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Abstract. Tree-structured data naturally appear in various fields, particularly in
biology where plants and blood vessels may be described by trees, but also in
computer science because XML documents form a tree structure. This paper is
devoted to the estimation of the relative scale parameter of conditioned Galton-
Watson trees. New estimators are introduced and their consistency is stated. A
comparison is made with an existing approach of the literature. A simulation study
shows the good behavior of our procedure on finite-sample sizes and from missing
or noisy data. An application to the analysis of revisions of Wikipedia articles is
also considered through real data.

1. Introduction

Many data are naturally modeled by an ordered tree structure: from blood
vessels in biology to XML files in computer science through the secondary structure
of RNA in biochemistry. The statistical analysis of a dataset of hierarchical records
is thus of great interest. In this paper, our aim is to propose new methods to
estimate the scale parameter arising in Galton-Watson trees conditioned on their
number of nodes from various statistical settings.
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A Galton-Watson tree is the genealogical tree of a population starting from one
initial ancestor (the root) in which each individual gives birth to a random number
of children according to the same probability distribution, independently of each
other. In this article, we focus on Galton-Watson trees conditional on their number
of nodes. Several main classes of random trees can be seen as conditioned Galton-
Watson trees (Devroye, 2012; Janson, 2012). For instance, an ordered tree picked
uniformly at random in the set of all ordered trees of a given size is a conditioned
Galton-Watson tree with offspring distribution the geometric law with parameter
1/2. In addition, an ordered tree picked uniformly at random in the set of d-ary
trees, i.e., trees in which each node has no more than d children, is a conditioned
Galton-Watson tree with offspring distribution the binomial law with parameter d
and 1/d. In particular, binary trees but also full binary trees (taking the uniform
law on the set {0, 2} as offspring distribution) are thus encoded by a conditioned
Galton-Watson model. Binary trees are widely used in computer science, through
binary search trees (Knuth, 1998) and Huffman coding (Knuth, 1985) commonly
used for data compression. They also appear in biology in the approximation
of phylogenetic trees (Aldous, 1996) for example. One also refers the reader to
(Janson, 2012, 10. Examples of simply generated random trees) for other examples
of conditioned Galton-Watson trees arising from random trees (that can even be
unordered and labelled). To sum up, conditioned Galton-Watson trees model a large
variety of random hierarchical structures. Developing specific statistical methods
for this stochastic model is thus of first importance.

Any ordered tree may be encoded by its Harris path which returns height of
nodes in depth-first order (see Subsection 2.2, Algorithm 1 and Figure 2.1). Aldous
(1993, Theorem 23) stated the following asymptotic property of the Harris path
H[τn] of a Galton-Watson tree τn conditioned on having n nodes,

(H[τn](2nt)√
n

, t ∈ [0, 1]

)
(d)−→

(
2

σ
et, t ∈ [0, 1]

)
, (1.1)

in the uniform topology of C([0, 1],R), when n goes to infinity whenever the off-
spring distribution is 1 on average with standard deviation σ and e denotes the
normalized Brownian excursion. This means that conditioned Galton-Watson trees
asymptotically share a common form (the so-called continuum random tree) given
by the Brownian excursion, and can be differentiated only by the scale parameter
of interest σ−1. This unknown quantity is to be estimated from only one tree or
from a forest of independent trees generated from the same birth distribution.

Estimating (functions of) σ from a forest of independent conditioned Galton-
Watson trees has only been considered in a recent paper. Bharath et al. (2017)
exploit a corollary of the weak convergence (1.1) providing the asymptotic distri-
bution of the height of a uniformly sampled node in the tree (Bharath et al., 2017,
Proposition 4) to construct estimators of the variance σ2 and develop asymptotic
tests. It should be already noticed that estimation strategies based on the conver-
gence in distribution (1.1) can only lead to weak convergence results for estimators
computed from a unique tree. The aim of the present paper is twofold. First, we
establish in Theorem 2.6 that the empirical variance of the numbers of children is
a consistent estimator of σ2 (in particular even from the observation of only one
tree), whereas, even if a Galton-Watson tree is generated from a sequence of i.i.d.
random variables, this is not the case for the conditioned structure. This new re-
sult based on a corollary of Bartlett’s formula shows that the empirical variance
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provides a better estimate of σ2 than any other statistical method based on Aldous-
theorem (1.1). Secondly, we propose two new estimation strategies for σ−1 from a
forest of independent conditioned Galton-Watson trees based on the weak conver-
gence established by Aldous and we compare them with the procedure developed
by Bharath et al. (2017).

These estimation strategies rely on the idea motivated by the weak convergence
(1.1) that, on average, the normalized Harris paths of the forest should look like
the expected process (2σ−1E(t), t ∈ [0, 1]) at least asymptotically, where E(t) =
E[e(t)]. The parameter σ−1 can thus be expressed as the solution of a least square
problem. Our first method consists in computing the least square estimator of σ−1

from the concatenation of the Harris paths of the forest. We establish two results
of convergence in Subsection 4.2. For only one Galton-Watson tree τn conditioned
on having n nodes, this estimator of σ−1 is given (see Subsection 3.1) by

λ̂[τn] =
〈H[τn](2n·), E〉

2
√
n‖E‖22

,

where 〈·, ·〉 is the scalar product of L2([0, 1],R). By virtue of the weak convergence
(1.1), one may remark (see Corollary 3.1) that

λ̂[τn]
(d)−→ σ−1Λ∞,

where Λ∞ = 〈e,E〉
‖E‖2

2
. Actually, the aforementioned least square estimator only ex-

ploits the average behavior of Λ∞ (in other words, the average asymptotic behavior
of Harris paths) and not its complete distribution. Our second strategy takes into
account the shape of the distribution of Λ∞: we estimate σ−1 by the parameter x
that aligns the theoretical distribution of xΛ∞ and the empirical measure of the

λ̂[τ ini
]’s in terms of Wasserstein distance, the considered forest being composed of

N trees τ ini
. Convergence results are stated in Subsection 4.3. We point out that

the theoretical properties of Λ∞ are far from obvious. In particular, we establish
by Malliavin calculus that Λ∞ is absolutely continuous w.r.t. the Lebesgue measure
in Proposition 3.4, which is required in some proofs.

Bharath et al. (2017) do not focus on the problem of estimating σ−1 but, for
the sake of comparison, we rely on their approach to provide another estimator of
this quantity. We compare these alternative strategies from both theoretical and
numerical points of view. In particular, we show in Subsection 3.1 that the variances
of our estimators are approximately 4 times lower than the one of the estimator
based on this competitive approach of the literature. Our results are better in
terms of dispersion because the estimators take into account all the behavior of
the tree and not only the behavior of a randomly chosen node. We also point out
that the theoretical setting of (Bharath et al., 2017) is slightly different because
investigations are directly based on infinite trees (i.e., continuum random trees,
unobservable in practice) and not on large but finite trees.

At this step, one may wonder whether an approach that only yields weak conver-
gence results is relevant considering the empirical variance is a consistent estimator
of σ2. Our idea is to explore statistical inference for trees from coding processes,
i.e., via functional data analysis. This connection has been first established in the
recent paper (Shen et al., 2014). In the present article we aim at investigating this
strategy when the data have been generated from the stochastic model of condi-
tioned Galton-Watson trees. In Subsection 5.3, we prove from simulations that our
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estimators based on the weak convergence of Harris paths provide good results even
from missing or noisy data, in particular when the empirical variance presents a
large bias or can not be computed, showing the great interest of this approach.

The application of our estimators on simulated and real data in Section 5 appears
to be a non trivial task, in particular because it requires important preliminary
computations. For this reason and to provide a turnkey solution, we have developed
a Matlab toolbox that enables users to quickly and easily apply our methods to
data. This toolbox as well as a detailed user documentation are available from the
authors upon request. The numerical experiments presented in Subsection 5.2 show
that both our estimators and the approach developed by Bharath et al. (2017) are
intrinsically biased for binary trees because of the approximation of the Harris paths
of finite trees by the average Brownian excursion. Indeed, we empirically observe
on simulation examples that Harris paths of binary trees weakly converge to the
Brownian excursion from below (see Figure 5.7). As a consequence, we introduce
a numerical correction of this negative bias, also implemented in the toolbox. The
simulation study illustrates the good behavior of the corrected estimates on finite-
sample sizes.

Visualizing the evolution of historical hierarchical data is a difficult issue in
particular because such objects have no representation in a Euclidean space. This
problem occurs in the study of the sequence of revisions of a given Wikipedia article.
Indeed, the famous free Internet encyclopedia allows its users (the Wikipedians) to
edit almost any articles. Starting from the creation of a given article, the history of
revisions is accessible and can be investigated to understand how the contributors
agree on its structure, or to automatically detect vandalism1 (Adler et al., 2011;
Mola-Velasco, 2010). IBM’s History Flow is a visualization tool for documents in
various stages of their development which has been applied to Wikipedia articles
(Viégas et al., 2004; Viegas et al., 2007). We think that our method may be a com-
plementary tool to this famous technique. Indeed the structure of HTML documents,
such as Wikipedia articles, may be encoded by an ordered tree structure (see Fig-
ure 6.19). Furthermore, all the Wikipedia webpages share the same template, i.e.,
standardized HTML/CSS files, and thus can be differentiated by their relative scale.
In Section 6, we apply our estimators to the analysis of two Wikipedia articles. We
highlight that Wikipedia articles undergo “running in’period before reaching some
kind of steady state in which the contributors had agreed on the structure of the
article. In addition, we show that our techniques may be used to detect improper
editions of an article.

The organization of the paper is as follows. Section 2 is devoted to the formu-
lation of the problem at hand: definition of conditioned Galton-Watson trees in
Subsection 2.1, definition of Harris paths in Subsection 2.2, asymptotic behavior
of Harris paths of conditioned Galton-Watson trees in Subsection 2.3. In addition,
we state in Subsection 2.4 the consistency of the empirical variance of the num-
bers of children. The two estimation procedures from Harris paths are presented
in Section 3, while Section 4 focuses on the results of convergence. Simulation
techniques for conditioned Galton-Watson trees, numerical experiments and appli-
cation to real data are presented in Sections 5 and 6. In particular, Subsection 5.3
is dedicated to the difficult context of missing or noisy data in which the empirical

1It frequently happens that malicious people willingly disrupt the content of an article, for
instance, for political or ideological reasons.
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variance performs less well than our Harris paths-based estimators or even can not
be computed.

2. Conditioned Galton-Watson trees

2.1. Definition. Trees are connected graphs with no cycles. A rooted tree τ is a
tree in which one node has been distinguished as the root, denoted by r(τ) (always
drawn at the bottom of the tree in this paper). In this case, the edges are assigned a
natural orientation, away from the root towards the leaves. One obtains a directed
rooted tree in which there exists a parent-child relationship: the parent of a node
v is the first vertex met on the path to the root starting from v. The length of this
path (in number of nodes) is called the height h(v) of v. The set c(v) of children
of a vertex v is the set of nodes that have v as parent. An ordered or plane tree is
a rooted tree in which an ordering has been specified for the set of children of each
node, conventionally drawn from left to right. In this paper we consider ordered
rooted trees simply referred to as trees. In addition, for any node v, τ [v] denotes
the subtree of τ composed of v and all of its descendants in τ .

Intuitively, a Galton-Watson tree can be seen as a tree encoding the dynamic of
a population generated from some offspring distribution µ on N. A Galton-Watson
tree τ with offspring distribution µ is a random ordered rooted tree constructed
recursively as follows.

⋄ The number of children #c(r(τ)) emanating from the root is a random
variable with law µ. The first generation consists thus in #c(r(τ)) vertices.

⋄ Assume that the nth generation of children has been constructed and con-
sists in a list of vertices Vn. Then, the generation n+1 is constructed such
that {#c(v) : v ∈ Vn} is a collection of independent random variables with
law µ.

The asymptotic behavior of Galton-Watson trees may exhibit different regimes
depending on the average number of children per capita,

µ =
∑

k≥0

kµ(k),

where µ(k) is the measure of the singleton {k} by µ.

⋄ The subcritical case: µ < 1. In this case, the average number of nodes is
finite. This means that the population goes extinct almost surely.

