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Abstract

The econometric literature of high frequency data often relies on moment estimators which
are derived from assuming local constancy of volatility and related quantities. We here study
this local-constancy approximation as a general approach to estimation in such data. We show
that the technique yields asymptotic properties (consistency, normality) that are correct subject
to an ex post adjustment involving asymptotic likelihood ratios. These adjustments are derived
and documented. Several examples of estimation are provided: powers of volatility, leverage ef-
fect, and integrated betas. The first order approximations based on local constancy can be over
the period of one observation, or over blocks of successive observations. It has the advantage
of gaining in transparency in defining and analyzing estimators. The theory relies heavily on
the interplay between stable convergence and measure change, and on asymptotic expansions
for martingales.
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1 Introduction

An important development in econometrics and statistics is the invention of estimation of finan-
cial volatility on the basis of high frequency data. The econometric literature first focused on
instantaneous volatility (Foster and Nelson (1996), Comte and Renault (1998)). The econometrics
of integrated volatility was pioneered in Andersen, Bollerslev, Diebold, and Labys (2001, 2003),
Barndorff-Nielsen and Shephard (2001, 2002), and Dacorogna, Gençay, Müller, Olsen, and Pictet
(2001). Earlier results in probability theory go back to Jacod (1994) and Jacod and Protter (1998).
Our own work in this area goes back to Zhang (2001) and Mykland and Zhang (2006). Further
references are given below in the Introduction, and in Section 2.5.

The quantities that can be estimated from high frequency data are not confined to volatility.
Problems that are attached to the estimation of covariations between two processes are discussed
in, for example, Barndorff-Nielsen and Shephard (2004a), Hayashi and Yoshida (2005) and Zhang
(2005). There is a literature on power variations and bi- and multi-power estimation (see Examples
1-2 in Section 2.5 for references). There is an analysis of variance/variation (ANOVA) based on high
frequency observations (see Section 4.4.2). We shall see in this paper that one can also estimate
such quantities as integrated betas, and the leverage effect.

The literature on high frequency data often relies on moment estimators derived from assuming
local constancy of volatility and related quantities. To be specific, if ti, 0 = t0 < t1 < ... < tn = T ,
are observation times, it is assumed that one can validly make one period approximations of the
form ∫ ti+1

ti

fsdWs ≈ fti(Wti+1 −Wti), (1)

where {Wt} is a standard Brownian motion. The cited work on mixed normal distributions uses
similar approximations to study stochastic variances. In the case of volatility, one can under weak
regularity conditions make the approximation

∑
i

(∫ ti+1

ti

σtdWt

)2

−
∫ T

0
σ2

t dt ≈
∑

i

σ2
ti(Wti+1 −Wti)

2 −
∑

i

σ2
ti(ti+1 − ti) (2)

without affecting asymptotic properties (the error in (2) is of order op(n−1/2)). Thus the asymptotic
distribution of realized volatility (sums of squared returns) can be inferred from discrete time
martingale central limit theorems. In the special case where the σ2

t process is independent of Wt,
one can even talk about unbiasedness of the estimator.

This raises two questions. First of all, (i) can one always invoke approximations (1)-(2)? Or,
does the approximation in formula (1) only work for a handful of cases such as volatility? Also,
(ii) if one can pretend that volatility characteristics are constant from ti−1 to ti, then can one also
pretend constancy over successive blocks of M (M > 1) observations, from, say ti−M to ti? If this
were true, a whole arsenal of additional statistical techniques would become available.
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This paper will show that, subject to some adjustments, the answer to both these questions
is yes. There are two main gains from this. One is easy derivation of asymptotic results. The
other is to give a framework for how to set up inference procedures, as follows. If σt is treated as
constant over a block of M observations, then the returns (the first differences of the observations)
are simply Gaussian, and one can therefore think “parametrically” when setting up and analyzing
estimators. Once parametric techniques have been used locally in each blocks, estimators of inte-
grated quantities may then be obtained by aggregating local estimators. Any error incurred from
this analysis can be corrected directly in the final asymptotic distribution, using adjustments that
we provide.

The advantages to thinking parametrically is threefold, as illustrated by examples in Section 4.
Efficiency: In the case of quantities like

∫ T
0 |σ|rtdt, there can be substantial reduction in asymptotic

variance (see Section 4.1). Transparency: Section 4.2 shows that the analysis of integrated betas
reduces to ordinary least squares regression. Similar considerations apply to the examples (realized
quantiles, ANOVA) in Section 4.4. Definition of new estimators: In the case of the leverage effect,
blocking is a sine qua non, as will be clear from Sections 2.5 and 4.3.

Local parametric inference appears to have been introduced by Tibshirani and Hastie (1987),
and there is an extensive literature on the subject. A review is given in Fan, Farmen, and Gijbels
(1998), and this paper should be consulted for further references. See also Chen and Spokoiny
(2007) and Cizek, Härdle, and Spokoiny (2007) for recent papers in this area involving volatility.

Our current paper establishes, therefore, the connection of high-frequency-data inference to
local parametric inference. We make this link with the help of contiguity. It will take time and
further research to harvest the existing knowledge in the area of local likelihood for use in high
frequency semimartingale inference. In fact, the estimators discussed in the applications section
(Section 4) are rather obvious once a local likelihood perspective has been adapted; they are more
of a beginning than an end. For example, local adaptation is not considered.

We emphasize that the main outcome of the paper is to provide direction on how to create
estimators, and an easy way to analyze them. It is, however, perfectly possible to derive asymptotic
results for such estimators by other existing methods, as used in many of the papers cited above. In
fact, direct proof will permit the most careful study of the precise conditions needed for consistency
and mixed asymptotic normality for any given procedure.

A different kind of blocking, pre-averaging, is used by Podolskij and Vetter (2009) and Jacod, Li,
Mykland, Podolskij, and Vetter (2009) in the context of inference in the presence of microstructure
noise. In these papers, the (latent) semimartingale is itself given a locally constant approximation.
This approximation would not give rise to contiguity in the absence of noise, but we conjecture
that contiguity results can be found under common types of microstructure.

In the current paper, we do not deal with microstructure. This would be a study in itself, and is
deferred to a later paper. A follow-up discussion on estimation with moving windows, and on how
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to use this technology for asynchronous observations, can be found in Mykland and Zhang (2009).

The plan for the paper is that Section 2 discusses measure changes in detail, and their relation-
ship to high frequency inference. It then analyzes the one period (M = 1) discretization. Section
3 discusses longer block sizes (M > 1). Major applications are given in Section 4, with a summary
of the methodology (for the scalar case) in Section 4.5.

A reader’s guide: We emphasize that the two approximations (to block size M = 1, and then
from M = 1 to M > 1) are quite different in their methodologies. If you are only interested in the
one period approximation, the material to read is Section 2 and Appendix A. (Though consequences
for estimation of leverage effect is discussed in Section 4.3). The block (M > 1) approximation is
mainly described in Sections 3-4, and Appendix B-C. An alternative way of reading the paper is
to head for Section 4.5 first; this section should in any case be consulted early and kept in mind
while reading the rest of the paper.

2 Approximate Systems.

We here discuss the discretization to block size M = 1. As a preliminary, we define some notation,
and discuss measure change and stable convergence. This section can be read independently of the
rest of the paper.

2.1 Data Generating Mechanism

In general, we shall work with a broad class of continuous semimartingales, namely Itô processes.

Definition 1. A p-variate process Xt = (X(1)
t , ..., X

(p)
t )T is called an Itô process provided it satisfies

dXt = µtdt + σtdWt, X0 = x0, (3)

where µt and σt are adapted locally bounded random processes, of dimension p and p×p respectively,
and Wt is a p-dimensional Brownian motion. The underlying filtration will be called (Ft). The
probability distribution will be called P .

If we set
ζt = σtσ

T
t , (4)

(where “T” in this case means transpose) then the (matrix) integrated covariance process is given
as

〈X, X〉t =
∫ t

0
ζudu. (5)

The process (5) is also known as the quadratic covariation of X. We shall sometimes use “integrated
volatility” as shorthand in the scalar (p = 1) case.
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We shall suppose that the process Xt is observed at times 0 = t0 < t1 < ... < tn = T . Thus,
for the moment, we assume synchronous observation of all the p components of the vector Xt. We
explain in Mykland and Zhang (2009) how the results encompass the asynchronous case.

Assumption 1. (Sampling times). In asymptotic analysis, we suppose that tj = tn,j (the additional
subscript will sometimes be suppressed). The grids Gn = {0 = tn,0 < tn,1 < ... < tn,n = T} will not
be assumed to be nested when n varies. We then do asymptotics as n →∞. The basic assumption
is that

max
1≤i≤n

|tn,j − tn,j−1| = o(1). (6)

We also suppose that the observation times tn,j are nonrandom, but they are allowed to be irregularly
spaced. By conditioning, this means that we include the case of random times independent of the
Xt process.

We thus preclude dependence between the observation times and the process. Such dependence
does appear to exist in some cases, cf. Renault and Werker (2006), and we hope to return to this
question in a later paper.

2.2 A simplifying strategy for inference

When carrying out inference for observations in a fixed time interval [0, T ], the process µt cannot
be consistently estimated. This follows from Girsanov’s Theorem (see, for example, Chapter 5.5 of
Karatzas and Shreve (1991)). For most purposes, µt simply drops out of the calculations, and is
only a nuisance parameter. It is also a nuisance in that it complicates calculations substantially.

To deal with this most effectively, we shall borrow an idea from asset pricing theory, and consider
a probability distribution P ∗ which is measure theoretically equivalent to P , and under which Xt

is a (local) martingale (Ross (1976), Harrison and Kreps (1979), Harrison and Pliska (1981), see
also Duffie (1996)). Specifically, under P ∗

dXt = σtdW ∗
t , X0 = x0, (7)

where W ∗
t is a P ∗-Brownian motion. Following Girsanov’s Theorem

log
dP ∗

dP
= −

∫ T

0
σ−1

t µtdWt −
1
2

∫ T

0
µT

t (σtσ
T
t )−1µtdt, (8)

with
dW ∗

t = dWt + σ−1
t µtdt. (9)

Our plan is now the following: carry out the analysis under P ∗, and adjust results back to P

using the likelihood ratio (Radon-Nikodym derivative) dP ∗/dP . Specifically suppose that θ is a



Inference for Continuous Semimartingales Observed at High Frequency 5

quantity to be estimated (such as
∫ T
0 σ2

t dt,
∫ T
0 σ4

t dt, or the leverage effect). An estimator θ̂n is then
found with the help of P ∗, and an asymptotic result is established whereby, say,

n1/2(θ̂n − θ) L→N(b, a2), (10)

under P ∗. It then follows directly from the measure theoretic equivalence that n1/2(θ̂n − θ) also
converges in law under P . In particular, consistency and rate of convergence is unaffected by the
change of measure. We emphasize that this is due to the finite (fixed) time horizon T .

The asymptotic law may be different under P ∗ and P . While the normal distribution remains,
the distributions of b and a2 (if random) may change. The main concept is stable convergence.

