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Abstract Zenga’s new inequality curve and index are two recent tools for measuring

inequality. Proposed in 2007, they should thus not be mistaken for anterior measures

suggested by the same author. This paper focuses on the new measures only, which are

hereafter referred to simply as the Zenga curve and Zenga index. The Zenga curve Z(α)

involves the ratio of the mean income of the 100α% poorest to that of the 100(1−α)%

richest. The Zenga index can also be expressed by means of the Lorenz Curve and

some of its properties make it an interesting alternative to the Gini index. Like most

other inequality measures, inference on the Zenga index is not straightforward. Some

research on its properties and on estimation has already been conducted but inference

in the sampling framework is still needed. In this paper, we propose an estimator

and variance estimator for the Zenga index when estimated from a complex sampling

design. The proposed variance estimator is based on linearization techniques and more

specifically on the direct approach presented by Demnati and Rao. The quality of the

resulting estimators are evaluated in Monte Carlo simulation studies on real sets of

income data. Finally, the advantages of the Zenga index relative to the Gini index are

discussed.

Keywords Inequality · Sampling · Influence function · Gini · Variance estimation

1 Introduction

Research on inequality measures can be conducted in different directions. One

direction consists in improving methodology on broadly used statistics such as the
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Gini index or entropy measures, while another direction focuses on proposing new

inequality measures and places emphasis on the corresponding advantages. It is a fact

that the level of income inequality in a population is often accounted for by using the

Gini index. Many discussions concerning the latter measure have arisen in statistical

and economic literature and a lot of competing inequality measures have been pro-

posed. Some, like the Atkinson index, the Theil index or the Quintile Share Ratio, have

been known and used for decades. This paper focuses on finite population inference

for a very recent measure, Zenga’s new inequality index (Zenga 2007) which is seen

as a potential alternative to the Gini index. This new inequality index should not be

mistaken for anterior measures proposed some years ago by the same author (Zenga

1984) which are also often referred to as Zenga indices in the literature. For the sake

of simplicity, Zenga’s new inequality curve and index are hereafter denoted by the

terms Zenga curve and Zenga index and respectively expressed by Z(α) and Z .

Like the Gini index, the Zenga index can be expressed by means of the Lorenz curve.

However, it is also associated with a new inequality curve, the Zenga curve which pro-

vides interesting and direct interpretations on inequality. The paper is structured as

follows. In the next section, the index and the curve are defined and an estimator

allowing for complex sampling designs is derived. Section 3 is dedicated to variance

estimation. Linearization techniques are used to propose a variance estimator for the

Zenga index. Some simulations on real data sets are then run in Sect. 4 to apply our

theoretical results, while Sect. 5 focuses on comparisons with the Gini index and on

the advantages of the Zenga index. The paper ends with some concluding remarks.

2 The Zenga index and Zenga curve

2.1 Definition and notation

Some inequality indices are synthetic values based on an underlying curve or func-

tion. The most obvious example is the Gini index and the underlying Lorenz curve.

Although the Gini index is the main inequality measure, it does not have unanimous

support from statisticians and practitioners and thus has prompted research on other

curves and synthetic indices. Zenga (1984) had already proposed two curves as well

as the inequality measures λ and ξ . The ξ index and its underlying curve have drawn

particular attention (for a review see Zenga 2007), but according to the author, it has

not been widely used because it requires estimation of the quantile function as well as

of the inverse of the incomplete first moment.

Zenga (2007) has presented a new alternative to the Gini index and other existing

inequality measures and curves. Although literature on the Zenga index is not as plen-

tiful as on the Gini index, it has drawn increasing attention in the scientific community.

The literature includes some publications on the properties of the index (Maffenini

and Polisicchio 2010), inference and applications (Polisicchio 2008; Greselin et al.

2009, 2010) as well as subgroup decomposition (Radaelli 2008, 2010). The literature

on the Zenga index and curve also focuses greatly on its advantages compared to the

Gini index. Some of these features are described below.
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Fig. 1 Example of a Zenga

curve and index for a synthetic

data set generated from real

Austrian EU-SILC survey data

(see Sect. 4.1 for more details)
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Zenga index

Consider a continuous strictly increasing cumulative distribution function F(y),

also, let us denote Qα , the quantile of order α, such that F(Qα) = α. The quan-

tile function can be written as the inverse of the cumulative distribution function

Qα = F−1(α). The Zenga curve Z(α) is the ratio of the mean income of the poorest

100α% in the distribution to that of the rest of the distribution, namely the 100(1−α)%

richest. It is defined by

Z(α) = 1 −
L(α)

α
·

1 − α

1 − L(α)
,

where 0 ≤ α ≤ 1 and L(α) is the quantile share or Lorenz curve (Lorenz 1905;

Gastwirth 1972; Cowell 1977; Kovacevic and Binder 1997; Langel and Tillé 2011b),

which is a central tool of inequality theory and is defined by

L(α) =

∫ Qα

0 ud F(u)∫∞
0 ud F(u)

.