⋄ The critical case: µ = 1. The fact that the offspring distribution µ is critical
also ensures the almost sure finiteness of the tree, except when µ(1) = 1
where the number of nodes is almost surely infinite. When µ(1) < 1, in
contrary to the sub-critical case, the expected number of nodes is infinite.

⋄ The supercritical case: µ > 1. In this case, the number of vertices is infinite
with positive probability.

We use the notation GWn(µ) for the distribution of Galton-Watson trees with
offspring distribution µ conditioned on having n nodes.

Remark 2.1. In this paper, we will always state our results in terms of critical
Galton-Watson trees. However, this is not really a restriction since, as noted in
(Pitman, 2006, 6.3 Brownian asymptotics for conditioned Galton-Watson trees),
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0 141

Figure 2.1. Construction of the Harris path (right) from 0 to
2n = 14 as the contour of an ordered tree (left) with n = 7 nodes.

for any offspring distribution µ, there exists a critical law µ′ such that

GWn(µ)
(d)
= GWn(µ

′).

In particular, this means that the average number of children µ is not identifiable
from conditioned Galton-Watson trees without some additional assumptions on µ.

2.2. From ordered trees to Harris paths. The Harris walk H[τ ] of an ordered rooted
tree τ is defined from the depth-first search algorithm and the notion of height of
nodes already presented in Subsection 2.1. Depth-first search is an algorithm for
traversing a tree which one explores as far as possible along each branch before
backtracking. The version of the algorithm used to define the Harris walk of a tree
is presented in Algorithm 1.

Function DFS(τ , l = ∅):
Data: an ordered tree τ
Result: vertices of τ in depth-first order
add r(τ) to l
for v in c(r(τ)) do

if r(t[v]) is not in l then
call DFS (t[v],l)
add again r(τ) to l

return l

Algorithm 1: Recursive depth-first search.

Remark 2.2. In Algorithm 1, each node v appears #c(v) + 1 times. Starting from
the root of a tree τ , the result is thus a sequence of length

∑

v∈τ

(#c(v) + 1) = #τ +
∑

v∈τ

#c(v) = 2#τ − 1,

because the root is the only vertex not to be counted.

The Harris walk H[τ ] of τ is defined as a sequence of integers indexed by the set
{0, . . . , 2#τ} as follows:

⋄ H[τ ](0) = H[τ ](2#τ) = 0,
⋄ for 1 ≤ k < 2#τ , H[τ ](k) = h(v) + 1 where v is the kth node in depth-first

traversal of τ .

The Harris process is then defined as the linear interpolation of the Harris walk
(see example in Figure 2.1). Note that, as displayed in Figure 2.2, the tree can be
recovered from its Harris process such that the correspondence is one to one.
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Figure 2.2. The ordered tree of Figure 2.1 in its Harris path
(left): each vertical axis represents a node of the original structure
(right). A common picture helping to see how to recover the tree
from the contour is to imagine putting glue under the contour
and then squeezing the contour together horizontally such that
the inner parts of the contour which face each other are glued.

2.3. Asymptotic behavior of Harris paths. Let τn ∼ GWn(µ) with µ = 1. The
variance of the offspring distribution µ is denoted by σ2,

σ2 =
∑

k≥1

(k − 1)2µ(k).

We focus on the asymptotic behavior of the Harris process H[τn](2n·) when n
tends to infinity. The convergence in distribution has been stated by Aldous (1993,
Theorem 23).

Theorem 2.3. When n goes to infinity, we have
(H[τn](2nt)√

n
, t ∈ [0, 1]

)
(d)−→

(
2

σ
et, t ∈ [0, 1]

)
,

where e is a standard Brownian excursion, the convergence holding in law in the
space C([0, 1],R). An illustration of this convergence in distribution may be found
in Figure 2.3.

Let us simply recall that a standard Brownian excursion is a Brownian motion
conditioned on being positive and on taking the value 0 at time 1. The density of
et, for 0 ≤ t ≤ 1, is given in (Revuz and Yor, 1999, XI. 3. Bessel Bridges) and
writes

∀x ∈ R, fet
(x) =

√
2

π

x2

√
t(1− t)

3 exp

(
− x2

2t(1− t)

)
1R+(x).

From this, we can compute some simple functionals of the excursion. For instance,
we have,

∀ 0 ≤ t ≤ 1, Et = E[et] = 4

√
t(1− t)

2π
and E

[
e
2
t

]
= 3t(1− t). (2.1)

The easiest way to simulate a Brownian excursion is certainly from its identity in
law with a three-dimensional Bessel bridge (Revuz and Yor, 1999, Theorem XII.4.2),
which is simply the Euclidean norm of a three-dimensional Brownian bridge,

(et, t ∈ [0, 1])
(d)
=




√√√√
3∑

i=1

(
Bi

t − tBi
1

)2
, t ∈ [0, 1]


 , (2.2)
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Figure 2.3. A Galton-Watson tree conditional on having 1000
nodes generated from the geometric birth distribution with vari-
ance σ2 = 2 (top) and its Harris path (bottom).

where the Bi’s are three independent Brownian motions. The convergence pre-
sented in Theorem 2.3 also holds in expectation (Drmota and Marckert, 2005, The-
orem 1).

Theorem 2.4. When n goes to infinity, we have,

∀ 0 ≤ t ≤ 1, E

[H[τn](2nt)√
n

]
−→ 2

σ
Et,

where the function (Et, 0 ≤ t ≤ 1) has been defined in (2.1).

Remark 2.5. Theorem 2.3 establishes that, in the asymptotic regime, the shape of
a conditioned Galton-Watson tree is given by the normalized Brownian excursion,
regardless of the offspring distribution µ. However, there is one scale parameter
given by the inverse of the standard deviation of µ. As a consequence, when µ is
unknown, the only quantity of interest that one may access by asymptotic inference
from Theorem 2.3 is σ−1. From Section 3, we shall focus on the estimation of σ−1.

2.4. Empirical estimators. The purpose of this section is to study the behavior of
empirical estimators of the mean µ and of the variance σ2. These estimators are
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privileged candidates in the case of standard, i.e., unconditioned, Galton-Watson
trees. Unfortunately, the lack of independency and homogeneity in the numbers of
children of the nodes in conditioned Galton-Watson trees suggests such methods
should not work in this more complex framework.

2.4.1. Empirical mean. We begin our study with the empirical mean. Let τn be
a Galton-Watson tree with birth distribution µ conditioned on having n nodes.
Denote, for any i in {1, . . . , n}, Xi the number of children of the ith individual
indexed in depth-first order in τn. Set

M [τn] =
1

n

n∑

i=1

Xi

the empirical mean of the number of children of the individuals in τn. However, it
is easily seen that, whatever the underlying stochastic model,

M [τn] =
♯τn − 1

n
= 1− 1

n
.

As a consequence, this estimator is deterministic and always estimates 1 asymptot-
ically whatever the real mean of the birth distribution.

2.4.2. Empirical variance. This section is devoted to the study of the empirical
variance,

V [τn] =
1

n

n∑

i=1

(Xi −M [τn])
2
.

Our main result of convergence is given below.

Theorem 2.6. When n goes to infinity,

E
[∣∣V [τn]− σ2

∣∣]→ 0.

In particular, V [τn] converges to σ2 in probability.

Proof. Let (ξi)1≤i≤n be a sequence of i.i.d. random variables distributed ac-
cording to µ. Using the work of Devroye (2012, Turning to random walks), it
is known that there exists a random permutation Σ such that the random vec-
tor

(
ξΣ(1), . . . , ξΣ(n)

)
conditioned to

∑n
i=1 ξi = n − 1 is equal in distribution to

(X1, . . . , Xn). However, since the empirical estimators are invariant up to permu-
tation, it follows that we can work directly with the vector (ξ1, . . . , ξn) conditioned
to
∑n

i=1 ξi = n − 1. Consequently, our main goal is simply to prove, keeping in
mind that M [τn] = 1− 1/n, that

R(n) = E

[∣∣∣∣∣
1

n

n∑

i=1

(
ξi − 1 +

1

n

)2

− σ2

∣∣∣∣∣

∣∣∣∣∣
1

n− 1

n∑

i=1

ξi = 1

]

converges to 0 as n goes to infinity. The proof lies on the asymptotic behavior of
conditional probabilities which were obtained by Janson (2001) and allows to get
the expected convergence. Let F be a measurable and bounded real valued function.
Since ξ1/(n− 1) goes to 0 in probability as n goes to infinity, it follows, according
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to (Janson, 2001, Theorem 1) (using the alternative hypothesis of Remark 2.9 of
this paper), that the conditional expectation

E

[
F (ξ1)

∣∣∣∣∣
1

n− 1

n∑

i=1

ξi = 1

]

converges to E [F (ξ1)], as n goes to infinity. Since, µ does not have necessarily
third order moments, we need to use a truncation method. Hence, let us consider,
for any positive integer k,

R(n) = E

[∣∣∣∣∣
1

n

n∑

i=1

(
ξi1ξi>k + ξi1ξi≤k − 1 +

1

n

)2

− σ2

∣∣∣∣∣

∣∣∣∣∣
1

n− 1

n∑

i=1

ξi = 1

]
.

Now, since

(
ξi1ξi>k + ξi1ξi≤k − 1 +

1

n

)2

=

(
ξi1ξi≤k − 1 +

1

n

)2

+ (ξi1ξi>k)
2
+ 2ξi1ξi>k

(
1

n
− 1

)
,

we get

R(n) ≤ T1(n, k) + T2(n, k) + 2

(
1− 1

n

)
T3(n, k),

where

T1(n, k) = E

[∣∣∣∣∣
1

n

n∑

i=1

(
ξi1ξi≤k − 1 +

1

n

)2

− σ2

∣∣∣∣∣

∣∣∣∣∣
1

n− 1

n∑

i=1

ξi = 1

]
,

T2(n, k) = E

[∣∣∣∣∣
1

n

n∑

i=1

(ξi1ξi>k)
2

∣∣∣∣∣

∣∣∣∣∣
1

n− 1

n∑

i=1

ξi = 1

]
,

T3(n, k) = E

[∣∣∣∣∣
1

n

n∑

i=1

ξi1ξi>k

∣∣∣∣∣

∣∣∣∣∣
1

n− 1

n∑

i=1

ξi = 1

]
.

In order to treat T1(n, k), we consider

Q(n, k) = E



(
1

n

n∑

i=1

(
ξi1ξi≤k − 1 +

1

n

)2

− σ2

)2 ∣∣∣∣∣
1

n− 1

n∑

i=1

ξi = 1


 .

We have

Q(n, k) =
1

n2

∑

1≤i,j≤n

E

[((
ξi1ξi≤k − 1 +

1

n

)2

− σ2

)

×
((

ξj1ξj≤k − 1 +
1

n

)2

− σ2

)∣∣∣∣∣
1

n− 1

n∑

i=1

ξi = 1

]
.
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Using the exchangeability of the vector (ξ1, . . . , ξn) under P (· |∑n
i=1 ξi = n− 1),

we get

Q(n, k) =
1

n
E



((

ξ11ξ1≤k − 1 +
1

n

)2

− σ2

)2 ∣∣∣∣∣
1

n− 1

n∑

i=1

ξi = 1




+
n(n− 1)

n2
E

[((
ξ11ξ1≤k − 1 +

1

n

)2

− σ2

)

×
((

ξ21ξ2≤k − 1 +
1

n

)2

− σ2

)∣∣∣∣∣
1

n− 1

n∑

i=1

ξi = 1

]
.

Then, (Janson, 2001, Theorem 1) allows to understand the asymptotic behavior of
both terms in the above sum,

lim
n→∞

E



((

ξ11ξ1≤k − 1 +
1

n

)2

− σ2

)2 ∣∣∣∣∣
1

n− 1

n∑

i=1

ξi = 1




= E

[(
(ξ11ξ1≤k − 1)

2 − σ2
)2]

> 0,

and

E

[((
ξ11ξ1≤k − 1 +

1

n

)2

− σ2

)((
ξ21ξ2≤k − 1 +

1

n

)2

− σ2

)∣∣∣∣∣
1

n− 1

n∑

i=1

ξi = 1

]

goes, as n tends to infinity, to

E

[(
(ξ11ξ1≤k − 1)

2 − σ2
)(

(ξ21ξ2≤k − 1)
2 − σ2

)]

=
(
E

[
(ξ11ξ1≤k − 1)

2
]
− σ2

)2
→ 0,

when k goes to infinity. Hence, we get, for any positive integer k,

lim
n→∞

Q(n, k) =
(
E

[
(ξ11ξ1≤k − 1)

2
]
− σ2

)2
, (2.3)

without any assumption on the moments of µ because of the truncation ξ11ξ1≤k.