Definition 2. Suppose that all relevant processes (Xt, σt, etc) are adapted to filtration (Ft). Let
Zn be a sequence of FT -measurable random variables, We say that Zn converges stably in law to Z

as n →∞ if Z is measurable with respect to an extension of FT so that for all A ∈ FT and for all
bounded continuous g, EIAg(Zn) → EIAg(Z) as n →∞. The same definition applies to triangular
arrays.

In the context of (10), Zn = n1/2(θ̂n − θ) and Z = N(b, a2). For further discussion of stable
convergence, see Rényi (1963), Aldous and Eagleson (1978), Chapter 3 (p. 56) of Hall and Heyde
(1980), Rootzén (1980) and Section 2 (p. 169-170) of Jacod and Protter (1998).

With this tool in hand, assume that the convergence in (10) is stable. Then the same convergence
holds under P . The technical result is as follows.

Proposition 1. Suppose that Zn is a sequence of random variables which converges stably to
N(b, a2) under P ∗. By this we mean that N(b, a2) = b + aN(0, 1), where N(0, 1) is a standard
normal variable independent of FT , also a and b are FT measurable. Then Zn converges stably in
law to b + aN(0, 1) under P , where N(0, 1) remains independent of FT under P .

Proof of Proposition. EIAg(Zn) = E∗ dP
dP ∗ IAg(Zn) → E∗ dP

dP ∗ IAg(Z) = EIAg(Z) by uniform
integrability of dP

dP ∗ IAg(Zn), and since dP
dP ∗ is FT -measurable.

Proposition 1 substantially simplifies calculations and results. In fact, the same strategy will be
helpful for the localization results that come next in the paper. It will turn out that the relationship
between the localized and continuous process can also be characterized by absolute continuity and
likelihood ratios.

Remark 1. It should be noted that after adjusting back from P ∗ to P , the process µt may show up
in expressions for asymptotic distributions. For instances of this, see Examples 3 and 5 below. One
should always keep in mind that drift most likely is present, and may affect inference. 2

In order to use the measure change (8) in the subsequent development, we impose the following
condition.
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Assumption 2. (Structure of the instantaneous volatility). We assume that the matrix process σt

is itself an Itô processes, and that if λ
(p)
t is the smallest eigenvalue of σt, then inft λ

(p)
t > 0 a.s.

2.3 Main result concerning one period discretization

Our main result in this section is that for the purposes of high frequency inference one can replace
the system (7) by the following approximation:

P ∗
n : ∆Xtn,j+1 = σtn,j∆W̆tn,j+1 for j = 0, ..., n− 1;X0 = x0, (11)

where ∆Xtn,j+1 = Xtn,j+1 − Xtn,j , and similarly for ∆W̆tn,j+1 and ∆tn,j+1. One can view (11) as
holding σt constant for one period, from tn,j to tn,j+1. We call this a one period discretization (or
localization). We are not taking a position on what the W̆t process looks like in continuous time,
or even on whether it exists for other t than the sampling times tn,j . The only assumption is that
the random variables ∆W̆tn,j+1 are independent for different j (for fixed n), and that ∆W̆tn,j+1 has
conditional distribution N(0, I∆tn,j+1). We here follow the convention from options pricing theory,
whereby, when the measure changes, the process (Xt) doesn’t change, while the driving Brownian
motion changes.

To formally describe the nature of our approximations we go through two definitions:

Definition 3. (Specification of the time discrete process subject to measure change).

U
(1)
tn,j

= Xtn,j

U
(2)
tn,j

= (σtn,j , 〈σ,W 〉′tn,j
, 〈σ, σ〉′tn,j

) (12)

Utn,j = (U (1)
tn,j

, U
(2)
tn,j

).

for j = 0, ..., n. Here, the quantity 〈σ,W 〉′t is a three (p × p × p) dimensional object (tensor)
consisting of elements 〈σ(r1,r2),W (r3)〉′t (r1 = 1, ..., p, r2 = 1, ..., p, r3 = 1, ..., p), where prime denotes
differentiation with respect to time. Similarly, 〈σ, σ〉′t is a four dimensional tensor with elements of
the form 〈σ(r1,r2), σ(r3,r4)〉′t. Finally, denote by Xn,j the σ-field generated by Utn,ι, ι = 0, ..., j.

We note here that 〈σ,W 〉′t and 〈σ, σ〉′t are the usual continuous time quadratic variations, but
they are only observed at the times tn,j . Through U

(2)
tn,j

, however, we do incorporate information
about the continuous time system into discrete time observations: the σt process, the leverage effect
(via the tensor 〈σ,W 〉′t), and the volatility of volatility (via 〈σ, σ〉′t).

For each n, the approximate probability P ∗
n will live on the filtration (Xn,j)0≤j≤n, as follows:

Definition 4. (Specification of the first order approximation). Define the probability P ∗
n recursively

by:
(i) U0 has same distribution under P ∗

n as under P ∗;



Inference for Continuous Semimartingales Observed at High Frequency 7

(ii) For j ≥ 0, the conditional P ∗
n-distribution of U

(1)
tn,j+1

given U0, ..., Utn,j is given by (11); and

(iii) For j ≥ 0, the conditional P ∗
n-distribution of U

(2)
tn,j+1

given U0, ..., Utn,j , U
(1)
tn,j+1

is the same as
under P ∗.

To the extent that conditional densities are defined, one can describe the relationship between
P ∗ and P ∗

n as

f(Utn,1 ..., Utn,j , ..., Utn,n |U0) =
n∏

j=1

f(U (1)
tn,j

|U0, ..., Utn,j−1)︸ ︷︷ ︸
altered from P ∗ to P ∗n

n∏
j=1

f(U (2)
tn,j

|U0, ..., Utn,j−1 , U
(1)
tn,j

)︸ ︷︷ ︸
unchanged from P ∗ to P ∗n

(13)

where f(y|x) is the density of the regular conditional distribution of y given x with respect to a
reference (say, Lebesgue) measure.

To state the main theorem, define

dζ̌t = σ−1
t dζt(σT )−1

t (14)

and
k

(r1,r2,r3)
t = 〈ζ̌(r1,r2),W (r3)〉′t[3] (15)

where the “[3]” means that the right hand side of (15) is a sum over three terms where r3 can
change position with either r1 or r2: 〈ζ̌(r1,r2),W (r3)〉′t[3] = 〈ζ̌(r1,r2),W (r3)〉′t + 〈ζ̌(r1,r3),W (r1)〉′t +
〈ζ̌(r3,r2),W (r1)〉′t (note that 〈ζ̌(r1,r2),W (r3)〉′t is symmetric in its two first arguments). For further
discussion of this notation, see Chapter 2.3 (p. 29-30) of McCullagh (1987). Note that k

(r1,r2,r3)
tn,j

is
measurable with respect to the σ-field Xn,j generated by Utn,ι , ι = 0, ..., j. Finally, set

Γ0 =
1
24

∫ T

0

p∑
r1,r2,r3=1

(k(r1,r2,r3)
t )2dt. (16)

In the univariate case, we have the representations

kt = 3
1
σ2

t

〈σ2,W 〉′t = 6
1
σt
〈σ,W 〉′t = 6〈log σ,W 〉′t (17)

and

Γ0 =
1
24

∫ T

0
k2

t dt. (18)

We now state the main result for one period discretization.

Theorem 1. P ∗ and P ∗
n are mutually absolutely continuous on the σ-field Xn,n generated by Utn,j ,

j = 0, ..., n. Furthermore, let (dP ∗/dP ∗
n)(Utn,0 , ..., Utn,j , ..., Utn,n) be the likelihood ratio (Radon-

Nikodym derivative) on Xn,n. Then,

dP ∗

dP ∗
n

(Utn,0 , ..., Utn,j , ..., Utn,n) L→ exp{Γ1/2
0 N(0, 1)− 1

2
Γ0} (19)

stably in law, under P ∗
n , as n →∞. N(0, 1) is independent of FT .
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Based on Theorem 1, one can (for a fixed time period) carry out inference under the model
(11), and asymptotic results will transfer back to the continuous model (7) by absolute continuity.
This is much the same strategy as the one to eliminate the drift described in Section 2.2. The main
difference is that we use an asymptotic version of absolute continuity. This concept is known as
contiguity, and is well known in classical statistical literature (see Remark 2 below). We state the
following result, in analogy with Proposition 1. A sequence Zn is called tight if every subsequence
has a further subsequence which converges in law (see Chapter VI of Jacod and Shiryaev (2003)).
Tightness is the compactness concept which goes along with convergence in law.

Corollary 1. Suppose that Zn (say, n1/2(θ̂n−θ)) is tight in the sense of stable convergence under
P ∗

n . The same statement then holds under P ∗ and P . The converse is also true.

In particular, if an estimator is consistent under P ∗
n , it is also consistent under P ∗ (and P ).

Unlike the situation in Section 2.2, the stable convergence in Corollary 1 does not assure that
n1/2(θ̂n−θ) is asymptotically independent of the normal distribution N(0, 1) in Theorem 1. It only
assures independence from FT -measurable quantities. The asymptotic law of n1/2(θ̂n − θ) may,
therefore, require an adjustment from P ∗

n to P ∗.

Remark 2. Theorem 1 says that P ∗ and the approximation P ∗
n are contiguous in the sense of Hájek

and Sidak (1967) (Chapter IV), LeCam (1986), LeCam and Yang (1986), and Jacod and Shiryaev
(2003) (Chapter IV) . This follows from Theorem 1 since dP ∗/dP ∗

n is uniformly integrable under P ∗
n

(since the sequence dP ∗
n/dP ∗ is nonnegative, also the limit integrates to one under P ∗). 2

Remark 3. A nonzero 〈σ,W 〉′t can occur in other cases than what is usually termed “leverage
effect”. An important instance of this occurs in Section 4.2, where 〈σ,W 〉′t can be nonzero due to
the nonlinear relationship between two securities. 2

2.4 Adjusting for the Change from P ∗ to P ∗
n

Following (11), write
∆W̆tn,j+1 = σ−1

tn,j
∆Xtn,j+1 . (20)

Under the approximating measure P ∗
n , ∆W̆tn,j+1 has distribution N(0, I∆tn,j+1) and is independent

of the past.

Define the third order Hermite polynomials by hr1r2r3(x) = xr1xr2xr3 − xr1δr2,r3 [3], where,
again, “[3]” represents the sum over all three possible terms for this form, and δr2,r3 = 1 if r2 = r3,
and zero otherwise. In the univariate case, h111(x) = x3 − 3x. Set

M (0)
n =

1
12

n−1∑
j=0

(∆tn,j+1)1/2
p∑

r1,r2,r3=1

k
(r1,r2,r3)
tn,j

hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2) (21)

Note that k
(r1,r2,r3)
tn,j

is Xn,j-measurable. The adjustment result is now as follows:
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Theorem 2. Assume the setup in Theorem 1. Suppose that under P ∗
n , (Zn,M

(0)
n ) converges stably

to a bivariate distribution b+aN(0, I), where N(0, I) is a bivariate standard normal vector indepen-
dent of FT and where the vector b = (b1, b2)T and the symmetric 2×2 matrix a are FT measurable.
Set A = aaT . It is then the case that Zn converges stably under P ∗ to b1 + A12 + (A11)1/2N(0, 1),
where N(0, 1) is independent of FT .

