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Summary

Deterministic simulation models are used in many areas of science, engineering and policy-
making. Typically, they are complex models that attempt to capture underlying mechanisms in
considerable detail, and they have many user-specified inputs. The inputs are often specified by
some form of trial-and-error approach in which plausible values are postulated, the corresponding
outputs inspected, and the inputs modified until plausible outputs are obtained. Here we address
the issue of more formal inference for such models. Raftery et al. (1995a) proposed the Bayesian
synthesis approach in which the available information about both inputs and outputs was encoded
in a probability distribution and inference was made by restricting this distribution to the sub-
manifold specified by the model. Wolpert (1995) showed that this is subject to the Borel paradox,
according to which the results can depend on the parameterization of the model. We show that
this dependence is due to the presence of a prior on the outputs.

We propose a modified approach, called Bayesian melding, which takes full account of infor-
mation and uncertainty about both inputs and outputs to the model, while avoiding the Borel
paradox. This is done by recognizing the existence of two priors, one implicit and one explicit,
on each input and output; these are combined via logarithmic pooling. Bayesian melding is then
standard Bayesian inference with the pooled prior on inputs, and is implemented here by poste-
rior simulation using the SIR algorithm. We develop this initially for invertible models, and then
extend it to the more difficult case of noninvertible models. We also propose diagnostic checking,
model validation, hypothesis testing and model selection methods, so that Bayesian melding pro-
vides a comprehensive framework for coherent statistical inference from deterministic simulation
models. The situation where invariance to relabelling of inputs as outputs or vice versa is desired
is approached via a further extension, called joint pooling. The methodology is illustrated using
population dynamics models of varying complexity, and various open research problems are dis-
cussed. The approach was used by the International Whaling Commission in 1998 as a basis for
the management of aboriginal whaling.

KEY WORDS: Bayesian inference; Borel paradox; logarithmic pooling; population dynamics mod-
els; SIR algorithm; whales.
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1 Introduction

Simulation models are widely used in applied scientific disciplines. Such models are found in the
study of climate, soil pollution, plant growth, epidemiology, animal populations, and other fields.
Given a set of inputs, a simulation model produces a set of outputs. For example, inputs to a
biological population dynamics model may include mortality and reproduction rates for various
age groups, habitat parameters, and harvest information. Outputs would then typically include
current population abundance and age structure. In a model of soil pollution, typical inputs include
soil density, deposition velocity, and air pollutant concentration. The output would be a measure
of pollutant concentration in the soil.

Simulation models are usually designed to capture some underlying mechanism or natural pro-
cess, and they are often deterministic. They differ conceptually from many standard statistical
models (such as linear regression) whose aim is to empirically estimate the relationships between
variables. For many scientists, a mechanism is most naturally modeled using a deterministic ap-
proach. The deterministic simulation model is viewed as a useful approximation of reality that
is easier to build and interpret than a stochastic model. On one hand, determinism permits ease
of model construction and understanding; on the other, ignoring stochastic variation can result in
a loss of modelling realism. In some cases, the positive aspects of the former are considered to
outweigh the disadvantages of the latter. In other situations, the random variation is thought to
account for little of the overall uncertainty, in which case a deterministic model closely approxi-
mates a stochastic counterpart. Ignoring random variation can then be thought of as a modelling
assumption.

A deterministic simulation model is not necessarily a simple model. Some simulation models
are extremely complicated with large numbers of inputs and outputs. The relationships between
variables can be highly complex and the models are often noninvertible: a fixed single set of outputs
can be generated by multiple sets of inputs. Thus, taking reliable account of parameter and model
uncertainty is crucial, perhaps even more so than in standard statistical models, yet this is an area
that has received little attention from statisticians. A statistician tends to automatically quantify
uncertainty through the use of stochastic statistical models, and with good cause, but this may
have contributed to a lack of interaction between statisticians and the applied scientists who have
adopted the deterministic modelling approach.

Edwards (1967) observed that there was a general need for simulation-based methods of estima-
tion in complex models. Hoel and Mitchell (1971) and Ross (1972) provided some early examples
of simulation in stochastic models. Diggle and Gratton (1984) presented Monte Carlo methods for
analyzing an implicit statistical model, stating that “we know of no other systematic investigations

along the lines of the present paper.” Speed (1983) was perhaps the first to point out the need



for statisticians to get involved in the deterministic modelling arena, noting that scientists at the
Australian national research organisation (CSIRO) were increasingly abandoning statistical models
in favor of simulation models. As examples, he listed a sheep growth model, a model for predicting
the nitrogen requirements of wheat crops, and a model describing the effects of light and water va-
por on apple leaves. More recently, Hodges (1987, 1991) has also argued that it is vital to quantify
the uncertainty in the inputs to a simulation model.

Although little attention has been paid to formally quantifying parameter uncertainty, simu-
lation model validation has received considerable attention. Caswell (1976), Hughes (1984) and
Guttorp and Walden (1987) discussed applications in ecology, the military, and geophysics respec-
tively.

The most common way of specifying the “inputs” to such a model is a kind of ad hoc trial-and-
error or “tuning” approach. Inputs can include parameters that quantify aspects of the underlying
mechanism, initial conditions, and control parameters that specify how the simulation is to be
run. The tuning approach starts with an initial guess at appropriate values of the inputs, based
on professional knowledge and expertise, information in the relevant scientific literature, and so
on. The model is then run with these inputs, and the outputs are examined. If the outputs seem
plausible, the initial guess is used; otherwise the guess is modified. The process iterates until a
satisfactory set of inputs is found, i.e. one that seems reasonable in itself and also produces plausible
outputs.

While little attention tends to be paid to uncertainty about the inputs, a sensitivity analysis is
often run to see if the final conclusions are sensitive to the precise values of the inputs used. This
is a very good idea, but there are difficulties with it. If the conclusions turn out to be insensitive
to the inputs, all is well. However, if there is some sensitivity, it is not clear what should be done
except to note it in the report, and to attach a “government health warning” to the conclusions.
This seems somewhat unsatisfactory, as there will often be a degree of sensitivity to the inputs of a
complex model. We feel that sensitivity is a form of uncertainty, and that it should be taken into
account explicitly when drawing conclusions.

The present research was initially motivated by work for the International Whaling Commission
(IWC) on setting quotas for aboriginal subsistence whaling of bowhead whales, Balaena mysticetus,
by Inuit peoples in Alaska. This has been done traditionally using a deterministic age-structured
population dynamics model for the whales to assess their current natural rate of increase (= fertility
— mortality). A conservative assessment of the rate of increase is then used to set an upper bound
on the quota. The model uses information on the historic commercial catches and the current
population size, and requires as inputs parameters that describe age-specific fertility and mortality
rates, and initial population size. The results are quite sensitive to these inputs, and until 1994 the

inputs were set using the ad hoc trial-and-error method described above, with the “conservative”



assessment of natural increase rate being taken as the lowest value from a rather limited sensitivity
analysis.

In 1991, the IWC decided that this approach gave too crude an assessment of uncertainty,
and that the result might, for example, be too high, running the risk of damaging the stock. They
called for better methods to assess uncertainty in whale population dynamics models. The Bayesian
synthesis method was a first attempt to meet this call (Raftery et al., 1992, 1995a; Givens, 1993;
Givens et al., 1995), and was used by the IWC to set the bowhead quota in 1994. It recognizes that
the information about “plausibility” of input and output values that drives the tuning approach
comes from a combination of quantitative and qualitative data and expert opinion, and encodes
it explicitly using a probability distribution called the pre-model distribution. However, Wolpert
(1995) showed that Bayesian synthesis was subject to the Borel paradox, so that in principle the
results could depend on the model’s parameterization. In their response to Wolpert, Raftery et
al. (1995b), argued that the effect of the Borel paradox on the results was likely to be small in
practice. Nevertheless, any method that is subject to the Borel paradox is unsatisfactory.

Here we describe a new approach, called Bayesian melding, that retains the desirable aspects
of the Bayesian synthesis method but is not subject to the Borel paradox. This draws on existing
work on combining expert opinions by pooling the corresponding probability distributions. The
word melding is used because the method provides a coherent way of combining, or melding,
different kinds of information (qualitative or quantitative, fragmentary or extensive, based on expert
knowledge or on data) about different quantities, so long as the quantities they relate to can be
linked using a deterministic model. It turns out that the numerical results for bowheads from the
new approach are almost identical to those from the earlier Bayesian synthesis method, but the
new approach is based on a sounder inferential footing. Earlier unpublished progress reports on
this project were given by Raftery et al. (1996), Raftery and Poole (1997) and Poole and Raftery
(1998).

In Section 2 we give background on deterministic simulation models, the Bayesian synthesis
approach, and the Borel paradox. In Section 3, we review existing ideas of pooling probability
distributions to combine the opinions of experts, and we build on those to develop the Bayesian
melding approach, using several simple examples. In Section 4 we show how these ideas can be
used for model validation and diagnostic checking, and in Section 5 we indicate how they can be
extended to perform hypothesis testing and model selection, and how they can be used to take
account of uncertainty about model form. In Section 6 we consider the situation where inputs can
be relabelled as outputs, or vice versa, and we show how Bayesian melding can be extended to
yield results that are invariant to such relabellings. In Section 7 we return to our initial motivating
problem and show a Bayesian melding analysis of the BALEEN Il model used for providing scientific

advice on bowhead quotas. The theorems stated are proved in the Appendix.



2 Background
2.1 Deterministic Simulation Models

A deterministic model is simply a function relating a set of input variables to a set of output

variables. We use the notation
M :0— ¢, fecOCR", ¢ecdCR?P,

to denote that the deterministic model M relates a vector of input parameters # to a vector of
outputs ¢, so that ¢ = M (#). We denote by v the set of quantities of interest, which may be model
inputs, model outputs or functions of both, and typically will be functions of ¢ and/or 8. The model
M may be non-invertible, and in many deterministic simulation applications the non-invertibility
is due to the dimension of ¢ being less than that of 8, i.e. p < n. In these cases, a single value of
the output may result from many different values of the input.

Our motivating application is the study of population dynamics models (PDMs), and our ex-
amples will be of this type. A population dynamics model relates the population at time (t4 1) to
the population at time ¢. Age-structured population dynamics models relate the population aged
a at time (¢ 4 1) to the population at each age at time ¢. Here are some examples of deterministic

population dynamics models, ranging from very simple to somewhat more complex.

Example 1: P, = RF, : This is an extremely simple PDM where I represents the initial (year
0) population size, P, is the size of the population in year ¢, and R is a growth rate parameter. I
and R are the 2 model inputs while P, is the single output. Hence, 8 = (Fp, R) and ¢ = P,. This
is a simple example of a case where a given output can be generated by infinitely many values of

the inputs.

Example 2: A model that underlies the commercial Revised Management Procedure of the IWC

is a non-age-structured PDM of the form
Piy1 = P = Ci+ 1L5(MSYR) P, (1= (P/ Po)?) (1)

where F; is the population in year ¢, where ¢ = 0 corresponds to the baseline year before commercial
hunting started (1848 in the case of bowheads), Fp is the initial population size, MSYR is the
maximum sustainable yield as a proportion of the population aged one year or more, and C} is the
number of whales killed by hunting in year ¢.

This model is much simpler than the BALEEN I PDM used by the IWC for bowhead assess-
ment, but it nevertheless captures several of the major features of the bowhead population. The
model is viewed as having two inputs (/% and MSYR) and one output (Prgg3); using given values

of the inputs, (1) is applied recursively until Piges is obtained. The catch history is assumed to



be known exactly, so that the Cy’s are viewed as a set of constants. Although the population can
be projected further to the present year, 1993 is the latest year for which independent abundance
data are available. A related quantity of interest is the recent (1978-1993) rate of increase of the
population.

