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Summary

Deterministic simulation models are used in many areas of science� engineering and policy�
making� Typically� they are complex models that attempt to capture underlying mechanisms in
considerable detail� and they have many user�speci�ed inputs� The inputs are often speci�ed by
some form of trial�and�error approach in which plausible values are postulated� the corresponding
outputs inspected� and the inputs modi�ed until plausible outputs are obtained� Here we address
the issue of more formal inference for such models� Raftery et al� ����	a
 proposed the Bayesian
synthesis approach in which the available information about both inputs and outputs was encoded
in a probability distribution and inference was made by restricting this distribution to the sub�
manifold speci�ed by the model� Wolpert ����	
 showed that this is subject to the Borel paradox�
according to which the results can depend on the parameterization of the model� We show that
this dependence is due to the presence of a prior on the outputs�

We propose a modi�ed approach� called Bayesian melding� which takes full account of infor�
mation and uncertainty about both inputs and outputs to the model� while avoiding the Borel
paradox� This is done by recognizing the existence of two priors� one implicit and one explicit�
on each input and output� these are combined via logarithmic pooling� Bayesian melding is then
standard Bayesian inference with the pooled prior on inputs� and is implemented here by poste�
rior simulation using the SIR algorithm� We develop this initially for invertible models� and then
extend it to the more di�cult case of noninvertible models� We also propose diagnostic checking�
model validation� hypothesis testing and model selection methods� so that Bayesian melding pro�
vides a comprehensive framework for coherent statistical inference from deterministic simulation
models� The situation where invariance to relabelling of inputs as outputs or vice versa is desired
is approached via a further extension� called joint pooling� The methodology is illustrated using
population dynamics models of varying complexity� and various open research problems are dis�
cussed� The approach was used by the International Whaling Commission in ��� as a basis for
the management of aboriginal whaling�

KEY WORDS� Bayesian inference� Borel paradox� logarithmic pooling� population dynamics mod�
els� SIR algorithm� whales�
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� Introduction

Simulation models are widely used in applied scienti�c disciplines� Such models are found in the

study of climate� soil pollution� plant growth� epidemiology� animal populations� and other �elds�

Given a set of inputs� a simulation model produces a set of outputs� For example� inputs to a

biological population dynamics model may include mortality and reproduction rates for various

age groups� habitat parameters� and harvest information� Outputs would then typically include

current population abundance and age structure� In a model of soil pollution� typical inputs include

soil density� deposition velocity� and air pollutant concentration� The output would be a measure

of pollutant concentration in the soil�

Simulation models are usually designed to capture some underlying mechanism or natural pro�

cess� and they are often deterministic� They di�er conceptually from many standard statistical

models �such as linear regression
 whose aim is to empirically estimate the relationships between

variables� For many scientists� a mechanism is most naturally modeled using a deterministic ap�

proach� The deterministic simulation model is viewed as a useful approximation of reality that

is easier to build and interpret than a stochastic model� On one hand� determinism permits ease

of model construction and understanding� on the other� ignoring stochastic variation can result in

a loss of modelling realism� In some cases� the positive aspects of the former are considered to

outweigh the disadvantages of the latter� In other situations� the random variation is thought to

account for little of the overall uncertainty� in which case a deterministic model closely approxi�

mates a stochastic counterpart� Ignoring random variation can then be thought of as a modelling

assumption�

A deterministic simulation model is not necessarily a simple model� Some simulation models

are extremely complicated with large numbers of inputs and outputs� The relationships between

variables can be highly complex and the models are often noninvertible� a �xed single set of outputs

can be generated by multiple sets of inputs� Thus� taking reliable account of parameter and model

uncertainty is crucial� perhaps even more so than in standard statistical models� yet this is an area

that has received little attention from statisticians� A statistician tends to automatically quantify

uncertainty through the use of stochastic statistical models� and with good cause� but this may

have contributed to a lack of interaction between statisticians and the applied scientists who have

adopted the deterministic modelling approach�

Edwards �����
 observed that there was a general need for simulation�based methods of estima�

tion in complex models� Hoel and Mitchell �����
 and Ross �����
 provided some early examples

of simulation in stochastic models� Diggle and Gratton ����
 presented Monte Carlo methods for

analyzing an implicit statistical model� stating that �we know of no other systematic investigations

along the lines of the present paper�� Speed ����
 was perhaps the �rst to point out the need

�



for statisticians to get involved in the deterministic modelling arena� noting that scientists at the

Australian national research organisation �CSIRO
 were increasingly abandoning statistical models

in favor of simulation models� As examples� he listed a sheep growth model� a model for predicting

the nitrogen requirements of wheat crops� and a model describing the e�ects of light and water va�

por on apple leaves� More recently� Hodges ����� ����
 has also argued that it is vital to quantify

the uncertainty in the inputs to a simulation model�

Although little attention has been paid to formally quantifying parameter uncertainty� simu�

lation model validation has received considerable attention� Caswell �����
� Hughes ����
 and

Guttorp and Walden ����
 discussed applications in ecology� the military� and geophysics respec�

tively�

The most common way of specifying the �inputs� to such a model is a kind of ad hoc trial�and�

error or �tuning� approach� Inputs can include parameters that quantify aspects of the underlying

mechanism� initial conditions� and control parameters that specify how the simulation is to be

run� The tuning approach starts with an initial guess at appropriate values of the inputs� based

on professional knowledge and expertise� information in the relevant scienti�c literature� and so

on� The model is then run with these inputs� and the outputs are examined� If the outputs seem

plausible� the initial guess is used� otherwise the guess is modi�ed� The process iterates until a

satisfactory set of inputs is found� i�e� one that seems reasonable in itself and also produces plausible

outputs�

While little attention tends to be paid to uncertainty about the inputs� a sensitivity analysis is

often run to see if the �nal conclusions are sensitive to the precise values of the inputs used� This

is a very good idea� but there are di�culties with it� If the conclusions turn out to be insensitive

to the inputs� all is well� However� if there is some sensitivity� it is not clear what should be done

except to note it in the report� and to attach a �government health warning� to the conclusions�

This seems somewhat unsatisfactory� as there will often be a degree of sensitivity to the inputs of a

complex model� We feel that sensitivity is a form of uncertainty� and that it should be taken into

account explicitly when drawing conclusions�

The present research was initially motivated by work for the International Whaling Commission

�IWC
 on setting quotas for aboriginal subsistence whaling of bowhead whales� Balaena mysticetus�

by Inuit peoples in Alaska� This has been done traditionally using a deterministic age�structured

population dynamics model for the whales to assess their current natural rate of increase �� fertility

� mortality
� A conservative assessment of the rate of increase is then used to set an upper bound

on the quota� The model uses information on the historic commercial catches and the current

population size� and requires as inputs parameters that describe age�speci�c fertility and mortality

rates� and initial population size� The results are quite sensitive to these inputs� and until ���� the

inputs were set using the ad hoc trial�and�error method described above� with the �conservative�
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assessment of natural increase rate being taken as the lowest value from a rather limited sensitivity

analysis�

In ����� the IWC decided that this approach gave too crude an assessment of uncertainty�

and that the result might� for example� be too high� running the risk of damaging the stock� They

called for better methods to assess uncertainty in whale population dynamics models� The Bayesian

synthesis method was a �rst attempt to meet this call �Raftery et al�� ����� ���	a� Givens� �����

Givens et al�� ���	
� and was used by the IWC to set the bowhead quota in ����� It recognizes that

the information about �plausibility� of input and output values that drives the tuning approach

comes from a combination of quantitative and qualitative data and expert opinion� and encodes

it explicitly using a probability distribution called the pre�model distribution� However� Wolpert

����	
 showed that Bayesian synthesis was subject to the Borel paradox� so that in principle the

results could depend on the model�s parameterization� In their response to Wolpert� Raftery et

al� ����	b
� argued that the e�ect of the Borel paradox on the results was likely to be small in

practice� Nevertheless� any method that is subject to the Borel paradox is unsatisfactory�

Here we describe a new approach� called Bayesian melding� that retains the desirable aspects

of the Bayesian synthesis method but is not subject to the Borel paradox� This draws on existing

work on combining expert opinions by pooling the corresponding probability distributions� The

word melding is used because the method provides a coherent way of combining� or melding�

di�erent kinds of information �qualitative or quantitative� fragmentary or extensive� based on expert

knowledge or on data
 about di�erent quantities� so long as the quantities they relate to can be

linked using a deterministic model� It turns out that the numerical results for bowheads from the

new approach are almost identical to those from the earlier Bayesian synthesis method� but the

new approach is based on a sounder inferential footing� Earlier unpublished progress reports on

this project were given by Raftery et al� �����
� Raftery and Poole �����
 and Poole and Raftery

����
�

In Section � we give background on deterministic simulation models� the Bayesian synthesis

approach� and the Borel paradox� In Section �� we review existing ideas of pooling probability

distributions to combine the opinions of experts� and we build on those to develop the Bayesian

melding approach� using several simple examples� In Section � we show how these ideas can be

used for model validation and diagnostic checking� and in Section 	 we indicate how they can be

extended to perform hypothesis testing and model selection� and how they can be used to take

account of uncertainty about model form� In Section � we consider the situation where inputs can

be relabelled as outputs� or vice versa� and we show how Bayesian melding can be extended to

yield results that are invariant to such relabellings� In Section � we return to our initial motivating

problem and show a Bayesian melding analysis of the BALEEN II model used for providing scienti�c

advice on bowhead quotas� The theorems stated are proved in the Appendix�
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� Background

��� Deterministic Simulation Models

A deterministic model is simply a function relating a set of input variables to a set of output

variables� We use the notation

M � � � �� � � � � �n� � � � � �p�

to denote that the deterministic model M relates a vector of input parameters � to a vector of

outputs �� so that � � M��
� We denote by � the set of quantities of interest� which may be model

inputs� model outputs or functions of both� and typically will be functions of � and�or �� The model

M may be non�invertible� and in many deterministic simulation applications the non�invertibility

is due to the dimension of � being less than that of �� i�e� p � n� In these cases� a single value of

the output may result from many di�erent values of the input�

Our motivating application is the study of population dynamics models �PDMs
� and our ex�

amples will be of this type� A population dynamics model relates the population at time �t��
 to

the population at time t� Age�structured population dynamics models relate the population aged

a at time �t� �
 to the population at each age at time t� Here are some examples of deterministic

population dynamics models� ranging from very simple to somewhat more complex�

Example �� Pt � RP� � This is an extremely simple PDM where P� represents the initial �year

�
 population size� Pt is the size of the population in year t� and R is a growth rate parameter� P�

and R are the � model inputs while Pt is the single output� Hence� � � �P�� R
 and � � Pt� This

is a simple example of a case where a given output can be generated by in�nitely many values of

the inputs�

Example �� A model that underlies the commercial Revised Management Procedure of the IWC

is a non�age�structured PDM of the form

Pt�� � Pt � Ct � ��	�MSYR
Pt

�
�� �Pt�P�


�
�
� ��


where Pt is the population in year t� where t � � corresponds to the baseline year before commercial

hunting started ��� in the case of bowheads
� P� is the initial population size� MSYR is the

maximum sustainable yield as a proportion of the population aged one year or more� and Ct is the

number of whales killed by hunting in year t�

This model is much simpler than the BALEEN II PDM used by the IWC for bowhead assess�

ment� but it nevertheless captures several of the major features of the bowhead population� The

model is viewed as having two inputs �P� and MSYR
 and one output �P����
� using given values

of the inputs� ��
 is applied recursively until P���� is obtained� The catch history is assumed to

�



be known exactly� so that the Ct�s are viewed as a set of constants� Although the population can

be projected further to the present year� ���� is the latest year for which independent abundance

data are available� A related quantity of interest is the recent ���������
 rate of increase of the

population�

The model ��
 is simple because it is not age�structured� but it does feature density dependence�

according to which the population increases more slowly when it is larger� The density dependence

is introduced by the factor
�
�� �Pt�P�


�
�
on the right hand side of ��
� This model implies the

existence of a �carrying capacity�� usually denoted by K� and here assumed to be equal to P��

postulated to be the maximum number of animals that its environment could sustain� If it goes

above this level� the population is assumed to decrease until it reaches the carrying capacity again�

Example �� This is a non�density�dependent version of Example �� de�ned by

Pt�� � Pt � Ct � ��	�MSYR
Pt� ��


The di�erence between this and equation ��
 is the absence of the density dependence factor�
�� �Pt�P�


�
�
�

Example �� Here the model is the same as in Example �� but for a di�erent species� the eastern

Paci�c gray whale� Eschrichtius robustus� Details of population dynamics modelling for this species

are given by Reilly ����� ����
 and Wade and DeMaster �����
�

Example �� BALEEN II � This is the full age�structured density�dependent PDM used for bow�

head assessment� In addition to P� and MSYR� it requires inputs pertaining to survival rates� age

at sexual maturity� calving intervals� and other biological information� BALEEN II is discussed in

greater detail in Section ��

In many applications� information on � and � is available independently ofM � Data� statistical

models and prior beliefs can yield evidence about parameters that are either inputs to or outputs

of M � Such statistical models should not be confused with the simulation model M � The goal

of simulation modelers is to sensibly combine the various sources of evidence to obtain the best

possible inference regarding the quantities of interest�

��� The Bayesian Synthesis Approach

In ����� the IWC Scienti�c Committee recommended that methods for taking full account of

uncertainty in inputs and outputs to population dynamics models be developed� In response to

this recommendation� the Bayesian synthesis method was introduced by Raftery et al� �����
�

	