Note that under the conditions of Theorem 1, M
(0)
n converges stably under P ∗

n to a (mixed)
normal distribution with mean zero and (random, but FT -measurable) variance Γ0 (so b2 = 0 and
A22 = Γ0). Thus, when adjusting from P ∗

n to P ∗, the asymptotic variance of Zn is unchanged,
while the asymptotic bias may change.

Remark 4. The logic behind this result is as follows. On the one hand, the asymptotic variance
remains unchanged in Theorem 2 as a special case of a stochastic process property (the preservation
of quadratic variation under limit operations). We refer to the discussion in Chapter VI.6 (p. 376-
388) in Jacod and Shiryaev (2003) for a general treatment.

On the other hand, it follows from the proof of Theorem 1 that

log
dP ∗

dP ∗
n

= M (0)
n − 1

2
Γ0 + op(1). (22)

Thus, to the extent that the random variables Zn are correlated with M
(0)
n , their asymptotic mean

will change from P ∗
n to P ∗. This change of mean is precisely the value A12, which is the asymptotic

covariance of Zn and M
(0)
n . This is a standard phenomenon in situations of contiguity, cf. Hájek

and Sidak (1967). 2

2.5 Some initial examples

The following is meant for illustration only. The in-depth applications are in Section 4. We here
only consider one dimensional systems (p = 1).

Example 1. (Integral of absolute powers of ∆X). For r > 0, it is customary to estimate
∫ T
0 |σt|rdt

by a scaled version of
∑n

j=1 |∆Xtn,j |r. A general theory for this is given in Barndorff-Nielsen and
Shephard (2004b) and Jacod (1994, 2008). For the important cases r = 2 and r = 4, see also
Barndorff-Nielsen and Shephard (2002), Jacod and Protter (1998), Mykland and Zhang (2006),
Zhang (2001), and other work by the same authors.

To reanalyze this estimator with the technology of this paper, note that under P ∗
n , the law of

|∆Xtn,j+1 |r given Xn,j is |σtn,jN(0, 1)|r∆t
r/2
n,j+1, whereby

E∗
n(|∆Xtn,j+1 |r | Xn,j) = |σtn,j |rE|N(0, 1)|r∆t

r/2
n,j+1

Var∗n(|∆Xtn,j+1 |r | Xn,j) = |σtn,j |2rVar(|N(0, 1)|r)∆trn,j+1 and

Cov∗n(|∆Xtn,j+1 |r,∆W̆tn,j+1 | Xn,j) = 0. (23)
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Thus, a natural estimator of θ =
∫ T
0 |σt|rdt becomes

θ̂n =
1

E|N(0, 1)|r
n−1∑
j=0

∆t
1− r

2
n,j+1|∆Xtn,j+1 |r. (24)

Absolute normal moments can be expressed analytically as in (56) in Section 4.1 below.

From (23), it follows that θ̂n −
∑n−1

j=0 |σtn,j |r∆tn,j+1 is the end point of a martingale orthog-

onal to W , and with discrete time quadratic variation Var(|N(0,1)|r)
(E|N(0,1)|r)2

∑n−1
j=0 |σtn,j |2r∆t2n,j+1. By

the usual martingale central limit considerations (Jacod and Shiryaev (2003)), and since θ −∑n−1
j=0 |σtn,j |r∆tn,j+1 = Op(n−1), it follows that

n1/2(θ̂n − θ) L→Z ×
(

Var(|N(0, 1)|r)
(E|N(0, 1)|r)2

T

∫ T

0
σ2r

t dH(t)
)1/2

(25)

stably in law under P ∗
n , where Z is a standard normal random variable. Here, H(t) is the “Asymp-

totic Quadratic Variation of Time” (AQVT), given by

H(t) = lim
n→∞

n

T

∑
tn,j+1≤t

(tn,j+1 − tn,j)2, (26)

provided that the limit exists. For further references on this quantity, see (Zhang (2001, 2006), and
Mykland and Zhang (2006).

Note that in the case of equally spaced observations, θ̂n is proportional to
∑n

j=1 |∆Xtn,j |r, and
also H(t) = t.

To get from the convergence under P ∗
n to convergence under P ∗, we note that |N(0, 1)|r is

uncorrelated with N(0, 1) and N(0, 1)3. We therefore obtain from Theorems 1 and 2 that the
stable convergence in (25) holds under P ∗. The same is true under the true probability P by
Proposition 1. 2

Example 2. (Bi- and multipower estimators.) The same considerations as in Example 1 apply
to bi- and multipower estimators (see, in particular, Barndorff-Nielsen and Shephard (2004b) and
Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2006)). The derivations are much
the same. In particular, no adjustment is needed from P ∗

n to P ∗. 2

Example 3. (Sum of third moments). We here consider quantities of the form

Zn =
n

T

n−1∑
j=0

(∆Xtn,j+1)
3. (27)

To avoid clutter, we shall look at the equally spaced case only (∆tn,j+1 = ∆t = T/n for all j, n).

We shall see in Section 4.3 that quantities similar to (27) can be parlayed into estimators of
the leverage effect. For now, we just show what the simplest calculation will bring. An important
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issue, which sets (27) apart from most other cases is that there is a need for an adjustment from
P ∗

n to P ∗, and also from P ∗ to P .

By the same reasoning as in Example 1,

E∗
n(∆X3

tn,j+1
| Xn,j) = 0

Var∗n(∆X3
tn,j+1

| Xn,j) = σ6
tn,j

Var(N(0, 1)3)∆t3 = 15σ6
tn,j

∆t3 and

Cov∗n(∆X3
tn,j+1

,∆W̆tn,j+1 | Xn,j) = σ3
tn,j

Cov(N(0, 1)3, N(0, 1))∆t2 = 3σ3
tn,j

∆t2. (28)

Thus, Zn is the end point of a P ∗
n martingale, and, Zn

L→N(b, a2) stably under P ∗
n , where

b = 3
∫ T

0
σ3

t dW ∗
t and

a2 = 6
∫ T

0
σ6

t dt. (29)

Remark 5. (Sample of calculation). To see in more detail how (29) comes about, let V
(n)
t be

the P ∗ martingale for which V
(n)
T = Zn. Let (Xt, Vt) be the process corresponding to the limiting

distribution of (Xt, V
(n)
t ) under P ∗

n . (The prelimiting process is only defined on the grid points tn,i).
From the two last equations in (28), and by interchanging limits and quadratic variation (Chapter
VI.6 (p. 376-388) in Jacod and Shiryaev (2003), cf Remark 4 above), we get

〈V, V 〉t = 15
∫ t

0
σ6

udu and

〈V,W ∗〉t = 3
∫ t

0
σ6

udu. (30)

Now consider the representation
dVt = ftdW ∗

t + gtdBt

where Bt is a Brownian motion independent of FT (this is by Lévy’s Theorem; see, for example,
Theorem II.4.4 (p. 102) of Jacod and Shiryaev (2003), or Theorem 3.16 (p. 157) of Karatzas and
Shreve (1991)). From (30),

f2
t dt + g2

t dt = 15σ6
t dt and

ftdt = 3σ6
t dt.

In particular, g2
t = 6σ6

t . This yields (29).

What happens here is that the full quadratic variation of Vt splits in a bias and a variance term.
This is due to the non-zero covariation of V and W ∗. 2

In this example, b 6= 0. Even more interestingly, the distributional result needs to be adjusted
from P ∗

n to P ∗. To see this, denote h3(x) = x3 − 3x (the third Hermite polynomial in the scalar
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case). Then,

Cov∗n(∆X3
tn,j+1

, h3(∆W̆tn,j+1/∆t1/2) | Xn,j)∆t1/2 = σ3
tn,j

Cov(N(0, 1)3, h3(N(0, 1)))∆t2

= 6σ3
tn,j

∆t2 (31)

Thus, if M
(0)
n is as given in Section 2.4, it follows that (Zn,M

(0)
n ) converge jointly, and stably, under

P ∗
n to a normal distribution, where the asymptotic covariance is

A12 =
1
2

∫ T

0
ktσ

3
t dt

=
3
2
〈σ2, X〉T , (32)

since ktσ
3
t dt = 3σ−2

t 〈ζ, W 〉′tσ3
t dt = 3d〈ζ, X〉t = 3d〈σ2, X〉t. Thus, by Theorem 2, under P ∗,

Zn
L→N(b′, a2) stably, where a2 is as in (29), while

b′ = 3
∫ T

0
σ3

t dW ∗
t +

3
2
〈σ2, X〉T . (33)

We thus have a limit which relates to the leverage effect, which is interesting, but unfortunately
obscured by the rest of b′, and by the random term with variance a2.

There is finally a need to adjust from P ∗ to P . From (9), we have dW ∗
t = dWt + σ−1

t µtdt, it
follows that

b′ = 3
∫ T

0
σ3

t (dWt + σ−1
t µtdt) +

3
2
〈σ2, X〉T . (34)

Thus, b′ is unchanged from P ∗ to P , but it has different distributional properties. In particular, µt

now appears in the expression. This is unusual in the high frequency context.

It seems to be a general phenomenon that if there is random bias under P ∗, then µ will occur
in the expression for bias under P . This happens again in Example 5 in Section 4.3. 2

A direct derivation of this same limit is given in Example 6 of Kinnebrock and Podolskij (2008).
In their notation, σ′tdt = 2σ−2d〈σ2, X〉t.

3 Holding σ constant over longer time periods

3.1 Setup

We have shown in the above that it is asymptotically valid to consider systems where σ is constant
from one time point to the next. We shall in the following show that it is also possible to consider
approximate systems where σ is constant over longer time periods.
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We suppose that there are Kn intervals of constancy, on the form (τn,i−1, τn,i], where

Hn = {0 = τn,0 < τn,1 < ... < τn,Kn = T} ⊆ Gn (35)

If we set

Mn,i = #{tn,j ∈ (τn,i−1, τn,i]}
= number of intervals (tn,j−1, tn,j ] in (τn,i−1, τn,i] (36)

we shall suppose that
max

i
Mn,i = O(1) as n →∞, (37)

from which it follows that Kn is of exact order O(n).

We now define the approximate measure, called Qn, given by

X0 = x0

for each i = 1,Kn :

∆Xtn,j+1 = στn,i−1∆WQ
tn,j+1

for tn,j+1 ∈ (τn,i−1, τn,i]. (38)

To implement this, we use a variation over Definition 4. Formally, we define the approximation as
follows.

Definition 5. (Block approximation). Define the probability Qn recursively by:
(i) U0 has same distribution under Qn as under P ∗;
(ii) For j ≥ 0, the conditional Qn-distribution of U

(1)
tn,j+1

given U0, ..., Utn,j is given by (38), where

∆WQ
tn,j+1

is conditionally normal with mean zero and variance ∆tn,j+1; and

(iii) For j ≥ 0, the conditional Qn-distribution of U
(2)
tn,j+1

given U0, ..., Utn,j , U
(1)
tn,j+1

is the same as
under P ∗.

