hte �
F

5
=
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switch, then he does so if and only if he sees KK—he never switches following @K or @@� Taking

these statements together, when � 	 ��2c Freddy switches when the analyst he hires performs at

KK, and when � : ��D, Freddy never voluntarily switches. But: When � 5 E2D
.H

c

�b2�

DD�f
� � E��2c ��D�c

Freddy strictly prefers never switching if he has not been switching, but prefers to switch at KK if he

has been switching. This shows that there are two steady-state belief-behavior combinations for the

same parameters—one where Freddy switches a lot because he thinks there is variance in expertise

that merits shopping around, and one where he doesn’t. This is driven by the endogeneity of beliefs,

which would not arise for a Bayesian. Because in one of these steady states Freddy is incurring

more-than-necessary search costs, in addition to showing how errors in belief-formation can lead

to lead to multiple steady-state belief-behavior combinations, this example illustrates how belief

in the law of small numbers may lead to inefficient expenditures by people in pursuit of entirely

illusory expert opinions.41

7. Discussion and Conclusion

The model in this paper helps see how several different phenomena logically derive from the same

underlying judgmental bias. In doing so, it also ties together the scale of these phenomena; the

strength of the gambler’s fallacy determines the degree of over-inference, the scope of the false-

variation bias, etc. This tight structure makes the model precise and refutable, and it would be

of some interest to see how well the model does in simultaneously explaining the scope of these

phenomena in relevant economic circumstances. But I suspect that the simple model of this paper

will not calibrate well. As it stands, there is only one parameter of the model—how big an ‘‘urn’’

the person believes in—that provides a degree of freedom in the specifying the nature of a person’s

belief in the law of small numbers.42 Allowing a more general (and more complicated) model that

allows more parameters while preserving the qualitative features of the law of small numbers will

74 This, in turn, raises the possibility that seemingly harmful interventions that interfere with choices people make can
in fact be beneficial; in the examples here, for instance, raising the cost of search can make Freddy better off.

75 One degree of freedom that could be added concerns the renewal periodicity: The choice of assuming it is every
other period was made entirely for simplicity. Freddy could believe that the urn is renewed every N periods, where
N is any positive integer that is small enough relative to Q to keep the model coherent. For a fixed Q> modifying N
changes the intensity of the gambler’s fallacy and over-inferences; changing N and Q jointly may allow flexibility
in fixing the average degree of gambler’s fallacy while changing how sensitive it is to long versus short streaks. For
instance, increasing both Q and N in certain ways can decrease Freddy’s expected beliefs that about the probability
of a e signal following one d signal in a row, but greatly increase beliefs about the probability of a e signal following
several d’s in a row, since with a larger N Freddy believes that an urn is nearly run out.
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likely be needed to allow greater ability to de-link the precise scale of the phenomena associated

with the law of small numbers.

Other modifications to the model are needed to make the model more realistic. The most obvious

is modifying the artificial distinction between even and odd periods. The best way to fix this

artificial feature may sometimes be the one I used in the applications above—simply taking an

average over the odd and even periods. But for other applications this may not be adequate, and a

more stationary model would need to be developed.

Applying the law of small numbers to many economic situations of interest may also require an

understanding of how it is offset or reinforced by other well-established cognitive biases. Several

of these biases, in fact, suggest caution in concluding too much in practical terms from the analysis

of Freddy’s inference from a very large sequence of observations.43 First, as reviewed in Section

2, while people believe in the law of small numbers, they tend not to believe in the law of large

numbers, unconvinced that very large samples will very surely closely resemble the overall popu-

lation. This will affect limit results. Roughly speaking, while the model predicts that Freddy, like

a Bayesian, will always converge to complete (but often mislplaced) confidence in his beliefs after

receiving lots of information, the lack of belief in the law of large numbers means people will be

uncertain even after getting a huge sample.44

Other biases also enter the picture in understanding inference from long sequences. While con-

firmatory bias, as modeled in Rabin and Schrag (1999), reinforces over-inference after a short

sequence of signals, its over-inference after a long sequence can counteract the conservatism gen-

erated by the law of small numbers. Also, because the limit results in this paper clearly require

Freddy to correctly understand the pattern he is seeing, they are suspect in light of evidence that

people are poor at judging such patterns; the model’s prediction about inferences people make

based on the patterns they observe in long sequences may be misleading because the patterns they

‘‘observe’’ aren’t the patterns that are there.