Givens �����
� Givens et al� �����
� and Raftery� Givens and Zeh ����	a
� hereafter RGZ� The

method was used as the basis for the IWC assessment of bowhead whales in �����

As we did in Section ���� RGZ denoted by � the set of model inputs and by � the set of model

outputs about which we have information independent of the simulation model M � �RGZ used �

rather than M to denote the deterministic model function�
 They then denoted by p��� �
 the joint

pre�model distribution of � and �� which summarizes all available information about � and � except

that embodied in the model itself�

The model de�nes a mapping from the set of possible values of � to the set of possible values

of �� RGZ denoted this mapping by � �� M��
� They de�ned the joint distribution of � and

� given the model to be simply the restriction of the pre�model distribution to the submanifold

f��� �
 � � � M��
g� namely

	��� �
 �

�
p���M��

 if � � M��

� otherwise�

��


RGZ referred to 	��� �
 as the post�model distribution� The marginal post�model distribution of �

is then

	�����
 � p���M��

� ��


or� equivalently�

	�����
 � p��j���� j � � M��

� �	


For marginal and conditional distributions� RGZ used superscripts in square brackets to show to

what the distribution applies� Thus� for example� p�����
 denotes the marginal pre�model distribution

of the inputs� 	�����
 denotes the marginal post�model distribution of the outputs� and p��j����j�


denotes the conditional pre�model distribution of the outputs given the inputs�

In a Bayesian context� it is useful to decompose the pre�model distribution into prior and likeli�

hood components� Under the assumption that pre�model information about inputs is independent

of that about outputs� we can decompose the pre�model distribution as follows�

p��� �
 � p�����
p�����


� q���
q���
L���
L���
� ��


where q���
 and q���
 are the prior distributions of the inputs and outputs respectively� L���
 �

p�D�j�
 is the likelihood of the inputs� and L���
 � p�D�j�
 is the likelihood of the outputs�

where D� and D� represent data� Sometimes� data relating to only one of � and �� typically ��

are available� in which case only one likelihood is present� An example of a prior in the bowhead

application �Example 	
 is that of the adult mortality rate� which was based largely on similar

�



rates for other species� An example of a likelihood is that of the recent rate of population increase

�ROI
� which was based directly on a time series of population indices �see RGZ
�

Bayesian synthesis inference about a quantity is based on its post�model distribution� In order

to draw samples from 	��
� RGZ used the sampling�importance�resampling �SIR
 algorithm �Rubin�

���� ��
� This is a Monte Carlo procedure consisting of the following steps� where the inputs

and outputs are assumed to be pre�model independent�

�� Draw a large sample of size k values of � from p�����
�

�� Compute the importance sampling weights ri �
p	�i�M	�i


p���	�i


� p����M��i

 �i � �� � � � � k
�

�� Draw a second sample of size l from the discrete distribution with values �i and associated

probabilities ri�

The second sample is approximately a sample from the post�model distribution� and it is the

basis for inference about inputs� outputs and quantities of interest in the Bayesian synthesis method�

��� The Borel Paradox

Wolpert ����	
 pointed out that a conditional distribution of the form �	
 is ill�de�ned� and as a

result the Bayesian synthesis post�model distribution is subject to a phenomenon known as the Borel

paradox� A consequence of Borel�s paradox is that the post�model distribution depends on how the

simulation model M is parameterized� Wolpert gave the example of a simple exponential growth

PDM� in which the results are di�erent if pre�model information is speci�ed on the parameters of

the model in logarithmic form than if it is speci�ed in terms of the parameters of the model in its

original form� Schweder and Hjort �����
 pointed out that the consequences of the paradox are� in

theory� far�ranging� by choosing arbitrarily extreme parameterizations one can in principle obtain

any density as the post�model distribution�

The Borel paradox manifests itself when a conditional distribution is de�ned on an arbitrary

null event �or a set of probability zero
� Such conditioning is indeterminate� and the resulting

conditional density depends on how the space is parameterized and other irrelevant things �Wolpert�

���	
� Billingsley ����
 also alludes to the phenomenon in his discussion of conditional probability�

Billingsley�s source was Kolmogorov �����
� who cited Borel �����
 and coined the term �Borel

paradox�� Borel in turn cited Bertrand ���
� It appears that the Borel paradox may have

contributed to motivating Kolmogorov�s �����
 development of the modern axiomatic basis of

probability theory �Schweder and Hjort� ���	
�

Wolpert ����	
 cited a simple example of the Borel paradox� Let �x� y
 be drawn uniformly on

the unit square f�x� y
 � � � x� y � �g� We are interested in the conditional distribution of x given

that �x� y
 lies on the diagonal y � x� If we assume that �on the diagonal� means that y � x � ��

�



then the conditional distribution is also uniform �as one might intuitively expect
� A standard

way to show this is to reparameterize �x� y
 to �w� z
� where w � x and z � y � x� �nd the joint

density of �w� z
 using the Jacobian of the transformation �which in this case is �
� and then �nding

p�xjy� x � �
 � p�wjz � �
 � p�w� �
�p�z � �
� where p�z � �
 denotes the density of z evaluated

at �� This density turns out to be uniform on ���� � If� on the other hand� we take the conditioning

to mean that y�x � � and proceed in the same way� the resulting conditional distribution of X is

the Beta����
 distribution� with a density proportional to x� The paradox is that we obtain two

di�erent conditional distributions of X although it appears that we have conditioned on the same

event�

The key problem with the conditioning here is exactly that indicated by Wolpert ����	
� The set

f�x� y
 � y � xg has probability zero and is of lower dimension than the square f�x� y
 � � � x� y � �g

in which it resides� Hence we are conditioning on a null event� or a set of points with probability

zero� We should note that conditioning on a single point of probability zero with respect to a

stochastic random variable does not� in general� give rise to this phenomenon� indeed� this is the

de�nition of a standard continuous conditional density�

��� E�ect of the Borel Paradox on the Bayesian Synthesis Approach

Inference from the Bayesian synthesis method depends on the manner in which the simulation

model is parameterized� In this section� we investigate the exact nature of the noninvariance of the

Bayesian synthesis to reparameterization of deterministic models�

Recall that RGZ de�ned a joint pre�model distribution� p��� �
 on the pair ��� �
 � �� 	 �
�

where � and � are the inputs and outputs� respectively� of the model M � � � �� Thus p��� �


has dimensionality equal to �dim��
 � dim��

� the total number of inputs and outputs of M �

The post�model distribution of � was then de�ned to be the conditional distribution of the variable

��� �
 given the model manifold � � M��
� i�e� equation �	
� However� since the model manifold is

a lower dimensional surface in the space ��	�
� it has probability zero in p��� �
� The post�model

distribution is thus conditioned on the isolated null event that the model holds� and as a result is

subject to the Borel paradox� As noted in the simple illustration above� it is stochastic random

variables �or 
�algebras
 that must be conditioned on� not null events�

We now formulate the exact e�ect of model reparameterization on the Bayesian synthesis post�

model distribution�

Theorem � � Let � and � be vector parameters related by the function M � � � �� where M is

not necessarily invertible� Let p��� �
 represent the joint pre�model distribution of ��� �
� Consider

invertible transformations �� � g���
 and �� � g���
 so that � � g��� ���
 and � � g��� ���
� Then�

if we re�express M in terms of �� and �� such that �� is the explicit model output� the post�model

distribution of the original �� as de�ned in the Bayesian synthesis method� is





	�����
 � p���M��



����dg���
d�

����
��

��M	�

��


�

Comparing ��
 with ��
� it is apparent that�

�� The reparameterization of the model causes the post�model distribution of the inputs� ��

to be multiplied by the inverse of the Jacobian of the output parameter transformation g��

evaluated at M��
� Thus� it is arbitrary reparameterizations of the outputs� �� that result in

arbitrary post�model distributions�

�� The post�model distribution is not a�ected by reparametrizations of the inputs� ��

Theorem � does not require that the marginal pre�model distributions of � and � be independent�

although most practical applications of Bayesian synthesis usually assume such independence�

Since the Bayesian synthesis approach relies on a conditional distribution that is ill�de�ned� it is

not satisfactory in its original form� However� if it could be reformulated as a standard Bayesian

procedure� then the Borel paradox would vanish� This is the motivation behind Bayesian melding�

� Bayesian Melding� Standard Bayesian Inference via Logarith�

mic Pooling

��� Priors and Likelihoods

In considering the decomposition ��
 of the pre�model distribution� it becomes apparent that the

Borel paradox does not arise from the likelihood components� Likelihoods are invariant to repa�

rameterization� as pointed out� for example� by Schweder and Hjort �����
� The problem therefore

lies with the prior distributions q���
 and q���
�

Since � is a random variable with density q���
� � � M��
 is also a random variable since it

is a transformation of �� In other words q���
 and M together induce a distribution on �� which

we denote by q����
� If M
�� exists� then q����
 � q��M

����

jJ��
j where jJ��
j is the associated

Jacobian� For a complex M � even when it is invertible� a functional form of jJ��
j may be very

di�cult to calculate� When M is non�invertible and dim��
 is less than dim��
� it will be virtually

impossible to obtain q����
 analytically�

The Bayesian synthesis method does not account for the existence of q����
� Counting this and

the existing q���
� there are thus two prior distributions on the same quantity� �� Since these two

priors are typically based on di�erent sources of information� often not including knowledge of M �

they may be di�erent� or incoherent� If they could be replaced by a single prior� say !q�����
� and

then inverted to the input space to yield !q�����
� we could then de�ne

�



	�����
 � !q�����
L���
L��M��

� �


which would be a standard Bayesian posterior� and standard Bayesian inference could then follow�

Thus the Borel paradox would no longer arise� The concept of a joint pre�model distribution� as in

��
� is no longer considered� we require only marginal distributions on � and �� As a result� there

would no longer be a need to de�ne the problematic conditional post�model distribution �	
� and

the problem would fall within the framework of standard Bayesian inference�

As with the Bayesian synthesis method� Monte Carlo methods would be required to obtain

a random sample from 	�����
� and inference would be based on the distribution of this sample�

Inference about � would follow by examining the distribution of � � M��
 where � is drawn from

the posterior above�

��� Combining Probability Distributions

The Borel paradox gives rise to the ill�de�ned post�model distribution of the Bayesian synthesis

method� and the problem can in part be attributed to the implicit presence of more than one

prior distribution on the same quantity� This occurs quite naturally in the simulation modelling

framework under consideration� One might be tempted to discard one prior or the other if a basis

for choosing the prior to be discarded could be found� In the applications we consider� this is often

equivalent to discarding one group of sources of information� A further argument against this is

that one often needs a prior on an input in order to select values of the inputs for runs of the

simulation model M on a computer�

A second option is to combine the two prior distributions into a single one� With just one prior�

standard Bayesian analysis becomes possible� and inference is based on the posterior distribution

in the usual way�

Coherizing two prior distributions on the same quantity is related to another problem� that of

reaching consensus in the presence of multiple expert opinions� This topic has received considerable

attention in the statistical literature� French ���	
 and Genest and Zidek ����
 reviewed work

in the area� There was considerable research activity on this problem up to the mid����s� but

since then interest in it seems to have dwindled� Two pooling methodologies that have received

extensive study are�


 Linear pooling � T �q�� ���qk
 �
Pk

i�� �iqi� and


 Logarithmic pooling � T �q�� ���qk
 �
Qk

i�� q
�i
i �

where q�� � � � � qk are the individual priors� ��� � � � � �k � ��
P

�i � �� and the pooling operator T

represents the single combined probability distribution�

��



In a Bayesian framework� one needs to consider the order in which pooling and updating of a

prior �given a likelihood from data
 are performed� There are two possibilities�

�i
 Each prior distribution is updated using Bayes�s Theorem and then the combined prior dis�

tribution is formed�

�ii
 The combined prior distribution is �rst formed� and then this is updated using Bayes�s The�

orem�

It seems reasonable to insist that both procedures result in the same combined posterior distri�

bution� Madansky ����
 called this property external Bayesianity� Genest ����
 and Genest et

al� ����
 showed� under mild conditions� that the logarithmic pooling operator is the only pool�

ing operator that is externally Bayesian� This result provides an argument for using logarithmic

pooling within a Bayesian analysis framework� The logarithmically pooled prior is also invariant

to rescaling of individual priors �Genest and Zidek� ���
� and is usually less dispersed than other

options� In addition� it possesses the property that if one of the priors assigns zero probability to

a particular parameter value� the combined prior must also assign probability zero to that value�

This is the so�called zero preservation property �ZPP
� In our application� where the priors represent

di�erent sources of evidence rather than the opinions of di�erent experts� the ZPP seems desirable

because if a source of evidence rules out a value of the inputs� it seems that a combined distribution

should rule it out as well�

For the particular problem at hand �i�e� combining two Bayesian prior distributions for quanti�

ties linked by a deterministic function
� logarithmic pooling appears to be the most suitable option�

In terms of the output �� the logarithmically pooled prior distribution has the form

!q�����
 � q����
�q���
���� ��


where q����
 is the prior on � induced by q���
 and M � q���
 is the existing prior on �� and � is

the pooling weight� If q����
 and q���
 both exist� then !q�����
 must also exist as a consequence of

the following result�

Theorem � � If � is continuous and
R
q����
d� �

R
q���
d� � �� then there exists a constant k� such

that

k�

Z
q����
�q���
���d� � � �� � ��� � �

If � is discrete�valued and
P

j q
�
���j
 �

P
j q���j
 � �� then there exists a constant k� such that

k�
X
j

q����j

�q���j


��� � � �� � ��� � �

�

��



A major question of interest is how to choose the pooling weight �� French ���	
 argued that

the choice is essentially arbitrary� Here� in the case of two priors� �� � �� � � � �
�
assigns equal

weight to each individual prior� We refer to ��
 with � � �
�
as geometric pooling because ��
 then

amounts to taking the geometric mean of the two prior densities�

In the bowhead whale application� we essentially have one expert �the IWC Scienti�c Commit�

tee
 placing prior distributions on two di�erent quantities� rather than the more common situation

in which two experts provide opinions on the same quantity� This provides an informal justi�cation

for the choice � � �
�
in the bowhead case� Since the two sources of information are selected by

the same expert� they can be viewed as being equally reliable� and should hence be assigned equal

weight� Reliability should not be confused with precision of the opinions� precision is accounted for

in the variances of the respective distributions� The choice of � will be discussed further in Section