We can now describe the relationship between Qn and P ∗
n , as follows. Let the Gaussian log

likelihood be given by

`(∆x; ζ) = −1
2

log det(ζ)− 1
2
∆xT ζ−1∆x. (39)

We then obtain directly that

Proposition 2. The likelihood ratio between Qn and P ∗
n is given by

log
dQn

dP ∗
n

(Utn,0 , ..., Utn,j , ..., Utn,n)

=
∑

i

∑
τn,i−1≤tn,j<τn,i

{
`(∆Xtn,j+1 ; ζτn,i−1∆tn,j+1)− `(∆Xtn,j+1 ; ζtn,j∆tn,j+1)

}
(40)
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Definition 6. To measure the extent to which we hold the volatility constant, we define the fol-
lowing “Asymptotic Decoupling Delay” (ADD) by

K(t) = lim
n→∞

∑
i

∑
tn,j∈(τn,i−1,τn,i)∩[0,t]

(tn,j − τn,i−1), (41)

provided the limit exists.

From (6) and (37), every subsequence has a further subsequence for which K(·) exists (by
Helly’s Theorem, see, for example, p. 336 in Billingsley (1995). Thus one can take the limits to
exist without any major loss of generality. Also, when the limit exists, it is Lipschitz continuous.

In the case of equidistant observations and equally sized blocks of M observations, the ADD
takes the form

K(t) =
1
2
(M − 1)t. (42)

3.2 Main Contiguity Theorem for the Block Approximation

We obtain the following main result, which is proved in Appendix B.

Theorem 3. (Contiguity of P ∗
n and Qn). Suppose that Assumptions 1-2 are satisfied. Assume that

the Asymptotic Decoupling Delay (K, equation (41)) exists. Set

Z(1)
n =

1
2

∑
i

∑
tn,j∈[τn,i−1,τn,i)

(
∆XT

tn,j+1
(ζ−1

tn,j
− ζ−1

τn,i−1
)∆Xtn,j+1∆t−1

n,j+1

)
(43)

and let M
(1)
n be the end point of the P ∗

n-martingale part of Z
(1)
n (see (B.25) and (B.27) in Appendix

B for the explicit formula). Define

Γ1 =
1
2

∫ T

0
tr(ζ−2

t 〈ζ, ζ〉′t)dK(t), (44)

where “tr” denotes the trace of the matrix. Then, as n → ∞, M
(1)
n converges stably in law under

P ∗
n to a normal distribution with mean zero and variance Γ1. Also, under P ∗

n ,

log
dQn

dP ∗
n

= M (1)
n − 1

2
Γ1 + op(1). (45)

Furthermore, if M
(0)
n is as defined in (21), then the pair (M (0)

n ,M
(1)
n ) converges stably under P ∗

n to
(Γ1/2

0 V0,Γ
1/2
1 V1), where V0 and V1 are iid N(0,1), and independent FT .

The theorem says that P ∗
n and the approximation Qn are contiguous, cf. Remark 2 in Section

2.3. By the earlier Theorem 1, it follows that Qn and P ∗ (and P ) are contiguous. In particular,
as before, if an estimator is consistent under Qn, it is also consistent under P ∗ and P . Rates of
convergence (typically n1/2) are also preserved, but the asymptotic distribution may change.
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Example 4. For a scalar process on the form dXt = µtdt+σtdWt, and with equidistant observations
of X, Γ1 in (44) can be written

Γ1 =
M − 1

4

∫ T

0
σ−4

t 〈σ2, σ2〉′tdt. (46)

From (17)-(18), Γ0 = 3
8

∫ T
0 σ−6

t (〈σ2, X〉′t)2dt. Thus, Γ0 is related to the leverage effect, while
Γ1 is related to the volatility of volatility. In the case of a Heston (1993) model, where dσ2

t =
κ(α−σ2

t )dt+γσtdBt, and B is a Brownian motion correlated with W , d〈B,W 〉t = ρdt, one obtains

Γ0 =
3
8
(ργ)2

∫ T

0
σ−2

t dt and Γ1 =
1
4
γ2(M − 1)

∫ T

0
σ−2

t dt. (47)

2

Remark 6. (Which probability?) We have now done several approximations. The true probability
is P , and we are proposing to behave as if it is Qn. We thus have the following alterations of
probability

log
dP

dQn
= log

dP

dP ∗ + log
dP ∗

dP ∗
n

+ log
dP ∗

n

dQn
. (48)

To make matters slightly more transparent, we have stated Theorem 3 under the same probability
(P ∗

n) as Theorems 1 and 2. Since computations would normally be made under Qn, however, we
note that Theorem 2 applies equally if one replaces P ∗

n by Qn, and M
(0)
n by M

(0,Q)
n , given as in (21),

with ∆WQ
tn,j+1

replacing ∆W̆tn,j+1 . (Since M
(0,Q)
n = M

(0)
n + op(1)). Similarly, if one lets M

(1,Q)
n

be endpoint of the Qn-martingale part of −Z
(1)
n , one gets the same stable convergence under Qn.

Obviously, (45) should be replaced by

log
dP ∗

n

dQn
= M (1,Q)

n − 1
2
Γ1 + op(1). (49)

and M
(1,Q)
n = −M

(1)
n + Γ1 + op(1). 2

3.3 Measure change and Hermite polynomials

The three measure changes in Remark 6 turn out to all have a representation in terms of Hermite
polynomials.

Recall that the standardized Hermite polynomials are given by hr1(x) = xr1 , hr1r2(x) = xr1xr2−
δr1,r2 , and hr1r2r3(x) = xr1xr2xr3 −xr1δr2,r3 [3], where, again, “[3]” represents the sum over all three
possible combinations, and δr2,r3 = 1 if r2 = r3, and zero otherwise. In the scalar case, h1(x) = x,
h11(x) = x2 − 1, and h111(x) = x3 − 3x. From Remark 6,

M (0,Q)
n =

1
12

n−1∑
j=0

(∆tn,j+1)1/2
p∑

r1,r2,r3=1

k
(r1,r2,r3)
tn,j

hr1r2r3(∆WQ
tn,j+1

/(∆tn,j+1)1/2), and

M (1,Q)
n = −1

2

∑
i

∑
tn,j∈(τn,i−1,τn,i]

tr
(
σT

τn,i−1
(ζ−1

tn,j
− ζ−1

τn,i−1
)στn,i−1h··(∆WQ

tn,j+1
/(∆tn,j+1)1/2)

)
. (50)
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Similarly, define a discretized version of M (G) =
∫ T
0 σ−1

t µtdW ∗
t by

M (G,Q)
n =

n−1∑
j=0

(∆tn,j+1)1/2
(
σ−1

τn,i−1
µτn,i−1h·(∆WQ

tn,j+1
/(∆tn,j+1)1/2)

)
(51)

(“G” is for Girsanov; h· is the vector of first order Hermite polynomials, similarly h·· is the matrix
of second order such polynomials). We also set

ΓG =
∫ T

0
µT

t (σT
t σt)−1µtdt. (52)

We therefore get the following summary of our results:

log
dP

dP ∗ = M (G,Q)
n − 1

2
ΓG + op(1)

log
dP ∗

dP ∗
n

= M (0,Q)
n − 1

2
Γ0 + op(1) (53)

log
dP ∗

n

dQn
= M (1,Q)

n − 1
2
Γ1 + op(1).

Furthermore, by the Hermite polynomial property, we obtain that these three martingales have, by
construction, zero predictable covariation (under Qn). In particular, the triplet (M (G,Q)

n ,M
(0)
n ,M

(1)
n )

converges stably to (M (G),Γ1/2
0 V0,Γ

1/2
1 V1), where V0 and V1 are iid N(0,1), and independent FT .

Remark 7. The term M
(G,Q)
n is in many ways different from M

(0)
n and M

(1)
n . The convergence of

the former is in probability, while the latter converge only in law. Thus, for example, the property
discussed in Remark 4 (see also Theorem 4 in the next section) does not apply to M

(G,Q)
n . If Zn and

M
(G,Q)
n have joint covariation, this yields a smaller asymptotic variance for Zn, but also bias. For

instances of this, see Example 3 in Section 2.5, and also Example 5 in Section 4.3 below. 2

3.4 Adjusting for the Change from P ∗ to Qn

The adjustment result is now similar to that of Section 2.4

Theorem 4. Assume the setup in Theorems 1-3. Suppose that, under Qn, (Zn,M
(0)
n ,M

(1)
n ) con-

verges stably to a trivariate distribution b+aN(0, I), where N(0, I) is a trivariate vector independent
of FT , where the vector b = (b1, b2, b3)T and the symmetric 3× 3 matrix a are FT measurable. Set
A = aaT . Then Zn converges stably under P ∗ to b1 + A12 + A13 + (A11)1/2N(0, 1), where N(0, 1)
is independent of FT .

Recall that b2 = b3 = A23 = 0, A22 = Γ0, and A33 = Γ1. The proof is the same as for
Theorem 2. – Theorem 4 states that when adjusting from Qn to P ∗, the asymptotic variance of
Zn is unchanged, while the asymptotic bias may change.
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4 First applications

We here discuss various applications of our theory. For simplicity, assume in following that sampling
is equispaced (so ∆tn,j = ∆tn = T/n for all j). The question of irregular sampling is discussed
in Mykland and Zhang (2009). Except in Sections 4.2 and 4.4.2, we also take (Xt) to be a scalar
process. We take the block size M to be independent of i (except possibly for the first and last
block, and this does not matter for asymptotics).

Define

σ̂2
τn,i

=
1

∆tn(Mn − 1)

∑
tn,j∈(τn,i,τn,i+1]

(∆Xtn,j −∆Xτn,i)
2 and

∆Xτn,i =
1

Mn

∑
tn,j∈(τn,i,τn,i+1]

∆Xtn,j =
1

Mn
(Xτn,i+1 −Xτn,i) (54)

To analyze estimators, denote by Yn,i the information at time τn,i. Note that Yn,i = Xn,j , where j

is such that tn,j = τn,i.

4.1 Estimation of integrals of |σt|r

We return to the question of estimating

θ =
∫ T

0
|σt|rdt.

We shall not use estimators of the form
∑n

j=1 |∆Xtn,j |r, as in Example 1. We show how to get
more efficient estimators by using the block approximation.

4.1.1 Analysis

We observe that under Qn, the ∆Xtn,j+1 are iid N(0, σ2
τn,i

∆tn) within each block. From the theory of
unbiased minimum variance (UMVU) estimation (see, for example, Lehmann (1983)), the optimal
estimator of |στn,i |r is

̂|στn,i |r = c−1
M−1,r(σ̂

2
τn,i

)r/2 (55)

This also follows from sufficiency considerations. Here, cM,r is the normalizing constant which gives
unbiasedness, namely

cM,r = E
(
(χ2

M/M)r/2
)

=
(

2
M

)r/2 Γ( r+M
2 )

Γ(M
2 )

(56)
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where χ2
M has the standard χ2 distribution with M degrees of freedom, and Γ is the Gamma

function.