First, the Cauchy-Schwarz inequality entails T1(n, k) ≤
√
Q(n, k), which gives,

according to (2.3),

lim sup
n→∞

T1(n, k) ≤
∣∣∣E
[
(ξ11ξ1≤k − 1)

2
]
− σ2

∣∣∣ .

In addition, we have according to (Janson, 2001, Theorem 1),

lim sup
n→∞

T2(n, k) ≤ lim sup
n→∞

E

[
(ξi1ξi>k)

2

∣∣∣∣∣
1

n− 1

n∑

i=1

ξi = 1

]
= E

[
(ξi1ξi>k)

2
]
.

The case of T3(n, k) can be treated similarly and leads to

lim sup
n→∞

R(n) ≤
∣∣∣E
[
(ξ11ξ1≤k − 1)

2
]
− σ2

∣∣∣+E

[
(ξ11ξ1>k)

2
]
+ 2E [|ξ11ξ1>k|] .

Now, letting k going to infinity leads to the result. ✷
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3. Estimation procedure

In the previous part, we have shown that the empirical variance is a consis-
tent estimator of σ2 in critical conditioned Galton-Watson trees despite the lack of
independency in the numbers of children. In this section, we aim at developing esti-
mation procedures for σ2 that exploit the weak convergence towards the Brownian
excursion stated by Aldous and presented in Theorem 2.3.

3.1. Adequacy of the Harris path with the expected contour. Let τn ∼ GWn(µ)
with µ = 1. We assume that the offspring distribution µ is unknown. By virtue
of Theorem 2.4, the asymptotic average behavior of the normalized Harris process
(n−1/2H[τn](2nt), 0 ≤ t ≤ 1) is given by (2σ−1Et, 0 ≤ t ≤ 1), where σ−1 is
obviously also unknown. We propose to estimate σ−1 by minimizing the L

2-error
defined by

λ 7→
∥∥∥∥
H[τn](2n·)√

n
− 2λE

∥∥∥∥
2

2

,

where, and in all the sequel, L2 = L
2([0, 1],R) and its usual norm is denoted ‖ · ‖2

for the sake of readability. The solution of this least square problem is well-known
and is given by

λ̂[τn] =
〈H[τn](2n·), E〉

2
√
n‖E‖22

, (3.1)

where 〈·, ·〉 is the scalar product of L2.

Corollary 3.1. When n goes to infinity, we have

λ̂[τn]
(d)−→ σ−1Λ∞,

where the random variable Λ∞ is defined by

Λ∞ =
〈e, E〉
‖E‖22

. (3.2)

Proof. The result directly follows from Theorem 2.3 because the functional
x 7→ 〈x,E〉 is continuous on C([0, 1],R). ✷

Remark 3.2. The convergence in distribution stated in Corollary 3.1 seems quite

unsatisfactory because this means that λ̂[τn] is not a consistent estimator of σ−1 and
the least square strategy thus seems like inadequate in regards to the consistency of
V [τn]. In the sequel, we shall focus on the estimation of the parameter of interest
σ−1 from a forest of conditioned Galton-Watson trees as in (Bharath et al., 2017),
only chance to get consistent estimates from Aldoustheorem. As mentioned in the
introduction, our goal in this paper is to explore statistical inference for trees via
functional data analysis of their Harris paths.

Computing λ̂[τn] is a first step in the estimation of the inverse standard deviation
from a large number of conditioned Galton-Watson trees. As a consequence, the
distribution of the limit variable Λ∞ is of first importance.

Lemma 3.3. For any 0 ≤ t < u ≤ 1, we have

E[eteu] =
2

π

[
3
√

t(u− t)(1− u) + (2t(1− u) + u(1− t)) arcsin

(√
t(1− u)

u(1− t)

)]
.
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Proof. This identity is derived from the joint density of (et, eu) given in (Revuz
and Yor, 1999, XI. 3. Bessel Bridges). The density of (et, eu) for 0 ≤ t < u ≤ 1 is
given, for any positive numbers x and y, by

ft,u(x, y)

=
2xy

π
√

(u− t)t3(1− u)3
sinh

(
xy

u− t

)
exp

(
− x2u

2t(u− t)

)
exp

(
− y2(1− t)

2(1− u)(u− t)

)
.

Thus,

E[eteu]

=

∫ ∞

0

∫ ∞

0

2

π

x2y2 sinh
(

xy
u−t

)

√
(u− t)t3(1− u)3

exp

(
− x2u

2t(u− t)

)
exp

(
− y2(1− t)

2(1− u)(u− t)

)
dxdy.

At this point, one can use the power series of sinh to separate the variables x and
y and obtain

E[eteu] =
2

π

√
(u− t)5√
u3(1− t)3

∞∑

k=0

4k+1((k + 1)!)2

(2k + 1)!

(√
t(1− u)

u(1− t)

)2k+1

.

Note that when 0 ≤ t < u ≤ 1 we have indeed
√

t(1−u)
u(1−t) < 1. Then, using

∞∑

k=0

4k+1((k + 1)!)2

(2k + 1)!
x2k+1 =

3x
√
1− x2 + (2x2 + 1) arcsin(x)√

(1− x2)5
,

we obtain the desired expression for E[eteu]. ✷

Proposition 3.4. The random variable Λ∞ admits a density fΛ∞
w.r.t. the

Lebesgue measure. Furthermore,

E[Λ∞] = 1 and Var(Λ∞) =
1

‖E‖42

∫ 1

0

∫ 1

0

g(s, u)Es Eu ds du − 1, (3.3)

where the mapping g : [0, 1]2 → R+ is defined from

g(t, u) =
2

π

[
3
√
t(u− t)(1− u) + (2t(1− u) + u(1− t)) arcsin

(√
t(1− u)

u(1− t)

)]

if 0 ≤ t ≤ u ≤ 1 and g(t, u) = g(u, t) otherwise.

Proof. We consider the probability space (C([0, 1],R3),F ,W), where C([0, 1],R3)
is endowed with the uniform topology, F is the corresponding Borel σ-field and W

is the Wiener measure. Let T be the continuous linear operator defined by

T : C([0, 1],R3) → C([0, 1],R3),
ϕ 7→ (Tϕ(s) = ϕ(s)− sϕ(1)) .

Let also Γ be the following function,

Γ : ϕ 7→
∫ 1

0

|ϕ(s)|2
Es

‖E‖22
ds.

where |x|2 denotes the Euclidian norm on R
3. With these notations and (2.2), we

have that the pushforward measure of W through the application

F : ϕ 7→ Γ(Tϕ),
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is the law of Λ∞. In other words, the random variable F is equal in distribution

to Λ∞. Now for every ϕ in C([0, 1],R3) such that Leb
(
{t ∈ R+ : ϕ(t) = 0}

)
= 0,

we have that Γ is Fréchet differentiable at the point ϕ. Moreover, the derivative at
such point ϕ is given by

DϕΓ : C([0, 1],R3) → R,

h 7→
∫ 1

0
(ϕ(s),h(s))

|ϕ(s)|2
Es

‖E‖2
2
ds,

where (·, ·) denotes the Euclidean scalar product on R
3. Indeed, some straightfor-

ward manipulations give
∫ 1

0

[
|ϕ(s)+h(s)|2 − |ϕ(s)|2−

(ϕ(s), h(s))

|ϕ(s)|2

]
Es

‖E‖22
ds

=

∫ 1

0



|h(s)|22 + (ϕ(s), h(s))

(
1− |ϕ(s)+h(s)|2

|ϕ(s)|2

)

|ϕ(s) + h(s)|2 + |ϕ(s)|2


 Es

‖E‖22
ds.

Now, since Es

‖E‖2
2
≤ 3

√
π

2
√
2

and using the Cauchy-Schwarz inequality, we obtain

∣∣∣∣∣

∫ 1

0

[
|ϕ(s) + h(s)|2 − |ϕ(s)|2 −

(ϕ(s), h(s))

|ϕ(s)|2

]
Es

‖E‖22
ds

∣∣∣∣∣

≤ 3
√
π

2
√
2

∫ 1

0




|h(s)|22 + |h(s)|2
∣∣∣∣∣|ϕ(s)|2 − |ϕ(s) + h(s)|2

∣∣∣∣∣
|ϕ(s) + h(s)|2 + |ϕ(s)|2



ds

≤ 3
√
π

2
√
2
‖h‖∞

∫ 1

0



|h(s)|2 +

∣∣∣∣|ϕ(s)|2 − |ϕ(s) + h(s)|2
∣∣∣∣

|ϕ(s) + h(s)|2 + |ϕ(s)|2


 ds,

with ‖h‖∞ = sups∈[0,1] |h(s)|2. Since

∫ 1

0



|h(s)|2 +

∣∣∣∣|ϕ(s)|2 − |ϕ(s) + h(s)|2
∣∣∣∣

|ϕ(s) + h(s)|2 + |ϕ(s)|2


 ds

is well-defined (because the integrand is bounded by 2) and goes to zero as ‖h‖∞
goes to zero, this proves that DϕΓ is the Fréchet derivative of Γ at point ϕ. The
functional T being linear, F is also Fréchet differentiable with Fréchet derivative
given by

DϕF : (C([0, 1],R3) → R,

h 7→
∫ 1

0
(Tϕ(s),Th(s))

|Tϕ(s)|2
Es

‖E‖2
2
ds.

Moreover, let h be an element of L2([0, 1],R3), we have, since ‖E‖22 = 4
3π ,

∣∣∣∣F
(
ω +

∫ ·

0

h(s)ds

)
− F (ω)

∣∣∣∣ ≤
3π

4

∫ 1

0

{∣∣∣∣
∫ t

0

h(s)ds

∣∣∣∣
2

+ t

∣∣∣∣
∫ 1

0

h(s)ds

∣∣∣∣
2

}
Et dt.
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But in the right hand side of the last inequality, we have, using Jensen’s inequality,

∫ 1

0





√√√√
3∑

i=1

(∫ t

0

hi(s)ds

)2

+ t

√√√√
3∑

i=1

(∫ 1

0

hi(s)ds

)2


Et dt

≤
∫ 1

0

√√√√
3∑

i=1

(∫ 1

0

hi(s)2ds

)
(1 + t)Et dt

=

∫ 1

0

‖h‖L2([0,1],R3)(1 + t)Et dt.

From this, using the results of Nualart (2006, p. 35), we have that F belongs to
the space D

1,2, which is the domain of the Malliavin operator D in L
2([0, 1],R3)

(see Nualart, 2006, pp. 25–27 for more details). Before going further let us re-
call some facts on Malliavin derivative. When working with the probability space
(C([0, 1],R3),F ,W), it is known (Nualart, 2006, 1.2.1 The derivative operator
in the white noise case) that there exist strong connections between Malliavin
derivative and Fréchet derivative for a random variable G of D

1,2 defined from
(C([0, 1],R3),F ,W) to R. Since, the Fréchet derivative DωG at point ω of G is
a continuous linear form from C([0, 1],R3) into R, it can be identified to a triple
(µω

1 , µ
ω
2 , µ

ω
3 ) of σ-finite measures on R such that,

∀h ∈ C([0, 1],R3), DϕGh =

3∑

i=1

∫

[0,1]

hi(s) µω
i (ds).

In such a case, the Malliavin derivative of G is the random process belonging to
L
2([0, 1],R3) given by

{
(µω

1 (u, 1], µ
ω
2 (u, 1], µ

ω
3 (u, 1]) : u ∈ [0, 1]

}
.

In our case, it follows that the Malliavin derivative of F is given by

DF (ω) =

(∫ 1

0

(ωs − sω1)Es

|ωs − sω1|2‖E‖22
(1s>u − s)ds, u ∈ [0, 1]

)
∈ L

2([0, 1],R3).