�

��� Logarithmic Pooling for Noninvertible Models

So far� we have considered inference about the model outputs� �� If the model is one�to�one� infer�

ence about the model inputs� �� can be done in exactly the same way� de�ning the two implied prior

distributions of � and pooling them geometrically� to obtain the combined prior distribution� !q�����
�

Alternatively� inference about the model inputs� �� can be carried out by inverting the combined

prior distribution of model outputs in equation ��
� These two methods give the same pooled prior�

and hence the same posterior in �
� When the model is not one�to�one� the geometrically pooled

prior distribution of the model outputs� �� is still unambiguously de�ned� but that of the model

inputs� �� is not�

Here we propose a solution that seems intuitively reasonable when the model is not invertible�

We start from an example of a simple noninvertible model with just one input and one output�

each of which is discrete� We use the insights gained from that to propose a general solution for the

situation where both inputs and outputs are discrete� We then use a limiting argument to deduce

a pooled prior density of inputs in the case where inputs and outputs may be continuous� We then

show how the resulting overall method can be implemented via the SIR algorithm� Finally� we

illustrate the resulting methodology with a very simple continuous example and a more complex

simulation model example�

����� A Simple Discrete Noninvertible Example

Consider the following simple deterministic model� It has one input and one output� each of which

is discrete� and it is noninvertible� The input� �� has three possible values ��� �� �
� while the

output� �� has two possible values ��� �
� The model� M � is� � � �� � � �� and � � �� It is

noninvertible because � and � both map onto �� and so M����
 is not uniquely de�ned� as it could

��



be either � or �� The prior densities are as follows�

� q���
 � q���


� �� � ��
� �� � ��
� ��

The pooled prior density of � is derived from ��
� and� after renormalization� is as follows�

� q���
 q����
 !q�����


� �� �� ��	�
� �� �� ���

Now� having obtained the pooled prior density on outputs� !q�����
� how should we invert it

to obtain the pooled prior density on inputs� !q�����
" First� it seems clear that we should have

!q�����
 � !q�����
 � ��	�� This is because there is a one�to�one relationship between � � � and � � ��

in the sense that M��
 � � and that � is the only value of � for which M��
 � ��

By similar reasoning� it seems clear that !q�����
 � !q�����
 � !q�����
 � ���� The question is� how

should the !q�����
 � ��� be split between � � � and � � �" Note that any choice will give a

solution that is technically an inversion of !q�����
� so we have to decide on other grounds which is

the most reasonable of the possible splits�

We propose that the split be proportional to q���
� The reasoning is that prior information

about � tells us nothing about the relative probability of � � � versus � � �� since they both map

onto the same value of �� and so the ratio of the prior probabilities of � � � and � � � should be

determined only by the prior distribution of the input� This leads to�

!q�����
 � !q�����


�
q���


q���
 � q���


�

� ���

�
��

�� � ��

�
� �����

Similarly� !q�����
 � ����������� ��

 � �����

����� Discrete Case� General Solution

The simple example in Section ����� provides the intuition behind our proposed general solution

for the case where inputs and outputs are all discrete� Suppose that the possible values of � are

A�� A�� � � �� and that those of � are B�� B�� � � �� Suppose further that m � N � N is a mapping

induced by M such that M�Ai
 � Bm	i
 �i � �� �� � � �
� and that Cj � M���Bj
 � fAi � M�Ai
 �

Bjg� Then we derive the pooled prior density of the outputs� !q�����
� as before� using equation

��
� Here we use q to denote densities with respect to a dominating discrete counting measure �i�e�

probabilities
�

��



We invert !q�����
 using the two rules suggested by the simple example in Section ������ First�

we require that the pooled prior probability of Cj be the same as that of the corresponding Bj � i�e�

that

!Q����Cj
 � !q����Bj
� ���


where !Q����Cj
 �
P
f!q����Ai
 � Ai � Cjg is the pooled prior probability of the set Cj� or� equiva�

lently� the pooled prior measure of Cj � We will use capital Q to denote a probability measure� The

second rule is that if Cj has more than one member� its probability be split between its members

in proportion to their prior densities� q��Ai
�

This yields the pooled prior density on outputs

!q����Ai
 � !q����Bm	i



	
q��Ai


Q��Cm	i





� ���


We also have that

Q��Cj
 � q���Bj
� ���


Combining ���
 with ���
 gives the alternative form

!q����Ai
 � !q����Bm	i



	
q��Ai


q���Bm	i





� ���


It is easily veri�ed that ���
 yields the same solution as before for the simple discrete model in

Section ������ In practice� equation ���
 is more convenient than equation ���
 because it does

not involve Cm	i
� For a given Ai it may be di�cult to determine Cm	i
 whenever the model M is

complex� However� it is easy to determine Bm	i
 by running the model using Ai as the input� In

addition� we have the following result�

Theorem � � The pooled prior given by ���
 is a density with respect to the dominating counting

measure� i�e� � � !q����Ai
 � � for all i� and
P

i !q
����Ai
 � ��

�

����� The Continuous Case

We now extend the general solution for the discrete case� equation ���
� to the case where the

inputs and outputs are continuous� We �rst use an intuitive limiting argument similar to that used

in de�ning probability density functions as derivatives of cumulative distribution functions� We

then show that the heuristic derivation results in well�de�ned densities under certain conditions�

Suppose that A is a small hypercube contained in � with side of length h� Let B � M�A
 �

fM��
 � � � Ag and C � M���B
 � f� � M��
 � Bg� A� B and C are shown in Figure �� We

denote measures corresponding to prior densities by writing Q in place of q�

��



�

�

�

�
C �M�
�B�

A

�

�

�

�

B �M�A�
�

�

M

M
�


Figure �� The sets A� B and C in the heuristic derivation of the pooled prior density of the inputs�

For !Q�����
 to be an inversion of !Q�����
� we require that

!Q����C
 � !Q����B
� ���


Also� by the de�nition of C and Q�
���
� we have that

Q��C
 � Q�
��B
� ��	


The arguments we used in discussing the simple discrete example suggest that the proportion of

!Q����C
 attributed to A should be equal to the prior probability of A divided by that of C� This

leads to

!Q����A
 � !Q����C


�
Q��A


Q��C


�

� !Q����B


�
Q��A


Q�
��B


�
� ���


by equations ���
 and ��	
� Then� we propose that the probability density function corresponding

to ���
� if it exists� be given by

!q�����
 � !q����M��



�
q���


q���M��



�
� ���


This corresponds to letting the length h of the side of the hypercube A tend to zero�

We now identify two di�erent situations in which ���
 yields a well�de�ned probability density

function that is also an inversion of !q�����
� We �rst consider the case where the space of inputs

can be divided up into disjoint sets such that within each the model� M � is invertible� A simple

example would be � � M��
 � ��� where � � � and � � ��f�g� There M is non�invertible� but

if we split up the input space� �� into disjoint sets A� and A� where A� � ��  f�g and A� � ���

then M � Ai � � will be invertible for each i � �� �� The general result is as follows�

�	



Theorem � � Suppose that � � ���� � � � � �n
 and that � � ���� � � � � �n
� i�e� the model M has the

same number of inputs as outputs� Suppose that � and � are assigned proper prior densities q���


and q���
� Suppose also that A�� A�� � � � � Ak form a partition of � such that

�i
 P �� � A�
 � �� and A� may be empty� and

�ii
 the model map � � M��
 is one�to�one from Ai onto a set B for each i � �� � � � � k� so that for

each i� the inverse map can be found�

Then� for � � � � �� the pooled prior on the model inputs � given by ���
 is a proper density

function and an inverse of !q�����
�

�

We now consider the case where the model is noninvertible because the output � is of lower dimen�

sion than the input ��

Theorem � � Suppose that � � ���� � � � � �n
 and that � � ���� � � � � �p
 where p � n� Suppose also

that there exists a transform H � � � � � where � � # � �n�p� such that the n�dimensional

transform 	
�
�



�

	
M��

H��





is one�to�one� Suppose that � and � have proper prior densities q���
 and q���
� Then for � � � � ��

the pooled prior on the model inputs � given by ���
 is a proper density function and an inverse of

!q�����
�

�

We conjecture that ���
 holds more generally than for the cases above� where the restrictions

ensure that an analytic form of the induced prior exists� In particular� we suspect that ���
 is valid

as long as M does not collapse onto a set of measure zero in ��space� i�e� as long as q����
 is not a

point mass prior� We leave this as a matter of further research�

��� Implementing Logarithmic Pooling via the SIR Algorithm

To facilitate implementation� it is convenient to recast equation ���
 as follows� using ��
�

!q�����
 � q���


�
q��M��



q���M��



����

� ��


and the posterior distribution of �� 	�����
� is then given by �
� The approach is implemented using

the following modi�ed SIR algorithm�

��



�� Draw a sample of size k values of � from its prior distribution q���
� We denote the sample by

���� � � � � �k
� �If q���
 has a standard form� it will often be possible to do this using packaged

random number generators for standard distributions
�

�� For each �i sampled in step �� run the model to obtain the corresponding �i � M��i
�

�� Use nonparametric density estimation to obtain an estimate of q����
� the resulting induced

distribution of �� We use kernel density estimation with a Gaussian kernel and �whenever

relevant
 the maximal smoothing span of Terrell �����
� this has the advantage of being easily

applied in higher dimensions�

�� Form the importance sampling weights

wi �

�
q��M��i



q���M��i



����

L���i
L��M��i

� ���


	� Sample l values from the discrete distribution with values �i and probabilities proportional

to wi�

The result is an approximate sample from the posterior distribution 	�����
� and it can be used

to make inference about the various quantities of interest�

��� Example �� A Simple Continuous Example

We now revisit Example � from Section ���� the simple PDM given by Pt � RP�� Let P� �

U ��� 	 � R � U ��� � � and Pt � U ��� � be the mutually independent prior distributions of the pa�

rameters� �For simplicity in this example we will assume that there are no likelihoods available�


It follows that

q��p�� r
 �
�

��
� for � � p� � 	� � � r � �

q��pt
 �
�

�
� for � � pt � ��

Recall that the model is non�invertible since the output has lower dimension than the inputs�

Indeed� each unique value of Pt can be associated with an in�nite number of ordered pairs �P�� R
�

This is a feature found in many of the more complicated PDMs used in real assessment situations�

The simplicity of this example� however� allows an analytic solution to be found�

The change�of�variable technique yields the distribution of Pt induced by the PDM� and is given

by

q���pt
 �

� log �
�� for � � pt � ��
�
�� log

�
��
pt

�
for �� � pt � ���

��



Geometric pooling of this induced density with q��pt
 yields

!q����pt
 �
�

�
� for � � pt � ��

This pooled distribution on the output is uniform on the interval ���� � and thus �in this particular

case
 it happens to be the same as the original q��pt
� Applying ���
� the pooled prior distribution

of the inputs �P��R
 is given by

!q����p�� r
 �
!q����p�r
q��p�� r


q���p�r


�

�
�
�

� �
�
��

�
�
log �
��

�
�

�

� log �
for � � p�r � �� � � p� � 	� � � r � ��

and � elsewhere� In this simple case� the pooled prior remains uniform on a subset of the original

rectangular region� Note that the density integrates to unity on its support� The marginal prior

densities of P� and R are easily obtained from the above� For example� integrating out over R

yields the marginal pooled prior of P� to be

!q�p�
 �

��
��

�� ��p� for ��	 � p� � ���	
��p� for ���	 � p� � �
��p� � � for � � p� � ��	�

Figure � shows a sample from the joint pooled prior of P� and R obtained using the SIR

approach� The uniformity on the correct subset of the original rectangle is evident� Figure � shows

the corresponding marginal pooled prior distributions of P�� R and Pt� The exact marginals and

the distributions simulated using SIR are shown� The SIR method provides a good approximation

to the true distributions� The method also works well for the more complex examples we have

examined�

��	 Example �� A Simple Population Dynamics Model

We now apply the pooling procedure to Example � from Section ���� This is the simple population

dynamics model underlying the Revised Management Procedure of the IWC� Here we will use

prior distributions that have been used in previous illustrations using this model� These are not

necessarily priors agreed upon by the IWC Scienti�c Committee�

The model inputs are P� and MSYR� For P� we have a prior only� and we use the same prior

as in Givens ����	
� namely a shifted gamma distribution ���� � Gamma ����	� �������
�

For MSYR� we also have only a prior� MSYR is the only productivity parameter in the model�

and our prior information about it re$ects all our prior information about natural fertility and

mortality� We based this on a distribution of MSYR for the BALEEN II model reported by Punt

�
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Figure �� A sample from the pooled joint prior distribution of P� and R in the simple example�
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Figure �� Exact and simulated pooled prior distributions of �a
 P�� �b
 R and �c
 Pt for the
simple example� The simulated distributions are generated using SIR� and approximate the exact
distributions well�

and Butterworth �����
� which had a mean of ����� and �	� con�dence interval ������ ����	 �

We approximated this using a Gamma ���� �����
 distribution� which has the same mean and the

same ���	 and ���	 quantiles�

For the output P���� we have both a prior and a likelihood� We approximated both of these by

normal distributions �a good approximation
� and used the results of Raftery and Zeh ����
 based

on the ���� census� The prior distribution is N����� �����
� and the likelihood is N����� ����
�

These choices correspond to a posterior distribution that is N����� 	���
� matching the mean

and variance of the Bayes empirical Bayes posterior distribution �which is nearly� but not exactly�

normal
�

��



Finally� we have a likelihood for the quantity of interest ROI� the ���%���� rate of increase

based on the censuses from ��� to ����� This is de�ned by P���� � �� � ROI
��P���� We

use the likelihood derived by Raftery and Zeh ����
� which is proportional to the density of

exp������ � �����t�
� �� where t� is a random variable that has a t�distribution with  degrees of

freedom� This is a likelihood only� there is no prior component�

The catch series� fCtg� for ��%����� used is the one accepted by the Scienti�c Committee for

bowhead whales�

1993 Population
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q2^0.5

(q1star^0.5)*(q2^0.5)

Figure �� The components of the geometrically pooled prior distribution of the output � � P����

in the simple PDM� The �nal pooled prior density� !q����P����
 is the solid line�

Figure � shows the components of geometric pooling for the simple bowhead whale model we are

using� It shows the di�erent prior distributions for the output� P����� and how these are modi�ed

and put together to obtain the �nal geometrically pooled prior distribution� The distribution on

P���� induced by the model from the priors on the inputs� q�� � is very spread out� as one might

expect� The existing prior� q�� is far more precise� The resulting pooled prior is slightly more

spread out than q��

Table � displays posterior quantiles �medians and bounds of the �	� Bayesian interval
 and

corresponding quantiles of the pre�model distributions� Here� as in the original Bayesian synthesis

method� the term pre�model applies to the information �priors or likelihoods
 elicited independently

of the PDM� The posterior variance of P� is considerably lower than the prior variance� similarly

��



Table �� Posterior and pre�model quantiles of inputs and outputs of the simple PDM�

Parameter Quantile Results
Posterior Pre�model

P� ���	 ���	� ���
�	 ����� �	���
���	 ���� �����

MSYR ���	 ����� �����
�	 ����� �����
���	 ����� �����

P���� ���	 ���� ���	
�	 ��� ���
���	 ���� ���	

ROI ���	 ����	 �����
�	 ����� �����
���	 ���� �����

the posterior distribution of MSYR is more precise than the prior� The posterior distribution of

P���� is almost identical to the pre�model Bayes empirical Bayes posterior� This is unsurprising

since the likelihood is dominant� this was the best piece of pre�model information� and the priors

on other parameters a�ect the inference very little� Finally� the melding of information leads to

a lower estimate of ROI than is suggested by the pre�model likelihood� The joint posterior also

reveals relationships among parameters that were not previously apparent� indeed� there is a fairly

strong negative correlation between P� and MSYR in the posterior sample�

� Diagnostic Checking and Model Validation

��� Basic Ideas

How can we assess whether the model considered is adequate for our purposes" An adequate model

will allow the selection of plausible inputs that produce plausible outputs� where plausibility is

measured by the priors and�or likelihoods for the inputs and outputs� Another way of saying this

is that for any input� output or quantity of interest� the various sources of information relating to

that quantity should imply substantially overlapping sets of values�

There may thus exist up to four sources of information� as follows�

��



Source of Information Symbol Input Output
Information Information

Prior distribution of inputs q���
 q���
 q����

Prior distribution of outputs q���
 q����
 q���

Likelihood of inputs L���
 L���
 L�

���

Likelihood of outputs L���
 L�

���
 L���


Our proposed approach to model validation consists essentially of checking� for each input�

output� or quantity of interest� whether there are enough values favored by each of the four sources

of information� For each source� we will compute or sample from a distribution of each input� output

and quantity of interest� and check whether these overlap substantially by inspecting side�by�side

boxplots�

We now consider the de�nition and computation of the quantities in the table above� The prior

distribution of the inputs� q���
� induces a distribution of the outputs� q����
� these have already

been de�ned� The distribution� q����
� of inputs implied by the prior distribution of outputs� q���
�

is a little trickier because the model may be non�invertible� We de�ne q����
 to be the pooled prior�

!q�����
� de�ned by ��
� when � � �� This can be thought of as the �pooled
 prior on the inputs

when no weight is given to the prior distribution of the inputs� When the model is one�to�one� q����


is induced entirely from the prior distribution of the outputs� When it is not one�to�one� the prior

distribution of the inputs is used to divide the mass induced by the prior on outputs among values

of the input� Since � � �� the prior on the inputs contributes no absolute mass to the pooled prior�

The likelihoods� L� and L�� do not necessarily de�ne distributions on inputs and outputs� but

we propose the following as an informal way of determining the regions of input space and output

space favored by the likelihoods�

�� De�ne a distribution of the inputs� g��
� and draw a sample� f��� � � � � �kg� of values of the

inputs from it� If q���
 is broad enough� then g��
 � q���
 may be a good choice� If not�

g��
 � q���
� for some � �  � � may be adequate� or some very broad distribution may be

preferred�

�� De�ne weights wi � L���i
�g��i
 �if we are considering the likelihood of the inputs
� or

wi � L��M��i

�g��i
� if we are considering the likelihood of the outputs�

�� Resample from f��� � � � � �kg with probabilities proportional to the weights wi�

�� For each resampled value of �� compute the corresponding value of � � M��
�

This algorithm yields four samples� corresponding to the last four distributions in the table

above� namely distributions of the inputs and of the outputs corresponding to the likelihood of the

inputs and the likelihood of the outputs respectively� Will these be proper distributions" L���
 will

��



de�ne a proper distribution if
R
L���
d� � �� We denote by L�

���
 the distribution on � induced

by the model and by the distribution L���
� this will be proper if
R
L�
���
d� ��� The distribution

of inputs induced by L� will be denoted by L�
���
 and will be proper if

R
L��M��

d� ���

Finally� if the component likelihoods of L� are independent� then L���
 can be written down and

sampled from directly� it will be proper if
R
L���
d� ��� If not� however� computing L���
 for a

given output may not be so straightforward� and one may have to resort to the less direct importance

sampling method described above� The resulting distribution will be proper if
R
L���
d� �� and

if
R
g���
d� ��� where g���
 is the distribution on � induced by the model and g��
� Even if the

distributions induced by the likelihoods are not proper� it seems that this method could be used

informally in an exploratory sense to detect con$icts between input and output likelihoods� priors

and the model� It could be viewed as indicating the values favored by the likelihoods within the

region to which g��
 gives most of its probability�

At this point� we are not making speci�c formal recommendations for interpreting the boxplots�

Rather� in the spirit of informal diagnostic checking� we suggest that users inspect the boxplots

for evidence of con$ict� and hence failure of the model to reconcile or accommodate the various

sources of evidence� In the next subsections� we show one example where these plots are at least

moderately reassuring� and another example where they clearly indicate model failure� In both of

these cases� we have based our discussion purely on visual inspection of the side by side boxplots�

but more formal ways of calibrating the plots might be useful for drawing more formal conclusions

about model adequacy� We leave this topic for future research� however�

A con$ict in these plots indicates that the model fails to reconcile the di�erent sources of infor�

mation� this could be due to model inadequacy or to poor information� The possible remedies are

to improve the model� and�or to reconsider and perhaps replace or discard some of the information

being used�

Here we are proposing boxplots as the way to inspect the distributions corresponding to the

di�erent sources of information� We have experimented with various ways of looking at these

distributions� and the boxplots seemed the most informative for our purposes� However� there are

clearly many other ways of doing this� and some of these might be thought better than boxplots

for other situations� or by other data analysts� In particular� ways to look at the multivariate

distributions implied by the di�erent sources of information could be very useful� but we have not

pursued this topic here�

��� Model Validation for the Simple Bowhead Whale Population Dynamics
Model

We now apply these ideas to Example �� the simple population dynamics model analyzed in Section

���� Figure 	 shows boxplots of samples from the distributions implied by the various sources of

��



information for the inputs �P� and MSYR
� the output �P����
� and a key quantity of interest�

the ���%���� rate of increase �ROI
� There is no likelihood for the inputs� and so there are only

three sources of information rather than four� the prior on inputs� the prior on the output� and the

likelihood on ROI�
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Figure 	� Boxplots of the distributions of inputs �P� and MSYR
� output �P����
 and rate of
increase �ROI
 implied by the prior on inputs �q� or q

�
�
� the prior on the output �q� or q��
 and the

likelihood on the output �L�
 for the simple population dynamics model for bowhead whales�

The box in the center of the boxplot represents the interquartile range� with the line in the

middle showing the median� The �whiskers� are drawn out either to the minimum or maximum

or to a length of ��	 times the interquartile range� whichever is the shorter� points further out are

plotted individually�

The three distributions of the inputs� P� and MSYR� overlap nicely� For the output� P����� the

distribution implied by the prior on the inputs� q���P����
� covers the prior on P���� itself� q��P����
�

which in turn covers the distribution implied by the likelihood� which in this case is clearly proper�

Thus the three distributions overlap� the overlap consists of the region favored by the likelihood�

which is much more precise than either prior in this case� Note that the region favored by the

likelihood is completely outside the interquartile range of the distribution implied by the prior on

inputs� q��� but this is not a concern as q�� is spread out enough to encompass the likelihood�favored

region comfortably�

��



In the case of ROI� most of the region favored by the likelihood is contained within the prior

upper tail� The overlap is su�cient for Bayesian melding to yield reasonable answers� and could

not be characterised as a stark con$ict� but it is still worth further investigation and consideration�

Such an exercise could embrace all the components� the model� the priors and the likelihood� For

example� one could engage in a second stage of elicitation in which this result was communicated to

the Scienti�c Committee and they were asked whether they wished to revise their prior distributions

on the inputs �which induce the prior q��
 so as to give more weight to values indicating a more

productive stock�

Overall� while there are some concerns that the model or prior distributions may tend to favor

a less productive population too much� there seems to be enough overlap for one to be able to use

the model in this case� In reality� a more complex model was used for the actual assessment� in

which the overlap between prior and likelihood for ROI was more satisfactory� this is described in

Section ��

��� Model Validation for a Simple Gray Whale Population Dynamics Model

To show how our proposed methods can diagnose clear model failure� we consider Example �� This

is the same simple population dynamics model� but for a di�erent species� the eastern Paci�c gray

whale� Eschrichtius robustus� We use prior distributions proposed by Wade and DeMaster �����


on the basis of the available biological information �Reilly� ���� ����
� this may be the whale

species for which abundance levels and trends are most precisely known� We use the catch history

that has been agreed by the IWC� and is listed by Butterworth et al� ������ Table �
� In many

ways� the gray whale situation is similar to that of bowheads� the species is subject to aboriginal

subsistence whaling� commercial whaling started in ��� and rapidly depleted the stock� and recent

scienti�c surveys started in ���� But there are also crucial di�erences�

The inputs to our model are P�� which denotes the stock size in ���� and MSYR� while the

output is P����� The priors are Uniform���������� for MSYR and Uniform������������ for P��

Independent Normal likelihoods for the abundance in �� of the years between ��� and �� are

also available�

The model validation boxplots are shown in Figure �� For the input MSYR and the output

P���� the overlap is satisfactory� For the input P�� however� the region favored by the likelihood is

entirely concentrated at the extreme lower value of a sample from the prior for P�� this is rather

unsatisfactory� The most striking feature of the �gure is that the prior distribution of ROI �induced

by the prior on inputs
 and the likelihood on ROI do not overlap at all� and indeed are in clear

con$ict� It is obvious that the model is not adequate to reconcile the various sources of information�

This lack of �t has already been noticed and discussed �Reilly� ���� Butterworth et al�� ����
�

but it is immediately apparent from a routine use of our model validation method� One view of

�	
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Figure �� Boxplots of the distributions of inputs �P� and MSYR
� output �P����
 and rate of
increase �ROI
 implied by the prior on inputs �q� or q

�
�
� the prior on the output �q� or q

�
�
 and the

likelihood on the output �L�
 for the simple population dynamics model for gray whales�

the con$ict is that it may be caused not by failure of the model but by poor and perhaps biased

data on historic catches �Wade and DeMaster� ����
� These authors kept the model but discarded

the historic catch data� and when this is done the model seems to �t the more recent information

quite adequately�

� Hypothesis Testing and Model Selection

We now consider the problems of hypothesis testing and model selection� In hypothesis testing�

we assume that there is both a null hypothesis and an alternative hypothesis� so that we are

in a Neyman�Pearson type of testing situation rather than the kind of pure signi�cance testing

situation envisaged by R�A� Fisher� The latter problem� which is related to that of judging the

overall adequacy of the model� may be addressed in part by more informal diagnostic checking

methods of the kind discussed in the previous section�

We adopt a Bayesian approach to the hypothesis testing situation� based on Bayes factors

�Je�reys� ����� Kass and Raftery� ���	
� If we are testing a statistical model M� against an

alternative model M�� the Bayes factor for M� against M� is de�ned as the posterior odds for M�

��



against M� when the prior odds are equal to one� This is

B�� � p�DjM�
�p�DjM�
� ���


where p�DjMk
 is the integrated likelihood of model Mk de�ned by

p�DjMk
 �

Z
p�Dj�k�Mk
p��kjMk
d�k� ���


D denotes the data� and �k is the vector of parameters for model Mk �k � �� �
� Equation ���
 says

that the integrated likelihood is the integral over the parameter space of the ordinary likelihood�

p�Dj�k�Mk
� times the prior density� p��kjMk
� or� equivalently� that it is a weighted average of

the likelihood values� weighted by their prior probabilities� The Bayes factor� B��� is interpreted

as a measure of evidence for M� against M�� values below � indicate evidence for M�� while values

greater than �� �� �� and ��� correspond respectively to weak� positive� strong and very strong

evidence for the alternative hypothesis M�� This testing framework does not require M� and M�

to be nested models� unlike standard signi�cance testing�

How can we extend this standard framework to the deterministic models we are concerned with

here" We do this by de�ning the parameters of the model to be the inputs� the prior distribution

to be the pooled prior on the inputs� and the likelihood to be the product of the likelihoods on

inputs and outputs� if both are present� Thus equation ���
 is replaced by

p�DjMk
 �

Z
!q�����
L���
L��M��

d�� ���


This can be estimated by simple Monte Carlo integration �Hammersley and Handscomb ����
�

see McCulloch and Rossi �����
 and Raftery and Ban�eld �����
 for its application to Bayes factors�

The algorithm is�

�� Generate a sample ��� � � � � �� from the pooled prior on inputs !q�����
�

�� For each �i� compute L��i
 � L���i
L��M��i

�

�� Estimate p�DjMk
 as the average of the likelihoods of the sampled input values� i�e� ���
P�

i��L��i
�

This can often be computed as an almost cost free byproduct of the algorithm for implementing the

Bayesian melding analysis� which can easily produce a sample from !q�����
 and usually computes

the likelihoods of the sampled values� It may be somewhat ine�cient� but it is a simple unweighted

average and so its standard error is readily available� this can be used to monitor its accuracy and

to decide how many samples � are needed �e�g� Lewis and Raftery� ����
�

To illustrate the use of the Bayes factor� we applied it to test for the presence of density

dependence in the bowhead whale case� Intuitively� density dependence implies that the rate of

increase of the population decreases as the population approaches its carrying capacity� taken here

��



to be equal to P�� We formulated the testing problem by designating the non�density�dependent

model of Example �� given by equation ��
 as the model M�� and the density dependent model ��


of Example � as M�� The inputs� outputs� priors and likelihoods for ��
 were taken to be the same

as for the model ��
 with density dependence� and the Bayesian melding approach was implemented

for ��
 in the same way as before�

The resulting Bayes factor was ���� slightly favoring the null non�density dependence model�

The evidence is very slight� however� This is not too surprising since the density�dependent analyses

suggest that the bowhead population was far below its carrying capacity throughout the ���%����

period to which the likelihoods refer� and so it would not have been within the range where density

dependence could have been detected� In the gray whale case �Example �
� the Bayes factor did

provide some evidence for density dependence �Wade and DeMaster� ����
� which is less surprising

since the gray whales are probably closer to their carrying capacity�

The same framework can be used for model selection� If one has several models �often cor�

responding to di�erent combinations of modelling assumptions
� their posterior probabilities will

be proportional to the product of their integrated likelihoods with their prior model probabilities�

p�Mk
 �the latter are often taken to be equal so as not to favour one model over another a priori
�

One natural choice would then be to select the model with the highest posterior probability�

More generally� one might wish to take account of model uncertainty when making inferences

about quantities of interest� This can be done formally in the Bayesian framework using Bayesian

model averaging� If & is a quantity of interest� such as a biological parameter �e�g� the calf

mortality rate
� a future observation �e�g� the estimated population in a future survey or census
�

or a consequence of a course of action �e�g� the number of whales in ��� years under a given

management scheme
� then the posterior or predictive distribution of & under Bayesian model

averaging is

p�&jD
 �
KX
k��

p�&jD�Mk
p�DjMk
p�Mk
�
KX
k��

p�DjMk
p�Mk
� ���


In equation ���
� p�&jD�Mk
 is the posterior or predictive distribution of & under model Mk�

de�ned by

p�&jD�Mk
 �
Z
p�&j�k� D�Mk
	

�����jMk
d�� ���


where 	�����jMk
 is the pooled posterior distribution de�ned by �
 for model Mk � In equation

���
� p�&j�k� D�Mk
 may be a point mass rather than a probability distribution because the models

are deterministic� but p�&jD�Mk
 and p�&jD
 will still be probability distributions giving valid

uncertainty statements about &�

One interesting possible application of ���
 arises in the context of exploring future scenarios by

simulation� This is done by the IWC for assessing the likely consequences of di�erent management

regimes for whales� While they explore many di�erent scenarios� they tend to condition on a single

�



selected population dynamics model� Realistic model uncertainty could be introduced into this

process by using ���
 to simulate� i�e� by sampling from di�erent population dynamics models with

frequencies proportional to their posterior model probabilities� Draper ����	
 has examined this

possibility in a di�erent modelling context�

	 Relabelling and Joint Pooling

	�� Relabelling

Thus far� we have considered simulation models of the form M � � � � where � is a vector of

input parameters and � is a vector of output parameters� This is a general framework in which the

methods of the previous sections are applicable�

Occasionally� there may be reasons for which scientists wish to relabel some of the inputs as

outputs and vice versa� In other words� there may be a desire to reformulate the model so that

a quantity that was originally an input is now an output� and a corresponding quantity that was

originally an output is now an input� We refer to this as relabelling of the model� Relabelling

should not be confused with the reparameterizations of inputs and outputs that were considered in

the context of the Borel paradox�

In the event of model relabelling� it is useful to re�ne the notation slightly� Let M� and M� be

two di�erent labellings of a model M � Denote by

� � those parameters which are strictly inputs of M� and outputs of M��

� � those parameters which are strictly outputs of M� and inputs of M��

� � those parameters which are inputs to both M� and M��

and let q���
� q���
 and q���
 be the independent prior distributions on �� � and � respectively�

The two labellings of M can then be written as

� � M���� �


� � M���� �
� ��	


and both labellings are of the form considered earlier� For example� M� has input � � ��� �
 and

output � � � � We have assumed here that there are no quantities with priors which are outputs

under both labellings� and that the large transformation ��� �
� ��� �
 is one�to�one� This is the

case in the applications we consider�

	�� Forwards and Backwards

An instance of relabelling arises in the context of population dynamics models that produce tra�

jectories of abundance over time� Typically� the initial stock size P� is one of the inputs to the

��



model �as in the simple PDM of Section ���
� and the population is projected forwards in time to

the present�

Alternatively� the current abundance can be thought of as an input� and the model can be �run�

backwards in time to the initial year� In practice� this usually involves solving for the value of P�

that must �for the �xed values of the other parameters
 have given rise to the value of current

abundance under consideration�

These two labellings are referred to as the forwards and backwards variants of the PDM� All

other parameters are inputs to both variants� If we let M� correspond to the forwards variant� then

we have P� ��
� current abundance ��
 and all remaining inputs ��
 as the division of parameters

in ��	
� Forwards and backwards variants of the BALEEN II model for bowhead assessment have

been discussed at length in the Scienti�c Committee of the IWC �Butterworth and Punt� ���	�

Punt and Butterworth� ����� Givens and Thompson� ����� Bravington� ����� Raftery and Poole�

����
�

	�� Joint Pooling

Under relabelling� a little care needs to be taken in identifying the distributions that are to be

pooled� If only one labelling �say M�
 is under consideration� the induced prior on the model

output � � q����
� is pooled with the independently obtained prior q���
 in the manner described

earlier� However� when an alternative labelling M� is proposed� the induced joint prior of � and ��

say q���� �
� needs to be compared with the existing joint prior q��� �
 � q���
q���
� which is the

prior on inputs under M�� In other words� M� induces a joint prior on all the parameters that are

listed as inputs under M�� those that are explicit outputs of M� and those that are inputs under

both labellings� It is this joint prior that should be pooled with the existing input prior on those

same parameters�

Marginalization before pooling represents a loss of the information in the joint induced prior�

More importantly� if the joint induced prior is ignored �and pooling is thus performed on marginals

only
� the �nal posterior will depend on the labelling that is used� i�e� results under M� will di�er

from those under M�� This is intuitively undesirable since the prior information �as expressed

in all the marginal prior distributions
 is the same under both labellings� We refer to pooling

of the relevant joint prior distributions as joint pooling� Joint pooling yields a unique posterior

distribution under a relabelling of the form ��	
� To see this� we apply ��
 under M� and ��


under M� �since inputs and outputs are reversed
 and verify that the result is the same� Let J be

the Jacobian of the transformation ��� �
� ��� �
� Under labelling M�� ��
 yields

!q��� �
 � q���
q���


�
q���
q��M���� �



q��M���� �
� �


����

� q���

�q���
q��M���� �



���jJ j���
��M�		�



���


��



since q��M���� �
� �
 � q���
q���
jJ j��M�		�

� Under M�� we apply ��
 with pooling weight � to

obtain

!q��� �
 � q���� �
�q���

���q���


���

� q���

���q���
q��M���� �



�jJ j��
��M�		�



���


which� on substituting � � � � �� is identical to ���
� So as long as the weights are assigned

consistently� the pooled prior is the same regardless of whether M� or M� is used as the model�

	�� Accurate High
Dimensional Density Estimation

For joint pooling the dimensionality of the induced joint prior will be higher than when pooling

is restricted to marginal distributions� The SIR algorithm of Section ��� involves estimation of

this induced density� so it follows that an application of joint pooling may require estimation of

a high�dimensional induced distribution� For example� if the labelling M� is used in ��	
� joint

pooling requires estimation of q���� �
 instead of simply q���
�

Although kernel density estimation is easily extended to higher dimensions� the estimate can be�

come less accurate with increasing dimensionality� particularly if the PDM is complex� Fortunately�

a high�dimensional estimate can be avoided in the present context�

Consider the labelling M� in ��	
� The joint prior on the inputs ��� �
 is q��� �
 � q���
q���


and M� induces a density q���� �
 on ��� �
� This density will typically be complex and hence

di�cult to estimate accurately� However� we can express it in the form

q���� �
 � q��� j �
q���
� ��


where q��� j �
 is the conditional density of � given � and q���
 is the �known
 density of �� The

problem can therefore be reduced to estimation of q��� j �
� a lower�dimensional distribution than

q���� �
� If a representative sample from q��� j �
 could be obtained� it could be estimated using

the kernel method� For a �xed value of �� say ��� we propose the following algorithm�

�� Construct a representative reference sample of size n from q�� j ��
 � q���
� since � and �

are independent before M� is imposed� If � is one�dimensional� we suggest taking � quantiles

of q�� j ��
 corresponding to evenly�spaced probabilities to best capture the shape of the

distribution� Denote this sample by �i�
� � i � �� � � � � ��

�� Obtain �i � M���i�
� � ��
� This is a representative sample from q��� j ��
 and can be used to

form a kernel estimate of the density for any given value of � �

��




 Example � Bowhead Whale Assessment

��� The BALEEN II Model

The BALEEN II model used by the IWC for bowhead whales and several other species �our Example

	
 is a special case of the one�sex age�structured Leslie matrix population projection model �Leslie�

���	� de la Mare� ���
� It is given by

n��t�� �
�X

x��

bxt�nxt � cxt
� ���


nx���t�� � rx�nxt � cxt
� ���


where nxt is the number of females aged x next birthday at the start of year �t� ��
� bxt is the

average number of female calves born in year t to a female aged x that survive to age �� rx is the

natural survival rate of females aged x� and cxt is the number of females aged x killed by hunting

in year t�

We denote by Pt �
P�

x�� nxt the population in year t aged � and above� For convenience�

all those aged w and above are grouped into a single age class �the choice of w does not a�ect

the results so long as it is large enough
� The initial condition is P� � K� the carrying capacity�

corresponding to a pristine stock before commercial hunting started in ���

It is assumed that a juvenile survival rate� s�� applies up to age a� and that thereafter a �higher


adult survival rate� s� applies� so that rx � s� if x � �� � � � � a� and rx � s if x � a� �� where s� � s�

Fertility is assumed to be constant with respect to age beyond the age at sexual maturity �ASM
�

m� but to be density�dependent� so that it depends on the population at time t� This is speci�ed

as follows�

bxt �

�
� if x � �� � � � � m
ft if x � m � ��

���


In equation ���
�

ft � f� � �fmax � f�
��� �Pt�K
z � ���


where f� is the fertility rate when the population is at its carrying capacity� fmax is the maximum

fertility� attained when the stock is near extinction� and z is the density�dependence parameter�

We have expressed the model here in terms of the eight quantities s�� s� a� f�� fmax� m� z�

and K� However� the IWC has reformulated it in terms of management quantities that they �nd

more interpretable� These are based on the concept of maximum sustainable yield �MSY
� A stock

can inde�nitely sustain any level of catch less than the MSY� and the MSY level �MSYL
 is the

equilibrium population corresponding to inde�nite annual catches of size MSY� expressed as a

proportion of K� The MSY rate �MSYR
 is the natural increase �� births � deaths
 when the

population is at MSYL� expressed as a proportion of the population�

��



Punt ����
 has pointed out that of the eight quantities listed above� only seven need be

speci�ed� The Scienti�c Committee chose as inputs to the BALEEN II model the seven quantities

� � �MSYR�MSYL� s� a� fmax� m�K
� Once � has been speci�ed� the remaining quantities s�� f�

and z can be deduced as follows�

Equilibrium will be achieved even if the stock is subject to hunting� provided that the annual

catch is no more than MSY� At equilibrium� the natural growth rate of the population� �� de�ned

by Pt�� � �Pt� is given by

�m�� � s�m � sa�s
m��ft��� �s��
w�m�� � � ���


�Breiwick� Eberhardt and Braham� ���
� In the absence of hunting� � � �� and so by ���
�

�� s� sa�s
m�af���� sw�m��
 � �� ���


Also� at MSYL� � � �� � MSYR
� and so

�� � MSYR
m�� � s�� � MSYR
m � sa�s
m��f

	MSYL

t ��� �s��� � MSYR

w�m�� � �� ��	


where� by ���
�

f
	MSYL

t � f� � �fmax � f�
���MSYLz
� ���


Finally� at MSYL�

MSYL � MSYR

�
d Q��


d �

����
��MSYR

�
� �� ���


where Q��
 is the equilibrium population corresponding to a sustained catch equal to a proportion