Our estimator of θ (which is blockwise UMVU under Qn) therefore becomes

θ̂n = (M∆t)
∑

i

̂|στn,i |r (57)

It is easy to see that θ̂n asymptotically has no covariation with any of the Hermite polynomials in
Section 3.3, and so, by standard arguments,

n1/2(θ̂n − θ) L→N(0, 1)

(
TM

(
cM−1,2r

c2
M−1,r

− 1

)∫ T

0
σ2r

t dt

)1/2

(58)

stably in law, under P (and P ∗, P ∗
n , and Qn). This is because, under Qn,

Var((M∆t)
∑

i

̂(|στn,i |r) | Yn,i) = σ2r
τn,i

(M∆t)2c−2
M−1,rVar

(
(χ2

M−1/(M − 1))r/2
)

= σ2r
τn,i

(M∆t)
TM

n

(
cM−1,2r

c2
M−1,r

− 1

)
. (59)

Remark 8. (Not taking out the mean). One can replace σ̂2
τn,i

by

σ̃2
τn,i

=
1

∆tnMn

∑
tn,j∈(τn,i,τn,i+1]

(∆Xtn,j )
2, (60)

and take
˜|στn,i |r = c−1

M,r(σ̃
2
τn,i

)r/2 (61)

and define θ̃n accordingly. The above analysis goes through. The (random) asymptotic variance
becomes

TM

(
cM,2r

c2
M,r

− 1

)∫ T

0
σ2r

t dt. (62)

2

4.1.2 Asymptotic Efficiency

We note that for large M ,

asymptotic variance of n1/2(θ̂n − θ) ↓ T
r2

2

∫ T

0
σ2r

t dt. (63)

This is also the minimal asymptotic variance of the parametric MLE when σ2 is constant. Thus,
by choosing M largeish, say M = 20, one can get close to parametric efficiency (see Figure 1).
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To see the gain from the procedure, compare to the asymptotic variance of the estimator in

Example 1, which can be written as T

(
c1,2r

c21,r
− 1
)∫ T

0 σ2r
t dt. Compared to the variance in (63), the

earlier estimator has asymptotic relative efficiency (ARE)

ARE(estimator from Example 1) =
asymptotic variance in (63)

asymptotic variance of estimator from Example 1

=
r2

2

(
c1,2r

c2
1,r

− 1

)−1

(64)

Note that except for r = 2, ARE < 1. Figure 1 gives a plot of the ARE as a function of r. As one
can see, there can be substantial gain from using the proposed estimator (57).
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Figure 1. Asymptotic relative efficiency (ARE) of three estimators of θ =
∫ T
0 |σ|rtdt,

as a function of r. The dotted curve corresponds to the traditional estimator,

which is proportional to
∑n

j=1 |∆Xtn,j |r. The solid and dashed lines are the ARE’s

of the block based estimators using, respectively, σ̂ (solid) and σ̃ (dashed). Block

sizes M = 20 and M = 100 are given. The ideal value is ARE = 1. Blocking is seen

to improve efficiency, especially away from r = 2. There is some cost to removing

the mean in each block (the difference between the dashed and the solid curve).
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Remark 9. In terms of asymptotic distribution, there is further gain in using the estimator from
Remark 8. Specifically, AREM (θ̃)/AREM (θ̂) = M/(M − 1). This is borne out by Figure 1.
However, it is likely that the drift µ, as well as the block size M , would show up in a higher order
bias calculation. This would make σ̃ less attractive. In connection with estimating the leverage
effect, it is crucial to use σ̂ rather than σ̃, cf. Section 4.3. 2

Remark 10. We emphasize again that M has to be fixed in the present calculation, so that the
ideal asymptotic variance on the right hand side of (63) is only approximately attained. It would
be desirable to build a theory where M →∞ as n →∞. Such a theory would presumably be able
to pick up any biases due to the blocking. 2

4.2 Integrated betas

Consider processes X
(1)
t , ..., X

(p)
t and Yt which are observed synchronously at times 0 = tn,0 <

tn,1 < ... < tn,n1 = T . Suppose that these processes are related by

dYt =
p∑

i=1

β
(k)
t dX

(k)
t + dZt, with 〈X(k), Z〉t = 0 for all t and k. (65)

We consider the question of estimating θ(k) =
∫ T
0 β

(k)
t dt. This estimation problem is conceptually

closely related to the realized regressions studied in Barndorff-Nielsen and Shephard (2004a) and
Dovonon, Goncalves, and Meddahi (2008). The ANOVA in Mykland and Zhang (2006) is concerned
with the residuals in this same model.

Under the approximation Qn, in each block τn,i−1 < tn,j ≤ τn,i the regression (65) becomes, for
the observables,

∆Ytn,j =
p∑

k=1

β(k)
τn,i−1

∆X
(k)
tn,j

+ ∆Ztn,j . (66)

It is therefore natural to take the estimator (β̂(1)
τn,i−1 , ..., β̂

(p)
τn,i−1) of (β(1)

τn,i−1 , ..., β
(p)
τn,i−1) to be the regu-

lar least squares estimator (without intercept) based on the observables (∆X
(1)
tn,j

, ...,∆X
(p)
tn,j

,∆Ytn,j )
inside the block. The overall estimate of the vector of θ’s is then

θ̂(k)
n =

∑
i

β̂(k)
τn,i−1

M∆t. (67)

From the unbiasedness of linear regression, we inherit that n1/2(θ̂n − θ) is the end point of an
(Yn,i, Qn) martingale, with discrete time quadratic covariation matrix

n(M∆t)2
∑

i

CovQn(β̂τn,i−1 − βτn,i−1 | Yn,i−1). (68)

To see how the martingale property follows, let Y ′n,i−1 be the smallest sigma-field containing Yn,i−1

and σ(∆Xtn,j , τn,i−1 < tn,j ≤ τn,i). The precise implication of the classical unbiasedness is that
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EQn(β̂τn,i−1 − βτn,i−1 | Y ′n,i−1) = 0, whence the stated martingale property follows by the law of
iterated expectations (or tower property).

To compute (68), note that from standard regression theory (see, e.g., p. 44 in Weisberg (1985))

CovQn(β̂τn,i−1 − βτn,i−1 | Y ′n,i−1) = VarQn(∆Ztn,j | Y ′n,i−1)× (∆XT ∆X)−1 (69)

where, with some abuse of notation, ∆X is the matrix of ∆X
(k)
tn,j

, where k = 1, ..., p, and the tn,j are
in block number i. Now observe that under Qn, the conditional distribution of ∆X given Yn,i−1 is
that of M independent rows, each row being a p-variate normal distribution with mean zero and
covariance matrix 〈X, X〉′τn,i−1

∆tn. (Recall that “prime” here denotes differentiation w.r.t. time
t). Hence, ∆XT ∆X has Wishart distribution with scale matrix 〈X, X〉′τn,i−1

∆tn, and M degrees of
freedom. (We refer to p. 66 of Mardia, Kent, and Bibby (1979) for the definition of the Wishart
distribution). It follows that (ibid., p. 85)

EQn((∆XT ∆X)−1 | Yn,i−1) = (〈X, X〉′τn,i−1
)−1∆t−1

n /(M − p− 1). (70)

Since VarQn(∆Ztn,j | Y ′n,i−1) = 〈Z,Z〉′τn,i−1
∆tn, we finally get that

CovQn(β̂τn,i−1 − βτn,i−1 | Yn,i−1) = 〈Z,Z〉′τn,i−1
(〈X, X〉′τn,i−1

)−1/(M − p− 1). (71)

It follows that the limit of (68) is

MT

M − p− 1

∫ T

0
〈Z,Z〉′t(〈X, X〉′t)−1dt. (72)

For the same reasons as in Sections 2.5 and 4.1 it then follows that n1/2(θ̂n − θ) converges stably
to a multivariate mixed normal distribution, with mean zero and covariance matrix given by (72),
under all of Qn, P ∗

n , P ∗, and P .

4.3 Estimation of Leverage Effect

We here seek to estimate 〈σ2, X〉T . We have seen in Example 3 that this quantity can appear in
asymptotic distributions, and we shall here see how the sum of third powers can be refined into an
estimate of this quantity.

The natural estimator would be

˜〈σ2, X〉T =
∑

i

(σ̂2
τn,i+1

− σ̂2
τn,i

)(Xτn,i+1 −Xτn,i), (73)

where σ̂2
τn,i

and ∆Xτn,i are given above in (54). It turns out, however, that this estimator is
asymptotically biased, as follows:
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Proposition 3. Let M ≥ 2. In the equally spaced case, under both P ∗ and P , and as n →∞,

˜〈σ2, X〉T
L→ 1

2
〈σ2, X〉+ N(0, 1)×

(
4

M − 1

∫ T

0
σ6

t dt

)1/2

(74)

stably in law, where N(0, 1) is independent of FT .

The derivation of this result, along with that of the result in Example 5 below, is given in
Appendix C. This appendix gives what we think is a typical way of showing results based on the
general theory of Sections 2-3.

Accordingly, we define an asymptotically unbiased estimator of leverage effect by

̂〈σ2, X〉T = 2
∑

i

(σ̂2
τn,i+1

− σ̂2
τn,i

)(Xτn,i+1 −Xτn,i), (75)

In other words, ̂〈σ2, X〉T = 2 ˜〈σ2, X〉T . Following Proposition 3,

̂〈σ2, X〉T − 〈σ2, X〉 L→ c
1/2
M N(0, 1) (76)

stably under P ∗ and P , where

cM =
16

M − 1

∫ T

0
σ6

t dt. (77)

It is important to note that the bias in ˜〈σ2, X〉T comes from error induced by both the one period
and multi period discretizations (the adjustment from P ∗ to P ∗

n , then to Qn). Thus, this is an
instance where näıve discretization does not work.

For fixed M , the estimator ̂〈σ2, X〉T is not consistent. By choosing large M , however, one can
make the error as small as one wishes.

Remark 11. It is conjectured that there is an optimal rate of M = O(n1/2) as n → ∞. The
presumed optimal convergence rate of ̂〈σ2, X〉T −〈σ2, X〉T is Op(n−1/4), in analogy with the results
in Zhang (2006). This makes sense because there is an inherited noisy measure σ̂2

t of σ2
t in the

definition the estimator ̂〈σ2, X〉T , see (75). The problem of estimating 〈σ2, X〉T is therefore similar
to estimating volatility in the presence of microstructure noise. It would clearly be desirable to have
a theory for the case where M →∞ with n, but this is beyond the scope of this paper. 2

Example 5. (The rôle of µ: The Effect of not removing the mean from the estimate

of σ2). In the development above, the drift µ did not surface. This example gives evidence that
the drift can matter. We shall see that if one does not take out the drift when estimating σ2, µ

can appear in the asymptotic bias.

Suppose that one wishes to use the estimator (75), but replacing σ̂2
τn,i

by the estimator σ̃2
τn,i

from (60). An estimator analogous to ̂〈σ2, X〉T is then

̂〈σ2, X〉
with mean

T = 2
∑

i

(σ̃2
τn,i+1

− σ̃2
τn,i

)(Xτn,i+1 −Xτn,i), (78)
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We show in Section C.2 that, for M ≥ 2,

̂〈σ2, X〉
with mean

T
L→ M − 2

M
〈σ2, X〉T −

4
M

∫ T

0
σ3

t (dWt+σ−1
t µtdt) + N(0, 1)

(
16

M + 1
M2

∫ T

0
σ6

t dt

)1/2

.