The model (1) is simple because it is not age-structured, but it does feature density dependence,
according to which the population increases more slowly when it is larger. The density dependence
is introduced by the factor (1 — (P,/Py)?) on the right hand side of (1). This model implies the
existence of a “carrying capacity”, usually denoted by K, and here assumed to be equal to Fp,
postulated to be the maximum number of animals that its environment could sustain. If it goes

above this level, the population is assumed to decrease until it reaches the carrying capacity again.

Example 3: This is a non-density-dependent version of Example 2, defined by
Pt-l—l :Pt—ct+15(MSYR)Pt (2)

The difference between this and equation (1) is the absence of the density dependence factor

(1= (P/Po)?).

Example 4: Here the model is the same as in Example 2, but for a different species, the eastern
Pacific gray whale, Fschrichtius robustus. Details of population dynamics modelling for this species

are given by Reilly (1984, 1992) and Wade and DeMaster (1996).

Example 5: BALEEN II : This is the full age-structured density-dependent PDM used for bow-
head assessment. In addition to Fy and MSYR, it requires inputs pertaining to survival rates, age
at sexual maturity, calving intervals, and other biological information. BALEEN 1I is discussed in

greater detail in Section 7.

In many applications, information on 8 and ¢ is available independently of M. Data, statistical
models and prior beliefs can yield evidence about parameters that are either inputs to or outputs
of M. Such statistical models should not be confused with the simulation model M. The goal
of simulation modelers is to sensibly combine the various sources of evidence to obtain the best

possible inference regarding the quantities of interest.

2.2 The Bayesian Synthesis Approach

In 1991, the IWC Scientific Committee recommended that methods for taking full account of
uncertainty in inputs and outputs to population dynamics models be developed. In response to

this recommendation, the Bayesian synthesis method was introduced by Raftery et al. (1992),



Givens (1993), Givens et al. (1993), and Raftery, Givens and Zeh (1995a), hereafter RGZ. The
method was used as the basis for the IWC assessment of bowhead whales in 1994.

As we did in Section 2.1, RGZ denoted by # the set of model inputs and by ¢ the set of model
outputs about which we have information independent of the simulation model M. (RGZ used ¢
rather than M to denote the deterministic model function.) They then denoted by p(6, ¢) the joint
pre-model distribution of 8 and ¢, which summarizes all available information about # and ¢ except
that embodied in the model itself.

The model defines a mapping from the set of possible values of 8 to the set of possible values
of ¢; RGZ denoted this mapping by § — M (#). They defined the joint distribution of # and
¢ given the model to be simply the restriction of the pre-model distribution to the submanifold

{(8,¢) : o= M(6)}, namely

p(0, M(8)) if ¢ = M(6)
(6, 9) { 0 otherwise. (3)
RGYZ referred to w(8, ¢) as the post-model distribution. The marginal post-model distribution of #
is then
711(0) o p(0, M(9)), ™)
or, equivalently,
(9) = p17(0 | ¢ = M (9)). (5)

For marginal and conditional distributions, RGZ used superscripts in square brackets to show to
what the distribution applies. Thus, for example, pl?] (+) denotes the marginal pre-model distribution
of the inputs, 7T[¢](-) denotes the marginal post-model distribution of the outputs, and p[¢|€](-|-)
denotes the conditional pre-model distribution of the outputs given the inputs.

In a Bayesian context, it is useful to decompose the pre-model distribution into prior and likeli-
hood components. Under the assumption that pre-model information about inputs is independent

of that about outputs, we can decompose the pre-model distribution as follows:

p(8.¢) = pl(6)pl ()
o q1(0)g2()L1(0) La(9), (6)

where ¢;(-) and gz(-) are the prior distributions of the inputs and outputs respectively, L,(8) =
p(Dygld) is the likelihood of the inputs, and Ly(¢) = p(Dgl|o) is the likelihood of the outputs,
where Dy and D, represent data. Sometimes, data relating to only one of § and ¢, typically ¢,
are available, in which case only one likelihood is present. An example of a prior in the bowhead

application (Example 5) is that of the adult mortality rate, which was based largely on similar



rates for other species. An example of a likelihood is that of the recent rate of population increase
(ROI), which was based directly on a time series of population indices (see RGZ).

Bayesian synthesis inference about a quantity is based on its post-model distribution. In order
to draw samples from 7 (), RGZ used the sampling-importance-resampling (SIR) algorithm (Rubin,
1987, 1988). This is a Monte Carlo procedure consisting of the following steps, where the inputs

and outputs are assumed to be pre-model independent:

1. Draw a large sample of size k values of 6 from pl?(8).

2. Compute the importance sampling weights r; = % =pll(M(8:) i =1,...,k).

3. Draw a second sample of size [ from the discrete distribution with values 8; and associated

probabilities r;.

The second sample is approximately a sample from the post-model distribution, and it is the

basis for inference about inputs, outputs and quantities of interest in the Bayesian synthesis method.

2.3 The Borel Paradox

Wolpert (1995) pointed out that a conditional distribution of the form (5) is ill-defined, and as a
result the Bayesian synthesis post-model distribution is subject to a phenomenon known as the Borel
paradox. A consequence of Borel’s paradox is that the post-model distribution depends on how the
simulation model M is parameterized. Wolpert gave the example of a simple exponential growth
PDM, in which the results are different if pre-model information is specified on the parameters of
the model in logarithmic form than if it is specified in terms of the parameters of the model in its
original form. Schweder and Hjort (1996) pointed out that the consequences of the paradox are, in
theory, far-ranging: by choosing arbitrarily extreme parameterizations one can in principle obtain
any density as the post-model distribution.

The Borel paradox manifests itself when a conditional distribution is defined on an arbitrary
null event (or a set of probability zero). Such conditioning is indeterminate, and the resulting
conditional density depends on how the space is parameterized and other irrelevant things (Wolpert,
1995). Billingsley (1986) also alludes to the phenomenon in his discussion of conditional probability.
Billingsley’s source was Kolmogorov (1933), who cited Borel (1909) and coined the term “Borel
paradox”. Borel in turn cited Bertrand (1882). It appears that the Borel paradox may have
contributed to motivating Kolmogorov’s (1933) development of the modern axiomatic basis of
probability theory (Schweder and Hjort, 1995).

Wolpert (1995) cited a simple example of the Borel paradox. Let (z,y) be drawn uniformly on
the unit square {(z,y) : 0 < z,y < 1}. We are interested in the conditional distribution of x given

that (z,y) lies on the diagonal y = z. If we assume that “on the diagonal” means that y — 2 = 0,



then the conditional distribution is also uniform (as one might intuitively expect). A standard
way to show this is to reparameterize (z,y) to (w, z), where w = 2 and z = y — z, find the joint
density of (w, z) using the Jacobian of the transformation (which in this case is 1), and then finding
plz|ly — 2z =0) =p(w|z =0) = p(w,0)/p(z = 0), where p(z = 0) denotes the density of z evaluated
at 0. This density turns out to be uniform on [0,1]. If, on the other hand, we take the conditioning
to mean that y/x = 1 and proceed in the same way, the resulting conditional distribution of X is
the Beta(2,1) distribution, with a density proportional to z. The paradox is that we obtain two
different conditional distributions of X although it appears that we have conditioned on the same
event.

The key problem with the conditioning here is exactly that indicated by Wolpert (1995). The set
{(z,y) : y = «} has probability zero and is of lower dimension than the square {(z,y): 0 < z,y <1}
in which it resides. Hence we are conditioning on a null event, or a set of points with probability
zero. We should note that conditioning on a single point of probability zero with respect to a
stochastic random variable does not, in general, give rise to this phenomenon; indeed, this is the

definition of a standard continuous conditional density.

2.4 Effect of the Borel Paradox on the Bayesian Synthesis Approach

Inference from the Bayesian synthesis method depends on the manner in which the simulation
model is parameterized. In this section, we investigate the exact nature of the noninvariance of the
Bayesian synthesis to reparameterization of deterministic models.

Recall that RGZ defined a joint pre-model distribution, p(#,¢) on the pair (8, ¢) € (© x ®),
where 6 and ¢ are the inputs and outputs, respectively, of the model M : 8 — ¢. Thus p(6, ¢)
has dimensionality equal to (dim(®) + dim(®)), the total number of inputs and outputs of M.
The post-model distribution of # was then defined to be the conditional distribution of the variable
(6, ¢) given the model manifold ¢ = M (), i.e. equation (5). However, since the model manifold is
a lower dimensional surface in the space (© x ®), it has probability zero in p(8, ¢). The post-model
distribution is thus conditioned on the isolated null event that the model holds, and as a result is
subject to the Borel paradox. As noted in the simple illustration above, it is stochastic random
variables (or o-algebras) that must be conditioned on, not null events.

We now formulate the exact effect of model reparameterization on the Bayesian synthesis post-

model distribution:

Theorem 1 : Let 8 and ¢ be vector parameters related by the function M : 8 — ¢, where M is
not necessarily invertible. Let p(#, ¢) represent the joint pre-model distribution of (6, ¢). Consider
invertible transformations ' = ¢;(6) and ¢ = g2(¢) so that § = g;'(#') and ¢ = g5 '(¢'). Then,
if we re-express M in terms of 6/ and ¢’ such that ¢’ is the explicit model output, the post-model

distribution of the original 8, as defined in the Bayesian synthesis method, is



dg2(9) “1
do  lg=nr(s)

(6) o p(6, M(6)) {

Comparing (7) with (4), it is apparent that:

1. The reparameterization of the model causes the post-model distribution of the inputs, 6,
to be multiplied by the inverse of the Jacobian of the output parameter transformation gs,
evaluated at M (#). Thus, it is arbitrary reparameterizations of the outputs, ¢, that result in

arbitrary post-model distributions.
2. The post-model distribution is not affected by reparametrizations of the inputs, 6.

Theorem 1 does not require that the marginal pre-model distributions of # and ¢ be independent,
although most practical applications of Bayesian synthesis usually assume such independence.

Since the Bayesian synthesis approach relies on a conditional distribution that is ill-defined, it is
not satisfactory in its original form. However, if it could be reformulated as a standard Bayesian

procedure, then the Borel paradox would vanish. This is the motivation behind Bayesian melding.

3 Bayesian Melding: Standard Bayesian Inference via Logarith-
mic Pooling

3.1 Priors and Likelihoods

In considering the decomposition (6) of the pre-model distribution, it becomes apparent that the
Borel paradox does not arise from the likelihood components. Likelihoods are invariant to repa-
rameterization, as pointed out, for example, by Schweder and Hjort (1996). The problem therefore
lies with the prior distributions ¢;(6) and ¢z2(¢).

Since 6 is a random variable with density ¢1(6), ¢ = M(#) is also a random variable since it
is a transformation of 6. In other words ¢;(#) and M together induce a distribution on ¢, which
we denote by ¢f(¢). If M~ exists, then ¢ (¢) = ¢1 (M~ (¢))]|J(¢)| where |.J ()| is the associated
Jacobian. For a complex M, even when it is invertible, a functional form of |.J(¢)| may be very
difficult to calculate. When M is non-invertible and dim(®) is less than dim(0), it will be virtually
impossible to obtain ¢ (¢) analytically.

The Bayesian synthesis method does not account for the existence of ¢j(¢). Counting this and
the existing g2(¢), there are thus two prior distributions on the same quantity, ¢. Since these two
priors are typically based on different sources of information, often not including knowledge of M,
they may be different, or incoherent. If they could be replaced by a single prior, say (j[(b]((b), and
then inverted to the input space to yield (j[e](O), we could then define



wl(8) o< G(O) L1(6) L2(M (6)), (8)

which would be a standard Bayesian posterior, and standard Bayesian inference could then follow.
Thus the Borel paradox would no longer arise. The concept of a joint pre-model distribution, as in
(6), is no longer considered; we require only marginal distributions on 6 and ¢. As a result, there
would no longer be a need to define the problematic conditional post-model distribution (5), and
the problem would fall within the framework of standard Bayesian inference.

As with the Bayesian synthesis method, Monte Carlo methods would be required to obtain
a random sample from 77[9](0)7 and inference would be based on the distribution of this sample.
Inference about ¢ would follow by examining the distribution of ¢ = M (6) where 8 is drawn from

the posterior above.