76 One reason to be cautious about the limit results doesn’t concern any other biases. Rather, as demonstrated in
Section 4, the inferences Freddy reaches from a large number of observations of a single source are very sensitive to
whether he observes the precise sequence. If he doesn’t observe the whole sequence, then his inference from a large
number of observations will likely be over-inference rather than under-inference—and in the limit he will reach the
correct conclusions. The incorrect, ‘‘under-inference’’ results arise only if Freddy can observe—and pays attention
to—the pattern of signals. (And note that, while Freddy always believes there is some information in paying attention
to the precise pattern of signals, he doesn’t think that there is any information in the pattern in the limit—and hence
may optimally decide to keep track only of the frequencies rather than patterns.)

77 As such, the lack of belief in the law of large numbers may reinforce Freddy’s conservatism in moving away from
strong preconceptions that the rate is not extreme.
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One such pattern-recognition bias stands out as having special significance in the context of

this paper: The hot-hand fallacy. This is the tendency for people to perceive a ‘‘hot hand’’ (posi-

tive autocorrelation) in what are actually i.i.d sequences of signals. Variants of this misperception

sometimes show up in experiments. In ‘‘prediction-task’’ experiments—in which participants pre-

dict coming signals as a function of recent signals—there are some cases where the predominant

pattern is for people to over-predict continuation of recent signals rather than to commit the gam-

bler’s fallacy. The clear majority of experiments, however, are more consistent with the gambler’s

fallacy.45

But belief in the hot hand has been documented much more widely in the field. Gilovich, Val-

lone, and Tversky (1985) and Tversky and Gilovich (1989a, 1989b) have demonstrated that, while

basketball fans believe that basketball players are streak shooters whose ‘‘on’’ and ‘‘off ’’ nights

cannot be explained by randomness, such a hot hand does not in fact exist (or at least not nearly to

the degree that people believe in it). Camerer (1989) shows that organized gambling on basketball

games exhibits a small hot-hand bias, insofar as betting indicates a belief that winning streaks and

losing streaks are more likely to continue than they actually are.

At first blush, the hot-hand fallacy may seem in contradiction to the gambler’s fallacy, since it

suggests that people expect to see too many long strings of the same signal rather than too much

alternation. Some cases where the hot-hand fallacy prevails do indeed represent an important caveat

to the findings of this paper.46 As many researchers have intuited, however, the hot-hand fallacy

may in fact derive from the law of small numbers rather than contradict it. The hot hand fallacy, in

most of the accounts I have seen, is interpreted as coming from people’s perception that observed

streaks are too long to be due to chance. That is, it is precisely because people expect to see more

switching among signals than they actually will, they mistake true i.i.d. randomness for streakiness.

A model of how people develop a belief in non-existent hot hands could be developed building

from the model in this paper. In this paper I have assumed Freddy believes firmly that the string

of urns that lead to local representativeness all have the same rate of signal generation. Suppose,

78 Moreover, the experiments I am familiar with in which subjects seem to be predicting over-long streaks suffer
the problem discussed in Section 2. Because they do not control subjects’ prior beliefs about the underlying signal
probability, predictions by subjects of repetition of signals may simply be inference about the generic likelihood of
those signals.

79 But for many questions of economic significance, including those emphasized in this paper, the ‘‘long-wave’’ pos-
itive autocorrelation of the hot-hand bias does not undermine the predictions of the gambler’s fallacy. For instance, it
may not matter much whether somebody who observes an analyst who has recently done well over-infers her intrin-
sic talent, or merely infers that she is on a hot or cold streak; so long as she think the streak is likely to continue fora
while, she may treat hot or cold average analysts as if they were good or bad analysts.
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however, that he thinks it is possible that the underlying rate of the urn might stochastically change,

but do so more rarely than the urn is renewed. This belief in ‘‘long-wave’’ positive autocorrelation

may be quite reasonable. Explanations abound, for instance, for why a basketball player might get

hot or cold. Maybe when a player is shooting well, he becomes confident, rather than tentative, in

taking shots, and this improves his game. When he is doing poorly, he is nervous, and forces bad

shots, etc.47 There surely is a hot hand in some sports phenomena. But the law of small numbers

provides a natural intuition for why somebody who begins with the belief that a stochastic process

might or might not involve long-wave positive autocorrelation will over time come to believe in

such autocorrelation even when none exists. Faced with actual independence of signals, people

develop a bogus belief in a form of positive autocorrelation in signal generation that to them explains

the missing negative autocorrelation they expected due to the gambler’s fallacy.48 Such a model

would predict the gradual development of belief in the hot hand in those settings—such as basketball

shooting—where people find it a priori plausible, but continue believing solely in the gambler’s

fallacy in contexts where they do not find streakiness plausible.49

7: This suggests an intriguing possibility if confidence and underconfidence do influence performance: There may
be a hot hand if and only if people believe in the hot hand. If a person accepts his performance is i.i.d., he’ll never gain
nor lose confidence even in the face of streaks, and so his performance will be i.i.d. But if he believes in the hot hand,
his fluctuations in confidence will extend what would otherwise be random streaks.