Now, since DF is not zero in L
2([0, 1],R3) for W-almost every ω, we get, together

with (Nualart, 2006, Theorem 2.1.2), the existence of a density for F w.r.t. the
Lebesgue measure. The calculation of the variance is derived from the expectation
of etes, (s, t) ∈ [0, 1]2, stated in Lemma 3.3. ✷

Remark 3.5. The existence of a density was already known for the random vari-

able
∫ 1

0
esds (Louchard, 1984; Louchard and Janson, 2007) but to the best of our

knowledge no paper investigates the existence of a density for Λ∞. In these papers
the study is performed thanks to the analysis of the double Laplace transform

λ 7→
∫ ∞

0

exp(−λt)E

[
exp

(
−t

∫ 1

0

esds

)]
dt.

Thanks to the Feynman-Kac formula, the authors express this quantity in terms of
Airy functions. Then, they take the inverse of the Laplace transform via analytical
methods. Unfortunately, their method does not extend to our case. Indeed, in
their case, an expression of the double Laplace transform given above is derived
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from the Feynman-Kac formula for standard Brownian motion which tells us that
the function

u(t, x) = Ex

[
f(Bt) exp

(∫ t

0

Bsds

)]
, ∀ (t, x) ∈ R+ ×R,

is solution of the partial differential equation
{

∂tu(t, x) =
1
2∆u(t, x) + xu(t, x) ∀x ∈ R, t ∈ R+,

u(0, x) = f(x) ∀x ∈ R.

In this case, taking the Laplace transform in time of u leads to an ordinary differ-
ential equation whose solution can be expressed in terms of Airy functions (Janson,
2007). In our problem, this partial differential equation becomes inhomogeneous in
time which prevents us to use this Laplace transform. As a consequence, we think
that one can not obtain information by this method. This is why we have estab-
lished that Λ∞ admits a density using Malliavin calculus and the representation of
the Brownian excursion as a three-dimensional Bessel bridge (2.2).

Of course, λ̂[τn] is not a consistent estimator of σ−1 but it should be noted that
its weak limit is unbiased by (3.3) and Corollary 3.1. The expression (3.3) of the
variance of Λ∞ is an explicit but quite intractable formula. Nevertheless, it may be
at least evaluated numerically to compute the variance of Λ∞. Otherwise, we can
also use Monte Carlo simulations to produce a sample with the same law as Λ∞ to
achieve this task. Both methods lead to

Var(Λ∞) ≃ 0.0690785.

At this point, it is quite interesting to compare our approach to the one developed
by Bharath et al. (2017). They construct estimators for the variance of the offspring
distribution of a forest of conditioned critical Galton-Watson trees. Their strategy
relies on the distance to the root of a uniformly sampled node v of the considered
tree τn ∼ GWn(µ),

δ[τn] =
h(v)√

n
. (3.4)

Using Theorem 2.3, it has been shown that δ[τn] converges in law, when the number
of nodes n goes to infinity, towards σ−1∆∞ where the random variable ∆∞ follows
the Rayleigh distribution with scale 1 (Bharath et al., 2017, Proposition 4) with
density,

∀x ∈ R+, f∆∞
(x) = x exp

(
−1

2
x2

)
.

We emphasize that δ[τn] is somehow biased because E[∆∞] =
√

π
2 6= 1. Neverthe-

less, one may avoid this issue by considering the quantity

δ̂[τn] =

√
2

π
δ[τn] (3.5)

that converges to σ−1
√

2
π∆∞ which is σ−1 on average. As a consequence, λ̂[τn]

and δ̂[τn] are two quantities directly computable from the tree τn and that may be
used to construct an estimator of the inverse standard deviation of interest. We
propose to compare them from their respective asymptotic dispersion which should
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be as small as possible in order to get an accurate estimator. A first comparison

may be done by computing the variances of Λ∞ and
√

2
π∆∞. One has

Var

(√
2

π
∆∞

)
≃ 0.2732395 and Var(Λ∞) ≃ 0.0690785.

This difference in the dispersions is quite apparent in Figure 3.4 where the densities

of
√

2
π∆∞ and Λ∞ have been displayed. Consequently, one may expect better

results in terms of dispersion from our approach.
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Figure 3.4. Densities of
√

2
π∆∞ (full line) where ∆∞ follows

the Rayleigh distribution given by f(x) = π
2x exp

(
−πx2

4

)
for x ∈

R+ and of Λ∞ (dashed line) estimated from 1 000 000 simulated
Brownian excursions.

3.2. Interpretation in functional principal component analysis. On the suggestion of
a reviewer, we performed a functional principal component analysis (FPCA) from
normalized Harris paths of large conditioned Galton-Watson trees with different
values of σ. We refer the reader to (Jones and Rice, 1992) and the references
therein for explanations on this statistical tool and to Subsection 5.1 for simulation
methods. The FPCA has been carried out with function FPCA from the R package
fdapace. The results are presented in Figure 3.5.

These numerical experiments show that the first eigenfunction is very close to
the average Brownian excursion (see Figure 3.5 (bottom right)). As a consequence,

λ̂[τ ] can be interpreted as the first eigenvalue in FPCA of the normalized Harris
path of τ . The first eigenspace expresses approximately 70% of the total dataset
inertia. For the sake of comparison, the second eigenspace gets only 7% of the
inertia. In addition, one can see on Figure 3.5 (top left, top right and bottom
left) that only the first dimension of FPCA captures information on the value of σ.

These results highlight that λ̂[τ ] is a relevant quantity in our estimation problem
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as well as one can not expect more significant information from the projection on
the other eigenspaces.

Alternative functionals of the Brownian excursion can be investigated in order to
develop statistical methods for conditioned Galton-Watson trees. For instance, the
vector of peaks and valleys at random (Derrida et al., 2004) or fixed (Pitman, 1999)
times could be considered. If the distribution of such objects is simple enough, this
could enable the use of maximum likelihood methods. However, as shown above,

the functional λ̂[τ ] considered in our work seems to be one of the best in our setting
in terms of quantity of information.
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Figure 3.5. FPCA performed from 600 large conditioned Galton-
Watson trees with different standard deviations: from dark to
bright gray, σ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 0.95}. Coefficients of pro-
jection on the three first eigenfunctions (top left, top right and
bottom left) and first eigenfunction (full line, bottom right) com-
pared to the average Brownian excursion (dashed line).

3.3. Estimation strategies. In this section, we give details on two ideas in order to
estimate σ−1 from a forest of conditioned Galton-Watson trees. A forest is defined
as a tuple of trees. Let N be a positive integer. In this section, we consider a forest
F made of N independent trees τ1, . . . , τN with respective sizes n1, . . . , nN and
respective laws GWn1

(µ), . . . ,GWnN
(µ).

3.3.1. Least square estimation. This first strategy lies on the goodness of fit between
the Harris path of the forest with the expected limiting contour. This adequacy is
measured thanks to an L

2([0, N ],R)-norm. More precisely, we denote (H[F ](t), t ∈
[0, N ]) the Harris path of the forest F . This process is defined by

∀ 0 ≤ t ≤ N, H[F ](t) =

N∑

i=1

1√
ni

H[τ i](2ni(t− i+ 1))1[i−1,i)(t).
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The Harris path of a forest is simply the concatenation of the Harris paths of each

tree, in the natural order. We propose to estimate σ−1 by λ̂ls[F ] that minimizes
the L

2([0, N ],R)-error

λ 7→ ‖H[F ](·)− λH(· − ⌊·⌋)‖2
L2([0,N ],R),

the function H(· − ⌊·⌋) mapping x ∈ [0, N ] to H(x − ⌊x⌋). As aforementioned in

(3.1), λ̂ls[F ] can be explicitly computed. Indeed, one can check that

λ̂ls[F ] =
〈H[F ](·), H(· − ⌊·⌋)〉

‖H(· − ⌊·⌋)‖22
.

We remark that λ̂ls[F ] is only the average of the quantities λ̂[τ i] (defined in (3.1)),

λ̂ls[F ] =
1

N

N∑

i=1

λ̂[τ i].

Thus, according to Theorems 2.4 and 3.1, one can expect that λ̂ls[F ] tends to σ−1

in some sense, when both N and ni go to infinity, by virtue of the law of large
numbers.

3.3.2. Estimation by minimal Wasserstein distance. In the preceding method, we
did not use our knowledge of the limiting distribution of the random variable of
type λ[τn]. In order to take this into account, one may want to test the goodness

of fit between the empirical measure P̂ defined by

P̂ =
1

N

N∑

i=1

δλ̂[τ i] (3.6)

and the the law of Λ∞. Using Wasserstein metrics to align distributions is rather
natural since it corresponds to the transportation cost between two probability
laws. In particular, this feature appears to be useful in a statistical framework

(Munk and Czado, 1998; Gallón et al., 2013). In our case, P̂ is expected to be
close in terms of Wasserstein distance to σ−1Λ∞ in the asymptotic regime of an
infinite forest of infinite trees. That is why, we propose to estimate σ−1 with the

real number λ which minimizes the distance between P̂ and λΛ∞. More precisely,

our estimator λ̂W [F ] is defined by

λ̂W [F ] = argmin
λ>0

dW

(
P̂ , PλΛ∞

)
,

where dW denotes the Wasserstein distance of order 2 and PλΛ∞
denotes the law

of λΛ∞.
The Wasserstein distance of order 2, denoted dW (ν1, ν2), between two probability

measures ν1 and ν2 on R can be defined from their cumulative distribution functions
F1 and F2 as follows,

dW (ν1, ν2) = ‖F−1
1 − F−1

2 ‖2. (3.7)

Let F̂ be the cumulative function of the empirical measure P̂, while FλΛ∞
stands

for the cumulative function of the random variable λΛ∞. As a consequence of (3.7),
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one has

dW

(
1

N

N∑

i=1

δλ̂[τ i] , PλΛ∞

)2

=

∫ 1

0

(
F̂−1(s)− F−1

λΛ∞

(s)
)2

ds

=

∫ 1

0

(
F̂−1(s)− λF−1

Λ∞

(s)
)2

ds,

thanks to the fact that F−1
λΛ∞

= λF−1
Λ∞

. It follows that minimizing the Wasserstein
distance boils down to solving a least square minimization problem. Hence, it comes
that

λ̂W [F ] =
〈F̂−1, F−1

Λ∞

〉
‖F−1

Λ∞

‖22

=
1

‖F−1
Λ∞

‖22

N∑

i=1

λ̂[τ (i)]

∫ i
N

i−1
N

F−1
Λ∞

(s)ds, (3.8)

where (λ̂[τ (i)])1≤i≤N denotes the order statistic associated with the family

(λ̂[τ i])1≤i≤N .

Remark 3.6. We point out the fact that there is no problem of definition in the

above quantities because both F̂−1 and F−1
Λ∞

belong to L
2. In the first case, this

follows from the fact that F̂−1 is bounded (because P̂ has compact support). For
F−1
Λ∞

, this comes from the uniform sampling principle which entails that
∫ 1

0

F−1
Λ∞

(u)2 du = E[Λ2
∞].

Remark 3.7. The proposed methodology consists in identifying the best parameter

λ that allows to align the distributions P̂ and PλΛ∞
. The Wasserstein distance is

well-adapted to this problem because it is computed from the inverse cumulative
distribution functions together with the fact that F−1

λΛ∞

= λF−1
Λ∞

. As a consequence,

one may get the optimal parameter λ̂W [F ] from only a numerical estimate of F−1
Λ∞

.
The same trick does not hold for the maximum likelihood method: one can not
express the likelihood of λΛ∞ as a function of the two variables λ and fΛ∞

. Thus
this alternative method is not adequate without an explicit formula for fΛ∞

, which
seems to be out of our reach.

4. Main results

4.1. Increasing sequences of random forests. Before going further, the statistical
framework needs to be precisely formulated. In the sequel, the set of integer se-
quences is denoted by S. For any positive real number A, we denote by SA the
subset of S defined by

SA =

{
u ∈ S : min

i≥1
ui ≥ A

}
.

In addition, for any sequence u in S and any positive integer N , ~uN is the multi-
integer made of the N first components of u, that is

~uN = (u1, . . . , uN ) .
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Now, let us introduce our probabilistic framework. Let (τkn)n,k≥1 be a family of
independent conditioned Galton-Watson trees such that, for a given n, the family
(τkn)k≥1 is i.i.d. GWn(µ). From this family, we define, for any multi-integer ~uN =
(u1, . . . , uN ), the random forest F~uN

made of the trees (τ1u1
, . . . , τNuN

).
The idea of this construction is to consider increasing (in the sense of inclusion)

sequences of random forests. Indeed, assume we are given a sequence (un)n≥1 of
integers (corresponding with the sizes of our trees), then the N first trees of the
forest F~uN+1

are the same as the trees of the forest F~uN
.