The Zenga index, which can be written

Z =

1∫

0

Z(α)dα,

can thus be defined, like the Gini index, in terms of the Lorenz curve. Figure 1 shows

how the index can be plotted together with the Zenga curve and interpreted as a mean

level of inequality.
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2.2 The Zenga index in finite population

Let U denote a finite population of N identifiable units u1, . . . , uk, . . . , uN . For the

sake of simplicity, we will hereafter denote unit uk by its identifier k. Associated with

each unit k is the value yk of some characteristic of interest, for example income. To

lighten the notation, we will assume with no loss of generality that all yk’s are distinct

and sorted. Let us define

Y =
∑

ℓ∈U

yℓ, (2.1)

Yk =
∑

ℓ∈U

yℓ1[ℓ ≤ k], (2.2)

where1(A) = 1 if A is true and 0 otherwise. As suggested in Langel and Tillé (2011b),

let us also denote partial sum Y (α), the sum of incomes up to quantile α by

Y (α) = Yk−1 + yk[αN − (k − 1)], (2.3)

where the value of k is such that αN < k ≤ αN + 1. With Expression (2.3), the finite

population quantile share can be defined by

L(α) =
Y (α)

Y
.

The Zenga index for a population of size N is then

Z =
∑

k∈U

Zk, (2.4)

where

Zk =

k/N∫

(k−1)/N

1 −
Y (α)

α
·

1 − α

Y − Y (α)
dα,

=
1

N
−

k/N∫

(k−1)/N

Y (α)

α
·

1 − α

Y − Y (α)
dα,

=
(k − 1)yk − Yk−1

Y + (k − 1)yk − Yk−1
log

(
k

k − 1

)

+

[
Y

N yk

−
Y

Y + (k − 1)yk − Yk−1

]
log

(
Y − Yk−1

Y − Yk

)
.

We now assume Y0 = 0 and define Ak = (k − 1)yk − Yk−1 for all k ∈ U . The above

can thus be rewritten
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Zk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
Y

N y1
− 1

)
log

(
Y

Y − Y1

)
, if k = 1,

Ak

Y + Ak

log

(
k

k−1

)
+

[
Y

N yk

−
Y

Y + Ak

]
log

(
Y −Yk−1

Y −Yk

)
, if k =2, . . . , N −1,

(
1 −

Y

N yN

)
log

(
N

N − 1

)
, if k = N .

(2.5)

2.3 An estimator of the Zenga index

A random sample S of size n is drawn from a finite population U of size N from a

random sampling design, such that p(s) = Pr(S = s) is the probability of selecting

sample s ⊂ U . The probability for unit k ∈ U to be included in the sample is written

πk = Pr(k ∈ S) and dk denotes the design weight of k such that dk = 1/πk . Note that

the design weights dk are used here for simplicity, and that the following is still valid

if the set of weights result from a calibration procedure. Let us also denote

D =
∑

ℓ∈S

dℓ,

Dk =
∑

ℓ∈S

dℓ1[ℓ ≤ k]

and

αk =
Dk

D
.

Expressions (2.1), (2.2) and (2.3) can be respectively estimated from a sample by

Ŷ =
∑

ℓ∈S

dℓyℓ,

Ŷk =
∑

ℓ∈S

dℓyℓ1[ℓ ≤ k],

Ŷ (α) =
∑

ℓ∈S

dℓyℓ1[ℓ ≤ k − 1] + yk(αD − Dk−1) = Ŷk−1 + yk(αD − Dk−1),

where k is an integer such that αk−1 < α ≤ αk . Thus, an estimator for L(α) is

L̂(α) =
Ŷ (α)

Ŷ
.
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A natural estimator for the Zenga index is then:

Ẑ =
∑

k∈S

Ẑk, (2.6)

where

Ẑk =

αk∫

αk−1

1 −
Ŷ (α)

α
·

1 − α

Ŷ − Ŷ (α)
dα

=
dk

D
−

αk∫

αk−1

Ŷ (α)

α
·

1 − α

Ŷ − Ŷ (α)
dα.

=
Dk−1 yk − Ŷk−1

Ŷ + Dk−1 yk − Ŷk−1

log

(
Dk

Dk−1

)

+

[
Ŷ

Dyk

−
Ŷ

Ŷ + Dk−1 yk − Ŷk−1

]
log

(
Ŷ − Ŷk−1

Ŷ − Ŷk

)
.

Assuming Ŷ0 = 0, D0 = 0 and defining Âk = Dk−1 yk − Ŷk−1 for all k ∈ S, we have:

Ẑk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ŷ

Dy1
− 1

)
log

(
Ŷ

Ŷ − Ŷ1

)
, if k = 1,

Âk

Ŷ + Âk

log

(
Dk

Dk−1

)
+

[
Ŷ

Dyk

−
Ŷ

Ŷ + Âk

]
log

(
Ŷ −Ŷk−1

Ŷ −Ŷk

)
, if k =2, . . . , n−1,

(
1 −

Ŷ

Dyn

)
log

(
Dn

Dn−1

)
, if k = n.

(2.7)

The particular case of inference (point and variance estimator) with non-weighted

observations is fully discussed and applied in Greselin et al. (2010).