(79)
Hence, with this estimator, µ does show up in asymptotic expressions. The estimation of leverage
effect is therefore a case where it is important to remove the mean in each block. 2

4.4 Other examples

We here summarize two additional examples of application that have been studied more carefully
elsewhere.

4.4.1 Realized quantile-based estimation of integrated volatility

This methodology has been studied in a recent paper by Christensen, Oomen, and Podolskij (2008).
In the case of fixed block size and no micro-structure, their results (Theorem 1-2) can be deduced
from Theorem 1-3 of this paper. The key observation is that if V is the k’th quantile among ∆Xtn,j ,
with τn,i−1 < tn,j ≤ τn,i, then EQn(V 2 | Yn,i−1) = σ2

τn,i−1
EU2

(k), where U(k) is the k’th quantile of
M iid standard normal random variables. Blockwise L-statistics can be constructed similarly.

We emphasize that the paper by Christensen, Oomen, and Podolskij (2008) goes much further
in developing the quantile-based estimation technology, including increasing block size and allowing
for micro-structure.

4.4.2 ANOVA (Analysis of variance/variation)

A related problem to the one discussed above in Section 4.2 is that of analysis of variance/variation
Zhang (2001) and Mykland and Zhang (2006)). We are again in the situation of the regression
(65), but now the purpose is to estimate 〈Z,Z〉T , i.e., the residual quadratic variation of Y after
regressing on X. Blocking can here be used in much the same way as in Section 4.2.

4.5 Abstract summary of applications

We here summarize the procedure which is implemented in the applications section above. We
remain in the scalar case.
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In the type of problems we have considered, the parameter θ to be estimated can be written as

θ =
∑

i

θn,i + Op(n−1) (80)

where, under the approximating measure, θn,i is approximately an integral from τn,i−1 to τn,i.
Estimators are of the form

θ̂n =
∑

i

θ̂n,i, (81)

where θ̂n,i uses M or (in the case of the leverage effect) 2M increments. If one sets Zn,i = nα(θ̂n,i−
θn,i), we need that Zn,i is a martingale under Qn. α can be 0, 1/2 or any other number smaller
than 1. We then show in each individual case that, in probability,

∑
i

VarQ
n (Zn,i | Yn,i) →

∫ T

0
f2

t dt

∑
i

CovQ
n (Zn,i,W

Q
τn,i

−WQ
τn,i−1

| Yn,i) →
∫ T

0
gtdt (82)

for some functions (processes) ft and gt. We also find the following limits in probability:

A12 =
1
12

lim
n→∞

∑
i

CovQ
n

Zn,i,
∑

tn,j∈(τn,i−1,τn,i]

(∆tn,j+1)1/2ktn,jh3(∆WQ
tn,j+1

/(∆tn,j+1)1/2) | Yn,i


and

A13 = −1
2

lim
n→∞

∑
i

CovQ
n

Zn,i,
∑

tn,j∈(τn,i−1,τn,i]

(
σ2

τn,i−1
(ζ−1

tn,j
− ζ−1

τn,i−1
)h2(∆WQ

tn,j+1
/(∆tn,j+1)1/2)

)
| Yn,i

 .

(83)

We finally obtain

Theorem 5. (Summary of method in the scalar case). In the setting described, and subject to
regularity conditions,

nα(θ̂n − θn) L→ b + A12 + A13 + N(0, 1)
(∫ T

0
(f2

t − g2
t )dt

)1/2

(84)

stably in law under P ∗ and P , with N(0, 1) independent of FT . b is given by

b =
∫ T

0
gtdW ∗

t =
∫ T

0
gt(dWt + σ−1

t µtdt). (85)
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5 Conclusion

The main finding of the paper is that one can in broad generality use first order approximations when
defining and analyzing estimators. Such approximations require an ex post adjustment involving
asymptotic likelihood ratios, and these are given. Several examples are provided in Section 4.

The theory relies heavily on the interplay between stable convergence and measure change, and
on asymptotic expansions for martingales. We here give a technical summary of the findings.

The paper deals with two forms of discretization: to block size M = 1, and then to block size
M > 1. Each of these has to be adjusted for by using an asymptotic measure change. Accordingly,
the asymptotic likelihood ratios can be called dP ∗

∞/dP and dQ∞/dP . There is similarity here to
the measure change dP ∗/dP used in option pricing theory, where P ∗ is an equivalent martingale
measure (a probability distribution under which the drift of an underlying process has been removed;
for our purposes, discounting is not an issue); for more discussion and references, see Section 2.2.
In fact, for the reasons given in that section, we can for simplicity assume that the probabilities P ∗

n

and Qn also are such that the (observed discrete time) process has no drift.

It is useful to write the likelihood ratio decomposition

log
dQ∞
dP

= log
dQ∞
dP ∗

∞
+ log

dP ∗
∞

dP ∗ + log
dP ∗

dP
. (86)

We saw in Section 3.3 that these three likelihood ratios are of similar form, and can be represented
in terms of Hermite polynomials of the increments of the observed process. The connections are
summarized in Table 1.

type of compensating size of LR order of relevant
approximation likelihood ratio (LR) is related to Hermite polynomial
one period discretization dP ∗

∞/dP ∗ leverage effect 3
(M = 1)
multi period discretization dQ∞/dP ∗

∞ volatility of volatility 2
(block M > 1)
removal of drift dP ∗/dP mean 1

Table 1. Measure changes (likelihood ratios) tied to three procedures modifying properties of the
observed process. P is the true probability distribution, P ∗ is the equivalent martingale measure
(as in option pricing theory). P ∗

n is the probability for which (1) is exact, and Qn is the probability
for which one can use

∫ ti
ti−M fsdWs ≈ fti−M (Wti − Wti−M ). The two measure changes dP ∗

n/dP ∗

and dQn/dP ∗
n have asymptotic limits, denoted by subscript “∞”. This connects to the statistical

concept of contiguity, cf. Remark 2.
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The three approximations all lead to adjustments that are absolutely continuous. This fact
means that for estimators, consistency and rate of convergence are unaffected by the the approx-
imation. It turned out that asymptotic variances are similarly unaffected (Remark 4 in Section
2.4). Asymptotic distributions can be changed through their means only (Sections 2.4, 3.4). We
emphasize that this is not the same as introducing inconsistency.

A number of unsolved questions remain. The approach provides is a tool for analyzing estima-
tors, and it does not always give guidance as to how to define estimators in the first place. Also, the
theory requires block sizes (M) to stay bounded as the number of observations increases. It would
be desirable to have a theory where M →∞ with n. This is not possible with the likelihood ratios
we consider, but may be available in other settings, such as with microstructure noise. Causality
effects from observation times to the process, such as in Renault and Werker (2006), would also
need an extended theory.

Department of Statistics, The University of Chicago, Chicago, IL 60637, U.S.A.;
mykland@galton.uchicago.edu; http://galton.uchicago.edu/∼mykland.
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APPENDIX: PROOFS

A Proofs of Theorems 1 and 2

To avoid having superscript “∗” everywhere, use the notation P for P ∗, until the end of the proof of
Theorem 1 only, and without loss of generality. This is only a matter of notation. One understands
the differential σtdWt to be a p-dimensional vector with r1’th component

∑p
r2=1 σ

(r1,r2)
t dW

(r2)
t . To

study the properties of this approximation, consider the following “strong approximation”. Set

dσt = σ̃tdt + ftdWt + gtdBt (A.1)

where ft is a tensor and gtdBt is a matrix, with B a Brownian motion independent of W (g and B can
be tensor processes). For example, component (r1, r2) of the matrix ftdWt is

∑p
r3=1 f

(r1,r2,r3)
t dW (r3).

Note that σt is an Itô process by Assumption 2. Then

∆Xtn,j+1 = σtn,j∆Wtn,j+1 +
∫ tn,j+1

tn,j

(σt − σtn,j )dWt

= σtn,j∆Wtn,j+1 + ftn,j

∫ tn,j+1

tn,j

(∫ t

tn,j

dWu

)
dWt

+ dBdW -term + higher order terms . (A.2)

It will turn out that the two first terms on the right hand side will matter in our approximation.
Note first that by taking quadratic covariations, one obtains

f
(r1,r2,r3)
t = 〈σ(r1,r2),W (r3)〉′t. (A.3)

To proceed with the proof, some further notation. Define

dσ̆t = σ−1
t dσt and f̆

(r1,r2,r3)
t = 〈σ̆(r1,r2),W (r3)〉′t =

p∑
r4=1

(σ−1
t )(r1,r4)f

(r4,r2,r3)
t (A.4)

σ̆
(r1,r2)
t and f̆t(r1, r2, r3) are not symmetric in (r1, r2). However, since dζt = d(σtσ

T
t ) = σtdσt +

(σtdσt)T + dt terms, we obtain from (14) that dζ̌t = σ−1
t dσt + (σ−1

t dσt)T + dt terms. Hence

〈ζ̌(r1,r2),W (r3)〉′t = f̆
(r1,r2,r3)
t + f̆

(r2,r1,r3)
t . (A.5)

Also
k

(r1,r2,r3)
t = 〈ζ̌(r1,r2),W (r3)〉′t[3] = f̆

(r1,r2,r3)
t [6] (A.6)

Finally, we let ∆t = T/n (the average ∆tn,j+1).