We point out that the hypothesis of independence may be thought to be too
strong in some applications. Exchangeability is a weaker assumption that could be
considered. In such a statistical setting, the reference (Haulk, 2011) is particularly
relevant.

4.2. Least square estimation. This first result focuses on the large trees regime and
gives the asymptotic unbiasedness of the least square estimator in this regime.

Proposition 4.1. The least square estimator is asymptotically unbiased in the large
trees regime, that is

∀ ǫ > 0, ∃A ∈ N, ∀u ∈ SA, ∀N ∈ N

∣∣∣E
[
λ̂ls[F~uN

]
]
− σ−1

∣∣∣ < ǫ.

This means that the expectation of the least square estimator converges to σ−1 as
the sizes of the trees increase.

Proof. Since the family (τ iui
)1≤i≤N is made of independent random variables, its

follows from Theorem 2.4 and the definition (3.1) of λ̂[τni
] that the proof of this

last statement boils down to proving that, when n goes to infinity,

∫ 1

0

E

[H[τn](2ns)√
n

]
Es ds −→ 2

σ

∫ 1

0

E2
s ds,

where τn is some tree with law GWn(µ). It is known from (Drmota and Marckert,
2005, Lemma 4) that, for any positive integer n and real number 0 < t < 1,

∀x ∈ R+, P

(H[τn](2nt)√
n

> x

)
≤ C

t
exp

(−Dx√
t

)
. (4.1)

From this last estimate, one can easily show that E
[
H[τn](2n·)√

n

]
is uniformly bounded

(w.r.t. n) by an integrable function. Finally, the result follows from Theorem 2.4
and the dominated convergence theorem. ✷

The spirit of the following result is that, given an increasing sequence of random
forests, the least square estimator can not be too far from σ−1 as soon as the sizes
of the trees are large enough. In particular, due to the weakness of the convergence
of conditioned Galton-Watson trees given in Theorem 2.4, one can not expect a
stronger result of convergence.

Proposition 4.2. We have,

∀ ǫ > 0, ∃A ∈ N, ∀u ∈ SA, P

(
lim sup
N→∞

∣∣∣λ̂ls[F~uN
]− σ−1

∣∣∣ < ǫ

)
= 1.
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Proof. We begin the proof by showing that the family (λ̂[τkn ])n,k≥1 has uniformly
bounded fourth moments. By Jensen’s inequality, there exists a positive constant
c such that

E

[(
λ̂[τ in]

)4]
≤ c

∫ 1

0

E

[(H[τ in](2ns)√
n

)4
]
ds

= 4c

∫ 1

0

∫

R+

x3
P

(H[τ in](2ns)√
n

> x

)
dx ds. (4.2)

Finally, using again equation (4.1) gives the desired bound,

E

[
λ̂[τ in]

4
]
≤ 12 cC

D4
. (4.3)

From this point we consider a sequence u of integers. This sequence corresponds to
the sizes of the trees in our increasing sequence of random forests (F~uN

)N≥1. We
recall according to the definitions given in the beginning of this section that the
random forest F~uN

is composed of the trees (τ1u1
, . . . , τNuN

).

Let mi
ui

be the expectation of λ̂[τ iui
]. It is worth noting that this expectation

depends only on the integer ui. Now, using the uniform bound on the fourth
moment (4.3), Markov’s inequality applied to the fourth power of

1

N

N∑

i=1

(
λ̂[τ iui

]−mi
ui

)

gives the convergence in probability of the above sum to zero at rate N−2 which
implies, in light of the Borel-Cantelli lemma, that

1

N

N∑

i=1

(
λ̂[τ iui

]−mi
ui

)
a.s.−−→ 0, (4.4)

when N goes to infinity. Moreover, using Theorem 2.4, we have that mi
ui

converges

to σ−1 as ui goes to infinity, from which it follows that for any ǫ > 0, there exists
an integer A such that ∣∣mi

ui
− σ−1

∣∣ < ǫ, (4.5)

whenever ui > A. Finally, letting all the ui’s be greater than A, we have that there
exists a measurable set Ωu , with mass 1, such that, using (4.4) and (4.5), for all ω
in this set,

lim sup
N→∞

∣∣∣∣∣
1

N

N∑

i=1

λ̂[τ iui
](ω)− σ−1

∣∣∣∣∣

≤ lim sup
N→∞

1

N

∣∣∣∣∣

N∑

i=1

λ̂[τ iui
](ω)−mi

ui

∣∣∣∣∣+ lim sup
N→∞

1

N

N∑

i=1

∣∣mi
ui

− σ−1
∣∣ ≤ ǫ,

which establishes the expected convergence. ✷

Remark 4.3. According to the proof of the preceding theorem, it would be very
interesting to control the rate of convergence in Theorem 2.4. Indeed, this would
enable us to get a control of the error in the convergence stated in Proposition 4.2
given in terms of the smallest tree in the increasing sequence of random forests.
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Remark 4.4. Let us point out that equation (4.1) gives the exponential decay of
the tail distribution of n−1/2H[τn](2nt) uniformly w.r.t. n. In particular, one can
apply the method used in equation (4.2) to obtain uniform (w.r.t. n) bounds like

E

[
λ̂[τn]

k
]
≤ (k − 1)! cC

Dk
,

for any positive integer k and some positive constant c.

4.3. Estimation by minimal Wasserstein distance. As in the preceding section, we
begin by looking at the asymptotic bias of the considered estimator.

Proposition 4.5. The Wasserstein estimator is asymptotically unbiased in the
large trees and large forests regime. That is,

∀ ǫ > 0, ∃ (N, A) ∈ N
2, ∀u ∈ SA, ∀N ≥ N,

∣∣∣E
[
λ̂W [F~uN

]
]
− σ−1

∣∣∣ < ǫ.

Proof. Let u in S and N in N. Let (Λ∞,i)i≥1 be an i.i.d. sequence of random
variables with the same distribution as Λ∞. The first step of the proof is to show
that

η~uN
=

∣∣∣∣∣E
[
λ̂W [F~uN

]− 1

σ‖F−1
Λ∞

‖22

N∑

i=1

E
[
Λ∞,(i)

] ∫ i
N

i−1
N

F−1
Λ∞

(s)ds

]∣∣∣∣∣

converges to 0 as min(~uN ) goes to infinity uniformly w.r.t. N , where the order
statistic in the above formula has to be understood w.r.t. the random vector
(Λ∞,1, . . . ,Λ∞,N ). The convergence easily follows from the results of Drmota and
Marckert (2005). However, getting it uniformly w.r.t. N requires to give some new
insights. To this end let (Ui)i≥1 be a sequence of i.i.d. random variables with uni-
form distribution on [0, 1]. Denote, for any positive integer n, F−1

n the right inverse

of the cumulative distribution function associated to the random variable λ̂[τ1n]. Ac-
cording to the right inverse principle, the random vector (F−1

ui
(Ui))1≤i≤N is equal

in distribution to (λ̂[τ iui
])1≤i≤N and the vector (F−1

Λ∞

(Ui))1≤i≤N is a vector of i.i.d.
random variables with the same distribution as Λ∞. At this point, let us highlight

that the sequences (λ̂[τ in])n≥1 and (F−1
n (Ui))n≥1 do not have the same distribution

since the first one is made of independent random variables whereas this is clearly
not the case for the second one. However, this feature is not important since, in the
above formula, we only look at averaged behaviors. First note that, by definition
of the Wasserstein estimator and the right inverse sampling principle, we have

η~uN
=

1

σ‖F−1
Λ∞

‖22

∣∣∣∣
∫ 1

0

F−1
Λ∞

(s)E
[
Ĝ−1

~uN
(s)− Ĥ−1

N (s)
]
ds

∣∣∣∣ , (4.6)

where Ĝ−1
~uN

and Ĥ−1
N denote the inverse distribution functions of the empirical mea-

sures respectively associated to the vectors (F−1
ui

(Ui))1≤i≤N and (F−1
Λ∞

(Ui))1≤i≤N .
Now, the Cauchy-Schwartz inequality entails that

∣∣∣∣
∫ 1

0

F−1
Λ∞

(s)E
[
Ĝ−1

~uN
(s)− Ĥ−1

N (s)
]
ds

∣∣∣∣ ≤ ‖F−1
Λ∞

‖2

√∫ 1

0

E

[
Ĝ−1

~uN
(s)− Ĥ−1

N (s)
]2

ds.



584 R. Azaïs, A. Genadot and B. Henry

By the definition of the inverse distribution function, we get

∫ 1

0

E

[
Ĝ−1

~uN
(s)− Ĥ−1

N (s)
]2

ds

=

∫ 1

0

(
N∑

i=1

1[ i−1
N

, i
N )(s)E

[
F−1
u(i)

(U(i))− F−1
Λ∞

(U(i))
])2

ds,

where (F−1
n(i)

(U(i)))1≤i≤N and (F−1
Λ∞

(U(i)))1≤i≤N denote the order statistics respec-

tively associated with the vectors (F−1
ni

(Ui))1≤i≤N and (F−1
Λ∞

(Ui))1≤i≤N . Using two
times Jensen’s inequality leads to

∫ 1

0

E

[
Ĝ−1

~uN
(s)− Ĥ−1

N (s)
]2

ds ≤ 1

N

N∑

i=1

E

[∣∣∣F−1
n(i)

(U(i))− F−1
Λ∞

(U(i))
∣∣∣
2
]
.

Finally, using that the order function (x1, . . . , xn) 7→ (x(1), . . . , x(n)) is 1-Lipschitz
w.r.t. the Euclidean norm (as a consequence of the rearrangement inequality), we
have

∣∣∣∣
∫ 1

0

F−1
Λ∞

(s)E
[
Ĝ−1

~uN
(s)− Ĥ−1

N (s)
]
ds

∣∣∣∣

≤ ‖F−1
Λ∞

‖2

√√√√ 1

N

N∑

i=1

E

[∣∣F−1
ni (Ui)− F−1

Λ∞

(Ui)
∣∣2
]
. (4.7)

Now by construction, for any i, F−1
n (Ui) converges almost surely to F−1

Λ∞

(Ui). More-

over, the uniform square-integrability of the laws of the λ̂[τ ini
]’s provided by Remark

4.4 gives that

lim
n→∞

E

[∣∣F−1
n (Ui)− F−1

Λ∞

(Ui)
∣∣2
]
= 0.

Now, let 0 < ǫ < 1 be some positive real number and let A such that for any n ≥ A,
we have

E

[∣∣F−1
n (Ui)− F−1

Λ∞

(Ui)
∣∣2
]
≤ σ2‖F−1

Λ∞

‖22 ǫ2.

Hence, as soon as min(u) ≥ A, we have, together with (4.7),

1

σ‖F−1
Λ∞

‖22

∣∣∣∣
∫ 1

0

F−1
Λ∞

(s)E
[
Ĝ−1

~uN
(s)− Ĥ−1

N (s)
]
ds

∣∣∣∣ ≤ ǫ.

Finally, (4.6) gives the desired uniform convergence. It remains to prove that

1

σ‖F−1
Λ∞

‖22

N∑

i=1

E
[
Λ∞,(i)

] ∫ i
N

i−1
N

F−1
Λ∞

(s)ds

converges to σ−1 as N goes to infinity. It is well known, since Λ∞ has a density,
that, for any 1 ≤ i ≤ N , one has (see for instance David and Nagaraja, 2003)

E
[
Λ∞,(i)

]
= N

(
N − 1

i− 1

)∫ ∞

0

xFΛ∞
(x)i−1(1− FΛ∞

(x))N−ifΛ∞
(x)dx.
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Hence,

E

[
N∑

i=1

Λ∞,(i)

∫ i
N

i−1
N

F−1
Λ∞

(s)ds

]

= N

∫ ∞

0

xfΛ∞
(x)

N∑

i=1

(
N − 1

i− 1

)
FΛ∞

(x)i−1(1− FΛ∞
(x))N−i

×
∫ 1

N

0

F−1
Λ∞

(
s+

i− 1

N

)
ds dx.