3 Approximation of the variance by linearization

3.1 Linearization by the Demnati-Rao approach

Linearization regroups a variety of techniques for computing an approximation of the

variance of a non-linear statistic θ̂ , an estimator of a function of interest θ . The idea

behind these techniques is to find a linearized variable vℓ such that

θ̂ − θ ≈
∑

ℓ∈S

dℓvℓ −
∑

ℓ∈U

vℓ.
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The variance of
∑

ℓ∈S dℓvℓ, the weighted sum of the linearized variable vℓ, is then

used as an approximation of the variance of θ̂ :

var

(∑

ℓ∈S

dℓvℓ

)
≈ var

(
θ̂
)
.

Because the variance of statistic θ̂ is approximated by the variance of a total,

linearization methods can easily provide a variance estimator for all complex sam-

pling designs for which an expression for the variance of a total is known. To compute

the values of vℓ however, information at the population level is often needed. Thus, vℓ

is generally replaced by its sample counterpart v̂ℓ.

The linearization method was introduced by Woodruff (1971) using Taylor series.

Deville (1999) presented a more general method based on influence functions (Hampel

1974; Hampel et al. 1985). In both methods, the linearized variable is computed on

the function of interest and is then estimated on the sample. Binder (1996) proposed a

direct approach in which the linearized variable is directly computed on the estimator.

However, like in Woodruff (1971), it is only adapted for smoothed functions of totals.

Demnati and Rao (2004) have proposed yet another direct approach which is of broad

application. In the Demnati-Rao approach, we consider weights aℓ = dℓ Iℓ, for all

ℓ ∈ U , where

Iℓ =

{
1 if ℓ ∈ S,

0 if ℓ /∈ S.

An estimator θ̂ can be written as a function of the weights aℓ: θ̂ = f (a1, a2, . . . , aN ).

The population parameter is obtained by replacing the aℓ’s by 1’s: θ = f (1, 1, . . . , 1).

By using Taylor series expansion, we can write

θ̂ ≈ θ +
∑

ℓ∈U

(aℓ − 1)
∂θ̂

∂aℓ

.

Thus,

θ̂ − θ ≈
∑

ℓ∈S

dℓv̂ℓ −
∑

ℓ∈U

v̂ℓ,

where

v̂ℓ =
∂θ̂

∂aℓ

=
∂θ̂

∂dℓ

.

In this paper, we use the Demnati and Rao (2004) approach to derive an estimated

linearized variable of the Zenga index, and consequently a variance estimator. The

estimated linearized variable v̂ℓ is computed directly on the sample and obtained by

calculating the partial derivative of the estimator with respect to the weight dℓ. Once v̂ℓ

123



M. Langel, Y. Tillé

is computed, variance estimation is done in the standard framework and usual asymp-

totic conditions of linearization techniques (Woodruff 1971; Isaki and Fuller 1982;

Deville and Särndal 1992; Binder 1996; Kovacevic and Binder 1997; Deville 1999).

Note that the design weights dℓ are used, but the method holds for calibration weights

as well (Demnati and Rao 2004).

3.2 Linearization of the Zenga index

Using the Demnati-Rao approach, the estimated linearized variable v̂ℓ of the Zenga

index at yℓ can be computed by

v̂ℓ =
∂ Ẑ

∂dℓ

=
∑

k∈S

∂ Ẑk

∂dℓ

. (3.1)

Thus, for each sample element ℓ, the partial derivative with respect to dℓ of Ẑk for

all k ∈ S is computed. Similarly as for point estimation, three cases are derived. We

present hereafter the final expressions for ∂ Ẑk/∂dℓ and have included the complete

derivation of Expression (3.2) in Appendix A.

∂ Ẑk

∂dℓ

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dyℓ − Ŷ

D2 y1
log

(
Ŷ

Ŷ − Ŷ1

)
+ yℓ

(
Ŷ

Dy1
− 1

)[
1

Ŷ
−
1(ℓ > 1)

Ŷ − Ŷ1

]
, if k = 1,

Ŷ (yk − yℓ)1(ℓ < k) − Âk yℓ(
Ŷ + Âk

)2
log

[
Dk

(
Ŷ − Ŷk−1

)

Dk−1

(
Ŷ − Ŷk

)
]

+
Âk

Ŷ + Âk

[
1(ℓ ≤ k)

Dk

−
1(ℓ < k)

Dk−1

]
+

Dyℓ − Ŷ

D2 yk

log

(
Ŷ − Ŷk−1

Ŷ − Ŷk

)

+
Ŷ yℓ

Ŷ −Ŷk−1

[
1(ℓ = k)−

ykdk

Ŷ −Ŷk

1(ℓ > k)

](
1

Dyk

−
1

Ŷ + Âk

)
, if k = 2, . . . , n − 1,

Ŷ − Dyℓ

D2 yn

log

(
D

Dn−1

)
+

(
1 −

Ŷ

Dyn

)[
1

D
−
1(ℓ < n)

Dn−1

]
, if k = n.