� of the population� where � � MSYR� and d Q	�

d � � limh�� h

���Q��� h
�Q��
 is the derivative

from the left �Punt� ���
� This derivative was evaluated numerically using �nite di�erences�

Given �� equations ���
� ��	
� ���
 and ���
 form a system of four nonlinear equations in the

four unknowns s�� f�� z and f
	MSYL

t � and this can be solved numerically� Given the inputs �� we

can thus reformulate the model in terms of the eight quantities that originally speci�ed it� and so

run the model using equations ���
 and ���
 above�

The formulation described above corresponds to the forwards variant of the BALEEN II model�

The carrying capacity K is an input and equations ���
 and ���
 are used to project the population

forwards through time� The backwards variant works in exactly the same way except that current

abundance� P����� rather than K� is an input to the model� For generated values of current

abundance and the other input parameters� a numerical method �from� for example� Press et al��

���
 is used to solve for the value of K that results in the given current abundance� The ��

dimensional transform �MSYR�MSYL� s� a� fmax� m� P����
 � �MSYR�MSYL� s� a� fmax� m�K
 is

one�to�one in this case� so the solution for K is unique�

��



��� Pre
model information

We apply the joint pooling method to the assessment of the Bering�Chukchi�Beaufort Seas stock

of bowhead whales using prior distributions and likelihoods that were agreed upon by the IWC

Scienti�c Committee at its ��� annual meeting in Muscat� Oman� A comprehensive bowhead

assessment was one of the primary tasks undertaken by the Scienti�c Committee at that meeting�

Table � lists the independent marginal prior distributions for parameters of the BALEEN II

PDM� Many of the choices in Table � are based on previous work by the Scienti�c Committee �IWC

���	� p� ��
� The prior distribution of the adult survival rate was agreed to be appropriate when

no maximum age limit on bowheads is imposed� An alternative formulation places a maximum age

bound of ��� years while removing the upper truncation point �����	
 from the prior� The two

formulations give similar results�

Table �� Prior distributions for the BALEEN II model for bowheads�

Parameter Prior

MSYL U����� �� 
MSYR U������ ���� 
Transition age �a
 Discrete U��� � 
Age at sexual maturity �ASM
 Grouped N������
 truncated at ���	 and ���	
Adult survival �s
 N�����������
 truncated at ����	
Max� theoretical preg� rate �fmax
 ��fmax � U���	�� 
Carrying capacity �K
 log�K
 � U�log�����
� log������
 
Abundance in ���� �P����
 N����������


Bowhead data summarized in likelihood form are listed in Table �� The ���� abundance like�

lihood comes from Raftery and Zeh ����
 while the age data are from IWC ����	
� The product

of the ���� abundance prior from Table � and the likelihood from Table � provides a very close

approximation to the Bayes empirical Bayes posterior for this quantity obtained by Raftery and

Zeh ����
�

Survey estimates of abundance for the years ������ �except for ���� and ���
 are available

and are listed in Punt and Butterworth ����
� These are slight modi�cations of estimates in

Raftery and Zeh ����
� The logarithm of these estimates is assumed to follow a multivariate

normal distribution� The construction of the associated covariance matrix is described in Punt and

Butterworth ����
�

��� Implementation and Results

Since the joint pooling posterior does not depend on the variant of the PDM that is used� we could

perform the analysis using either variant� However� we chose the backwards variant because it is

��



Table �� Likelihoods for the BALEEN II model for bowheads�

Data Distribution

Proportion of calves ���	�����
 ������t�� ���	�
Proportion of matures ���	�����
 �����t�� �����
Abundance in ���� �P����
 N����� ����

Abundances �������
 log�Abundances
 � Multivariate Normal

more e�cient in terms of the SIR algorithm� The forwards variant is rather ine�cient in that most

of the generated points have almost zero probability of being selected in the resampling step� As a

result� a small number of points are resampled multiple times�

For the backwards variant� the density estimation step requires a representative sample from

the prior on P����� We found that �� quantiles corresponding to equally�spaced probabilities ade�

quately represent the shape of this normal curve� At each iteration of the simulation� a complete

set of the seven model inputs �i�e� the six biological parameters and P����
 is generated� The PDM

is used to solve for the corresponding value of K� The PDM is also applied to the �� points in the

representative sample� The �� values of K thus obtained are used to estimate the induced condi�

tional prior� q��K j all biological parameters
� of the true K given the generated set of biological

parameters� Applying ��
� the required joint induced prior is then simply

q��K� biol� parameters
 � q��K j biol� parameters
q�biol� parameters


where q�biological parameters
 is the product of the independent marginal prior distributions on

the biological parameters in Table ��

We chose � � �
�
in the joint pooling analysis� This is equivalent to using the geometric mean of

the two joint forwards and backwards priors as the joint prior� In this way� information embedded

in BALEEN II is allowed to enter the prior� Model inputs are no longer a priori independent�

The marginal prior distributions are elicited without recourse to the PDM� but the PDM is used

to coherize the independent marginal beliefs into a joint prior before introduction of data via the

likelihoods� Joint pooling can be viewed as a way of creating a joint prior on model inputs that

allows information in the PDM to be re$ected in that prior�

Table � shows the posterior medians and ��� Bayesian con�dence bounds of various quantities�

One of the key quantities of interest for management purposes is the ��� replacement yield� RY�����

the catch from the recruited stock which� if taken� would leave the recruited population at the same

level at the beginning of the next season �IWC� ��
� The posterior distribution of RY���� is shown

in Figure �� The 	� point of the distribution is ��� �see Table �
� and this is currently used by the

IWC as a conservative upper bound in setting the annual hunting quota�

Figures � �� and �� show the marginal posterior distributions of the other model inputs� outputs�

�	



Table �� Posterior medians and ��� Bayesian con�dence bounds for various quantities of interest�

Quantity Quantile
	� 	�� �	�

RY���� ��� ��� ���
Total depletion ��
 �	�� ���	 ���
ROI ���������
 ���� ���� ����
Mature proportion ���� ���� ����
Calf proportion ����� ���		 �����

K ����� ����� ����
P���� ���� �	� ���
MSYL ��	�� ����� ����
MSYR ����� ����� �����

s ����� ���� �����
s� ���� ����� �����

ASM �� �� �	
fmax ���	� ����� ���
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e
n
s
it
y

5% : 106

Figure �� Posterior distribution of ��� replacement yield�

and quantities of interest listed in Tables �� Where applicable� the marginal pre�model distributions

are shown as solid lines� In some cases� the posterior is very similar to the pre�model distribution� in

others there is a substantial shift in location and�or precision� For example� there is evidence that

the �������� ROI is located in the lower tail of the pre�model distribution� The variances of K and

s are reduced considerably� but the PDM provides very little additional information concerning a�

��
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Figure � Posterior distributions for s� s�� ASM� and fmax� Priors are shown as solid lines� s� does
not have a prior in the reference set�
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Figure �� Posterior distributions for K� P����� MSYL� and MSYR� Pre�model distributions are
shown as solid lines�

ASM� or fmax� The distribution of total depletion suggests that the stock is almost certainly still

depleted in ����

��
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Figure ��� Posterior distributions for mature and calf proportions� ROI� and the levels of depletion�
Available pre�model distributions are shown as solid lines� The pre�model distribution for ROI is
a likelihood obtained by �tting a least�squares line to the survey abundance estimates�

Figure �� shows pairwise scatterplots of K� MSYR� ROI and RY���� using ���� of the 	���

points in the posterior sample� �Using more than ���� points simply clutters the plots without

revealing any further detail�
 These are quantities which exhibit high correlation� In particular�

there is a strong negative correlation between K and MSYR�

In terms of model validation� we found that the various sources of information agreed better

when we used the BALEEN II model than when we used the simpler PDM of Example �� In

particular� Figure �� shows boxplots of samples from the prior on ROI �induced by the prior on

inputs and the BALEEN II model
 and the likelihood derived from the survey abundance estimates�

Comparing Figure �� with the corresponding boxplots in Figure 	� we see that the overlap between

the sources of information is considerably larger than for the simpler model� The implementation

of the BALEEN II model used in this analysis appears to �t the ROI data better than the simpler

model�

� Discussion

We have proposed a new approach to inference from deterministic simulation models� called Bayesian

melding� This retains the desirable properties of the Bayesian synthesis approach of RGZ� but mod�

i�es it so as to avoid the Borel paradox to which the latter approach is subject� This is done by

�



K

0.010 0.020 0.030 0.040

.

.

.

.

.

. .

.

.

.
..

.

.

.

.

.
.

. .

.

.

.
.

.

.

.

.

..

.

.

.

.

..
.

. .
. ..

.

.

.
.

.

.

.
..

.
..

.

.
. .
.

.

.
.

.

.

.

.

.

.. .

. .
.

.

.

.

..

.
.

.

.

.

.

.

.

.

.

.

.

.

.
..

.
.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.
.

.
.

.

.
..

.
.

.

..
...

.

.
.

.

.

.
. .

.

.

.

.

.

.

. .

.

.

.

.

.
.

.

.
..

.
.

.

..
.

.

.

.

.

.

.

.

..
.

.

.

.

. .

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.
. .

.

.

.
.

. .
.

.

.
.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.
.

.

.
.

.
.

.

..

.

.

.

.
.

.

.
.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
..
..

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.
..

.

.

.

..

.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

. ..
.

.

.
.

.

.

.
.

. .

.
..

.

.

.

..

.
.

.
.

.

.

.

.
.

.

.

.

.

.

.

..

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

..
.

.

..

.

.

.

.
.

.
..

.

.

.

.

.
.

.

.

.
.

..

.

.

.

.

.

..

.

.
.

.
.

.

.
.

.

..

.

.

..
.

.

.

.

.
. .

.

..
.

.
.

.

.

.

.

.

... ..

.
.

.
.

.

..

. .

.

.

.

.

.

..

.

.

.

.
.

.

.
. .

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.
.

..

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

. .
.

.
..

.

.

.
.

.

.

.

.

..

.

.

..

.
.

.

.

.

.

.
.

.
..

.

..

.

.
.

.

.

.

.

.
.

.
.

.

.

.
. .

.

.
..

.

.
.

.

.

.

..

.

.

..

.

.

.

.

..
.

.

.

.
.

.
.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

..

.

.

.
.

.

.

.

. .
...

.

.

.

. .

.

.

.

.

.

.
. .

.
.

.

..

.

.

.

.

.

.

..

.

.
.

.

.

.

.
.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

..

.

.

. .
.

.

.

.

. .

.

. .

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.
.

.

.

.

.

..

.

.

.
. .

.

.

.

.

.
.

. .

.

.

.
.

.

.

.

.

..

.

.

.

.

..
.

..
. ..

.

.

.
.

.

.

.
. .

.
..

.

.
. .
.

.

.
.
.

.

.

.

.

.. .

..
.

.

.

.

..

.
.

.

.

.

.

.

.

.
.

.

.

.

.
..

.
.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.
.

.
.

.

.

..

.
.

.

..
...

.

.
.

.

.

.
..

.

.

.

.

.

.

. .

.

.

.

.

.
.

.

.
..

.
.

.

..
.

.

.

.

.

.

.

.

..
.

.

.

.

..

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.
. .

.

.

.
.

. .
.

.

.
.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.
.

.

.
.

.
.

.

..

.

.

.

.
.

.

.
.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
..

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
..

.

.

.

..

.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

. ..
.

.

.
.

.

.

.
.

. .

.
..

.

.

.

..

.
.

.
.

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

.
.
.

.

.

.

.

..

.

.

.

.

.

..
.

.

..

.

.

.

.
.

.
..

.

.

.

.

.
.
.

.

.
.

..

.

.

.

.

.

..

.

.
.

.
.

.

.
.

.

..

.

.

..
.

.

.

.

.
. .

.

..
.

.
.
.

.

.

.

.

.. .
. .

.
.

.
.

.

. .

. .

.

.

.

.

.

..

.

.

.

.
.

.

.
. .

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.
.

..

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

. .
.

.
..

.

.

.
.

.

.

.

.

..

.

.

. .

.
.

.

.

.

.

.
.

.
..

.

. .

.

.
.

.

.

.

.

.
.
.

.

.

.

.
. .

.

.
..

.

.
.

.

.

.

..

.

.

..

.

.

.

.

..
.

.

.

.
.

.
.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

..

.

.

.
.

.

.

.

. .
.. .

.

.

.

. .

.

.

.

.

.

.
. .

.
.

.

..

.

.

.

.

.

.

..

.

.
.

.

.

.

.
.

.

.

.

..

.

.

.

.

..

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.

.

.

.

.

.

.

.

.

..

.

.

..
.

.

.

.

. .

.

..

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

100 150 200 250

1
0
0
0
0

1
4
0
0
0

1
8
0
0
0

.

.

.

.

.

..

.

.

.
. .

.

.

.

.

.
.

. .

.

.

.
.

.

.

.

.

..

.

.

.

.

..
.

..
. ..

.

.

.
.

.

.

.
. .

.
..

.

.
. .
.

.

.
.

.

.

.

.

.

...

..
.
.

.

.

..

.
.

.

.

.

.

.

.

.
.

.

.

.

.
..

.
.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.
.

.
.

.

.
..

.
.

.

..
...

.

.
.

.

.

.
..
.

.

.

.

.

.

. .

.

.

.

.

.
.

.

.
..

.
.

.

..
.

.

.

.

.

.

.

.

..
.

.

.

.

..

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.
. .

.

.

.
.

..
.

.

.
.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.
.

.

.
.

.
.

.

. .

.

.