3.2 Combining Probability Distributions

The Borel paradox gives rise to the ill-defined post-model distribution of the Bayesian synthesis
method, and the problem can in part be attributed to the implicit presence of more than one
prior distribution on the same quantity. This occurs quite naturally in the simulation modelling
framework under consideration. One might be tempted to discard one prior or the other if a basis
for choosing the prior to be discarded could be found. In the applications we consider, this is often
equivalent to discarding one group of sources of information. A further argument against this is
that one often needs a prior on an input in order to select values of the inputs for runs of the
simulation model M on a computer.

A second option is to combine the two prior distributions into a single one. With just one prior,
standard Bayesian analysis becomes possible, and inference is based on the posterior distribution
in the usual way.

Coherizing two prior distributions on the same quantity is related to another problem: that of
reaching consensus in the presence of multiple expert opinions. This topic has received considerable
attention in the statistical literature; French (1985) and Genest and Zidek (1986) reviewed work
in the area. There was considerable research activity on this problem up to the mid-1980s, but
since then interest in it seems to have dwindled. Two pooling methodologies that have received

extensive study are:
e Linear pooling : T(q1,...qx) = Zle o;q;, and
e Logarithmic pooling : T'(q1, ...qx) Hle g,

where ¢, ..., qx are the individual priors, aq,...,ar > 0, " «a; = 1, and the pooling operator T’

represents the single combined probability distribution.
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In a Bayesian framework, one needs to consider the order in which pooling and updating of a

prior (given a likelihood from data) are performed. There are two possibilities:

(i) Each prior distribution is updated using Bayes’s Theorem and then the combined prior dis-

tribution is formed.

(ii) The combined prior distribution is first formed, and then this is updated using Bayes’s The-

orerm.

It seems reasonable to insist that both procedures result in the same combined posterior distri-
bution. Madansky (1978) called this property external Bayesianity. Genest (1984) and Genest et
al. (1986) showed, under mild conditions, that the logarithmic pooling operator is the only pool-
ing operator that is externally Bayesian. This result provides an argument for using logarithmic
pooling within a Bayesian analysis framework. The logarithmically pooled prior is also invariant
to rescaling of individual priors (Genest and Zidek, 1986), and is usually less dispersed than other
options. In addition, it possesses the property that if one of the priors assigns zero probability to
a particular parameter value, the combined prior must also assign probability zero to that value.
This is the so-called zero preservation property (ZPP). In our application, where the priors represent
different sources of evidence rather than the opinions of different experts, the ZPP seems desirable
because if a source of evidence rules out a value of the inputs, it seems that a combined distribution
should rule it out as well.

For the particular problem at hand (i.e. combining two Bayesian prior distributions for quanti-
ties linked by a deterministic function), logarithmic pooling appears to be the most suitable option.

In terms of the output ¢, the logarithmically pooled prior distribution has the form

(@) o 47 (9) a2(9)' ™, (9)

where ¢ (¢) is the prior on ¢ induced by ¢;(#) and M, ¢2(¢) is the existing prior on ¢, and « is
the pooling weight. If ¢ (¢) and g2(¢) both exist, then ¢l?1(¢) must also exist as a consequence of

the following result.

Theorem 2 : If ¢ is continuous and [ ¢7(¢)d¢ = [ q2(¢)d¢ = 1, then there exists a constant k, such
that

ke / G (6)°2(6)' = =1 Ya € [0,1].

If ¢ is discrete-valued and 37, ¢7(#;) = >°; g2(¢;) = 1, then there exists a constant k, such that

ka Zﬁ(@)aqz(@)l_a =1 Vael0,1].
J
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A major question of interest is how to choose the pooling weight a. French (1985) argued that
the choice is essentially arbitrary. Here, in the case of two priors, ay = @y = o = L assigns equal

weight to each individual prior. We refer to (9) with av = 1 as geometric pooling because (9) then
amounts to taking the geometric mean of the two prior densities.

In the bowhead whale application, we essentially have one expert (the IWC Scientific Commit-
tee) placing prior distributions on two different quantities, rather than the more common situation
in which two experts provide opinions on the same quantity. This provides an informal justification
for the choice & = L in the bowhead case. Since the two sources of information are selected by
the same expert, they can be viewed as being equally reliable, and should hence be assigned equal
weight. Reliability should not be confused with precision of the opinions; precision is accounted for
in the variances of the respective distributions. The choice of a will be discussed further in Section

8.

3.3 Logarithmic Pooling for Noninvertible Models

So far, we have considered inference about the model outputs, ¢. If the model is one-to-one, infer-
ence about the model inputs, 8, can be done in exactly the same way, defining the two implied prior
distributions of # and pooling them geometrically, to obtain the combined prior distribution, ¢”! ().
Alternatively, inference about the model inputs, 8, can be carried out by inverting the combined
prior distribution of model outputs in equation (9). These two methods give the same pooled prior,
and hence the same posterior in (8). When the model is not one-to-one, the geometrically pooled
prior distribution of the model outputs, ¢, is still unambiguously defined, but that of the model
inputs, 4, is not.

Here we propose a solution that seems intuitively reasonable when the model is not invertible.
We start from an example of a simple noninvertible model with just one input and one output,
each of which is discrete. We use the insights gained from that to propose a general solution for the
situation where both inputs and outputs are discrete. We then use a limiting argument to deduce
a pooled prior density of inputs in the case where inputs and outputs may be continuous. We then
show how the resulting overall method can be implemented via the SIR algorithm. Finally, we
illustrate the resulting methodology with a very simple continuous example and a more complex

simulation model example.

3.3.1 A Simple Discrete Noninvertible Example

Consider the following simple deterministic model. It has one input and one output, each of which
is discrete, and it is noninvertible. The input, #, has three possible values (1, 2, 3), while the
output, ¢, has two possible values (1, 2). The model, M, is: 1 — 1,2 — 2, and 3 — 2. It is

noninvertible because 2 and 3 both map onto 2, and so M ~1(2) is not uniquely defined, as it could

12



be either 2 or 3. The prior densities are as follows:

q1

NN
S’

W N =D

The pooled prior density of ¢ is derived from (9), and, after renormalization, is as follows:

¢ | 02(0) | 4i(0) | @(9)
6 | 7 | 652
2| 4 | 3 | 348

Now, having obtained the pooled prior density on outputs, (j[(b]((b), how should we invert it
to obtain the pooled prior density on inputs, (j[e](O)? First, it seems clear that we should have
(jw](l) = (j[(b](l) = .652. This is because there is a one-to-one relationship between § = 1 and ¢ = 1,
in the sense that M (1) =1 and that 1 is the only value of # for which M (6) = 1.

By similar reasoning, it seems clear that ¢l(2) + ¢l¥1(3) = ¢l¥1(2) = .348. The question is, how
should the (j[(b](Q) = .348 be split between # = 2 and 8 = 37 Note that any choice will give a
solution that is technically an inversion of (j[(b]((b), so we have to decide on other grounds which is
the most reasonable of the possible splits.

We propose that the split be proportional to ¢;(#). The reasoning is that prior information
about ¢ tells us nothing about the relative probability of § = 2 versus 8 = 3, since they both map
onto the same value of ¢, and so the ratio of the prior probabilities of § = 2 and # = 3 should be
determined only by the prior distribution of the input. This leads to:

1oy — Aoy (02
M) = e ()

Similarly, ¢l¥1(3) = .348(.1/(.2+ .1)) = .116.

3.3.2 Discrete Case: General Solution

The simple example in Section 3.3.1 provides the intuition behind our proposed general solution
for the case where inputs and outputs are all discrete. Suppose that the possible values of 8 are
A1, As, ..., and that those of ¢ are By, By,.... Suppose further that m : N' — A is a mapping
induced by M such that M(A;) = B,y (i =1,2,...), and that C; = M~ (B;) = {4; : M(4;) =
B;}. Then we derive the pooled prior density of the outputs, (j[(b]((b), as before, using equation
(9). Here we use ¢ to denote densities with respect to a dominating discrete counting measure (i.e.

probabilities).
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We invert (j[(b]((b) using the two rules suggested by the simple example in Section 3.3.1. First,
we require that the pooled prior probability of C'; be the same as that of the corresponding B;, i.e.
that

QM(Cy) = d*l(B)), (10)
where QU(C;) = S2{gl%(A;) : A; € C;} is the pooled prior probability of the set C;, or, equiva-
lently, the pooled prior measure of C';. We will use capital () to denote a probability measure. The
second rule is that if C; has more than one member, its probability be split between its members
in proportion to their prior densities, ¢1(A4;).

This yields the pooled prior density on outputs

(11)
We also have that
Q1(C5) = 41 (By), (12)

Combining (11) with (12) gives the alternative form

1(A;
Bon(i)) (%) . (13)

ey
=
—~
}
\;/
I
=
=
—~

It is easily verified that (13) yields the same solution as before for the simple discrete model in
Section 3.3.1. In practice, equation (13) is more convenient than equation (11) because it does
not involve ', ;). For a given A; it may be difficult to determine C,(;) whenever the model M is
complex. However, it is easy to determine B,,(;) by running the model using A; as the input. In

addition, we have the following result:

Theorem 3 : The pooled prior given by (13) is a density with respect to the dominating counting
measure, i.e. 0 < (j[e](Ai) < 1for all ¢, and 3, (j[e](Ai) =1.

3.3.3 The Continuous Case

We now extend the general solution for the discrete case, equation (13), to the case where the
inputs and outputs are continuous. We first use an intuitive limiting argument similar to that used
in defining probability density functions as derivatives of cumulative distribution functions. We
then show that the heuristic derivation results in well-defined densities under certain conditions.
Suppose that A is a small hypercube contained in © with side of length h. Let B = M(A4) =
{M(®): 6 € A} and C = M~ Y(B)={6: M(#) € B}. A, B and C are shown in Figure 1. We

denote measures corresponding to prior densities by writing ¢ in place of ¢.
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Figure 1: The sets A, B and C' in the heuristic derivation of the pooled prior density of the inputs.

For QU7(.) to be an inversion of QI?!(-), we require that
Q) =Q"(B). (14)
Also, by the definition of C' and Q7(-), we have that
Q1(C) = Q1(B). (15)

The arguments we used in discussing the simple discrete example suggest that the proportion of
QY (C') attributed to A should be equal to the prior probability of A divided by that of C'. This

leads to

) = Qo) ()

5 Q1(A)
= QU (2 ). (16)
Q1(B)
by equations (14) and (15). Then, we propose that the probability density function corresponding
o (16), if it exists, be given by

~ ~ q1(0
#6) = o) (). (1
This corresponds to letting the length h of the side of the hypercube A tend to zero.

We now identify two different situations in which (17) yields a well-defined probability density
function that is also an inversion of (j[(b]((b). We first consider the case where the space of inputs
can be divided up into disjoint sets such that within each the model, M, is invertible. A simple
example would be ¢ = M(8) = 6%, where © = ® and ® = R, U{0}. There M is non-invertible, but
if we split up the input space, O, into disjoint sets Ay and Ay where A; = Ry U{0} and Ay = R_,

then M : A; — & will be invertible for each ¢ = 1,2. The general result is as follows.
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Theorem 4 : Suppose that 8§ = (0,...,6,) and that ¢ = (¢1,...,¢,), i.e. the model M has the
same number of inputs as outputs. Suppose that # and ¢ are assigned proper prior densities ¢ (6)

and ¢2(¢). Suppose also that Ag, 41,..., A; form a partition of © such that
(i) P(8 € Ap) =0, and Ap may be empty, and

(i) the model map ¢ = M (#) is one-to-one from A; onto a set B for each ¢ = 1,..., k, so that for

each 7, the inverse map can be found.

Then, for 0 < o < 1, the pooled prior on the model inputs 8 given by (17) is a proper density

function and an inverse of ¢l?l(¢).