(3.2)

Hence, for example, a variance estimator for the Zenga index under a simple random

sampling design without replacement of size n is

v̂ar
(
Ẑ
)

=
N (N − n)

n(n − 1)

∑

ℓ∈S

(v̂ℓ − v̄)2, (3.3)

with v̄ = n−1
∑

ℓ∈S v̂ℓ.
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Table 1 Simulation results

(Austrian EU-SILC data, 1,000

replications)

Point estimation

Z E(Ẑ) RB(Ẑ)

0.5872 0.5870 −0.04%

Variance estimation

v̂arsim

(
Ẑ
)

E
[
v̂arlin

(
Ẑ
)]

RB (v̂arlin)

3.0310 · 10−5 2.9811 · 10−5 −1.65%

Coverage rate of 95% for Z

95.9%

4 Simulation studies

4.1 Synthetic Austrian EU-SILC data

At first, a simulation study is run in the R environment (R Development Core Team

2010) on a synthetic data set generated from original Austrian EU-SILC data. The data

is available from the laeken R-package (Alfons et al. 2010) and incorporates 14,824

non-null individual observations from 6,000 households. The simulation design is kept

simple: data at the individual level is considered to be the finite population from which

random samples of size n = 3,000 are selected with a simple random sampling design

without replacement. One thousand replications are made. In each sample, the Zenga

index (Expression 2.6) and its linearization variance (Expression 3.3) are estimated.

Results are summarized in Table 1. The relative bias for point and variance estimation

are defined respectively by

RB
(
Ẑ
)

=
E
(
Ẑ
)
− Z

Z
,

and

RB
[
v̂arlin

(
Ẑ
)]

=
E
[
v̂arlin

(
Ẑ
)]

− v̂arsim

(
Ẑ
)

v̂arsim

(
Ẑ
) ,

where v̂arlin(Ẑ) stands for the estimated variance obtained with the linearization

technique and v̂arsim(Ẑ) denotes the Monte-Carlo variance computed on the 1000

replications. Results show that point estimation is very successful and that the lineari-

zation technique only very slightly underestimates the variance with a relative bias of

−1.65%. The coverage rate for a 95% confidence interval is close to the desired level.

4.2 Taxable incomes of Canton of Neuchâtel, Switzerland

In the previous example, extreme observations do not have a large effect on the accu-

racy of estimation. Our second simulation study is run on real taxable income data

in the Canton of Neuchâtel, Switzerland for year 2006. It is composed of all 82,489
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Table 2 Simulation results (Neuchâtel data, 1,000 replications)

Point estimation Variance estimation Coverage rate

RB(Ẑ) RB (v̂arlin) CR (95%)

Full data −0.08% −6.79% 93.5%

Truncated data −0.06% 0.22% 94.7%

non-null taxpayers of the canton and includes some extreme observations. The same

strategy, design and sample size are used as for the first simulation study in order

to allow for comparisons. To account for the extreme observations issue, two sets of

simulations are performed: one on the full data set and one on truncated data. In the

truncated data, all observations lying above Q0.999 are deleted, involving the 83 richest

income earners. Truncation of the data reduces the ratio between the largest income

and the median income by a factor of 13.2. The results are summarized in Table 2.

Note that estimates and true values of the Zenga index and its sampling variance for

the Neuchâtel data are not displayed in Table 2 because this data set has been made

available to us exclusively for academic purposes. Thus, the quality of estimation

for this data is merely summarized by relative biases and coverage rates. For similar

reasons, income values in Fig. 2 as well as Zenga and Gini index estimates in Fig. 3

have been masked.

Although point estimation is accounted for in a satisfactory manner in both situ-

ations, we can see that the variance is not as well estimated when the most severely

extreme observations are part of the population. However, it can be advocated that even

in the presence of extreme values, which we believe to be frequent when working on

income data, quality of inference for the Zenga index remains reasonable with a rela-

tive bias for the variance of −6.79% and a coverage rate of 93.5 for a 95% confidence

interval.

5 Comparison with the Gini index

5.1 Definition and properties of the Gini index

Working on a new synthetic inequality index like the Zenga index raises one key

question: Do we need yet another inequality measure? The question is not without

merit considering the vast collection of already existing inequality measures and the

amount of research dedicated to enhancing the quality of inference for these measures.

However, by comparing the Zenga index to the leading inequality measure, the Gini

index, we try to point out why the Zenga index is a serious and interesting alternative

to existing indices. Let us first define the Gini index G by

G = 1 − 2

1∫

0

L(α)dα,
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an estimator of G by

Ĝ =
2

DŶ

∑

k∈S

dk Dk yk −

(
1 +

1

DŶ

∑

k∈S

d2
k yk

)
=

∑
k∈S

∑
ℓ∈S dkdℓ |yk − yℓ|

2DŶ
,

and a linearized variable estimated on the sample (Monti 1991; Langel and Tillé 2011a)

by

ûk =
1

DŶ

[
2Dk(yk − Ŷ k) + Ŷ − Dyk − Ĝ(Ŷ + yk D)

]
,

with

Ŷ k =

∑
ℓ∈S dℓyℓ1(yℓ ≤ yk)

Dk

.