Proof of Theorem 1. Note that, from (20) and (A.2)

∆W̆tn,j+1 = ∆Wtn,j+1 + f̆tn,j

∫ tn,j+1

tn,j

(∫ t

tn,j

dWu

)
dWt

+ dBdW -term + higher order terms . (A.7)



Inference for Continuous Semimartingales Observed at High Frequency 31

In the representation (A.7), we obtain, up to Op(∆t5/2),

cum3(∆W̆
(r1)
tn,j+1

,∆W
(r2)
tn,j+1

,∆W
(r3)
tn,j+1

|Ftn,j )

.= cum(
∑
s2,s3

f̆
(r1,s2,s3)
tn,j

∫ tn,j+1

tn,j

(∫ t

tn,j

dW (s3)
u

)
dW

(s2)
t ,∆W

(r2)
tn,j+1

,∆W
(r3)
tn,j+1

|Ftn,j )

=
∑
s2,s3

f̆
(r1,s2,s3)
tn,j

cum(
∫ tn,j+1

tn,j

(∫ t

tn,j

dW (s3)
u

)
dW

(s2)
t ,∆W

(r2)
tn,j+1

,∆W
(r3)
tn,j+1

|Ftn,j )

=
∑
s2,s3

f̆
(r1,s2,s3)
tn,j

Cov(
∫ tn,j+1

tn,j

(∫ t

tn,j

dW (s3)
u

)
dtδs2,r2 ,∆W

(r3)
tn,j+1

|Ftn,j )[2]

=
∑
s3

f̆
(r1,r2,s3)
tn,j

Cov(
∫ tn,j+1

tn,j

(∫ t

tn,j

dW ∗(s3)
u

)
dt,∆W

(r3)
tn,j+1

|Ftn,j )[2]

=
∫ tn,j+1

tn,j

dt
∑
s3

f̆
(r1,r2,s3)
tn,j

Cov(
∫ t

tn,j

dW ∗(s3)
u ,∆W

(r3)
tn,j+1

|Ftn,j )[2]

=
∫ tn,j+1

tn,j

dt
∑
s3

f̆
(r1,r2,s3)
tn,j

(t− tn,j)δs3,r3 [2]

=
1
2
∆t2n,j+1f̆

(r1,r2,r3)
tn,j

[2], (A.8)

where “[2]” represents the swapping of r2 and r3 (see p. 29-30 of McCullagh (1987) for a discussion of
the notation). In the third transition, we have used the third Bartlett type identity for martingales.
Hence

cum3(∆W̆
(r1)
tn,j+1

,∆W̆
(r2)
tn,j+1

,∆W̆
(r3)
tn,j+1

|Ftn,j )

=
1
2
∆t2n,j+1f̆

(r1,r2,r3)
tn,j

[6] + Op(∆t5/2)

=
1
2
∆t2n,j+1〈ζ̌(r1,r2),W (r3)〉′tn,j

[3] + Op(∆t5/2) (A.9)

by symmetry. Set κr1,r2,r3 = cum3(∆W̆
(r1)
tn,j+1

/∆t
1/2
n,j+1,∆W̆

(r2)
tn,j+1

/∆t
1/2
n,j+1,∆W̆

(r3)
tn,j+1

/∆t
1/2
n,j+1|Ftn,j ),

and similarly for other cumulants. From (15) and (A.9),

κr1,r2,r3 =
1
2
∆t

1/2
n,j+1k

(r1,r2,r3)
tn,j

+ Op(∆t). (A.10)

At the same time (dζ = ζ̃dt + d martingale),

Cov(∆X
(r1)
tn,j+1

,∆X
(r2)
tn,j+1

|Ftn,j ) = ∆tn,j+1ζ
(r1,r2)
tn,j

+ E(
∫ tn,j+1

tn,j

(ζ(r1,r2)
u − ζ

(r1,r2)
tn,j

)du|Ftn,j )

= ∆tn,j+1ζ
(r1,r2)
tn,j

+ E(
∫ tn,j+1

tn,j

du

∫ u

tn,j

ζ̃(r1,r2)
v dv|Ftn,j )

= ∆tn,j+1ζ
(r1,r2)
tn,j

+
1
2
∆t2n,j+1ζ̃

(r1,r2)
tn,j

+ Op(∆t3), (A.11)
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so that Cov(∆W̆
(r1)
tn,j+1

,∆W̆
(r2)
tn,j+1

|Ftn,j ) = ∆tn,j+1δ
r1,r2 + Op(∆t2), and

κr1,r2 = δr1,r2
tn,j

+ Op(∆t). (A.12)

Since X is a martingale, we also have κr = E(∆W̆
(r)
tn,j+1

|Ftn,j ) = 0.

In the notation of Chapter 5 of McCullagh (1987), we take λr1,r2 = δr1,r2 , and let the other λ’s
be zero. From now on, we also use the summation convention. By the development in Chapter
5.2.2 of this work, we obtain the Edgeworth expansion for the density fn,j+1 of ∆W̆tn,j+1/∆t

1/2
n,j+1

given Ftn,j , on the log scale as

log fn,j+1(x) = log φ(x; δr1,r2) +
1
3!

κr1,r2,r3hr1r2r3(x)

+
1
2
(κr1,r2 − λr1,r2)hr1r2(x) +

1
4!

κr1,r2,r3,r4hr1r2r3r4(x)

+ κr1,r2,r3κr4,r5,r6hr1r2r3r4r5r6(x)
[10]
6!

− 1
72

(κr1,r2,r3hr1r2r3(x))2 + Op(∆t3/2) (A.13)

where we for simplicity have used the summation convention. Note that the three last lines contain
terms of order Op(∆t) (or smaller).

We note, following formula (5.7) (p. 149) in McCullagh (1987), that hr1r2r3 = hr1hr2hr3 −
hr1δr2,r3 [3], with hr1 = δr1,r2x

r2 . Observe that

Zr1 = hr1(∆W̆tn,j+1/(∆tn,j+1)1/2) = δr1,r2∆W̆ r2
tn,j+1

/(∆tn,j+1)1/2. (A.14)

Under the approximating measure, therefore, the vector consisting of elements Zr−1 is conditionally
normally distributed with mean zero and covariance matrix δr1,r2 .

It follows that

hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2) = Zr1Zr2Zr3 − Zr1δr2,r3 [3] (A.15)

Under the approximating measure, therefore, En(hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2)|Ftn,j ) = 0, while

Covn(hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2), hr4r5r6(∆W̆tn,j+1/(∆tn,j+1)1/2)|Ftn,j ) = δr1,r4δr2,r5δr3,r6 [6]
(A.16)

where the “[6]” refers to all six combinations where each δ has one index from {r1, r2, r3} and one
from {r4, r5, r6}. It follows that

Varn(
1
3!

κr1,r2,r3hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2)|Ftn,j )

=
1
36

κr1,r2,r3κr4,r5,r6Covn(hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2), hr4r5r6(∆W̆tn,j+1/(∆tn,j+1)1/2)|Ftn,j )

=
1
6
κr1,r2,r3κr4,r5,r6δr1,r4δr2,r5δr3,r6

= ∆tn,j+1
1
24

kr1,r2,r3
tn,j

kr4,r5,r6
tn,j

δr1,r4δr2,r5δr3,r6 + Op(∆t3/2) (A.17)
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by symmetry of the κ’s. Thus∑
tn,j+1≤t

Varn(
1
3!

κr1,r2,r3hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2)|Ftn,j )
p→
∫ t

0

1
24

kr1,r2,r3
u kr4,r5,r6

u δr1,r4δr2,r5δr3,r6du

(A.18)
under P ∗

n , still using the summation convention. Note that (A.18), with t = T , is the same as Γ0

in (16). By the same methods, and since Hermite polynomials of different orders are orthogonal
under the approximating measure,∑

tn,j+1≤t

Covn( hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2), hr4(∆W̆tn,j+1/(∆tn,j+1)1/2)|Ftn,j )
p→0. (A.19)

By the methods of Jacod and Shiryaev (2003), it follows that

M̌ (0)
n =

n−1∑
j=0

1
3!

κr1,r2,r3hr1r2r3(∆W̆tn,j+1/(∆tn,j+1)1/2) (A.20)

converges stably in law to a normal distribution with random variance Γ0. (Note that M̌
(0)
n =

M
(0)
n + Op(∆t1/2) from (21), and that we are still using the summation convention). We now

observe that, in the notation of (A.13),

log
dP ∗

dP ∗
n

=
n−1∑
j=0

(log fn,j+1 − log φ) (∆W̆tn,j+1/(∆tn,j+1)1/2). (A.21)

By the same reasoning as above, the terms other than M̌
(0)
n and its discrete time quadratic variation

(A.18), go away. Thus log dP ∗

dP ∗n
= M̌

(0)
n − 1

2Γ0 + op(1), and the result follows.

Remark 12. The proof of Theorem 1 uses the Edgeworth expansion (A.13). The proof of the broad
availability of such expansions in the martingale case goes back to Mykland (1993, 1995b,a), which
uses a test function topology. The formal existence of Edgeworth expansions in our current case is
proved by iterating the expansion (A.2) as many times as necessary, and bounding the remainder.
In the diffusion case, similar arguments have been used in the estimation and computation theory
in Aı̈t-Sahalia (2002). 2

Proof of Theorem 2. It follows from the development in the proof of Theorem 1 that

log
dP ∗

dP ∗
n

= M (0)
n − 1

2
Γ0 + op(1) (A.22)

where M
(0)
n is as defined in equation (21). Write that, under P ∗

n , (Zn,M
(0)
n ) L→(Z,M), with

M = Γ1/2
0 V1, and Z = b1 + c1M + c2V2, where V1 and V2 are independent and standard nor-

mal (independent of FT ). Denote the distribution of (Z,M) as P ∗
∞ to avoid confusion.
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It follows that, for bounded and continuous g, and by uniform integrability,

E∗g(Zn) = E∗
ng(Zn) exp{M (0)

n − 1
2
Γ0}(1 + o(1))

→ Eg(Z) exp{M − 1
2
Γ0}

= E∗
∞g(b1 + c1Γ

1/2
0 V1 + c2V2) exp{Γ1/2

0 V1 −
1
2
Γ0}

=
∫ ∞

−∞
E∗
∞g(b1 + c1Γ

1/2
0 v + c2V2) exp{Γ1/2

0 v − 1
2
Γ0}(2π)−1/2 exp{−1

2
v2}dv

=
∫ ∞

−∞
E∗
∞g(b1 + c1Γ

1/2
0 (u + Γ1/2

0 ) + c2V2)(2π)−1/2 exp{−1
2
u2}du (u = v − Γ1/2

0 )

= E∗
∞g(Z + c1Γ0) (A.23)

The result then follows since c1Γ0 = A12.

B Proof of Theorem 3

Let Z
(1)
n be given by (43). Set

∆Z
(1)
n,tn,j+1

=
1
2
∆XT

tn,j+1
(ζ−1

tn,j
− ζ−1

τn,i−1
)∆Xtn,j+1∆t−1

n,j+1 (B.24)

and note that Z
(1)
n =

∑
j ∆Z

(1)
n,tn,j+1

. Set Aj = ζ
1/2
tn,j

ζ−1
τn,i−1

ζ
1/2
tn,j

− I.

Since ∆Xtn,j is conditionally Gaussian, we obtain (under P ∗
n)

EP ∗n (∆Z
(1)
n,tn,j+1

|Xn,tn,j ) = −1
2
tr(Aj) (B.25)

and
conditional variance of ∆Z

(1)
n,tn,j+1

=
1
2
tr(A2

j ) (B.26)

Finally, let M
(1)
n be the (end point of the) martingale part (under P ∗) of Z

(1)
n , so that

M (1)
n = Z(1)

n + (1/2)
∑

j

tr(Aj). (B.27)

If 〈·, ·〉G represents discrete time predictable quadratic variation on the grid G, then equation (B.26)
yields

〈M (1)
n ,M (1)

n 〉G =
1
2

∑
j

tr(A2
j ). (B.28)
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Now note that, by analogy to the development in Zhang (2001), Mykland and Zhang (2006),
Zhang, Mykland, and Aı̈t-Sahalia (2005), and Zhang (2006),

〈M (1)
n ,M (1)

n 〉G =
1
2

∑
j

tr(ζ−2
τn,i−1

(ζtn,j − ζτn,i−1)
2)

=
1
2

∑
j

tr(ζ−2
τn,i−1

(〈ζ, ζ〉tn,j − 〈ζ, ζ〉τn,i−1)) + op(1)

=
1
2

∑
j

tr(ζ−2
τn,i−1

〈ζ, ζ〉′τn,i−1
)(tn,j − τn,i−1) + op(1)

=
1
2

∫ T

0
tr(ζ−2

t 〈ζ, ζ〉′t)dK(t) + op(1)

= Γ1 + op(1), (B.29)

where K is the ADD given by equation (41).