We now consider the case where the model is noninvertible because the output ¢ is of lower dimen-

sion than the input 6.

Theorem 5 : Suppose that 8 = (0y,...,6,) and that ¢ = (¢1,...,¢,) where p < n. Suppose also
that there exists a transform H : § — ~ , where v € I' C R”7P, such that the n-dimensional

(5)- (i)

is one-to-one. Suppose that # and ¢ have proper prior densities ¢;(#) and ¢z2(¢), Then for 0 < a < 1,

transform

the pooled prior on the model inputs # given by (17) is a proper density function and an inverse of

i*l(4).

We conjecture that (17) holds more generally than for the cases above, where the restrictions
ensure that an analytic form of the induced prior exists. In particular, we suspect that (17) is valid
as long as M does not collapse onto a set of measure zero in ¢-space, i.e. as long as ¢j(¢) is not a

point mass prior. We leave this as a matter of further research.

3.4 Implementing Logarithmic Pooling via the SIR Algorithm

To facilitate implementation, it is convenient to recast equation (17) as follows, using (9):

10 (00

and the posterior distribution of 4, 77[9](0)7 is then given by (8). The approach is implemented using
the following modified SIR algorithm:
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1. Draw a sample of size k values of @ from its prior distribution ¢; (). We denote the sample by
(01,...,0k). (If g1(F) has a standard form, it will often be possible to do this using packaged

random number generators for standard distributions).
2. For each #; sampled in step 1, run the model to obtain the corresponding ¢; = M (6;).

3. Use nonparametric density estimation to obtain an estimate of ¢ (¢), the resulting induced
distribution of ¢. We use kernel density estimation with a Gaussian kernel and (whenever
relevant) the maximal smoothing span of Terrell (1990); this has the advantage of being easily

applied in higher dimensions.

4. Form the importance sampling weights

Q2(M(9i)))1_a
wi= (LD L (62, 01(6,)). (19)
<q1 (M(6:))

5. Sample [ values from the discrete distribution with values #; and probabilities proportional

to w;.

The result is an approximate sample from the posterior distribution 77[9](0)7 and it can be used

to make inference about the various quantities of interest.

3.5 Example 1: A Simple Continuous Example

We now revisit Example 1 from Section 2.1, the simple PDM given by P, = RFy. Let Py ~
Ul0,5], R ~ UJ[2,4], and P; ~ U[6,9] be the mutually independent prior distributions of the pa-
rameters. (For simplicity in this example we will assume that there are no likelihoods available.)

It follows that

1

¢1(po,7) = E,f01’0<po<57 2<r<4
1

QZ(pt) = g,for6<pt<9.

Recall that the model is non-invertible since the output has lower dimension than the inputs.
Indeed, each unique value of P, can be associated with an infinite number of ordered pairs (Fp, R).
This is a feature found in many of the more complicated PDMs used in real assessment situations.
The simplicity of this example, however, allows an analytic solution to be found.

The change-of-variable technique yields the distribution of P; induced by the PDM, and is given
by

log 2

‘) = & for 0 < p; < 10
G (pe) = %log@_g) for 10 < p, < 20.
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Geometric pooling of this induced density with ¢z(p;) yields
1
(j[(b](pt) =3 for 6 < p; < 9.

This pooled distribution on the output is uniform on the interval [6,9], and thus (in this particular
case) it happens to be the same as the original ¢2(p;). Applying (17), the pooled prior distribution
of the inputs (Fp,R) is given by

~—

~[6] fj[(b] (por)q1(po, )

q

(po,7) =

= for 6 <por <9, 0<py<5b, 2<r<A4,
3log?2

and 0 elsewhere. In this simple case, the pooled prior remains uniform on a subset of the original
rectangular region. Note that the density integrates to unity on its support. The marginal prior
densities of Fy and R are easily obtained from the above. For example, integrating out over R
yields the marginal pooled prior of F4 to be
4—6/py for 1.5 < py < 2.25
G(po) x 4 3/po for 2.25 < pp < 3
9/po—2 for 3 < py < 4.5.

Figure 2 shows a sample from the joint pooled prior of F, and R obtained using the SIR
approach. The uniformity on the correct subset of the original rectangle is evident. Figure 3 shows
the corresponding marginal pooled prior distributions of Fy, R and F;. The exact marginals and
the distributions simulated using SIR are shown. The SIR method provides a good approximation
to the true distributions. The method also works well for the more complex examples we have

examined.

3.6 Example 2: A Simple Population Dynamics Model

We now apply the pooling procedure to Example 2 from Section 2.1. This is the simple population
dynamics model underlying the Revised Management Procedure of the IWC. Here we will use
prior distributions that have been used in previous illustrations using this model. These are not
necessarily priors agreed upon by the IWC Scientific Committee.

The model inputs are Py and MSYR. For Fy we have a prior only, and we use the same prior
as in Givens (1995), namely a shifted gamma distribution 6400 + Gamma (2.8085, 0.0002886).
For MSYR, we also have only a prior. MSYR is the only productivity parameter in the model,
and our prior information about it reflects all our prior information about natural fertility and

mortality. We based this on a distribution of MSYR for the BALEEN II model reported by Punt
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Figure 2: A sample from the pooled joint prior distribution of PO and R in the simple example.

15 20 25 3.0 35 4.0 45 20 25 3.0 35 4.0 6.0 65 7.0 75 8.0 85 9.0
PO R Pt

Figure 3: Exact and simulated pooled prior distributions of (a) Fp, (b) R and (c¢) P for the
simple example. The simulated distributions are generated using SIR, and approximate the exact
distributions well.

and Butterworth (1996), which had a mean of .0220 and 95% confidence interval [.0082,.0335].
We approximated this using a Gamma (8.2, 372.7) distribution, which has the same mean and the
same .025 and .975 quantiles.

For the output Piggs we have both a prior and a likelihood. We approximated both of these by
normal distributions (a good approximation), and used the results of Raftery and Zeh (1998) based
on the 1993 census. The prior distribution is N (7800, 1300%), and the likelihood is N (8293, 6262).
These choices correspond to a posterior distribution that is N (8200, 5642), matching the mean
and variance of the Bayes empirical Bayes posterior distribution (which is nearly, but not exactly,

normal).
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Finally, we have a likelihood for the quantity of interest ROI, the 1978-1993 rate of increase
based on the censuses from 1978 to 1993. This is defined by Piges = (1 + RO Pig7s. We
use the likelihood derived by Raftery and Zeh (1998), which is proportional to the density of
exp(.0302 + .0069tg) — 1, where tg is a random variable that has a t-distribution with 8 degrees of
freedom. This is a likelihood only; there is no prior component.

The catch series, {C}}, for 1848-1993, used is the one accepted by the Scientific Committee for

bowhead whales.
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Figure 4: The components of the geometrically pooled prior distribution of the output ¢ = Piggs
in the simple PDM. The final pooled prior density, (j[(b](Plggg) is the solid line.

Figure 4 shows the components of geometric pooling for the simple bowhead whale model we are
using. It shows the different prior distributions for the output, Piggs, and how these are modified
and put together to obtain the final geometrically pooled prior distribution. The distribution on
Pigg3 induced by the model from the priors on the inputs, g7, is very spread out, as one might
expect. The existing prior, g2, is far more precise. The resulting pooled prior is slightly more
spread out than ¢s.

Table 1 displays posterior quantiles (medians and bounds of the 95% Bayesian interval) and
corresponding quantiles of the pre-model distributions. Here, as in the original Bayesian synthesis
method, the term pre-model applies to the information (priors or likelihoods) elicited independently

of the PDM. The posterior variance of Fy is considerably lower than the prior variance; similarly
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Table 1: Posterior and pre-model quantiles of inputs and outputs of the simple PDM.

Parameter | Quantile Results

Posterior Pre-model

Fy 025 12057 8264

b 14346 15004

975 17980 30373

MSYR 025 0113 .0096

b 0213 0211

975 .0333 .0394

Pigos 025 7072 7095

b 8196 8200

975 9322 9305

ROI 025 .0105 0146

b .0204 .0307

975 .0318 .0469

the posterior distribution of MSYR, is more precise than the prior. The posterior distribution of
Pygg3 is almost identical to the pre-model Bayes empirical Bayes posterior. This is unsurprising
since the likelihood is dominant; this was the best piece of pre-model information, and the priors
on other parameters affect the inference very little. Finally, the melding of information leads to
a lower estimate of ROI than is suggested by the pre-model likelihood. The joint posterior also
reveals relationships among parameters that were not previously apparent; indeed, there is a fairly

strong negative correlation between Fy and MSYR in the posterior sample.

4 Diagnostic Checking and Model Validation
4.1 Basic Ideas

How can we assess whether the model considered is adequate for our purposes? An adequate model
will allow the selection of plausible inputs that produce plausible outputs, where plausibility is
measured by the priors and/or likelihoods for the inputs and outputs. Another way of saying this
is that for any input, output or quantity of interest, the various sources of information relating to
that quantity should imply substantially overlapping sets of values.

There may thus exist up to four sources of information, as follows:
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Source of Information Symbol Input Output
Information Information

Prior distribution of inputs () ¢1(9) 7 (9)
Prior distribution of outputs  ¢2(¢) 7 (0) q2(®)
Likelihood of inputs L1(0) L1(0) Li(¢)
Likelihood of outputs Lay(p) 5(0) Lay(p)

Our proposed approach to model validation consists essentially of checking, for each input,
output, or quantity of interest, whether there are enough values favored by each of the four sources
of information. For each source, we will compute or sample from a distribution of each input, output
and quantity of interest, and check whether these overlap substantially by inspecting side-by-side
boxplots.

We now consider the definition and computation of the quantities in the table above. The prior
distribution of the inputs, ¢1(6), induces a distribution of the outputs, ¢7(¢); these have already
been defined. The distribution, ¢; (), of inputs implied by the prior distribution of outputs, ¢2(¢),
is a little trickier because the model may be non-invertible. We define ¢;(8) to be the pooled prior,
(j[e](O), defined by (18), when o = 0. This can be thought of as the (pooled) prior on the inputs
when no weight is given to the prior distribution of the inputs. When the model is one-to-one, ¢;(6)
is induced entirely from the prior distribution of the outputs. When it is not one-to-one, the prior
distribution of the inputs is used to divide the mass induced by the prior on outputs among values
of the input. Since av = 0, the prior on the inputs contributes no absolute mass to the pooled prior.

The likelihoods, L; and Ly, do not necessarily define distributions on inputs and outputs, but
we propose the following as an informal way of determining the regions of input space and output

space favored by the likelihoods:

1. Define a distribution of the inputs, ¢(¢), and draw a sample, {61,...,0;}, of values of the
inputs from it. If ¢;(#) is broad enough, then g(#) = ¢1(#) may be a good choice. If not,
g(8) = q1(8)° for some 0 < § < 1 may be adequate, or some very broad distribution may be

preferred.

2. Define weights w; = L1(0;)/g(8;) (if we are considering the likelihood of the inputs), or
w; = Lo(M(6;))/g(6;), if we are considering the likelihood of the outputs.

3. Resample from {6y, ..., 0} with probabilities proportional to the weights w;.

4. For each resampled value of 8, compute the corresponding value of ¢ = M (6).

This algorithm yields four samples, corresponding to the last four distributions in the table
above, namely distributions of the inputs and of the outputs corresponding to the likelihood of the

inputs and the likelihood of the outputs respectively. Will these be proper distributions? Lq(6) will
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define a proper distribution if [ L;(0)df < co. We denote by Lj(¢) the distribution on ® induced
by the model and by the distribution L;(6); this will be proper if [ Li(¢)d¢ < co. The distribution
of inputs induced by Ly will be denoted by L3(6) and will be proper if [ La(M(6))df < oc.