Both indices have thus in common that they can be defined by means of the Lorenz

curve L(α). Also, both measures fulfill the most common properties of the axiomatic

approach to inequality theory (Cowell and Kuga 1981) such as anonymity, scale invari-

ance, population principle or principle of transfers (Zenga 2007). Moreover, Radaelli

(2010) proposed a subgroup decomposition of the Zenga index which is closely related

to the decomposition of the Gini index (Dagum 1997).

5.2 Advantages of the Zenga index

The two measures differ however in many ways. One argument in favor of the Zenga

index is described by Greselin et al. (2010, p. 3):

[. . .] the Gini index underestimates comparisons between the very poor and the

whole population and emphasizes comparisons which involve almost identical

population subgroups [. . .] the Zenga index detects, with the same sensibility,

all deviations from equality in any part of the distribution.

A comparative simulation study regrouping 17 different inequality indices (Langel and

Tillé 2009) seems to confirm this idea by showing that the Zenga index is one of the

most appropriate measures to detect changes at any level of the income distribution and

in many different situations. Another argument in favor of the Zenga index concerns

interpretation. A lot of intuitive information can indeed be obtained from analyzing

the curve itself. For instance, any point measure Z(α) on the curve indicates that the

mean income of the 100α% poorest is equal to [1 − Z(α)] times the mean income

of the richest 100(1 − α)%. Moreover, the Zenga index can be plotted alongside the

curve and thus, clearly displays the intervals of α where inequality is lower or higher

than the mean level of inequality, which is represented by the index itself. Finally,

Maffenini and Polisicchio (2010) have shown that when adding an identical positive

income to all observations, the effect on the Zenga curve is more intuitive than on

the Lorenz curve. Indeed, the Zenga curve shows that, after translation, the level of
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inequality decreases more heavily for small incomes than for larger ones, whereas the

latter intuition is not captured by the Lorenz curve.

5.3 Influence functions and sampling distributions

In statistics, influence functions (Hampel 1974) are mainly used as a tool to study

robustness. However, Deville (1999) showed that the linearized variable is an influ-

ence function, only very slightly modified from the definition of Hampel (1974) so

that it could be used within a finite population framework. Thus, it is possible to study

the sensitivity to extreme observations of the statistic of interest simply by analyzing

its linearized variable, or influence curve. Unsurprisingly, the influence curve of the

Zenga index shows that the statistic is highly sensitive to extreme observations. As a

result, inference can be heavily affected by the presence of very large incomes in the

sample. Similar results are found in robust statistics regarding the influence function of

the Gini index (Monti 1991; Cowell and Victoria-Feser 1996, 2003) and the Quintile

Share Ratio (Hulliger and Schoch 2009), which are both unbounded from above.

However, a comparative study with the Gini index reveals an interesting result.

Figure 2 displays the influence function of the Gini index alongside that of the Zenga

index computed on one sample of size n = 3,000 from the Neuchâtel simulation

study. To allow for comparisons, both influence functions are normalized following

the notion of relative influence function proposed by Cowell and Flachaire (2007). The

estimated linearized variable of the Gini and Zenga indices are thus divided by the

value of the respective index estimated on the sample. Figure 2 shows that the Zenga

index is significatively less affected by extreme observations than the Gini index. This

is a very important advantage of the Zenga index because inference from income data

is often confronted with extreme values.

The outcome of this feature is that the sampling distribution of the Zenga index

is by far closer to the Normal distribution than that of the Gini index, allowing for

the construction of more reliable confidence intervals. This intuition is confirmed by

a small simulation study performed to estimate the skewness and excess kurtosis of

the sampling distribution of both indices Ĝ and Ẑ . We have simulated 1000 sam-

ples (simple random sampling design without replacement) of size n = 100 from the
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Fig. 2 Normalized influence curves of the Zenga index and Gini index estimated on one sample of size

n = 3,000 drawn from the Neuchâtel data set
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Fig. 3 Histograms of the distributions of Ẑ and Ĝ computed on 1,000 samples of size n = 100

Table 3 Skewness and kurtosis:

simulation results
Zenga index Ẑ Gini index Ĝ

Skewness 0.22 1.15

Excess kurtosis 0.24 2.22

Neuchâtel income data and estimated both indices in each sample. The histograms in

Fig. 3 displays the respective sampling distributions of Ĝ and Ẑ for this set of simu-

lations. They show that the sampling distribution of the Zenga index is clearly more

symmetric than that of the Gini index.

The skewness and excess kurtosis for each index are then estimated on the 1,000

samples. The results, displayed in Table 3, show that unlike what is observed with the

Zenga index, the sampling distribution of the Gini index is a serious obstacle in the

construction of good confidence intervals around Ĝ. Indeed, the skewness and excess

kurtosis of Ĝ are far from the desired level (0 for both statistics).