At this point, observe that Assumption 2 entails, in view of Lemma 2 in Mykland and Zhang
(2006), that

sup
j

tr(A2
j ) → 0 as n →∞. (B.30)

Since also,
for r > 2, |tr(Ar

j)| ≤ tr(A2
j )

r/2, (B.31)

it follows that

log
dQn

dP ∗
n

= Z(1)
n +

1
2

∑
i

∑
tn,j∈(τn,i−1,τn,i]

(log det ζtn,j − log det ζτn,i−1)

= Z(1)
n +

1
2

∑
j

log det(I + Aj)

= Z(1)
n +

1
2

∑
j

(tr(Aj)− tr(A2
j )/2 + tr(A3

j )/3 + ...)

= M (1)
n − 1

4

∑
j

tr(A2
j ) +

1
6

∑
j

tr(A3
j ) + ...

= M (1)
n − 1

2
〈M (1)

n ,M (1)
n 〉G + op(1)

(B.32)

Now let 〈M (1)
n ,M

(1)
n 〉 be the quadratic variation of the continuous martingale that coincides at

points tn,j with the discrete time martingale leading up to the end point M
(1)
n . By a standard

quarticity argument (as in the proof of Remark 2 in Mykland and Zhang (2006)), (B.29)-(B.31)
and the conditional normality of ∆Z

(1)
n,tn,j+1

yield that 〈M (1)
n ,M

(1)
n 〉 = 〈M (1)

n ,M
(1)
n 〉G + op(1). The

stable convergence to a normal distribution with variance Γ1 then follows by the same methods as
in Zhang, Mykland, and Aı̈t-Sahalia (2005). The result is thus proved.
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C Proofs concerning the Leverage Effect (Section 4.3)

C.1 Proof of Proposition 3

We here show how to arrive at the final result in Proposition 3. This serves as a fairly extensive
illustration of how to apply the theory development in the earlier sections.

By rearranging terms, write

˜〈σ2, X〉T =
∑

i

(σ2
τn,i+1

− σ2
τn,i

)(Xτn,i+1 −Xτn,i)

+
∑

i

(σ̂2
τn,i

− σ2
τn,i

)(Xτn,i −Xτn,i−1)

−
∑

i

(σ̂2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i) + Op(n−1), (C.33)

where the Op(n−1) term comes from edge effects. Note that by conditional Gaussianity, both the
two last sums in (C.33) are Qn-martingales with respect to the sigma-fields Yn,i. They are also
orthogonal, in the sense that

CovQ
n ((σ̂2

τn,i
− σ2

τn,i
)(Xτn,i −Xτn,i−1), (σ̂

2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i) | Yn,i) = 0 (C.34)

Under Qn and conditionally on the information up to time τn,i−1, σ̂2
τn,i

= σ2
τn,i

χ2
M−1/(M − 1) and

∆Xτn,i = στn,i(∆t/M)1/2N(0, 1), where χ2
M−1 and N(0, 1) are independent. It follows that

VarQ
n ((σ̂2

τn,i
− σ2

τn,i
)(Xτn,i −Xτn,i−1) | Yn,i)

= σ4
τn,i

(M − 1)−2(Xτn,i −Xτn,i−1)
2Var(χ2

M−1)

= 2σ4
τn,i

(M − 1)−1(Xτn,i −Xτn,i−1)
2 (C.35)

Hence, under Qn, the quadratic variation of
∑

i(σ̂
2
τn,i

− σ2
τn,i

)(Xτn,i −Xτn,i−1) converges to

2
M − 1

∫ T

0
σ6

t dt. (C.36)

At the same time, it is easy to see that this sum has asymptotically zero covariation with the
increments of M

(0,Q)
n and M

(1,Q)
n , and also with WQ. Hence

∑
i(σ̂

2
τn,i

− σ2
τn,i

)(Xτn,i − Xτn,i−1)
converges stably under P to a normal distribution with mean zero and variance (C.36).

The situation with the other sum
∑

i(σ̂
2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i) is more complicated. First
of all,

VarQ
n ((σ̂2

τn,i
− σ2

τn,i
)(Xτn,i+1 −Xτn,i) | Yn,i)

= σ6
τn,i

(M∆t)Var((
χ2

M−1

M − 1
− 1)N(0, 1))

=
2

M − 1
σ6

τn,i
(M∆t). (C.37)
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Hence the asymptotic quadratic variation is

2
M − 1

∫ T

0
σ6

t dt. (C.38)

The sum is asymptotically uncorrelated with WQ, since

CovQ
n ((σ̂2

τn,i
− σ2

τn,i
)(Xτn,i+1 −Xτn,i),Wτn,i+1 −Wτn,i | Yn,i)

= σ3
τn,i

(M∆t)Cov((
χ2

M−1

M − 1
− 1)N(0, 1), N(0, 1))

= 0. (C.39)

Overall, under Qn, we have the stable convergence

∑
i

(σ̂2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i)
L→ N(0, 1)

(
2

M − 1

∫ T

0
σ6

t dt

)1/2

(C.40)

There is, however, covariation between this sum and M
(0,Q)
n . It is shown below in Remark 13

(see equation (C.47)) that A12 = 3
2M 〈σ2, X〉T , where A12 has the same meaning as in Theorems 2

and 4 (in Sections 2.4 and 3.4, respectively). Similarly, there is covariation with M
(1,Q)
n , and one

can show that A13 = M−3
2M 〈σ2, X〉T . Thus, by Theorem 4, under P ∗, we have (stably)

∑
i

(σ̂2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i)
L→ 1

2
〈σ2, X〉T + N(0, 1)

(
2

M − 1

∫ T

0
σ6

t dt

)1/2

. (C.41)

Because of the orthogonality (C.34), and since
∑

i(σ
2
τn,i+1

− σ2
τn,i

)(Xτn,i+1 −Xτn,i)−〈σ2, X〉T =

Op(n−1/2) by Proposition 1 of Mykland and Zhang (2006), it follows that ˜〈σ2, X〉T − 1
2〈σ

2, X〉
converges stably (under P ∗) to a normal distribution with mean as in equation (C.41), and variance
contributed by the second and third terms on the right hand side of (C.33). We have thus shown
Proposition 3.

Remark 13. (Sample of calculation). To see how the reasoning works in the case of covariations,
consider the case of covariation between

∑
i(σ̂

2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i) and M
(0,Q)
n . We proceed

as follows.

If hr is the r’th (scalar) Hermite polynomial, set

Gr,i =
∑

tn,j∈(τn,i,τn,i+1]

hr(∆WQ
tn,j

/∆t1/2), (C.42)

note that

Xτn,i+1 −Xτn,i = στn,i∆t1/2G1,i and

σ̂2
τn,i

− σ2
τn,i

=
σ2

τn,i

M − 1

(
G2,i −

1
M

G2
1,i + 1

)
(C.43)
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At the same time,

M (0,Q)
n =

1
12

(∆t)1/2
∑

i

kτn,iG3,i + op(1) (C.44)

The covariance for each i-increment becomes

CovQ
n ((σ̂2

τn,i
− σ2

τn,i
)(Xτn,i+1 −Xτn,i),

1
12

(∆t)1/2kτn,iG3,i | Yn,i)

=
1
12

∆t
kτn,iσ

3
τn,i

M − 1
CovQ

n ((G2,i −
1
M

G2
1,i + 1)G1,i, G3,i | Yn,i)

=
1
2
(M∆t)

kτn,iσ
3
τn,i

M
(C.45)

since, by orthogonality of the Hermite polynomials, and by normality,

CovQ
n ((G2,i −

1
M

G2
1,i + 1)G1,i, G3,i | Yn,i)

= cumQ
3,n(G1,i, G2,i, G3,i | Yn,i)−

1
M

cumQ
4,n(G1,i, G1,i, G1,i, G3,i | Yn,i)

= Mcum3(h1(N(0, 1)), h2(N(0, 1), h3(N(0, 1)))
− cum4(h1(N(0, 1)), h1(N(0, 1), h1(N(0, 1)), h3(N(0, 1)))
= 6(M − 1). (C.46)

The covariation with M
(0,Q)
n therefore converges to

A12 =
1

2M

∫ T

0
ktσ

3
t dt

=
3

2M
〈σ2, X〉T (C.47)

as in (32). 2

C.2 Proof for Example 5

In analogy with (73), define

˜〈σ2, X〉
with mean

T =
∑

i

(σ̃2
τn,i+1

− σ̃2
τn,i

)(Xτn,i+1 −Xτn,i), (C.48)

We have the representation

σ̃2
τn,i

− σ2
τn,i

=
σ2

τn,i

M
G2,i. (C.49)

We now consider the terms analogous to those in (C.33). The analysis of
∑

i(σ̃
2
τn,i

−σ2
τn,i

)(Xτn,i−
Xτn,i−1) is unaffected by this change, except that (C.36) is replaced by 2

M

∫ T
0 σ6

t dt. However, this
is not true for the term

∑
i(σ̃

2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i), which we analyze in the following.
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Observe that σ̃2
τn,i

= M−1
M σ̂2

τn,i
+ (∆Xτn,i)

2/∆t. Hence,

∑
i

(σ̃2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i) =
M − 1

M

∑
i

(σ̂2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i)

+
1
M

Kn

T

∑
i

(Xτn,i+1 −Xτn,i)
3 − 1

M

∫ T

0
σ2

t dXt + op(1), (C.50)

where Kn = n/M and the op(1) term comes (only) from the approximation of − 1
M

∑
i σ

2
τn,i

(Xτn,i+1−
Xτn,i) by − 1

M

∫ T
0 σ2

t dXt. It is easy to see that the first two terms on the right hand side of (C.50)
have zero Qn-covariation, and hence, asymptotically, zero P ∗-covariation (Remark 4 in Section 2.4).
Since we are thus in a position to easily aggregate the normal parts of the limiting distributions,
we obtain the limit of the first term from (C.41), and the limit of the second term from Example
3 in Section 2.5. Hence, stably under P ∗, with U1 and U2 as independent standard normal,

∑
i

(σ̃2
τn,i

− σ2
τn,i

)(Xτn,i+1 −Xτn,i)
L→ M − 1

M

(
1
2
〈σ2, X〉T + U1

(
2

M − 1

∫ T

0
σ6

t dt

)1/2
)

+
1
M

(
3
∫ T

0
σ3

t dW ∗
t +

3
2
〈σ2, X〉T + U2

(
6
∫ T

0
σ6

t dt

)1/2
)
− 1

M

∫ T

0
σ2

t dXt

=
2
M

∫ T

0
σ3

t dW ∗
t +

M + 2
2M

〈σ2, X〉T + N(0, 1)
(

2M + 4
M2

∫ T

0
σ6

t dt

)1/2

. (C.51)

Since the terms in (C.50) have zero Qn-covariation with
∑

i(σ̃
2
τn,i

−σ2
τn,i

)(Xτn,i−Xτn,i−1), the result
in Example 5 follows.