Finally, if the component likelihoods of L, are independent, then Ly(¢) can be written down and
sampled from directly; it will be proper if [ La(¢)d¢ < oo. If not, however, computing Ly(¢) for a
given output may not be so straightforward, and one may have to resort to the less direct importance
sampling method described above. The resulting distribution will be proper if [ Ly(¢)d¢ < oo and
if [ g*(¢)dp < 0o, where g*(¢) is the distribution on ® induced by the model and ¢(#). Even if the
distributions induced by the likelihoods are not proper, it seems that this method could be used
informally in an exploratory sense to detect conflicts between input and output likelihoods, priors
and the model. It could be viewed as indicating the values favored by the likelihoods within the
region to which ¢(6) gives most of its probability.

At this point, we are not making specific formal recommendations for interpreting the boxplots.
Rather, in the spirit of informal diagnostic checking, we suggest that users inspect the boxplots
for evidence of conflict, and hence failure of the model to reconcile or accommodate the various
sources of evidence. In the next subsections, we show one example where these plots are at least
moderately reassuring, and another example where they clearly indicate model failure. In both of
these cases, we have based our discussion purely on visual inspection of the side by side boxplots,
but more formal ways of calibrating the plots might be useful for drawing more formal conclusions
about model adequacy. We leave this topic for future research, however.

A conflict in these plots indicates that the model fails to reconcile the different sources of infor-
mation; this could be due to model inadequacy or to poor information. The possible remedies are
to improve the model, and/or to reconsider and perhaps replace or discard some of the information
being used.

Here we are proposing boxplots as the way to inspect the distributions corresponding to the
different sources of information. We have experimented with various ways of looking at these
distributions, and the boxplots seemed the most informative for our purposes. However, there are
clearly many other ways of doing this, and some of these might be thought better than boxplots
for other situations, or by other data analysts. In particular, ways to look at the multivariate
distributions implied by the different sources of information could be very useful, but we have not

pursued this topic here.

4.2 Model Validation for the Simple Bowhead Whale Population Dynamics
Model

We now apply these ideas to Example 2, the simple population dynamics model analyzed in Section

3.6. Figure 5 shows boxplots of samples from the distributions implied by the various sources of
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information for the inputs (Fp and MSYR), the output (Piggs), and a key quantity of interest,
the 1978-1993 rate of increase (ROI). There is no likelihood for the inputs, and so there are only
three sources of information rather than four: the prior on inputs, the prior on the output, and the

likelihood on ROI.
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Figure 5: Boxplots of the distributions of inputs (P and MSYR), output (Pigg3) and rate of
increase (ROI) implied by the prior on inputs (g1 or ¢7), the prior on the output (g2 or ¢5) and the
likelihood on the output (Lg3) for the simple population dynamics model for bowhead whales.

The box in the center of the boxplot represents the interquartile range, with the line in the
middle showing the median. The “whiskers” are drawn out either to the minimum or maximum
or to a length of 1.5 times the interquartile range, whichever is the shorter; points further out are
plotted individually.

The three distributions of the inputs, Fy and MSYR, overlap nicely. For the output, Pjgg3, the
distribution implied by the prior on the inputs, ¢ (Pigg3), covers the prior on Piggs itself, ¢2(Prg93),
which in turn covers the distribution implied by the likelihood, which in this case is clearly proper.
Thus the three distributions overlap; the overlap consists of the region favored by the likelihood,
which is much more precise than either prior in this case. Note that the region favored by the
likelihood is completely outside the interquartile range of the distribution implied by the prior on
inputs, ¢, but this is not a concern as ¢j is spread out enough to encompass the likelihood-favored

region comfortably.

24



In the case of ROI, most of the region favored by the likelihood is contained within the prior
upper tail. The overlap is sufficient for Bayesian melding to yield reasonable answers, and could
not be characterised as a stark conflict, but it is still worth further investigation and consideration.
Such an exercise could embrace all the components: the model, the priors and the likelihood. For
example, one could engage in a second stage of elicitation in which this result was communicated to
the Scientific Committee and they were asked whether they wished to revise their prior distributions
on the inputs (which induce the prior ¢j) so as to give more weight to values indicating a more
productive stock.

Overall, while there are some concerns that the model or prior distributions may tend to favor
a less productive population too much, there seems to be enough overlap for one to be able to use
the model in this case. In reality, a more complex model was used for the actual assessment, in
which the overlap between prior and likelihood for ROI was more satisfactory; this is described in

Section 7.

4.3 Model Validation for a Simple Gray Whale Population Dynamics Model

To show how our proposed methods can diagnose clear model failure, we consider Example 4. This
is the same simple population dynamics model, but for a different species, the eastern Pacific gray
whale, Eschrichtius robustus. We use prior distributions proposed by Wade and DeMaster (1996)
on the basis of the available biological information (Reilly, 1984, 1992); this may be the whale
species for which abundance levels and trends are most precisely known. We use the catch history
that has been agreed by the IWC, and is listed by Butterworth et al. (1992, Table 2). In many
ways, the gray whale situation is similar to that of bowheads: the species is subject to aboriginal
subsistence whaling, commercial whaling started in 1846 and rapidly depleted the stock, and recent
scientific surveys started in 1968. But there are also crucial differences.

The inputs to our model are F, which denotes the stock size in 1846, and MSYR, while the
output is Pjggg. The priors are Uniform[0.01,0.13] for MSYR and Uniform[17000,70000] for Fp.
Independent Normal likelihoods for the abundance in 16 of the years between 1968 and 1988 are
also available.

The model validation boxplots are shown in Figure 6. For the input MSYR and the output
Pygss the overlap is satisfactory. For the input Fy, however, the region favored by the likelihood is
entirely concentrated at the extreme lower value of a sample from the prior for Fy; this is rather
unsatisfactory. The most striking feature of the figure is that the prior distribution of ROI (induced
by the prior on inputs) and the likelihood on ROI do not overlap at all, and indeed are in clear
conflict. It is obvious that the model is not adequate to reconcile the various sources of information.

This lack of fit has already been noticed and discussed (Reilly, 1984; Butterworth et al., 1992),

but it is immediately apparent from a routine use of our model validation method. One view of
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Figure 6: Boxplots of the distributions of inputs (P and MSYR), output (Pigg3) and rate of
increase (ROI) implied by the prior on inputs (g or ¢7), the prior on the output (g2 or ¢5) and the
likelihood on the output (Lg3) for the simple population dynamics model for gray whales.

the conflict is that it may be caused not by failure of the model but by poor and perhaps biased
data on historic catches (Wade and DeMaster, 1996). These authors kept the model but discarded
the historic catch data, and when this is done the model seems to fit the more recent information

quite adequately.

5 Hypothesis Testing and Model Selection

We now consider the problems of hypothesis testing and model selection. In hypothesis testing,
we assume that there is both a null hypothesis and an alternative hypothesis, so that we are
in a Neyman-Pearson type of testing situation rather than the kind of pure significance testing
situation envisaged by R.A. Fisher. The latter problem, which is related to that of judging the
overall adequacy of the model, may be addressed in part by more informal diagnostic checking
methods of the kind discussed in the previous section.

We adopt a Bayesian approach to the hypothesis testing situation, based on Bayes factors
(Jeffreys, 1961; Kass and Raftery, 1995). If we are testing a statistical model M, against an
alternative model My, the Bayes factor for M; against My is defined as the posterior odds for My
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against My when the prior odds are equal to one. This is
Bio = p(D|My)/p(D|Mo), (20)
where p(D|Mjy) is the integrated likelihood of model M), defined by

PDIME) = [ (D18 Me)p(61| M) a0 (21)

D denotes the data, and 6y, is the vector of parameters for model M, (k= 0,1). Equation (21) says
that the integrated likelihood is the integral over the parameter space of the ordinary likelihood,
p(D|0g, My), times the prior density, p(6x|My), or, equivalently, that it is a weighted average of
the likelihood values, weighted by their prior probabilities. The Bayes factor, Bjg, is interpreted
as a measure of evidence for M; against My; values below 1 indicate evidence for My, while values
greater than 1, 3, 20 and 100 correspond respectively to weak, positive, strong and very strong
evidence for the alternative hypothesis M;. This testing framework does not require My and My
to be nested models, unlike standard significance testing.

How can we extend this standard framework to the deterministic models we are concerned with
here? We do this by defining the parameters of the model to be the inputs, the prior distribution
to be the pooled prior on the inputs, and the likelihood to be the product of the likelihoods on
inputs and outputs, if both are present. Thus equation (21) is replaced by

p(D|My) = /6[6](9)L1(9)L2(M(9))d9- (22)

This can be estimated by simple Monte Carlo integration (Hammersley and Handscomb 1964);
see McCulloch and Rossi (1991) and Raftery and Banfield (1991) for its application to Bayes factors.
The algorithm is:

1. Generate a sample 84, ..., 8, from the pooled prior on inputs (j[e](O).
2. For each 6;, compute L(8;) = L1(6;)L2(M(6;)).
3. Estimate p(D|My) as the average of the likelihoods of the sampled input values, i.e. £~} S L(8;).

This can often be computed as an almost cost free byproduct of the algorithm for implementing the
Bayesian melding analysis, which can easily produce a sample from (j[e](O) and usually computes
the likelihoods of the sampled values. It may be somewhat inefficient, but it is a simple unweighted
average and so its standard error is readily available; this can be used to monitor its accuracy and
to decide how many samples ¢ are needed (e.g. Lewis and Raftery, 1997).

To illustrate the use of the Bayes factor, we applied it to test for the presence of density
dependence in the bowhead whale case. Intuitively, density dependence implies that the rate of

increase of the population decreases as the population approaches its carrying capacity, taken here
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to be equal to Fy. We formulated the testing problem by designating the non-density-dependent
model of Example 3, given by equation (2) as the model My, and the density dependent model (1)
of Example 2 as M;. The inputs, outputs, priors and likelihoods for (2) were taken to be the same
as for the model (1) with density dependence, and the Bayesian melding approach was implemented
for (2) in the same way as before.

The resulting Bayes factor was 0.7, slightly favoring the null non-density dependence model.
The evidence is very slight, however. This is not too surprising since the density-dependent analyses
suggest that the bowhead population was far below its carrying capacity throughout the 1978-1993
period to which the likelihoods refer, and so it would not have been within the range where density
dependence could have been detected. In the gray whale case (Example 4), the Bayes factor did
provide some evidence for density dependence (Wade and DeMaster, 1996), which is less surprising
since the gray whales are probably closer to their carrying capacity.

The same framework can be used for model selection. If one has several models (often cor-
responding to different combinations of modelling assumptions), their posterior probabilities will
be proportional to the product of their integrated likelihoods with their prior model probabilities,
p(My) (the latter are often taken to be equal so as not to favour one model over another a priori).
One natural choice would then be to select the model with the highest posterior probability.

More generally, one might wish to take account of model uncertainty when making inferences
about quantities of interest. This can be done formally in the Bayesian framework using Bayesian
model averaging. If A is a quantity of interest, such as a biological parameter (e.g. the calf
mortality rate), a future observation (e.g. the estimated population in a future survey or census),
or a consequence of a course of action (e.g. the number of whales in 100 years under a given
management scheme), then the posterior or predictive distribution of A under Bayesian model

averaging is
K K

P(AID) =" p(AD, My)p(D|My)p(My)/ Y p(D|My)p(My). (23)
k=1 k=1

In equation (23), p(A|D, My) is the posterior or predictive distribution of A under model My,
defined by
PAIDAL) = [ p(ale, D, )7 610, o, (24)

where 7l%(8|M,,) is the pooled posterior distribution defined by (8) for model Mj,. In equation
(24), p(A|0, D, M) may be a point mass rather than a probability distribution because the models
are deterministic, but p(A|D, M) and p(A|D) will still be probability distributions giving valid
uncertainty statements about A.

One interesting possible application of (23) arises in the context of exploring future scenarios by
simulation. This is done by the IWC for assessing the likely consequences of different management

regimes for whales. While they explore many different scenarios, they tend to condition on a single
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selected population dynamics model. Realistic model uncertainty could be introduced into this
process by using (23) to simulate, i.e. by sampling from different population dynamics models with
frequencies proportional to their posterior model probabilities. Draper (1995) has examined this

possibility in a different modelling context.