This rewrites thanks to the right inverse sampling principle as

E

[
N∑

i=1

Λ∞,(i)

∫ i
N

i−1
N

F−1
Λ∞

(s)ds

]
=

∫ 1

0

F−1
Λ∞

(y)KN

(
F−1
Λ∞

)
(y) dy,

where KN is defined for all function ϕ in L
2 by

KN (ϕ) (y) = N

N∑

i=1

(
N − 1

i− 1

)
yi−1(1− y)N−i

∫ 1
N

0

ϕ

(
s+

i− 1

N

)
ds, ∀ y ∈ [0, 1].

The operators KN are known as Berstein-Kantorovich operators which were in-
troduce in the 30’s by Kantorovich in order to extend the properties of Berstein
polynomials to non-continuous functions (Kantorovitch, 1930). In particular, it is
known that, for all ϕ in L

2, KN (ϕ) converges to ϕ in L
2 (Lorentz, 1953, Theorem

2.1.2 and p. 33). Now, according to the Cauchy-Schwarz inequality we have that

∣∣∣∣
∫ 1

0

F−1
Λ∞

(y)KN

(
F−1
Λ∞

)
(y) dy −

∫ 1

0

F−1
Λ∞

(y)2 dy

∣∣∣∣ ≤
∥∥F−1

Λ∞

∥∥
2

∥∥KN (F−1
Λ∞

)− F−1
Λ∞

∥∥
2
.

But since KN (F−1
Λ∞

) converges to F−1
Λ∞

in L
2, we finally obtain

E

[
N∑

i=1

Λ∞,(i)

∫ i
N

i−1
N

F−1
Λ∞

(s)ds

]
−→ ‖F−1

Λ∞

‖22,

when N goes to infinity. This gives the result. ✷

We also have a stronger convergence result for this estimator. It relies on the

fact that the empirical measure P̂ defined in (3.6) must be close (in Wasserstein
distance) to the law of σ−1Λ∞ as soon as the trees are large enough. More precisely,
we have the following result of consistency.

Proposition 4.6. Let P be the law of σ−1Λ∞. Let also P̂~uN
be the empirical

distribution defined for any multi-integer ~uN by

P̂~uN
=

1

N

N∑

i=1

δλ̂[τ i
ui
].

Then, the following statement holds,

∀ ǫ > 0, ∃A ∈ N, ∀u ∈ SA, P

(
lim sup
N→∞

dW

(
P̂~uN

,P
)
< ǫ

)
= 1.
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Proof. Let Πδ be the canonical projection of R on [−δ, δ], for a positive real
number δ. We have

dW

(
P̂~uN

(ω) ,P
)

≤ dW

(
P̂~uN

(ω) ,ΠδP̂~uN
(ω)
)
+ dW

(
ΠδP̂~uN

(ω) ,ΠδP
)
+ dW (P,ΠδP) , (4.8)

where Πδµ denotes the image measure of µ by Πδ. To obtain the desired result, we
need to control each of the three terms in the right hand side of (4.8).

Third term. First, it is clear, for any probability measure µ, that Πδ is a
transport of µ on Πδµ which need not be optimal (Bobkov and Ledoux, 2014, 2.
Generalities on Kantorovich transport distances). Hence,

dW (µ,Πδµ) ≤
√∫

R

|x−Πδ(x)|2 µ(dx).

It follows, since x 7→ x2 is integrable w.r.t. P, that δ can be chosen in order to have

dW (P,ΠδP) ≤
√

E

[
(σ−1Λ∞)

2
1|σ−1Λ∞|>δ

]
<

ǫ

3
. (4.9)

First term. On the other hand, following the same lines as in the proof of
Proposition 4.2 (and using Remark 4.4), one can show that, for any ǫ > 0, there
exists A ∈ N such that, for any u ∈ SA,

P

(
lim sup
N→∞

∣∣∣∣∣
1

N

N∑

i=1

λ̂[τ iui
]21|λ̂[τ i

ui
]|>δ −E

[
σ−2Λ2

∞1|σ−1Λ∞|>δ

]
∣∣∣∣∣ < ǫ

)
= 1. (4.10)

This bound allows us to control the first term in the right hand side of (4.8) since

dW

(
P̂~uN

(ω) ,ΠδP̂~uN
(ω)
)

≤
√∫

R

|x−Πδ(x)|2 P̂~uN
(ω)(dx)

≤

√√√√ 1

N

N∑

i=1

λ̂[τ ini
](ω)21|λ̂[τ i

ni
](ω)|>δ.

Hence, it remains to control the second term.

Second term. Since ΠδP̂~uN
(ω) and ΠδP are compactly supported measures,

we have

dW

(
ΠδP̂~uN

(ω) ,ΠδP
)
≤ C

√
d
(1)
W

(
ΠδP̂~uN

(ω) ,ΠδP
)
,

where d
(1)
W is the first order Wasserstein metric. As a consequence, if one gets the

result for d
(1)
W , it gives the result for dW . First of all, we have

d
(1)
W

(
ΠδP̂~uN

(ω) ,ΠδP
)
≤ d

(1)
W

(
ΠδP̂~uN

(ω) ,ΠδP~uN

)
+d

(1)
W

(
ΠδP~uN

,ΠδP
)
, (4.11)

with

ΠδP~uN
=

1

N

N∑

i=1

PΠδ(λ̂[τ i
ni

]),

where PΠδ(λ̂[τ i
ni

]) denotes the law of Πδ(λ̂[τ
i
ni
]). Since the space C([−δ, δ],R) of

continuous functions on [−δ, δ], endowed with the uniform topology is separable,
there exists a countable dense subset (fk)k≥1 of C([−δ, δ],R). Once again, using
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the method developed in Proposition 4.2, it is easy to get that, for any positive
integer k and all ω in a set Ωk of mass 1,

lim
N→∞

∣∣∣ΠδP̂~uN
(ω) fk −ΠδP~uN

fk

∣∣∣ = 0,

where µf denotes
∫
f(x)µ(dx), for any a measure µ and any µ-integrable function

f . Now, take ω in
⋂

k≥1 Ωk and f in C([−δ, δ],R). Since (fk)k≥1 is dense in

C([−δ, δ],R), there exists for any ǫ > 0 an integer k such that ‖f − fk‖ < ǫ/2. This
implies that

lim sup
N→∞

∣∣∣ΠδP̂~uN
(ω) f −ΠδP~uN

f
∣∣∣ ≤ lim sup

N→∞

∣∣∣ΠδP̂~uN
(ω) f −ΠδP̂~uN

(ω) fk

∣∣∣

+ lim sup
N→∞

∣∣∣ΠδP̂~uN
(ω) fk −ΠδP~uN

fk

∣∣∣

+ lim sup
N→∞

∣∣ΠδP~uN
(ω) fk −ΠδP~uN

f
∣∣ < ǫ.

Since this last inequality holds for any ǫ > 0, ΠδP̂~uN
− ΠδP~uN

converges weakly
to 0 in the space Ms([−δ, δ]) of signed measures on [−δ, δ] with probability 1.

Consequently, since d
(1)
W metricizes the subspace of probability measures, we get

that, almost surely,

lim
N→∞

d
(1)
W

(
ΠδP̂~uN

(ω) ,ΠδP~uN

)
= 0. (4.12)

In order to control the second term and, hence, end the proof, it remains to show
that

∀ ǫ > 0, ∃A ∈ N, ∀u ∈ SA, d
(1)
W

(
ΠδP~uN

,ΠδP
)
< ǫ.

To get this, we use the duality formula for the first order Wasserstein distance,

d
(1)
W

(
ΠδP~uN

,ΠδP
)
= sup

φ∈Lip1([−δ,δ],R)

∣∣ΠδP~uN
φ−ΠδPφ

∣∣ , (4.13)

where Lip1 ([−δ, δ],R) denotes the set of 1-Lipschitz continuous functions on [−δ, δ].
Now, let φ be an element of Lip1 ([−δ, δ],R), we have that

∣∣ΠδP~uN
φ−ΠδPφ

∣∣ ≤ 1

N

N∑

i=1

∣∣∣E
[
φ
(
Πδ(λ̂[τ

i
ni
])
)]

−E [φ (Πδ(Λ∞))]
∣∣∣ .

To prove that the supremum taken in the above inequality will be small as soon
as the trees are large enough, we use the following lemma that gives the uniform

convergence of the expectation of Lipschitz functionals of the λ̂[τ ini
]’s.

Lemma 4.7. For any ǫ > 0, there exists A ∈ N such that,

∀n > A, ∀ f ∈ Lip1 ([−δ, δ],R) ,
∣∣∣E
[
f
(
Πδ(λ̂[τ

i
ni
])
)]

−E [f (Πδ(Λ∞))]
∣∣∣ < ǫ.

The proof of the lemma has been postponed to the end of the section. In light
of this lemma, we get

∀ ǫ > 0, ∃A ∈ N, ∀n > A, d
(1)
W

(
ΠδP~uN

,ΠδP
)
< ǫ.

Consequently, using the above result in conjunction with (4.11), (4.12) and (4.13),
we have

∀ ǫ > 0, ∃A ∈ N, ∀n > A, lim sup
N→∞

d
(1)
W

(
ΠδP̂~uN

(ω),ΠδP
)
< ǫ,
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for all ω in
⋃

k≥1 Ωk, where the sets Ωk have been defined above. Hence, for any
ǫ > 0, there exists A ∈ N such that,

∀u ∈ SA, P

(
lim sup
N→∞

dW

(
ΠδP̂~uN

(ω) ,ΠδP
)
< ǫ

)
= 1. (4.14)

To end, using (4.9), (4.10) and (4.14) in (4.8) leads to the result. ✷

Finally, we get the following consistency result.

Proposition 4.8. We have,

∀ ǫ > 0, ∃A ∈ N, ∀u ∈ SA, P

(
lim sup
N→∞

∣∣∣∣λ̂W [F~uN
]− 1

σ

∣∣∣∣ < ǫ

)
= 1.

Proof. By the Cauchy-Schwarz inequality, the convergence of this estimator is
conditioned to the convergence of the Wasserstein distance in the following manner,

∣∣∣∣λ̂W [F~uN
]− 1

σ

∣∣∣∣ =

∣∣∣〈F̂−1
~uN

− σ−1F−1
Λ∞

, F−1
Λ∞

〉
∣∣∣

‖F−1
Λ∞

‖22

≤

∥∥∥F̂−1
~uN

− σ−1F−1
Λ∞

∥∥∥
2

∥∥F−1
Λ∞

∥∥
2

‖F−1
Λ∞

‖22

=
dW

(
P̂~uN

, P
)

‖F−1
Λ∞

‖2
.

The result finally arises from Proposition 4.6 concerning the convergence of the
empirical measure in the sense of the Wasserstein distance. ✷

Proof of Lemma 4.7. Let (ni)i≥1 be a strictly increasing sequence of integers
and, for any i ≥ 1, let τ ini

be a conditioned Galton-Watson tree with size ni. By
virtue of Skorokhod’s representation theorem, there exists a probability space on
which is defined a sequence (Xni

)i≥1 of random variables and a random variable
X∞ such that:

⋄ (Xni
)i≥1 has the same distribution as the sequence (Πδ(λ̂[τ

i
ni
]))i≥1;

⋄ X∞ has the same distribution as Πδ(Λ∞);
⋄ Xni

converges to X∞ in probability as i goes to infinity.

As a consequence of the uniform integrability properties showed in the proof of
Proposition 4.5, we get

lim
i→∞

E [|X∞ −Xni
|] = 0. (4.15)

Now, choose f in Lip1 ([−δ, δ],R), we have

|E [f (Xni
)]−E [f (X∞)]| ≤ E [|Xni

−X∞|] .
Together with (4.15), we obtain the expected convergence. ✷

5. Simulation study

5.1. Simulation of conditioned Galton-Watson trees. In order to illustrate our es-
timation techniques on Galton-Watson forests, we need to make some numerical
experiments. However, simulation of conditioned Galton-Watson trees is a difficult
problem of independent importance. In this section, we briefly present an algorithm
due to Devroye (2012) allowing to achieve this aim. Given an integer n and a distri-
bution µ on the set {0, . . . ,K}, this algorithm provides, in two steps, the simulation
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of the Łukasciewicz walk L[τn] of a tree τn with distribution GWn(µ). Three more
steps are required to obtain the corresponding Harris path H[τn] through other
coding processes (see for example Duquesne, 2003).