6 Conclusion

To effectively bring new insights in the study of income inequality a recent mea-

sure like the Zenga index needs a general and valid framework for inference in finite

populations. In this paper, we have firstly proposed an estimator of the Zenga index

which takes the sampling design into account. Secondly, a variance estimator has been

presented. The Demnati and Rao linearization technique has been used to derive an

estimator that can be applied to samples selected from a complex sampling design. The

theoretical results have then been tested successfully in simulation studies. Finally the

relevance of the Zenga index has been emphasized by comparing it to the Gini index. It

it shown that in addition to having similar properties as the Gini index, the characteris-

tics of the Zenga index facilitate reliable inference. Indeed, in the presence of extreme

observations, the sampling distribution of Ẑ is both markedly less skewed and less

heavy-tailed than that of the Gini index. Moreover, the Zenga index and its underlying

curve display interesting graphical interpretations. We hope that these features can

motivate the use of the Zenga index in future research studies and applications.
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Appendix A: Linearization

The three cases of Expression (2.7) are linearized separately in order to obtain an

estimated linearized variable v̂ℓ such that

v̂ℓ =
∂ Ẑ

∂dℓ

=
∑

k∈S

∂ Ẑk

∂dℓ

. (A.1)

A.1 Linearization of Ẑk for k = 2, . . . , n − 1

First, Ẑk for k = 2, . . . , n is rewritten as the sum of two terms, P1 and P2:

Ẑk =
Âk

Ŷ + Âk

log

(
Dk

Dk−1

)

︸ ︷︷ ︸
P1

+

[
Ŷ

Dyk

−
Ŷ

Ŷ + Âk

]
log

(
Ŷ − Ŷk−1

Ŷ − Ŷk

)

︸ ︷︷ ︸
P2

.

= P1 + P2.

Thus,

∂ Ẑk

∂dℓ

=
∂ P1

∂dℓ

+
∂ P2

∂dℓ

, (A.2)

and the derivation can be split into two separate steps, the linearization of terms P1

and P2.

Linearization of term P1 can be done by computing the partial derivative with

respect to dℓ. Using differentiation rules, we obtain

∂ P1

∂dℓ

=
(Ŷ + Âk) log

(
Dk

Dk−1

)
∂ Âk

∂dℓ
− Âk log

(
Dk

Dk−1

)
∂
[
Ŷ+ Âk

]

∂dℓ

(Ŷ + Âk)2

+
Dk−1

Dk

∂
(

Dk

Dk−1

)

∂dℓ

Âk

Ŷ + Âk

. (A.3)

We now compute the derivatives that are needed in Eq. (A.3):

∂Ŷ

∂dℓ

= yℓ, (A.4)

∂ Âk

∂dℓ

= (yk − yℓ)1(ℓ < k), (A.5)
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∂
(

Dk

Dk−1

)

∂dℓ

=
Dk−11(ℓ ≤ k) − Dk1(ℓ < k)

D2
k−1

, (A.6)

and replace them in Expression (A.3) to obtain

∂ P1

∂dℓ

=
Âk

Ŷ + Âk

[
Ŷ (yk − yℓ)1(ℓ < k) − Âk yℓ

Âk(Ŷ + Âk)
log

(
Dk

Dk−1

)

−
1(ℓ < k)

Dk−1
+
1(ℓ ≤ k)

Dk

]
. (A.7)

Similarly, for term P2:

∂ P2

∂dℓ

=

⎡
⎣ Ŷ

∂
[
Ŷ+ Âk

]

∂dℓ

(Ŷ + Âk)2
−

∂Ŷ
∂dℓ

Ŷ + Âk

+

∂Ŷ
∂dℓ

Dyk

−
Ŷ

∂(Dyk )
∂dℓ

(Dyk)2

⎤
⎦ log

(
Ŷ − Ŷk−1

Ŷ − Ŷk

)

+
Ŷ − Ŷk

Ŷ − Ŷk−1

∂
(

Ŷ−Ŷk−1

Ŷ−Ŷk

)

∂dℓ

[
Ŷ

Dyk

−
Ŷ

Ŷ + Âk

]
. (A.8)

In addition to Result (A.4), the following derivatives are needed:

∂(Ŷ + Âk)

∂dℓ

= yℓ − (yℓ − yk)1(ℓ < k). (A.9)

∂ Dyk

∂dℓ

= yk, (A.10)

∂
(

Ŷ−Ŷk−1

Ŷ−Ŷk

)

∂dℓ

=
yℓ

Ŷ − Ŷk

[
1(ℓ = k) −

ykdk

Ŷ − Ŷk

1(ℓ > k)

]
. (A.11)

Results (A.4), (A.9), (A.10) and (A.11) are substituted into Eq. (A.8):

∂ P2

∂dℓ

=

[
yℓ Âk − Ŷ (yℓ − yk)1(ℓ < k)

(Ŷ + Âk)2
+

Dyℓ − Ŷ

D2 yk

]
log

(
Ŷ − Ŷk−1

Ŷ − Ŷk

)

+
Ŷ yℓ

Ŷ − Ŷk−1

[
1(ℓ = k)−

ykdk

Ŷ − Ŷk

1(ℓ > k)

](
1

Dyk

−
1

Ŷ + Âk

)
. (A.12)

The final expression for the linearization of Ẑk for k = 2, . . . , n − 1 is obtained by

replacing (A.7) and (A.12) in (A.2):

∂ Ẑk

∂dℓ

=
∂ P1

∂dℓ

+
∂ P2

∂dℓ

=
Âk

Ŷ + Âk

[
Ŷ (yk −yℓ)1(ℓ < k)− Âk yℓ

Âk(Ŷ + Âk)
log

(
Dk

Dk−1

)
−
1(ℓ < k)

Dk−1
+
1(ℓ ≤ k)

Dk

]
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+

[
Ŷ (yk − yℓ)1(ℓ < k) − Âk yℓ

(Ŷ + Âk)2
+

Dyℓ − Ŷ

D2 yk

]
log

(
Ŷ − Ŷk−1

Ŷ − Ŷk

)

+
Ŷ yℓ

Ŷ − Ŷk−1

[
1(ℓ = k) −

ykdk

Ŷ − Ŷk

1(ℓ > k)

](
1

Dyk

−
1

Ŷ + Âk

)
.