6 Relabelling and Joint Pooling

6.1 Relabelling

Thus far, we have considered simulation models of the form M : 8§ — ¢ where 8 is a vector of
input parameters and ¢ is a vector of output parameters. This is a general framework in which the
methods of the previous sections are applicable.

Occasionally, there may be reasons for which scientists wish to relabel some of the inputs as
outputs and vice versa. In other words, there may be a desire to reformulate the model so that
a quantity that was originally an input is now an output, and a corresponding quantity that was
originally an output is now an input. We refer to this as relabelling of the model. Relabelling
should not be confused with the reparameterizations of inputs and outputs that were considered in
the context of the Borel paradox.

In the event of model relabelling, it is useful to refine the notation slightly. Let Ay and M; be
two different labellings of a model M. Denote by

A @ those parameters which are strictly inputs of My and outputs of My,
7 : those parameters which are strictly outputs of M; and inputs of Ms,
~ : those parameters which are inputs to both M; and M;.

and let ¢1(A), ¢2(7) and ¢3(7) be the independent prior distributions on A, v and 7 respectively.
The two labellings of M can then be written as

T = Ml(Av 7)

A= MZ(Tv 7)7 (25)
and both labellings are of the form considered earlier. For example, M; has input § = (A,v) and
output ¢ = 7. We have assumed here that there are no quantities with priors which are outputs

under both labellings, and that the large transformation (A,v) — (7,7) is one-to-one. This is the

case in the applications we consider.

6.2 Forwards and Backwards

An instance of relabelling arises in the context of population dynamics models that produce tra-

jectories of abundance over time. Typically, the initial stock size F, is one of the inputs to the
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model (as in the simple PDM of Section 3.6), and the population is projected forwards in time to
the present.

Alternatively, the current abundance can be thought of as an input, and the model can be “run”
backwards in time to the initial year. In practice, this usually involves solving for the value of Fy
that must (for the fixed values of the other parameters) have given rise to the value of current
abundance under consideration.

These two labellings are referred to as the forwards and backwards variants of the PDM. All
other parameters are inputs to both variants. If we let M; correspond to the forwards variant, then
we have Py (), current abundance (7) and all remaining inputs () as the division of parameters
in (25). Forwards and backwards variants of the BALEEN I model for bowhead assessment have
been discussed at length in the Scientific Committee of the IWC (Butterworth and Punt, 1995;
Punt and Butterworth, 1996; Givens and Thompson, 1996; Bravington, 1996; Raftery and Poole,
1997).

6.3 Joint Pooling

Under relabelling, a little care needs to be taken in identifying the distributions that are to be
pooled. If only one labelling (say M;j) is under consideration, the induced prior on the model
output 7, ¢f(7), is pooled with the independently obtained prior ¢2(7) in the manner described
earlier. However, when an alternative labelling M is proposed, the induced joint prior of T and 7,
say ¢*(7,7), needs to be compared with the existing joint prior ¢(7,7v) = ¢2(7)¢s(7), which is the
prior on inputs under Ms. In other words, M; induces a joint prior on all the parameters that are
listed as inputs under Ms, those that are explicit outputs of M; and those that are inputs under
both labellings. It is this joint prior that should be pooled with the existing input prior on those
same parameters.

Marginalization before pooling represents a loss of the information in the joint induced prior.
More importantly, if the joint induced prior is ignored (and pooling is thus performed on marginals
only), the final posterior will depend on the labelling that is used, i.e. results under M; will differ
from those under M,. This is intuitively undesirable since the prior information (as expressed
in all the marginal prior distributions) is the same under both labellings. We refer to pooling
of the relevant joint prior distributions as joint pooling. Joint pooling yields a unique posterior
distribution under a relabelling of the form (25). To see this, we apply (18) under M; and (9)
under M; (since inputs and outputs are reversed) and verify that the result is the same. Let J be

the Jacobian of the transformation (A,y) — (7,7). Under labelling My, (18) yields

i0.1) (e (BRI

= 91(/\)a92(7)f]3(M1(/\77))1_Q|J|3;]1\41(AW) (26)
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since ¢*(M1(A,7),7) = q1(N)@2(V)[Ilr=pm,(04)- Under My, we apply (9) with pooling weight 3 to

obtain

iMoo (A (M) g ()0

= oMW" PeMaM )V Ly o) (27)

which, on substituting § = 1 — «, is identical to (26). So as long as the weights are assigned

consistently, the pooled prior is the same regardless of whether My or Mj is used as the model.

6.4 Accurate High-Dimensional Density Estimation

For joint pooling the dimensionality of the induced joint prior will be higher than when pooling
is restricted to marginal distributions. The SIR algorithm of Section 3.4 involves estimation of
this induced density, so it follows that an application of joint pooling may require estimation of
a high-dimensional induced distribution. For example, if the labelling M; is used in (25), joint
pooling requires estimation of ¢*(7,~) instead of simply ¢*(7).

Although kernel density estimation is easily extended to higher dimensions, the estimate can be-
come less accurate with increasing dimensionality, particularly if the PDM is complex. Fortunately,
a high-dimensional estimate can be avoided in the present context.

Consider the labelling M; in (25). The joint prior on the inputs (X, v) is ¢(A,v) = ¢1(N)g2(7)
and M, induces a density ¢*(7,v) on (7,v). This density will typically be complex and hence

difficult to estimate accurately. However, we can express it in the form

(7)== (7 | v)a2(7), (28)

where ¢*(7 | 7) is the conditional density of 7 given v and ¢a(7) is the (known) density of v. The
problem can therefore be reduced to estimation of ¢*(7 | 7v), a lower-dimensional distribution than
q*(1,7). If a representative sample from ¢*(7 | v) could be obtained, it could be estimated using

the kernel method. For a fixed value of v, say vp, we propose the following algorithm:

1. Construct a representative reference sample of size n from ¢(A | v0) = ¢1(}), since X and ~
are independent before M; is imposed. If A is one-dimensional, we suggest taking £ quantiles
of ¢(A | 7o) corresponding to evenly-spaced probabilities to best capture the shape of the
distribution. Denote this sample by A; ,,,i=1,... (.

2. Obtain 7, = M;(X;,,v0). This is a representative sample from ¢*(7 | 7¢) and can be used to

form a kernel estimate of the density for any given value of 7.
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7 Example : Bowhead Whale Assessment
7.1 The BALEEN II Model

The BALEEN Il model used by the IWC for bowhead whales and several other species (our Example
5) is a special case of the one-sex age-structured Leslie matrix population projection model (Leslie,

1945; de la Mare, 1989). It is given by
nit41 = Z bat(nut — cat), (29)
z=1

Np41,t41 = T‘x(nxt - Cxt)7 (30)

where n, is the number of females aged @ next birthday at the start of year (¢ — 1848), b, is the
average number of female calves born in year t to a female aged 2 that survive to age 1, r, is the
natural survival rate of females aged z, and ¢, is the number of females aged z killed by hunting
in year ¢.

We denote by P, = Y 7, ngy the population in year ¢ aged 1 and above. For convenience,
all those aged w and above are grouped into a single age class (the choice of w does not affect
the results so long as it is large enough). The initial condition is Py = K, the carrying capacity,
corresponding to a pristine stock before commercial hunting started in 1848.

It is assumed that a juvenile survival rate, sq, applies up to age a, and that thereafter a (higher)
adult survival rate, s, applies, so that r, = sgif e =1,...,a,and r, = sif x > a+ 1, where sy < s.
Fertility is assumed to be constant with respect to age beyond the age at sexual maturity (ASM),
m, but to be density-dependent, so that it depends on the population at time ¢. This is specified

as follows:

0 ifa=1,...,m
bm_{ft if # >m+ 1. (31)

In equation (31),
ft :fO‘I'(fmaX_fO)[l_ (Pt/I()ZL (32)

where fy is the fertility rate when the population is at its carrying capacity, fiax is the maximum
fertility, attained when the stock is near extinction, and z is the density-dependence parameter.

We have expressed the model here in terms of the eight quantities sg, s, a, fo, fmax, M, 2,
and K. However, the IWC has reformulated it in terms of management quantities that they find
more interpretable. These are based on the concept of maximum sustainable yield (MSY). A stock
can indefinitely sustain any level of catch less than the MSY, and the MSY level (MSYL) is the
equilibrium population corresponding to indefinite annual catches of size MSY, expressed as a
proportion of K. The MSY rate (MSYR) is the natural increase (= births — deaths) when the
population is at MSYL, expressed as a proportion of the population.
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Punt (1998) has pointed out that of the eight quantities listed above, only seven need be
specified. The Scientific Committee chose as inputs to the BALEEN II model the seven quantities
6 = (MSYR,MSYL, s, a, finax, m, K). Once 6 has been specified, the remaining quantities sq, fo
and z can be deduced as follows.

Equilibrium will be achieved even if the stock is subject to hunting, provided that the annual
catch is no more than MSY. At equilibrium, the natural growth rate of the population, A, defined
by Piy1 = AP, is given by

AL s\ s3s T AL = (s/ AT =0 (33)
(Breiwick, Eberhardt and Braham, 1984). In the absence of hunting, A = 1, and so by (33),
1—5—s8s™fo(1— s~ 1) = 0. (34)

Also, at MSYL, A = (1 + MSYR), and so

MY o

(14+MSYR)™ — s(1 + MSYR)™ — ss™ 1 f 14+ MSYR))*"™"1]=0, (35)

where, by (31),

FOISYE) — 4 (s — fo) (1 = MSYLY). (36)

Finally, at MSYL,

MSYL + MSYR l%

T (37)

g
»=MSYR
where Q(p) is the equilibrium population corresponding to a sustained catch equal to a proportion
p of the population, where p < MSYR, and %ﬁl = limy_0 A1 [Q(p — k) — Q(p)] is the derivative
from the left (Punt, 1998). This derivative was evaluated numerically using finite differences.
Given 6, equations (34), (35), (36) and (37) form a system of four nonlinear equations in the
MSYL)

four unknowns sg, fo, z and ft( , and this can be solved numerically. Given the inputs 8, we
can thus reformulate the model in terms of the eight quantities that originally specified it, and so
run the model using equations (29) and (30) above.

The formulation described above corresponds to the forwards variant of the BALEEN II model.
The carrying capacity K is an input and equations (29) and (30) are used to project the population
forwards through time. The backwards variant works in exactly the same way except that current
abundance, Ppggs, rather than K, is an input to the model. For generated values of current
abundance and the other input parameters, a numerical method (from, for example, Press et al.,
1986) is used to solve for the value of K that results in the given current abundance. The 7-

dimensional transform (MSYR,MSYL,s, a, fimax, m, Piogs) — (MSYR,MSYL, s, @, fmax, m, K) is

one-to-one in this case, so the solution for K is unique.

33



7.2 Pre-model information

We apply the joint pooling method to the assessment of the Bering-Chukchi-Beaufort Seas stock
of bowhead whales using prior distributions and likelihoods that were agreed upon by the IWC
Scientific Committee at its 1998 annual meeting in Muscat, Oman. A comprehensive bowhead
assessment was one of the primary tasks undertaken by the Scientific Committee at that meeting.

Table 2 lists the independent marginal prior distributions for parameters of the BALEEN 11
PDM. Many of the choices in Table 2 are based on previous work by the Scientific Committee (IWC
1995, p. 148). The prior distribution of the adult survival rate was agreed to be appropriate when
no maximum age limit on bowheads is imposed. An alternative formulation places a maximum age
bound of 100 years while removing the upper truncation point (0.995) from the prior. The two

formulations give similar results.

Table 2: Prior distributions for the BALEEN II model for bowheads.