⋄ Simulation of numbers of children. The multinomial distribution of
parameters (µ(k))0≤k≤K and n may be defined by its probability mass
function,

P(N0 = n0, . . . , NK = nK) =





n!

n0! . . . nK !
µ(0)n0 . . . µ(K)nK if

K∑

k=0

nk = n,

0 else.

Simulation of the multinomial distribution presents no difficulty. By rejec-
tion sampling, we simulate multinomial random variables until obtaining a
sequence (Nk)0≤k≤K satisfying

K∑

k=0

kNk = n− 1.

We define the sequence (ζi)1≤i≤n from

(ζi)1≤i≤n = (0, . . . , 0︸ ︷︷ ︸
N0

, 1, . . . , 1︸ ︷︷ ︸
N1

, . . . , K, . . . ,K︸ ︷︷ ︸
NK

).

Let (ξi)1≤i≤n be a sequence obtained as a random permutation of (ζi)1≤i≤n.
A suitable technique for random shuffling is presented in (Knuth, 1981, Al-
gorithm P (p. 139)). The sequence (ξi)1≤i≤n represents the verticesnumbers
of children in the depth-first search order.

⋄ Computation of the Łukasciewicz walk. Let L be the process defined
by L(0) = 0 and,

∀ 0 ≤ k ≤ n− 2, L(k + 1) = L(k) + ξk+1 − 1.

Set l = 1 + argmin {L(k) : 0 ≤ k ≤ n − 1}. Then there exists a tree τn
with n nodes whose Łukasciecwicz walk is defined by

L[τn](k) =
{

L(l + k) + minL− 1 if 0 ≤ k ≤ n− 1− l,
L(k − n+ l) + minL− 1 if n− l ≤ k ≤ n− 1.

⋄ From the Łukasiewicz walk to the height process. Now, we compute
the corresponding height process (Duquesne, 2003, eq.(2)),

∀ 0 ≤ k ≤ n− 1, H[τn](k) = #

{
0 ≤ j ≤ k − 1 : L[τn](j) = min

j≤l≤n
L[τn](l)

}
.

⋄ From the height process to the contour process. Let (bk)0≤k≤n−1

be the sequence defined from bk = 2k − H[τn](k) if 0 ≤ k ≤ n − 1 and
bn = 2(n − 1). Then the bi’s are sorted in increasing order. The contour
process C[τn](k) is defined for any 0 ≤ k ≤ 2n − 2 by (Duquesne, 2003,
eq.(1))

C[τn](k)=





H[τn](i)− (k − bi) if ∃ 0 ≤ i ≤ n− 2, bi ≤ k < bi+1 − 1,
k − bi+1 + H[τn](i+ 1) if ∃ 0 ≤ i ≤ n− 2, bi+1 − 1 ≤ k < bi+1,
H[τn](bn−1)− (k − bn−1) if bn−1 ≤ k ≤ bn.
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⋄ From the contour process to the Harris path. The Harris path is
only a small modification of the contour process, defined by H[τn](0) =
H[τn](2n) = 0 and

∀ 1 ≤ k ≤ 2n− 1, H[τn](k) = C[τn](k − 1) + 1.

5.2. Inference for a forest of binary conditioned Galton-Watson trees. The aim of
this section is to analyze the finite-sample behavior of both estimators introduced
in this paper by means of numerical experiments. The theoretical study achieved
in Section 4 shows that we can expect to obtain good numerical results, at least for
large trees. To this goal, we consider a forest of independent conditioned Galton-
Watson trees with common critical birth distribution µ such that µ(k) = 0 for
k ≥ 3. Such a distribution satisfies the following linear system of equations,





µ(0) + µ(1) + µ(2) = 1
µ(1) + 2µ(2) = 1

µ(1) + 4µ(2)− 1 = σ2

which is equivalent to

µ(0) = µ(2) =
σ2

2
and µ(1) = 1− σ2.

In other words, µ is entirely characterized by its variance σ2. Simulations of Galton-
Watson trees GWn(µ) are performed with the method provided in Subsection 5.1.

Let F = (τ i)1≤i≤N be a forest of N independent trees such that, for any 1 ≤
i ≤ N , τ i ∼ GWni

(µ) for some integer ni. From the Harris process of each tree τ i,
one first computes the quantity

λ̂
[
τ i
]

=
〈H[τ i](2ni·), E〉

2
√
ni‖E‖22

,

where E is known and defined in (2.1). Then, we propose to estimate σ−1 in the

two following ways, where (λ̂[τ (i)])1≤i≤N denotes the order statistic associated to

the family (λ̂[τ i])1≤i≤N .

Least Squares λ̂ls[F ] =
1

N

N∑

i=1

λ̂
[
τ i
]

Wasserstein λ̂W [F ] =
1

‖F−1
Λ∞

‖22

N∑

i=1

λ̂
[
τ (i)
] ∫ i

N

i−1
N

F−1
Λ∞

(s)ds

Remark 5.1. In order to compute λ̂W [F ], we need to be able to perform compu-
tations using the function F−1

Λ∞

. Unfortunately, in view of the theoretical study of
Λ∞ made in Proposition 3.1, one can not expect to have an explicit expression for
this function. In the following of this section, we use a numerical estimation of
F−1
Λ∞

by Monte Carlo simulations. To achieve this goal, we perform simulations of
Λ∞ thanks to formula (3.2) by simulating Brownian excursions thanks to (2.2). In
order to ensure that the error made on F−1

Λ∞

does not propagate too much in our

results, F−1
Λ∞

is estimated from one million simulations of Λ∞.

The theoretical investigations of Section 4 establish that our estimators are
asymptotically unbiased. Nevertheless, the problem is not as simple when working
with finite trees. A clear illustration of this comes from the numerical evaluations
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of the average Harris processes of finite trees. Indeed, the numerical study of Figure
5.6 shows that the average Harris processes of small trees seem to be lower than the

limiting Harris process. Hence, the quantities λ̂[τ i] are expected to underestimate
the target σ−1. But any estimator based on the asymptotic behavior of conditioned
Galton-Watson trees is expected to present such a bias. In particular, we state in
our numerical experiments that the estimator proposed by Bharath et al. (2017)
presents the same bias.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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limit

Figure 5.6. Estimated mean Harris processes of binary condi-
tioned Galton-Watson trees with size n and σ = 0.7 calculated
from 2000 trees for each value of n.

The natural question arising from the preceding comments is: how is the bias of
a conditioned Galton-Watson tree related to its size and/or the unknown parameter
σ ? The numerical study presented in Figure 5.7 shows that the quantity η(n) =

σ−1
E[λ̂[τn]]

−1, where τn ∼ GWn(µ), seems close to uncorrelated to σ at least when
σ is large enough. This allows us to construct a bias corrector which is independent
of the unknown standard deviation σ. In addition, the dependency on n may be
modeled by the relation η(n) = 1 − (a

√
n + b)−1 . The coefficients appearing in η

may be estimated from simulated data,

η̂(n) = 1− (0.504273
√
n+ 0.9754839)−1

(see Figure 5.7 again). The correction is obviously expected to be better for large
values of σ. Finally, we construct the following corrected versions of the estimators

λ̂ls[F ] and λ̂W [F ].

Corrected LS λ̂c
ls[F ] =

1

N

N∑

i=1

η̂(#τ i)λ̂
[
τ i
]

Corrected Wasserstein λ̂c
W [F ] =

1

‖F−1
Λ∞

‖22

N∑

i=1

η̂
(
#τ (i)

)
λ̂
[
τ (i)
] ∫ i

N

i−1
N

F−1
Λ∞

(s)ds

In light of the previous comments, computing the estimators proposed in this paper
is not an easy task. According to Remark 5.1, one needs to perform a significant
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Figure 5.7. Estimation of the quantity η(n) = σ−1
E[λ̂[τn]]

−1,
where τn ∼ GWn(µ), for different values of σ and different num-
bers of nodes n, together with the fitted bias corrector function η̂.
Estimations have been made by Monte Carlo method with samples
of 2000 trees for each couple (n, σ).

number of simulations of Λ∞ in order to get an accurate approximation of F−1
Λ∞

.
Moreover, to be able to correct the aforementioned bias, one needs to perform
many simulations of finite trees. Together with this work, we propose a Matlab

toolbox which already includes these preliminary computations and allows to di-
rectly and quickly compute our estimators for forests. This toolbox as well as its
documentation and the scripts used in this paper are available from the authors
upon request.

For improved comparison, we also compute the estimator λ̂un[F ] of σ−1 based
on the work (Bharath et al., 2017) (see Subsection 3.1) given by

λ̂un[F ] =
1

N

N∑

i=1

δ̂[τ i],

where δ̂[τ i] is defined (see equations (3.4) and (3.5)) from a node v randomly chosen
in τ i by

δ̂[τ i] =

√
2h(v)√
π#τ i

.

The estimator λ̂un[F ] is expected to present the bias due to the approximation of
Harris paths by their expected limit. We correct it by the aforementioned method,

λ̂c
un[F ] =

1

N

N∑

i=1

η̂(#τ i)δ̂[τ i].

In Figures 5.8, 5.9 and 5.10, estimators λ̂ls[F ], λ̂W [F ] and λ̂un[F ] are denoted by
“LSE”, “Wasserstein’and “Uniform node’(or “UN’in short), respectively.

The study of Figure 5.8 shows that for values of σ greater than 0.5, the bias
correction works properly. Moreover, it also shows that the approach developed by
Bharath et al. (2017) presents the same kind of bias as ours. In the case of small
parameter σ, the bias correction is not as accurate. This was expected because the
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bias corrector does not fit as well to the bias curve for small values of sigma as it
does for greater values of σ.
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Figure 5.8. Estimation and bias correction for forests of 10 trees
with 20 nodes for σ equals to 0.3 (top, left) 0.5 (top, right), 0.7
(bottom, left) and 0.9 (bottom right). Boxplots have been drawn
from 100 replicates each.

Since we have an estimation procedure which seems to work, the natural further
study is to see how the quality of our estimators varies as the characteristics of the
forest change. We begin by looking at the variations when the sizes of the trees
increase. A priori, the sizes of the trees in the considered forest should not have
influence on the variability of the estimators. Indeed, our estimation strategy is
based on the approximation of the Harris path of a finite tree by its limit. As a
consequence, the size parameter only governs the quality of this approximation.
Whatever the sizes of the trees, the variability will be given by the variance of
the limit distribution Λ∞. As expected Figure 5.9 shows that the variability of
the estimators does not change as the sizes of the trees change when σ takes great
values. Similarly, as shown in Figure 5.10, for small values of σ, the sizes of the trees
do not influence the dispersion of the estimator. However, Figure 5.10 also shows
that the sizes of the trees have a positive influence on the bias of the estimators.

Finally, Figure 5.11 shows the variation of the dispersion of the least square
estimator as the size of the forest changes. It appears to be consistent with the
theoretical tolerance intervals given by the central limit theorem. Similar results
have been obtained from the Wasserstein method (see Figure 5.12).

5.3. Missing or noisy data. We focus here on the application of our statistical
methods in the framework of missing or noisy data. This section is key for this
paper because we exhibit difficult contexts in which Harris paths-based estimators
perform well while the empirical variance is biased or can not be computed.

5.3.1. Estimation with outliers. We assume that the forest F = (τ i)1≤i≤N is mainly
composed of binary conditioned Galton-Watson trees with the same variance σ2.
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Figure 5.9. Influence of the size of the trees for σ equals to 0.9:
tree sizes varying from 20 nodes (left), 50 nodes (center), to 100
nodes (right). Forests of 50 trees. Boxplots have been drawn from
100 replicates each.
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Figure 5.10. Influence of the size of the trees for σ equals to 0.3:
tree sizes varying from 20 nodes (left), 50 nodes (center), to 100
nodes (right). Forests of 50 trees. Boxplots have been drawn from
100 replicates each.
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Figure 5.11. Least square estimation of σ−1 for different sizes of
forests (σ = 0.5 with trees of size 20). Boxplots have been drawn
from 100 replicates each.