The latter can be rewritten by

∂ Ẑk

∂dℓ

=
Ŷ (yk − yℓ)1(ℓ < k) − Âk yℓ(

Ŷ + Âk

)2
log

[
Dk

(
Ŷ − Ŷk−1

)

Dk−1

(
Ŷ − Ŷk

)
]

+
Âk

Ŷ + Âk

[
1(ℓ ≤ k)

Dk

−
1(ℓ < k)

Dk−1

]
+

Dyℓ − Ŷ

D2 yk

log

(
Ŷ − Ŷk−1

Ŷ − Ŷk

)

+
Ŷ yℓ

Ŷ −Ŷk−1

[
1(ℓ = k) −

ykdk

Ŷ −Ŷk

1(ℓ > k)

](
1

Dyk

−
1

Ŷ + Âk

)
. (A.13)

A.2 Linearization of Ẑ1

The case for k = 1 can be derived:

∂ Ẑ1

∂dℓ

= log

(
Ŷ

Ŷ −Ŷ1

)⎡
⎣Dy1

∂Ŷ
∂dℓ

− Ŷ
∂(Dy1)

∂dℓ

(Dy1)2

⎤
⎦ +

(
Ŷ

Dy1
− 1

)(
Ŷ − Ŷ1

Ŷ

) ∂
(

Ŷ

Ŷ−Ŷ1

)

∂dℓ

,

=
Dyℓ − Ŷ

D2 y1
log

(
Ŷ

Ŷ − Ŷ1

)
+ yℓ

(
Ŷ

Dy1
− 1

)[
1

Ŷ
−
1(ℓ > 1)

Ŷ − Ŷ1

]
. (A.14)

A.3 Linearization of Ẑn

Finally the k = n case is also linearized:

∂ Ẑn

∂dℓ

= log

(
D

Dn−1

)⎡
⎣ Ŷ

∂(Dyn)
∂dℓ

− Dyn
∂Ŷ
∂dℓ

(Dyn)2

⎤
⎦ +

(
1 −

Ŷ

Dyn

)
Dn−1

D

∂
(

D
Dn−1

)

∂dℓ

,

=
Ŷ − Dyℓ

D2 yn

log

(
D

Dn−1

)
+

(
1 −

Ŷ

Dyn

)[
1

D
−
1(ℓ < n)

Dn−1

]
. (A.15)

A.4 Linearization of the Zenga index

Finally, by recalling Expression (A.1) and combining Results (A.13), (A.14) and

(A.15) into
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∂ Ẑk

∂dℓ

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dyℓ − Ŷ

D2 y1

log

(
Ŷ

Ŷ − Ŷ1

)
+ yℓ

(
Ŷ

Dy1

− 1

)[
1

Ŷ
−
1(ℓ > 1)

Ŷ − Ŷ1

]
, if k = 1,

Ŷ (yk − yℓ)1(ℓ < k) − Âk yℓ(
Ŷ + Âk

)2
log

[
Dk

(
Ŷ − Ŷk−1

)

Dk−1

(
Ŷ − Ŷk

)
]

+
Âk

Ŷ + Âk

[
1(ℓ ≤ k)

Dk

−
1(ℓ < k)

Dk−1

]
+

Dyℓ − Ŷ

D2 yk

log

(
Ŷ − Ŷk−1

Ŷ − Ŷk

)

+
Ŷ yℓ

Ŷ −Ŷk−1

[
1(ℓ = k)−

ykdk

Ŷ −Ŷk

1(ℓ > k)

](
1

Dyk

−
1

Ŷ + Âk

)
, if k = 2, . . . , n − 1,

Ŷ − Dyℓ

D2 yn

log

(
D

Dn−1

)
+

(
1 −

Ŷ

Dyn

)[
1

D
−
1(ℓ < n)

Dn−1

]
, if k = n,

an estimated linearized variable v̂ℓ can now be obtained for all ℓ ∈ S, and thus a

variance estimator for Ẑ , the Zenga index estimated from a sample.

References

Alfons A, Holzer J, Templ M (2010) laeken: Laeken indicators for measuring social cohesion. R package

version 0.1.3

Binder DA (1996) Linearization methods for single phase and two-phase samples: a cookbook approach.