Parameter Prior

MSYT, U[0.4, 0.8]

MSYR U[0.01, 0.07]

Transition age (a) Discrete UJ[1, 9]

Age at sexual maturity (ASM) Grouped N(20,3?) truncated at 13.5 and 26.5
Adult survival (s) N(0.99,0.02%) truncated at 0.995

Max. theoretical preg. rate (fraz) 1/ fmaz ~ U[2.5,4]

Carrying capacity (K) log(K) ~ U[log(7000), log(31000)]
Abundance in 1993 (Pyg93) N(7800,1300%)

Bowhead data summarized in likelihood form are listed in Table 3. The 1993 abundance like-
lihood comes from Raftery and Zeh (1998) while the age data are from IWC (1995). The product
of the 1993 abundance prior from Table 2 and the likelihood from Table 3 provides a very close
approximation to the Bayes empirical Bayes posterior for this quantity obtained by Raftery and
Zeh (1998).

Survey estimates of abundance for the years 1978-1988 (except for 1979 and 1984) are available
and are listed in Punt and Butterworth (1998). These are slight modifications of estimates in
Raftery and Zeh (1998). The logarithm of these estimates is assumed to follow a multivariate
normal distribution. The construction of the associated covariance matrix is described in Punt and

Butterworth (1998).

7.3 Implementation and Results

Since the joint pooling posterior does not depend on the variant of the PDM that is used, we could

perform the analysis using either variant. However, we chose the backwards variant because it is
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Table 3: Likelihoods for the BALEEN II model for bowheads.

Data Distribution

Proportion of calves (1985-1992) 0.0164¢5 + 0.052

Proportion of matures (1985-1992) 0.0286¢5 + 0.411

Abundance in 1993 (Prgg93) N(8293, 626%)

Abundances (1978-1988) log(Abundances) ~ Multivariate Normal

more efficient in terms of the SIR algorithm. The forwards variant is rather inefficient in that most
of the generated points have almost zero probability of being selected in the resampling step. As a
result, a small number of points are resampled multiple times.

For the backwards variant, the density estimation step requires a representative sample from
the prior on Pygg3. We found that 20 quantiles corresponding to equally-spaced probabilities ade-
quately represent the shape of this normal curve. At each iteration of the simulation, a complete
set of the seven model inputs (i.e. the six biological parameters and Pigg3) is generated. The PDM
is used to solve for the corresponding value of K. The PDM is also applied to the 20 points in the
representative sample. The 20 values of K thus obtained are used to estimate the induced condi-
tional prior, ¢*(K | all biological parameters), of the true K given the generated set of biological

parameters. Applying (28), the required joint induced prior is then simply

¢" (K, biol. parameters) = ¢* (K | biol. parameters)q(biol. parameters)

where g(biological parameters) is the product of the independent marginal prior distributions on
the biological parameters in Table 2.

We chose v = L in the joint pooling analysis. This is equivalent to using the geometric mean of
the two joint forwards and backwards priors as the joint prior. In this way, information embedded
in BALEEN 1I is allowed to enter the prior. Model inputs are no longer a priori independent.
The marginal prior distributions are elicited without recourse to the PDM, but the PDM is used
to coherize the independent marginal beliefs into a joint prior before introduction of data via the
likelihoods. Joint pooling can be viewed as a way of creating a joint prior on model inputs that
allows information in the PDM to be reflected in that prior.

Table 4 shows the posterior medians and 90% Bayesian confidence bounds of various quantities.
One of the key quantities of interest for management purposes is the 1998 replacement yield, RYggs,
the catch from the recruited stock which, if taken, would leave the recruited population at the same
level at the beginning of the next season (IWC, 1988). The posterior distribution of RYg9s is shown
in Figure 7. The 5% point of the distribution is 106 (see Table 4), and this is currently used by the
IWC as a conservative upper bound in setting the annual hunting quota.

Figures 8, 9, and 10 show the marginal posterior distributions of the other model inputs, outputs,
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Table 4: Posterior medians and 90% Bayesian confidence bounds for various quantities of interest.

Quantity Quantile
5% 50% 95%
RY 1998 106 173 233

Total depletion (%) | 45.9  63.5  84.1
ROI (1978-1993) 1.01 1.94 3.09
Mature proportion | 0.36 0.41 0.46
Calf proportion 0.041 0.055 0.071

K 10761 13214 16813
Pigos 7064 7850 8616
MSYL 0.572 0.702  0.789
MSYR 0.012 0.021 0.033
s 0.970 0.984 0.994
S0 0.807 0.921 0.974
ASM 16 20 25
Jmaz 0.256 0.309  0.388
8
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Figure 7: Posterior distribution of 1998 replacement yield.

and quantities of interest listed in Tables 4. Where applicable, the marginal pre-model distributions
are shown as solid lines. In some cases, the posterior is very similar to the pre-model distribution; in
others there is a substantial shift in location and/or precision. For example, there is evidence that
the 1978-1993 ROl is located in the lower tail of the pre-model distribution. The variances of K and

s are reduced considerably, but the PDM provides very little additional information concerning a,
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shown as solid lines.

ASM, or f,4:- The distribution of total depletion suggests that the stock is almost certainly still
depleted in 1998.
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Figure 10: Posterior distributions for mature and calf proportions, ROI, and the levels of depletion.
Available pre-model distributions are shown as solid lines. The pre-model distribution for ROI is
a likelihood obtained by fitting a least-squares line to the survey abundance estimates.

Figure 11 shows pairwise scatterplots of K, MSYR, ROI and RYig9s using 1000 of the 5000
points in the posterior sample. (Using more than 1000 points simply clutters the plots without
revealing any further detail.) These are quantities which exhibit high correlation. In particular,
there is a strong negative correlation between K and MSYR.

In terms of model validation, we found that the various sources of information agreed better
when we used the BALEEN II model than when we used the simpler PDM of Example 2. In
particular, Figure 12 shows boxplots of samples from the prior on ROI (induced by the prior on
inputs and the BALEEN II model) and the likelihood derived from the survey abundance estimates.
Comparing Figure 12 with the corresponding boxplots in Figure 5, we see that the overlap between
the sources of information is considerably larger than for the simpler model. The implementation
of the BALEEN II model used in this analysis appears to fit the ROI data better than the simpler

model.

8 Discussion

We have proposed a new approach to inference from deterministic simulation models, called Bayesian
melding. This retains the desirable properties of the Bayesian synthesis approach of RGZ, but mod-

ifies it so as to avoid the Borel paradox to which the latter approach is subject. This is done by
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Figure 11: Pairwise scatterplots of the posterior sample of K, MSYR, ROI and RY.

recognising the presence of two different priors on the outputs, one of them explicitly specified, and
the other induced by the prior on the inputs and the model; these priors are combined via loga-
rithmic pooling. The method is extended to the difficult but common situation where the model is
noninvertible. The resulting approach is formally fully Bayesian, and takes full account of evidence
and uncertainty about both the inputs and outputs to the model in a coherent way; it can be
viewed as a generalisation of standard Bayesian inference. It was presented to the IWC Scientific
Committee in the context of giving advice about bowhead hunting quotas in its 1998 assessment
of the stock (at the previous assessment in 1994, the Bayesian synthesis approach had been used).

Our exposition has focused on population dynamics models for whales, which is the context
within which it was developed. However, deterministic simulation models are pervasive in science,
engineering and policy research, and it seems likely that this approach could find potential appli-
cations in many areas. Green et al. (1998) have applied the methodology to forest management,
and it has potential applications in epidemiology and environmental risk assessment.

One issue that remains unresolved is how to choose «, the parameter that says how the priors

on the inputs and the outputs are to be weighted relatively to one another. In the original context
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Figure 12: Boxplots of the distributions of the 1978-1993 rate of increase (ROI) implied by the
priors on inputs and the BALEEN Il model (¢7) and the likelihood (L3) derived from the survey
abundance estimates.

in which logarithmic pooling of prior distributions was developed, that of combining the opinions
of two experts, o was viewed as reflecting the weight to be attached to the first expert vis-a-vis
the second, although a formal basis for specifying its precise value does not seem to have been
developed (Genest and Zidek, 1986). Our context is somewhat different, in that we are combining
prior distributions about different parameters and based on different bodies of evidence, but assessed
by the same “expert” (in our case the IWC Scientific Committee). We have used this fact as the
basis for our choice of a = L in the examples. Note that o does not reflect the precision of the
prior information about the inputs relative to that about the outputs, but rather its reliability,
and it seems reasonable to assume that the information about inputs and outputs will be equally
reliable, since they are both assessed and expressed quantitatively by the same expert. Figure 4
illustrates how, even when a = 1, the pooled prior will be dominated by the more precise source
of information.

However, values other than o = 1 might well be reasonable. In particular, values at or near
the extremes, o« = 0,1, might be of interest. A case of particular interest arises when priors on
the inputs were specified for formal reasons to make Bayesian inference possible in the absence of
much prior information, but the priors on the outputs did correspond to real information. Then
setting o = 0 or close to it could allow the (uninformative) prior distribution about the inputs to
be given little or no weight, while still having a proper prior on the inputs (induced by the prior

distribution on the outputs).

An alternative, more subjective, approach would be to plot the pooled priors on both inputs
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and outputs for each of a set of values of «, and then choose the one that corresponds most closely
to actual prior opinion. This could be implemented on the computer using a slider allowing the
value of @ to be manipulated by the user, while the resulting pooled prior distributions change
interactively. The computing requirements of this approach might be an obstacle for many models,
but it would seem to be a reasonable ideal.

One could also think of estimating «, for example by computing its integrated likelihood as
in Section 5, and maximising this quantity with respect to «. This would provide a maximum
integrated likelihood estimator of «. A further possibility would be fully Bayesian, to specify a
prior for « itself, and treat it as a parameter in the usual Bayesian way, by integrating over it. In
the absence of further information, a Uniform[0,1] distribution would be one possibility. A difficulty
with approaches based on estimating « from the likelihoods, however, is that they will tend to give
high weight to the prior distributions that least disagree with the likelihoods. This may not be
desirable if the prior distributions all represent genuine prior information.

Another open issue is that of how best to do nonparametric density estimation in the present
context. We have chosen to use kernel density estimation with a Gaussian kernel, selecting the
smoothing parameter by Terrell’s (1990) maximal smoothing approach when appropriate. This
approach is easy to implement in higher dimensions. However, it is an “off-the-shelf” approach,
not crafted specially for our present purpose, and so it should be possible to do better. Givens and
Roback (1998) have developed an adaptive method that involves direct numerical approximation
of Jacobians. Their method has led to improved accuracy and efficiency in some simple examples.
Nonparametric density estimation techniques have generally been developed and evaluated with the
quality of the resulting density estimate itself as the ultimate criterion, not surprisingly. However,
here our ultimate criterion is the quality of the estimate of the posterior distribution after applying
SIR; the quality of the intermediate density estimates is of little interest in its own right. The
development of nonparametric density estimation methods specifically for this purpose would seem
a worthwhile research challenge.

We have developed our methods for a family of simulation models that can be run reasonably
fast on a computer, so that carrying out 50,000 runs, as we have been doing, can be done overnight
with little difficulty. Many simulation models take much longer to run, however, and methods that
require very large numbers of runs will remain infeasible for such models for a long time. Then
efficiency will be a major issue, and methods will be required that make each run of the model
count much more. One such approach is the adaptive SIR algorithm of Givens and Raftery (1996).
Quadrature methods also seem promising. One possibility is the three-point iterated Gauss-Hermite
quadrature of Raftery and Zeh (1993, Appendix 4); see also Levy et al. (1998). Another is the
Bayes-Hermite quadrature of O’Hagan (1991). A different possibility is Latin hypercube sampling,
mentioned in the present context by Schweder (1995).
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Our approach can be viewed as involving simulating from a posterior distribution, and Markov
chain Monte Carlo (MCMC) methods have been much developed in recent years for this purpose
(e.g. Gilks, Richardson and Spiegelhalter, 1996). We have not used MCMC, however, instead
choosing to base our methods on the SIR algorithm. The reason is that it is not clear how to
implement MCMC in the present context, since it requires the availability of code to compute
the (unnormalized) posterior density, which is not available here. Pooling can be implemented
in a natural way via the SIR algorithm, but not, as far as we can see, with MCMC. A further
difficulty with MCMC in this context is that our posterior distributions tend to be concentrated
near nonlinear submanifolds of the parameter space, and it is well known that designing MCMC
algorithms for this kind of situation can be extremely delicate. However, if these two obstacles
could be overcome and an efficient and reliable MCMC algorithm designed for sampling from the
Bayesian melding posterior distribution, this could be very useful as such an algorithm would tend
to stay in or close to the high posterior density region and hence could be more efficient than our
present proposal. This would seem to be a good topic for further research.