However the forest also contains trees τ i that have not been generated from the

model and such that λ̂[τ i] is significantly lesser or greater than the true parameter

σ−1. As a consequence, the estimators λ̂ls[F ] and λ̂W [F ] should be disturbed by
these outliers. In the following simulation experiments, the forest contains 500
conditioned Galton-Watson trees and 50 outliers (addition of 10% outliers).

First, we consider the presence of outliers λ̂[τ i] ≃ 0.03 smaller than the expected
parameter σ−1 = 2 and we compare our estimation strategies (see Figure 5.13). One
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Figure 5.12. Wasserstein estimation of σ−1 for different sizes of
forests (σ = 0.5 with trees of size 20). Boxplots have been drawn
from 100 replicates each.

may observe that the Wasserstein method is less sensitive to these outliers than the

least square estimator. This may be explained by the small weights
∫ i

N
i−1
N

F−1
Λ∞

(s)ds

given to the smallest values of λ̂[τ (i)], that is to say, to the outliers, in formula (3.8)

of λ̂W [F ]. For the same reason, the Wasserstein estimator is more sensitive to large

outliers λ̂[τ i] ≃ 2.9 (see Figure 5.14) than the least square strategy.

LSE Wasserstein LSE with outliers Wasserstein with outliers
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1.9

1.95

2

2.05

Figure 5.13. Boxplots of λ̂ls[F ] and λ̂W [F ] from forests contain-
ing (right) or not (left) small outliers impacting the quality of the
estimation.

The numerical results of Subsection 5.2 show that the two strategies developed
in this paper perform in a similar way on a dataset without outliers, which is

clearly a benefit for the least square estimator λ̂ls[F ] easier to compute than λ̂ls[F ]
(see Remark 5.1). Nevertheless, if one suspects the presence of small (large, re-
spectively) outliers, these numerical experiments yield that the Wasserstein (least
square, respectively) estimator should be privileged. In addition, it seems that
the two estimators behave differently only under the presence of outliers. This
observation could be used to detect suspicious data.

5.3.2. Missing leaves. We assume that we observe a conditioned critical Galton-
Watson tree τ through a noise hiding its leaves. It means that, in the Harris path
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Figure 5.14. Boxplots of λ̂ls[F ] and λ̂W [F ] from forests contain-
ing (right) or not (left) large outliers impacting the quality of the
estimation.

H[τ ], all the sections [i− 1, i+ 1] with

H[τ ](i− 1) = H[τ ](i+ 1) = H[τ ](i)− 1,

i.e., sections corresponding to leaves, are also hidden. We refer the reader to Fig-
ure 5.15 for an example of conditioned Galton-Watson tree observed through this

deleting noise. From a tree τ with n nodes, we propose to estimate λ̂[τ ] from the
partially observed Harris path as follows. Let us denote ζ ⊂ [0, 2n] the union of the

unobserved sections of the Harris path and η = ζ
2n ⊂ [0, 1]. Even if λ̂[τ ] is uncom-

putable, we can approximate it by the solution λ̃[τ ] of the least square problem on
ηc,

λ 7→
∥∥∥∥
(H[τ ](2n·)√

n
− 2λE

)
1ηc

∥∥∥∥
2

2

.

Mimicking the expression (3.1) of λ̂[τ ], λ̃[τ ] is given by

λ̃[τ ] =

∫
[0,1]∩ ηc H[τ ](2nt)Et dt

2
√
n
∫
[0,1]∩ ηc E

2
t dt

.

From a forest of conditioned Galton-Watson trees τ , we compute the values of

λ̂[τ ] and λ̃[τ ] in order to evaluate the influence of the noise on the quality of the
estimation. We also compute the empirical variance V [τ ] of the numbers of chil-
dren appearing in τ from the complete tree and from its noisy version, σ−1 being
estimated by V [τ ]−1/2. Some numerical results are presented in Figure 5.16.

First, we remark that the distributions of λ̂[τ ] and λ̃[τ ] are quite close, whereas
the behavior of the empirical variance is highly disturbed by the absence of zeros in
the set of numbers of children. As a consequence, statistical estimators computed
from the Harris path seem to be more robust than empirical estimators of the
birth distribution, even when the Harris path is largely hidden (see the example of
Figure 5.15).

5.3.3. Partial observation of the Harris path. Here we assume that the Harris path
is partially observed in such a way that the underlying tree can not be reconstructed.
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Figure 5.15. The conditioned Galton-Watson tree of Figure 2.3
(top) and its Harris path (bottom) are partially observed: leaves
(in white) are missing.
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Figure 5.16. Least square and empirical estimators of σ−1 from
complete trees and trees with missing leaves.

This kind of disturbance may appear in data transmission where unwanted elec-
tromagnetic energy can degrade the quality of the signal. We consider two types
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of partial observation: (i) large sections of the Harris path are hidden (see Figure
5.17) and (ii) the Harris path is observed through an additive Gaussian noise (see
Figure 5.18).
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Figure 5.17. The Harris path of the conditioned Galton-Watson
tree of Figure 2.3 observed only on the intervals [0, 500] and

[1000, 1500] (left) and boxplots of λ̂[τ ] from complete and partially
observed Harris paths (right).
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Figure 5.18. The Harris path of the conditioned Galton-Watson
tree of Figure 2.3 observed through a Gaussian noise with standard

deviation 5 (left) and boxplots of λ̂[τ ] from complete and partially
observed Harris paths (right).

Since the tree can not be deduced from these noisy observations, empirical estima-
tors of the birth distribution can not be computed, while statistical methods based
on the Harris path are still feasible. The numerical results of Figures 5.17 and 5.18

show that the distribution of λ̂[τ ] is only slightly disturbed by the noise proving
again the robustness of statistical estimators computed on Harris paths.

6. Real data analysis: history of Wikipedia webpages

The aim of this section is to show that the methodology developed in this paper
can be used to analyze the history of some real hierarchical data. More precisely, we
focus on the evolution over time of a given webpage on the World Wide Web. HTML
is the standard markup language for creating webpages. Documents encoded in a
markup language naturally presents a tree structure: the area delimited by opening
and closing tags represents a node of the tree; the children of this node are given
by the tags directly found in this area in the order they appear (see Figure 6.19
for an example of HTML document and the corresponding ordered tree structure).
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<html>

<body>

<h1>

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

</h1>

<p>

Sed non risus.

</p>

<ul>

<li>

Suspendisse lectus tortor, dignissim sit amet,

adipiscing nec, ultricies sed, dolor.

</li>

<li>

Cras elementum ultrices diam.

<ol>

<li>

Maecenas ligula massa, varius a,

semper congue, euismod non, mi.

</li>

<li>

Proin porttitor, orci nec nonummy

molestie, enim est eleifend mi,

non fermentum diam nisl sit amet erat.

</li>

</ol>

</li>

<li>

Duis semper. Duis arcu massa, scelerisque vitae,

consequat in, pretium a, enim.

</li>

</ul>

<p>

Pellentesque congue. Ut in risus volutpat libero

pharetra tempor.

</p>

</body>

</html>

Figure 6.19. Underlying ordered tree structure (right) present
in an HTML document (left). Each level in the tree is colored in
the same way as the corresponding tags in the document. Natural
order from top to bottom in the HTML document corresponds to
left-to-right order in the tree.

It should be noted that the ordered tree representing an HTML document does not
take into account the text between tags but only the hierarchical structure.

Nowadays, Wikipedia is probably the most famous free Internet encyclopedia.
It allows its users to create and edit almost any article. All past changes are listed
in reverse-chronological order and are accessible from the current version of the
Wikipedia webpage. Consequently, each article forms a time series composed of
hundreds of revisions. The analysis of this chronological dataset is difficult because
of the complex structure of the data which has no representation in an Euclidean
state space. We propose to apply the strategy presented in this paper to investi-
gate this question and obtain informations on the history of articles. Wikipedia
webpages do not look like conditioned Galton-Watson trees (see Figure 6.20 for a
typical Wikipedia webpage and its Harris path which should be compared with the
conditioned Galton-Watson tree with a comparable number of nodes of Figure 2.3)
but they share the same structure with a typical layout that consists in standard-
ized HTML/CSS files on which articles are based. Thus webpages at hand might not
be differentiated by considering their shape but some scale parameter, as it is the

case for conditioned Galton-Watson trees. We claim that the quantity λ̂[τ ], where
τ is the underlying tree of a given webpage, is a good estimate of its relative scale
and may be used to represent the revision history.

We begin with the English version of the Wikipedia article Gravitational wave2.
This article has been edited 2001 times by 810 Wikipedians since its creation on

2Wikipedia article Gravitational wave: https://en.wikipedia.org/wiki/Gravitational_

wave

https://en.wikipedia.org/wiki/Gravitational_wave
https://en.wikipedia.org/wiki/Gravitational_wave
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Figure 6.20. Underlying tree of the main page of Wikipedia ac-
cessed on April 12 2017 with 906 nodes (top) and its Harris path
(bottom).

September 3rd 2001 (information acquired on August 11 2016). For each month

since January 2005, we compute λ̂ls from the forest of the versions revised during

this month. If no revision has been found during this period, λ̂ls is equal to the
estimate of the previous month, and recursively. Figure 6.21 displays the evolution

of λ̂ls over time. First, we remark two spikes (a), negative in May 2007, and (b),
positive in May 2016. Both these spikes correspond to massive vandalism of the
article on May 7 2007 (addition of 720 pointless sections with random text) and
May 23 2016 (complete deletion of the article) by malicious people. Indeed, if we do
not consider these two vandalized webpages in our estimation, we obtain the graph
of Figure 6.22 (left) that has no spikes. In addition, we observe in Figure 6.22 (left)

that the time series of λ̂ls has roughly two regimes (c) and (d). The first period
(c) corresponds to the “running in’required to find the adequate structure of the
article. In this period, the webpage is subject to major changes that are most often
additions of new sections or paragraphs but may be deletions of inappropriate
content. When a good structure arises, the webpage is then slowly broadened
during the second regime (d). It should be remarked in Figure 6.22 (right) that
two important modifications occur in the period (d): (e) between July 2013 and
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April 2014 and (f) in February 2016. The (e) period is related to major changes
in the webpage (mainly addition of references and reorganization of some sections)
especially following advances in this field. The second event (f) corresponds to
extensive adding following the announce of the first observation of gravitational
waves using the Advance LIGO detectors.
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Figure 6.21. History of λ̂ls between January 2005 and June 2016
for the Wikipedia article Gravitational wave. Events (a) and (b)
are related to vandalism.
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Figure 6.22. History of λ̂ls for the Wikipedia article Gravita-
tional wave without taking into account the two vandalism pages
related to (a) and (b) between 2005 and 2016 (left) and 2010 and
2016 (right).

We perform the same methodology on the history of the Wikipedia article Choco-
late3 (see Figure 6.23). This article has been edited 6332 times by 3105 Wikipedians
since its creation on November 13 2001 (information acquired on August 11 2016).
All the spikes observed on the graph of Figure 6.23 correspond to acts of vandalism
(deletion of substantial content). For the sake of example, we highlight two ma-
jor events (a) (in May 2008) and (b) (in June 2010) occuring during the “running
in’period (c): (a) corresponds to important additions in the article (sections Ety-
mology, Holydays and Manufacturers have been added), while (b) is related to the
creation of the parallel article Health effects of chocolate leading to deletion of the
corresponding sections in the main article.

3Wikipedia article Chocolate: https://en.wikipedia.org/wiki/Chocolate

https://en.wikipedia.org/wiki/Chocolate
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Figure 6.23. History of λ̂ls between January 2005 and June 2016
for the Wikipedia article Chocolate. All spikes are related to van-
dalism.

For both examples, we empirically observe that, when λ̂ls decreases, some content

has been added to the webpage, and conversely, when λ̂ls increases, some parts
of the article have been removed. Our analysis shows that, starting from their
creation, these Wikipedia articles are broadened over time after a long “running
in’period used to unconsciously find the adequate structure. One may also detect
vandalism on Wikipedia articles by identifying spikes a posteriori. Vandalism is
usually removed by dedicated individuals who patrol Wikipedia webpages, but this
is an onerous task with a rate of 10 edits per second4 and around 7% of edits have
been estimated to be vandalism (Potthast, 2010). Vandalism detection is often
based on a combination of various indicating features (Adler et al., 2011; Mola-
Velasco, 2010). Our algorithm might be used as a new feature for identifying acts
of vandalism on the structure of the article.
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