Surv Methodol 22: 17–22

Cowell FA, Victoria-Feser M-P (2003) Distribution-free inference for welfare indices under complete and

incomplete information. J Econ Inequality 1:191–219

Cowell FA (1977) Measuring inequality. Philip Allan, Oxford

Cowell FA, Flachaire E (2007) Income distribution and inequality measurement: the problem of extreme

values. J Econom 141: 1044–1072

Cowell FA, Kuga K (1981) Inequality measurement: an axiomatic approach. Eur Econ Rev 15:287–305

Cowell FA, Victoria-Feser M-P (1996) Poverty measurement with contaminated data: a robust approach.

Eur Econ Rev 40: 1761–1771

Dagum C (1997) A new approach to the decomposition of the Gini income inequality ratio. Empir Econ

22:515–531

Demnati A, Rao JNK (2004) Linearization variance estimators for survey data (with discussion). Surv

Methodol 30:17–34

Deville J-C (1999) Variance estimation for complex statistics and estimators: linearization and residual

techniques. Surv Methodol 25:193–204

Deville J-C, Särndal C-E (1992) Calibration estimators in survey sampling. J Am Stat Assoc 87:376–382

Gastwirth JL (1972) The estimation of the Lorenz curve and Gini index. Rev Econ Stat 54:306–316

Greselin F, Pasquazzi L, and Zitikis R (2010) Zenga’s new index of economic inequality, its estimation,

and an analysis of incomes in Italy. J Probab Stat, ID 718905:1–26

Greselin F, Puri M, Zitikis R (2009) L-functions, processes, and statistics in measuring economic inequality

and actuarial risks. Stat Interfaces 2:227–245

Hampel FR (1974) The influence curve and its role in robust estimation. J Am Stat Assoc 69:383–393

Hampel FR, Ronchetti E, Rousseuw PJ, Stahel W (1985) Robust statistics: the approach based on the

influence function. Wiley, New York

Hulliger B, Schoch T (2009) Robustification of the quintile share ratio. In: Proceedings of the Colloque sur

les méthodes de sondage en l’honneur de Jean-Claude Deville, Neuchâtel, Switzerland

Isaki CT, Fuller WA (1982) Survey design under a regression population model. J Am Stat Assoc 77:89–96

Kovacevic MS, Binder DA (1997) Variance estimation for measures of income inequality and polariza-

tion—the estimating equations approach. J Off Stat 13:41–58

Langel M, Tillé Y (2009) An evaluation of the performance of inequality measures for the detection of

changes in an income distribution. Technical report, University of Neuchatel

123



M. Langel, Y. Tillé

Langel M, Tillé Y (2011a) Corrado Gini, a pioneer in balanced sampling and inequality theory. Metron

69:43–63

Langel M, Tillé Y (2011b) Statistical inference for the quintile share ratio. J Stat Plan Inference 141:2976–

2985

Lorenz MO (1905) Methods of measuring the concentration of wealth. Publ Am Stat Assoc 9:209–219

Maffenini W, Polisicchio M (2010) How potential is the I(p) inequality curve in the analysis of empirical

distributions. Technical report, Technical report, Universita degli Studi di Milano-Bicocca

Monti AC (1991) The study of the Gini concentration ratio by means of the influence function. Statistica

51:561–577

Polisicchio M (2008) The continuous random variable with uniform point inequality measure I(p). Statistica

e Applicazioni 6:137–151

R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation

for statistical computing, Vienna, Austria. ISBN 3-900051-07-0

Radaelli P (2008) A subgroups decomposition of Zenga’s uniformity and inequality indexes. Statistica e

Applicazioni 6:117–136

Radaelli P (2010) On the decomposition by subgroups of the Gini index and Zenga’s uniformity and

inequality indexes. Int Stat Rev 78:81–101

Woodruff RS (1971) A simple method for approximating the variance of a complicated estimate. J Am Stat

Assoc 66:411–414

Zenga M (1984) Proposta per un indice di concentrazione basato sui rapporti tra quantili di popolazione e

quantili di reddito. Giornale degli Economisti e Annali di Economia 43:301–326

Zenga M (2007) Inequality curve and inequality index based on the ratios between lower and upper

arithmetic means. Statistica e Applicazioni 4:3–27

123


	Inference by linearization for Zenga's new inequality index: a comparison with the Gini index
	Abstract
	1 Introduction
	2 The Zenga index and Zenga curve
	2.1 Definition and notation
	2.2 The Zenga index in finite population
	2.3 An estimator of the Zenga index

	3 Approximation of the variance by linearization
	3.1 Linearization by the Demnati-Rao approach
	3.2 Linearization of the Zenga index

	4 Simulation studies
	4.1 Synthetic Austrian EU-SILC data
	4.2 Taxable incomes of Canton of Neuchâtel, Switzerland

	5 Comparison with the Gini index
	5.1 Definition and properties of the Gini index
	5.2 Advantages of the Zenga index
	5.3 Influence functions and sampling distributions

	6 Conclusion
	Acknowledgments
	Appendix A: Linearization
	A.1 Linearization of Z"0362Zk for k=2,�,n-1
	A.2 Linearization of Z"0362Z1
	A.3 Linearization of Z"0362Zn
	A.4 Linearization of the Zenga index

	References