Since Wolpert (1995) pointed out that the Bayesian synthesis approach is subject to the Borel
paradox, various other solutions have been proposed. As we have discussed here, the Borel paradox
arises from the presence of a prior on outputs as well as inputs, and one proposed solution has been
to simply discard the prior on the outputs (Butterworth and Punt, 1995; Punt and Butterworth,
1998). This may be satisfactory in some contexts, but not in others. The specification of a prior on
outputs originally arose when it became apparent that plausible values of both inputs and outputs
to the BALEEN II model could give rise to highly implausible oscillating trajectories (Givens et al.,
1995). The solution proposed at the time in the context of the Bayesian synthesis method was to
specify a prior on the output, “Maximum Calf-to-Mother Ratio” (MCM), preventing it from being
higher than one, which was a universally agreed biological upper limit. This was very simple and
quick to implement, and worked very well to exclude the implausible oscillatory trajectories. Just
ignoring this prior on the outputs would have led to unsatisfactory results.

Subsequently, Punt and Butterworth (1996) reparameterized the BALEEN II model in the form
we have used here, so that maximum fertility rate became an input, f,,., and a prior on this input
quantity was enough to avoid the oscillatory trajectories. This is a sensible solution in this case,
although it was fairly time-consuming, requiring several years to reprogram the model, validate the
code, and obtain approval from the Scientific Committee for the reformulated model. Essentially
the same result had been achieved very quickly several years earlier by simply specifying a prior
on the relevant output, MCM. With Bayesian melding, this can now be done in a way that is not
subject to the Borel paradox. In other complex examples, it may not be feasible to reformulate the
model in a way that eliminates the need for a prior on the outputs.

Another approach, proposed in an IWC Scientific Committee meeting by Stephen T. Buckland,
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is to display the different priors for inputs and outputs on a computer screen, together with the
priors they induce on other inputs and outputs as well as other quantities of interest. The user would
then interactively modify the priors so that the different priors on the same quantities (explicit prior
and induced prior) came closer to agreement. This seems like an excellent idea, although it might
be hard to zero in exactly on a fully coherized set of priors using this approach. Our suggestion
above of choosing « interactively using a slider could be viewed as one version of this suggestion,
that is less flexible but is also guaranteed to yield fully coherized priors.

Another option in the context of expert opinion consensus is the “supra-Bayesian” approach.
Here, a group decision maker or meta-expert considers the individual expert opinions as data, and
then updates his or her own prior beliefs using Bayes’ rule. Lindley (1985) proposed supra-Bayesian
pooling when the parameter space is finite. However, most derivations have been for a very simple
scenario such as a single event. Extensions to complex simulation modelling would be challenging.
Another practical consideration is the choice of the meta-expert. Givens and Roback (1998) have
discussed the supra-Bayesian approach in the context of deterministic models.

Schweder and Hjort (1997) have proposed the likelihood synthesis approach, in which prior
distributions are viewed as deriving from likelihoods for an implicit data set, which are then turned
into “confidence distributions” for quantities of interest. One issue with this approach is how the
confidence distributions are to be interpreted, as they do not seem to have either a clear frequentist
interpretation or a Bayesian interpretation.

We have discussed the effect of the Borel paradox in the application of Bayesian methods to
inference for deterministic models. Other paradoxes have arisen in different contexts within the
general framework of Bayesian inference. For example, Dawid et al. (1973) examined posterior
marginalization paradoxes that result from the use of improper prior distributions.

We have focused here on deterministic simulation models, but our approach could also be applied
to stochastic models. For example, in our BALEEN II bowhead PDM, the numbers of births
and deaths in a year could be modeled as binomial random variables rather than approximated
by their expectations. We would proceed as before, except that instead of applying the model
deterministically for each run, we would simulate a stochastic trajectory. Note that even if the
model were made stochastic, the Bayesian synthesis method would still be subject to the Borel
paradox, and so pooling would still be necessary. Bayesian melding should provide a valid solution

for stochastic models as well as deterministic ones.
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Appendix

Proof of Theorem I: The joint distribution of (¢, ¢') is

dgi '(#)
de’

dgy ' (')
dg/

and rewriting the model ¢ = M () in terms of #" and ¢’ with ¢’ as the output, yields

P, ¢") = plgr 1 (0), 97 (6]

¢ = g2[M(g7(0))] (38)
Now consider the transformation (¢, ¢') — (U, V) where
U = ¢ —n[Mg'(0)))
vV = ¢
so that

0 = Vv

with associated Jacobian
0 1
9 M )] | =1
dv

It follows that the joint distribution of U and V is

pov(u,v) = p'(v,g2(M (g7 (v))))-1
= plor ' (v), 95 (u+ g2(M (97" (v))))] dg; (')

do¢’

dgy ' (v)
dv

¢'=utg2 (M (97" (v)))

Now noting that U = 0 < ¢ = go(M (g7 (v))) < ¢ = M(8), we have

pviv(v]0) o< puv(0,v)

= plor (), M (g7 (v))] dg; " (¢')

dg!

dgy ' (v)
dv

#'=g2(M (g7 (v))
Since V' = #" and conditioning on U = 0 is equivalent to conditioning on the model (38), this is

exactly the Bayesian synthesis post-model distribution of #’. Writing in terms of #', we have

dg; 1 (0) | |dgy ' (¢)
a6’ dg!

w18 o< plgr ! (87), M (g7 (6)]

¢'=g2(M (97 (0)))
To express the post-model distribution in terms of 6, we transform ¢ — 6 which has inverse

—1 I; -1 —1/p1 -1
Jacobian ‘%ﬂ‘. Noting the identities dg2d¢(/<b) = ‘dgjf) and dgldeﬁe) = ‘dgéé(,e)‘ , we obtain
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dg2(9) “1
do  lg=nr(s)

w(0) o p(6, 31(9)) |

as in (7).

O
Proof of Theorem 2: We first consider the continuous case. For @ = 0 and o = 1 the result
is trivially true from the assumptions. For a € (0,1), the function h(z) = 2 is concave on

[0,00) because h''(z) = a(a — 1)z~% < 0. Noting that the ratio ¢} (¢)/q2(¢) has range [0, 00) for
$ € P\{¢:¢7(¢) =q2(¢) =0}, and applying Jensen’s inequality, we have

/QT(qﬁ)“%(qﬁ)l_ad(b = Lo [(qf(cb))a]

= [Eq2 (qi(@)r

= 1°=1

since

£ (B9) = [aiterao =

So [qi(#)%q2(¢)17d¢ < 1 < oo, and the normalizing constant k., can be found. Note that
the proof proceeds analogously in the discrete case except that the integrals are replaced by the

appropriate sums.
O

Proof of Theorem 3. We first note that |J 4; = |JC; and that the C; are mutually exclusive because
each A; appears in only one C;, namely C),(;y. Since 0 < (j[(b](Bm(i)) < 1and ¢ (A) < 65 (B
it follows that 0 < Gl¥1(4;) < 1 for each 7. By the mutual exclusivity of the Cj,

Sy = 3 X @A

Jj ©AEC

— 18y [ 9(A) )
Zj:i:AlZe:CJ 7EB) (QI(C]‘)

_ 191 5. q1(As) )
Zj:i:AlZE:C] 79(5) (Zk:AkeCJ q1(Ar)

- Y,

= 1

using Theorem 2.
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a

Proof of Theorem 4: We write 8 = (0y,...,0,) and ¢ = (¢1, ..., ¢,). Denote the components of M

as follows:

¢1 = M1(017"'70n)
¢2 - M2(017"'70n)

¢n - Mn(017 .- 7071)

Since M is one-to-one from A; onto B for each ¢ = 1, ..., k, the inverse function from B to A; can

be found. Denote the ith inverse by

01 = Gli(¢17"'7¢n)
02 = G2i(¢17"'7¢n)

071 = Gni(¢17 c 7¢n)

Let J; denote the Jacobian computed from the ith inverse, ie.

b1 Db Dbn
J.=| 9% 9% Dbn
b1 Db Dbn

From Theorem 2, (j[(b]((b) is a proper density function for all @ € [0,1]. We now show that 6[0](0)
in (18) is simply the distribution of a transformation of ¢ when ¢ ~ (j[(b]((b). Fix a value of 7, and
consider 0 ~ ¢ (0) for 6 € A;. Since M is one-to-one from A; to B, the induced density of ¢ = M (6)
for 8 € A; is

01 (¢) < q1(G1i(9); - - -, Gri(®)| il
and hence

qN(0) o {q1(Gri(d), -, Gni (D) Ji]} g (4) 2

The Jacobian of the inverse transformation 61 = G1;(¢),...,0, = G.i(¢) is |Ji|;iM(9)v SO trans-

forming the above to 6 € A; yields
@0) < {q(O)Jils=nr(o)} q2(M(9) S Pty

o [_wre) )
= q(0) (q1(0)|J¢|¢:M(9))

¢1(6) (%) _a, 0 c A (39)
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since g7 (M (0)) = q1(0)]Jilg=nr(g) for 0 € A;. Note that (39) is identical to (18), which is equivalent
to (17) apart from the proportionality constant k,. The piecewise transformation above is the same
for every i = 1,...,k, so 6[0](0) has the form (18) for every # € O. It remains to verify that if
0 ~ ¢%1(8), then ¢ = M (8) has density Gl?/(¢). Let 6 ~ ¢l¥1(6). From Casella and Berger (1990, p.
177), the induced distribution of ¢ is

:1 1—o
= 3 (@(Gulo - Gusto) (Zﬁji) ) i
f]2(¢) o ) . .
(qf( ¢>) > Cai(0)s-- Gl ) i (40)

since the ratio does not depend on the value of i. The summation in (40) is simply ¢;(¢), the

distribution of ¢ when 8 ~ ¢;(6). Thus,

identical to the form of ¢l?l(¢) in (9). Therefore, ¢°1(8) is a density on © and it induces §l}(¢)
under the model transform ¢ = M (6).

a

Proof of Theorem 5: Let 7 = (¢,7) and denote 7 = G(6) so that § = G~'(7). By Theorem 2, there

exists k, such that
[ ot (@) o) do =1 Vaefo,1]

Now define the pooled prior of 7 to be
i(r) = §@(¢,)
= kati(0)" ' 02(0) 0 (6,7)

where ¢*(¢, ) is the joint density of (¢,7) induced by G and ¢} (¢) = [ ¢*(¢,v)dy. Note that (j[T](T)

is a well-defined joint density since

[ = [ [ hagi @) w0) =0 (6.9)dvdo
= [ bt (@) 02(0) o
1
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indicating that ¢l”](7) integrates to unity on its support and marginalizes (over ) to yield ¢l?l(¢).
Now noting that
7(¢,7) = a1 (G, 7)) ||

dé

where .J = |92|, we have
T

i) = ka7 (6)" " 02(0)' "0 (G (6,7)) ]

Applying the transformation § = G~!(7) with Jacobian J~! then yields

@(0) = kg (M(0))* " g2(M(6))' ™ q1(6)
M 0 l1—a
i (210D
q; (M(6))
which is equivalent to (17). So ¢l?(#) is simply a transformation of ¢”J(r) which, by nature of
its construction, integrates to unity over its support and marginalizes to yield (j[(b]((b). Under the
conditions of the proposition, 6[0](0) is a density on © and it induces (j[(b]((b) under the model
transform ¢ = M(6).
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