7; For this type of model to work it would be crucial that Freddy not believe it possible that the urns’ rate changes as
often as the urns are renewed, since then the countervailing positive and negative autocorrelation he comes to believe
in would generate a de facto i.i.d. signal process.

7< The findings in Edwards (1961), discussed in Section 2, lend support to this interpretation of the hot-hand fallacy.
He finds that in the first two hundred trials of a flip of a coin people’s prediction correspond to the gambler’s fallacy (as
he defines it), but that in the last 800 trials their error switches to the hot-hand fallacy. This could be because participants
observe less negative autocorrelation than (given their belief in the law of small numbers) they had predicted, and hence
over time came to believe they were observing more long streaks of signals than they really were.
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Appendix: Proofs

Proof of Lemma 1: Algebra.

Proof of Lemma 2: Algebra.

Proof of Lemma 3: Bayes Rule.

Proof of Lemma 4: Bayes Rule.

Proof of Lemma 5: Z
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Proof of Corollary 1: Trivial.

Proof of Proposition 2: All �| 5 M

�
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|
correspond to some sequence of @K (' K@) pairs and an

equal number of @@ and KK pairs. Given this and Lemma 2, it is sufficient to show that both

Z
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f. If � : 2 — which it must be to make the model coherent — then this inequality holds iff
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Proof of Proposition 3: It is trivial to show that for all Z: .�
2
E@@� : .�

2
E@K� : .�

2
EKK� for all

� , .�
2
E@K� ' �

2
for all � , .�

2
E@@� is decreasing in � , and .�

2
EKK� is increasing in � . If Z is

symmetric, then for all � .�
2
EZ� ' �

2
� Since ZE@@� ' ZEKK�c and these values are independent of

�c this establishes the proposition. Irrespective of � , the third signal will be used appropriately

for updating beliefs, so it will not affect the result. (Once four or more signals occur, it is possible

to get a mixture of both @@ and KK odd-even pairs.)
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Proof of Lemma 6: By the law of large numbers, after an infinite sequence of signals, Freddy will

get proportions very close to EwW�2 @@ odd-even pairs, 2E�� w
W�wW @K pairs, and E�� w

W�2 KK pairs.

Hence, Freddy’s beliefs will converge to putting full weight on the beliefs ew that maximize the

likelihood of observing such proportions. Applying Lemma 2, therefore, we get the maximization

stated in this Lemma.

Proof of Proposition 4: We must show that theew that maximizes the likelihood function in Lemma 6

has the specified properties for all wW and� . Taking the derivative of the logarithm of the likelihood

function in Lemma 6 with respect to w we get:
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Proof of Proposition 5: Since Z is symmetric,
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Proof of Proposition 6: A law of large numbers.

Proof of Proposition 7: Let _EZc �� be an N-Freddy’s beliefs about the proportion each of @@ and

KK pairs that the symmetric distribution Z will generate. First notice that if Z� is a mean-preserving

spread of Z, then _EZ�c �� : _EZc�� for all � (including � ' 4). Second, notice that for all
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Zc _EZc�� is increasing in �� Notice further yet that if eZ ' E� � &�Z n &Z
� for & 5 Efc ��, then

_EeZc �� ' E� � &�_EZc� � n &_EZ�
c���

Now choose Z generating real distribution Erc � � 2rc r� of @@c @Kc and KK pairs. Since 7 '

_EZc4�c _EZc�� 	 7 for all � 	 4� Then by choosing any mean-preserving spread, Z�c of Z

such that _EZ�c � � : 7 (Z� such that Z�Ew ' �� ' Z�Ew ' f� ' �

2
always works ), we can choose the

& 5 Efc �� such that eZ ' &Z
� nE��&�Z generates 7 ' &_EZ�c ��nE��&�_EZc�� @@ pairs. Since

eZ is a mean-preserving spread of Z whenever Z� is, this proves the first part of the Proposition.

Since any hZ where Z is a mean-preserving spread of hZ yields _EhZc�� 	 _EZc� �c which can be

used to show the second part of the Proposition.
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