.

.
.

.

.
.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
..

..

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.
. .

.

.

.

..

.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.. .
.

.

.
.

.

.

.
.

. .

.
. .

.

.

.

..

.
.

.
.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

..
.

.

. .

.

.

.

.
.

.
..

.

.

.

.

.
.

.

.

.
.

..

.

.

.

.

.

..

.

.
.

.
.

.

.
.

.

. .

.

.

..
.

.

.

.

.
. .

.

..
.

.
.

.

.

.

.

.

.. .
..

.
.

.
.

.

. .

. .

.

.

.

.

.

..

.

.

.

.
.
.

.
. .

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.
.

. .

.

.

.

.

.
.

..

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

. .
.

.
..

.

.

.
.

.

.

.

.

..

.

.

. .

.
.

.

.

.

.

.

.
.

..
.

..

.

.
.

.

.

.

.

.
.

.
.

.

.

.
..

.

.
..
.

.
.

.

.

.

. .

.

.

..

.

.

.

.

..
.

.

.

.
.

.
.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

. .

.

.

.
.

.

.

.

. .
.. .

.

.

.

. .

.

.

.

.

.

.
..

.
.

.

. .

.

.

.

.

.

.

..

.

.
.

.

.

.

.
.

.

.

.

..

.

.

.

.

..

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.

.

.

.

.

.

.

.

.

..

.

.

..
.

.

.

.

. .

.

..

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

0
.0

1
0

0
.0

2
0

0
.0

3
0

0
.0

4
0

.

.

.

.

.

..

.

.
.

..

.

.

.

.

.
.

.
.

.

.

.
.

. .
.

.

..

.

.

.
.

..

.

.
.

.
..

.

.

.
.

.

.

.
..

.
. .

.

.
.

.
.

.

.
.

.

.

.

.

.

. .
.

.. .

.

.

.

. .

..

.

.

.

.

.

.

..

.

.

.

.

..

.
.

.

.

.

.

.

.
.
.

.

.

.

.

.
.

.

.

.

.
.

.

. .
.

. .

.

.. ...

.

.
.

.

.

..
.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.
..

.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.
.
.

.

.

.
.

.
.

.

.

.
.

.

.

.

.

.
.

. .

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

..
.

.

.
..

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.
. .

.

.

.

. .
.

.

.

.

.
.

.
.

.
.

.

.
.

.

.

.

.
.
.

.

.

.
.

.

.

.
.

.
.

.
. .

.

.

.

.

.
.

.
.

.

.

.

.
..

.

.

.

.

.

.

..

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

..
.

.

..

.

.

.

..
.

..

.
.

.

.

.
.

.

.

.
.

..
.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.

.

..
.

.

.
.

.
..

.

..

.
.

. .
.

.

.

.

.
. .

..

.
.

.

.

.

..

.
.

.

.

.

.

.

..

.

.

.

.
.

.

.
..

.

..
.

.

.

.

.

.

.
.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.

.
.

.

.

.

.
..

.

.

.

.

.

.
..

.

.

. .
.

.
.
.

.

.
.

.

.

.

.

.

. .

.

.

..

..

.

.

.

.

.
.

.
..

.

. .

.
.

.

.

.

.

.

.

.
.

.

.

.

.
.
.

.

.
..

.

.
.

.

.

.
..

.

.

.
.

.

.

.

.
.. .

.

.

. .

.
.

.

.

.
.

.

.
.

.
.

.

.
.

.

.
.

..

.

..

.

.

.

.

.

.

.

..
. ..

.

.

.

..

.

.

.

.

.

.

..

.
.

.

..

.

.

.
.

.

.

. .

.

.
.

.
.

.

. .

.

.

.

.
.

.

.

.

.

..

.

..

.

.

.

.

. .

.

.

.

.

.

.
.

.
.

. .

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.
.

.

.. .
.

.

.

.

.
.

.

.

.

..

.

.

..
.

.

.
.

..
.

..

.

.

.

.

.

.

.

..

.
.

.
.

.

.

.

.

MSYR .

.

.

.

.

..

.

.
.

. .

.

.

.

.

.
.

.
.

.

.

.
.

..
.

.

..

.

.

.
.

..

.

.
.

.
..

.

.

.
.

.

.

.
. .

.
..

.

.
.

.
.

.

.
.
.

.

.

.

.

..
.

...

.

.

.

..

. .

.

.

.

.

.

.

..

.

.

.

.

..

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.
.

.

..
.

..

.

.....

.

.
.

.

.

. .
.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.
..

.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.
.

.

.

.

.
.

.
.

.

.

.
.

.

.

.

.

.
.

..

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.
.

.

.

.

..
.

.

.
. .

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
..

.

.

.

..
.

.

.

.

.
.

.
.

.
.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.
.

.
.

.
..

.

.

.

.
.

.
.

.
.

.

.

.
..

.

.

.

.

.

.

. .

.

.

.

.

.
.
.

.

.

.

.

..

.

.

.

.

.

..
.

.

..

.

.

.

. .
.

..

.
.

.

.

.
.
.

.

.
.

..
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

.

.

..
.

.

.
.

.
. .

.

..

.
.

..
.

.

.

.

.
. .

. .

.
.

.

.

.

. .

.
.

.

.

.

.

.

..

.

.

.

.
.

.

.
. .

.

. ..

.

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.

.
.

.

.

.

.
. .

.

.

.

.

.

.
. .

.

.

. .
.

.
.

.

.

.
.
.

.

.

.

.

..

.

.

. .

..

.

.

.

.

.
.

.
..

.

. .

.
.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.
..

.

.
.

.

.

.
..

.

.

.
.

.

.

.

.
...

.

.

. .

.
.

.

.

.
.

.

.
.

.
.

.

.
.

.

.
.

. .

.

..

.

.

.

.

.

.

.

. .
.. .

.

.

.

. .

.

.

.

.

.

.

. .

.
.

.

..

.

.

.
.

.

.

..

.

.
.

.
.

.

..

.

.

.

.
.

.

.

.

.

..

.

. .

.

.

.

.

..

.

.

.

.

.

.
.

.
.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.
.

.

.. .
.

.

.

.

.
.

.

.

.

..

.

.

...

.

.
.

. .
.

..

.

.

.

.

.

.

.

..

.
.

.
.

.

.

.

.
.

.

.

.

.

..

.

.
.

. .

.

.

.

.

.
.

.
.

.

.

.
.

..
.

.

..

.

.

.

.

..

.

.
.

.
..

.

.

.
.

.

.

.
. .

.
..

.

.
.

.
.

.

.
.

.

.

.

.

.

..
.

..
.

.

.

.

..

. .

.

.

.

.

.

.

..

.

.

.

.

..

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.
.

.

. .
.

..

.

.. ...

.

.
.

.

.

. .
.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.
..

.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.
.
.

.

.

.
.

.
.

.

.

.
.

.

.

.

.

.
.

..

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.
.

.

.

.

. .
.

.

.
..

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.
. .

.

.

.

..
.

.

.

.

.
.

.
.

.
.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.
.

.
.

.
. .

.

.

.

.
.

.
.

.
.

.

.

.
..

.

.

.

.

.

.

. .

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

..
.

.

. .

.

.

.

. .

.

..

.
.

.

.

.
.

.

.

.
.

..
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

.

.

..
.

.

.
.

.
. .

.

..

.
.

..
.

.

.

.

.
. .

..

.
.

.

.

.

. .

.
.

.

.

.

.

.

..

.

.

.

.
.
.

.
. .

.

. .
.

.

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.
.

. .

.

.

.

.

.

.

.
.

.

.

.

.
. .

.

.

.

.

.

.
..

.

.

. .
.

.
.

.

.

.
.

.

.

.

.

.

..

.

.

. .

. .

.

.

.

.

.

.
.

..
.

..

.
.

.

.

.

.

.

.

.
.

.

.

.

.
.
.

.

.
..
.

.
.

.

.

.
. .

.

.

.
.

.

.

.

.
...

.

.

. .

.
.

.

.

.
.

.

.
.

.
.
.

.
.

.

.
.

. .

.

. .

.

.

.

.

.

.

.

. .
.. .

.

.

.

. .

.

.

.

.

.

.

..

.
.

.

. .

.

.

.
.

.

.

..

.

.
.

.
.

.

..

.

.

.

.
.

.

.

.

.

..

.

. .

.

.

.

.

..

.

.

.

.

.

.
.

.
.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.
.

.

. ..
.

.

.

.

.
.

.

.

.

..

.

.

.. .

.

.
.

. .
.

..

.

.

.

.

.

.

.

..

.
.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

..

.

.

.
.

.

.
.

.
. .

..

.

.

.
.

.

.

.
..

.
.
.

.

.
.

.
.

.

.
..

.

.

.

.

. ..

.. .

.

.

.

. .

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.
.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.
.

.
.

.

. .
.

. .
.

.
. ..
.

.

.
.

.

.

.
..

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.
..

.
.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.
.

.

.

.

.
.

.

.

.
..

.

.

.

.

.

..
.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.
.

. .

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..
.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

..

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

.
. .

.

.

.

. .
.

.

.

.

.
.

.

.

.
.

.

.
.

.

.

.

.. .

.

.

.

.

.

.

.
.

.
.

.
. .

.

.

.

.

.
.

.
.

.

.

.

.

..

.

.

.

.

.

.

..

.

. .

.

.
..

.

.

.

.

..

.

.

.

.

.

.. .

.

..

.

.

.

.
.

.

..

.
.

.

.

.
..

. .
.

..
.

.

.

.

.

. .

.

.
.

.
.

.

.

.

.

.
.

.

.
.. .
.

.
.

..
.

.

..

.
.

. .
.

.

.

.

.

.
.

..

..

.

.

.

..

.
.

.

.

.

.

.

..

.

.

.

.
.

.

.
.
.

.

..
.

.

.

.

.

.

. .

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.
..

.

.

.
.

.

.
.
.

.

.
..

.

.

.

.

. .

.

.
.
.

..

.

.

.

.

.
.

.

..
.

.
.

.

.
.

.

.

.

.

.

..

.

.

.

.
.
.

.

...
.

.
.

.

.

.
..

.

.

.
.

.

.

.

.
..

.

.

.

.

.

..

.

.

.
.

.

.
.

.
.

.

.
.

.
.

.

..

.

..

.

.

.
.

.

.

.

...
.
.

.

.

.

.
.

.

.

.

.

.

.

..

.
.

.

..

.

.

.
.

.

.

. .

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.

.

.

..

.

..

.

.

.
.

.
.

.

.

.

.

.

.
.

.
.

. .

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..
..
.

.

.

.
.

.

.

.

..

.

.

.. .

.

.
.

.
.

.

..

.

.

.

.

.

.

.

..
.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

..

.

.

.
.

.
.

.

.
..

..

.

.

.
.

.

.

.
..

.
.

.

.

.
.

.
.

.

.
. .

.

.

.

.

..
.

. ..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.
.

.

..
.

..
.

.
....

.

.
.

.

.

.
. .

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.
..

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.
.

.

.

.

.
.

.

.

.
. .

.

.

.

.

.

. .
.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.
.

..

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.

..
.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

. .

.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.
..

.

.

.

..
.

.

.

.

.
.

.

.

.
.

.

.
.

.

.

.

. ..

.

.

.

.

.

.

.
.

.
.

.
..

.

.

.

.

.
.

.
.

.

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.
. .

.

.

.

.

..

.

.

.

.

.

...

.

..

.

.

.

.
.

.

..

.
.

.

.

.
. .

..
.

..
.

.

.

.

.

..

.

.
.

.
.

.

.

.

.

.
.

.

.
...
.

.
.

. .
.

.

..

.
.

..
.

.

.

.

.

.
.

..

. .

.

.

.

..

.
.

.

.

.

.

.

..

.

.

.

.
.

.

.
.
.

.

. .
.

.

.

.

.

.

..
.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

. .

..

.

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.
..

.

.

.
.

.

.
.

.

.

.
. .

.

.

.

.

..

.

.
.
.

..

.

.

.

.

.
.

.

..
.

.
.

.

.
.

.

.

.

.

.

. .

.

.

.

.
.

.

.

. ..
.

.
.

.

.

.
..

.

.

.
.

.

.

.

.
..

.

.

.

.

.

. .

.

.

.
.

.

.
.

.
.

.

.
.

.
.

.

. .

.

..

.

.

.
.

.

.

.

. . .
.
.

.

.

.

.
.

.

.

.

.

.

.

. .

.
.

.

..

.

.

.
.

.

.

..

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.

.

.

..

.

..

.

.

.
.

.
.

.

.

.

.

.

.
.

.
.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..
. .

.

.

.

.
.

.

.

.

..

.

.

. ..

.

.
.

.
.

.

. .

.

.

.

.

.

.

.

. .
.

.

.
.

.

.

.

.

ROI

1
.0

2
.0

3
.0

4
.0

.

.

.

.

.

.
.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

..

.

.

.

.

.
.

.

.
. .

..

.

.

.
.

.

.

.
. .

.
.

.

.

.
.

.
.

.

.
..

.

.

.

.

..
.

.. .

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.
.

.

. .
.

..
.

.
. ...

.

.
.

.

.

.
..
.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.
..

.
.

.

.
.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.
.

.

.

.

.
.

.

.

.
. .

.

.

.

.

.

..
.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.
.

..

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.

. .
.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

..

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

.
. .

.

.

.

..
.

.

.

.

.
.

.

.

.
.

.

.
.

.

.

.

.. .

.

.

.

.

.

.

.
.

.
.

.
. .

.

.

.

.

.
.
.

.
.

.

.

.

..

.

.

.

.

.

.

. .

.

. .

.

.
. .

.

.

.

.

..

.

.

.

.

.

...

.

. .

.

.

.

.
.

.

..

.
.

.

.

.
..

. .
.

..
.

.

.

.

.

..

.

.
.

.
.

.

.

.

.

.
.

.

.
.. .

.

.
.

..
.

.

..

.
.

..
.

.

.

.

.

.
.

..

..

.

.

.

. .

.
.

.

.

.

.

.

..

.

.

.

.
.
.

.
.

.

.

. .
.

.

.

.

.

.

. .
.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.

.

.

. .

. .

.

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.
..

.

.

.
.

.

.
.

.

.

.
. .

.

.

.

.

..

.

.
.

.

. .

.

.

.

.

.

.

.

..
.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.
.
.

.

..
.
.

.
.

.

.

.
. .

.

.

.
.

.

.

.

.
..

.

.

.

.

.

. .

.

.

.
.

.

.
.

.
.
.

.
.

.
.

.

. .

.

. .

.

.

.
.

.

.

.

. ..
.

.

.

.

.

.
.

.

.

.

.

.

.

..

.
.

.

. .

.

.

.
.

.

.

..

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.

.

.

..

.

. .

.

.

.
.

.
.

.

.

.

.

.

.
.

.
.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

. ..
.
.

.

.

.
.

.

.

.

..

.

.

.. .

.

.
.

.
.

.

..

.

.

.

.

.

.

.

..
.

.

.
.

.

.

.

.

1000012000140001600018000

1
0
0

1
5
0

2
0
0

2
5
0

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

. .

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .

.

. .
.

.

.

.
.

.

.

.

.

.
. ..

.

.

..

.

.

. .

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.
.

.

.

.
..

.

.

.

.
.

.

.

.

.

.

..
..

.

.

..

. .

.

.
.

..
.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.
..

.

.

.

.

. .

.
..

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

. .

.

.
.

..
.

.

.
.

.

.
..

.

.

.
.

..
.

.

.

.
.

. .

.

.
.

. .

.

.

. .

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.
.

.

.

..

.

..

.

.

.

.

.

.
.

. .
.

.

.

.

.. .

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.
.

.

.

.

.

.
.

.

.
.

. .

.

.

.

..

.

.

. .

.

.

.

.

.

..

.

.

.

.

.
..

.

.

.

..

.

.
.

.

.

.

.

..
.

.

. .
.

..
.

.

.
.

.

.

.

.
.

.

.

.

. .

.

.

.
..

.

.

.

..

.

.

.

.

.

.
.

.

.

.
. .

.

.

.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.

.
. .

.
.

.

.

.
.

.

.

.

.

..
..

.
. .

..

.

..

.

.

.

.

..

.

.

.

.

. .

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.. .

.

.
.

.

..

.
.

.

.

.

.

.

.

.
.

.

.

.

. .

.

..

.

.

.

.

.

.

..

.

.

. .
.

.

..

.

.

.

.

.

.

.
.

.

..
.

.

.

.

..
.

.

..
.

.

.
.

.

.

. . ..

.
.

.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

... .

.
.

.

.

.
.

.
. .

.
.

.
.

.

.

.. .

.

.

.

.

.
.

.

.

.

.

.

.
.

.

..

.
.

.

.

.

.
.

. .

.

.

.

.

.

.

.

.

.
.

.
.
.

.

.

.

.

.

.

.

.

.

.

.
..

.
.

.
.

.

.

.

.
.

.

.

. .
.

..

.

.

.

. .

.

.

.

.
.

.

.

.

.

.
.

.

..

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

. .

.

.

.

.

..

.

.
.

.

.

.

.

.

.

..
.

.

.

.

.
. .. .

.

.

.
.

.

.

.

.
.

.

.

..
.

.
.

.

..
.

.
.

.

.

.

.

.

.

.

..
.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

..

.
.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

..
.

.

.

.
.

.

.

.

.

.
.. .

.

.

. .

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.
. .

.

.

.

.
.

.

.

.

.

.

. .
. .

.

.

..

..

.

.
.

..
.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.
. .

.

.

.

.

..

.
..

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

..

.

.
.

. .
.

.

.
.

.

.
. .

.

.

.
.

. .
.

.

.

.
.

..

.

.
.

..

.

.

..

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

.

..

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.
.

.

.

. .

.

. .

.

.

.

.

.

.
.

..
.

.

.

.

. ..

.

.

.

.
.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.
.

.

.

.

.

.
.

.

.
.

..

.

.

.

. .

.
.

..

.

.

.

.

.

..

.

.

.

.

.
. .

.

.

.

. .

.

.
.

.

.

.

.

..
.

.

..
.

..
.

.

.
.

.

.

.

.
.

.

.

.

..

.

.

.
. .

.

.

.

..

.

.

.

.

.

.
.

.

.

.
..

.

.

.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.

.
..

.
.

.

.

.
.

.

.

.

.

..
. .

.
..

..

.

. .

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.
.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

. ..

.

.
.

.

..

.
.

.

.

.

.

.

.

.
.

.

.

.

..

.

. .

.

.

.

.

.

.

. .

.

.

..
.

.

..

.

.

.

.

.

.

.
.

.

. .
.

.

.

.

. .
.

.

. .
.

.

.
.

.

.

... .

.
.

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .

.

. ...

.
.

.

.

.
.
.

..

.
.

.
.

.

.

...

.

.

.

.

.
.

.

.

.

.

.

.
.

.

. .

.
.

.

.

.

.
.

..

.

.

.

.

.

.

.

.

.
.

.
.
.

.

.

.

.

.

.

.

.

.

.

.
. .

.
.

.
.

.

.

.

.
.

.

.

..
.

. .

.

.

.

..

.

.

.

.
.

.

.

.

.

.
.

.

..

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

..

.

.

.

.

..

.

.
.

.

.

.

.

.

.

. .
.

.

.

.

.
.. ..

.

.

.
.

.

.

.

.
.

.

.

. .
.

.
.

.

. .
.

.
.

.

.

.

.

.

.

.

. .
.

.

.
.

.

.

.

.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

..

.
.

..
.
.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

..
.

.

.

.
.
.

.

.

.

.
.. .

.

.

. .

.

.

..

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.
.

.

.

.
. .

.

.

.

.
.

.

.

.

.

.

. .
. .

.

.

..

..

.

.
.
..

.
.

.
.

.

.

.

.

.

.

.
.

.

.

.

.
. .

.

.

.

.

..

.
..

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

..

.

.
.

. .
.

.

.
.

.

.
. .

.

.

.
.

. .
.

.

.

.
.

..

.

.
.

..

.

.

..

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

.

..

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.
.

.

.

. .

.

. .

.

.

.

.

.

.

.

..
.

.

.

.

. ..

.

.

.

.
.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.
.

.

.

.

.

.
.

.

.
.

..

.

.

.

. .

.
.

..

.

.

.

.

.

..

.

.

.

.

.
. .

.

.

.

. .

.

.
.

.

.

.

.

..
.

.

..
.

..
.

.

.
.

.

.

.

.
.

.

.

.

..

.

.

.
. .

.

.

.

..

.

.

.

.

.

.
.

.

.

.
..

.

.

.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.

.
..

.
.
.

.

.
.

.

.

.

.

. .
. .

.
..

. .

.

. .

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.
.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

. ..

.

.
.

.

..

.
.

.

.

.

.

.

.

.
.

.

.

.

..

.

. .

.

.

.

.

.

.

. .

.

.

..
.

.

. .

.

.

.

.

.

.

.
.

.

. .
.

.

.

.

. .
.

.

. .
.

.

.
.

.

.

... .

.
.

.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .

.

. ...

.
.

.

.

.
.

.
..

.
.

.
.

.

.

...

.

.

.

.

.
.

.

.

.

.

.

.
.

.

. .

.
.

.

.

.

.
.

..

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
. .

.
.

.
.

.

.

.

.
.

.

.

..
.

. .

.

.

.

..

.

.

.

.
.

.

.

.

.

.
.

.

. .

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

..

.

.

.

.

..

.

.
.

.

.

.

.

.

.

. .
.

.

.

.

.
. ...

.

.

.
.

.

.

.

.
.

.

.

..
.

.
.

.

. .
.

.
.

.

.

.

.

.

.

.

..
.

.

.
.

.

.

.

.

RY(98)

Figure ��� Pairwise scatterplots of the posterior sample of K� MSYR� ROI and RY�

recognising the presence of two di�erent priors on the outputs� one of them explicitly speci�ed� and

the other induced by the prior on the inputs and the model� these priors are combined via loga�

rithmic pooling� The method is extended to the di�cult but common situation where the model is

noninvertible� The resulting approach is formally fully Bayesian� and takes full account of evidence

and uncertainty about both the inputs and outputs to the model in a coherent way� it can be

viewed as a generalisation of standard Bayesian inference� It was presented to the IWC Scienti�c

Committee in the context of giving advice about bowhead hunting quotas in its ��� assessment

of the stock �at the previous assessment in ����� the Bayesian synthesis approach had been used
�

Our exposition has focused on population dynamics models for whales� which is the context

within which it was developed� However� deterministic simulation models are pervasive in science�

engineering and policy research� and it seems likely that this approach could �nd potential appli�

cations in many areas� Green et al� ����
 have applied the methodology to forest management�

and it has potential applications in epidemiology and environmental risk assessment�

One issue that remains unresolved is how to choose �� the parameter that says how the priors

on the inputs and the outputs are to be weighted relatively to one another� In the original context

��
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Figure ��� Boxplots of the distributions of the �������� rate of increase �ROI
 implied by the
priors on inputs and the BALEEN II model �q��
 and the likelihood �L�
 derived from the survey
abundance estimates�

in which logarithmic pooling of prior distributions was developed� that of combining the opinions

of two experts� � was viewed as re$ecting the weight to be attached to the �rst expert vis�a�vis

the second� although a formal basis for specifying its precise value does not seem to have been

developed �Genest and Zidek� ���
� Our context is somewhat di�erent� in that we are combining

prior distributions about di�erent parameters and based on di�erent bodies of evidence� but assessed

by the same �expert� �in our case the IWC Scienti�c Committee
� We have used this fact as the

basis for our choice of � � �
�
in the examples� Note that � does not re$ect the precision of the

prior information about the inputs relative to that about the outputs� but rather its reliability�

and it seems reasonable to assume that the information about inputs and outputs will be equally

reliable� since they are both assessed and expressed quantitatively by the same expert� Figure �

illustrates how� even when � � �
�
� the pooled prior will be dominated by the more precise source

of information�

However� values other than � � �
�
might well be reasonable� In particular� values at or near

the extremes� � � �� �� might be of interest� A case of particular interest arises when priors on

the inputs were speci�ed for formal reasons to make Bayesian inference possible in the absence of

much prior information� but the priors on the outputs did correspond to real information� Then

setting � � � or close to it could allow the �uninformative
 prior distribution about the inputs to

be given little or no weight� while still having a proper prior on the inputs �induced by the prior

distribution on the outputs
�

An alternative� more subjective� approach would be to plot the pooled priors on both inputs

��



and outputs for each of a set of values of �� and then choose the one that corresponds most closely

to actual prior opinion� This could be implemented on the computer using a slider allowing the

value of � to be manipulated by the user� while the resulting pooled prior distributions change

interactively� The computing requirements of this approach might be an obstacle for many models�

but it would seem to be a reasonable ideal�

One could also think of estimating �� for example by computing its integrated likelihood as

in Section 	� and maximising this quantity with respect to �� This would provide a maximum

integrated likelihood estimator of �� A further possibility would be fully Bayesian� to specify a

prior for � itself� and treat it as a parameter in the usual Bayesian way� by integrating over it� In

the absence of further information� a Uniform���� distribution would be one possibility� A di�culty

with approaches based on estimating � from the likelihoods� however� is that they will tend to give

high weight to the prior distributions that least disagree with the likelihoods� This may not be

desirable if the prior distributions all represent genuine prior information�

Another open issue is that of how best to do nonparametric density estimation in the present

context� We have chosen to use kernel density estimation with a Gaussian kernel� selecting the

smoothing parameter by Terrell�s �����
 maximal smoothing approach when appropriate� This

approach is easy to implement in higher dimensions� However� it is an �o��the�shelf� approach�

not crafted specially for our present purpose� and so it should be possible to do better� Givens and

Roback ����
 have developed an adaptive method that involves direct numerical approximation

of Jacobians� Their method has led to improved accuracy and e�ciency in some simple examples�

Nonparametric density estimation techniques have generally been developed and evaluated with the

quality of the resulting density estimate itself as the ultimate criterion� not surprisingly� However�

here our ultimate criterion is the quality of the estimate of the posterior distribution after applying

SIR� the quality of the intermediate density estimates is of little interest in its own right� The

development of nonparametric density estimation methods speci�cally for this purpose would seem

a worthwhile research challenge�

We have developed our methods for a family of simulation models that can be run reasonably

fast on a computer� so that carrying out 	����� runs� as we have been doing� can be done overnight

with little di�culty� Many simulation models take much longer to run� however� and methods that

require very large numbers of runs will remain infeasible for such models for a long time� Then

e�ciency will be a major issue� and methods will be required that make each run of the model

count much more� One such approach is the adaptive SIR algorithm of Givens and Raftery �����
�

Quadrature methods also seem promising� One possibility is the three�point iterated Gauss�Hermite

quadrature of Raftery and Zeh ������ Appendix �
� see also Levy et al� ����
� Another is the

Bayes�Hermite quadrature of O�Hagan �����
� A di�erent possibility is Latin hypercube sampling�

mentioned in the present context by Schweder ����	
�

��



Our approach can be viewed as involving simulating from a posterior distribution� and Markov

chain Monte Carlo �MCMC
 methods have been much developed in recent years for this purpose

�e�g� Gilks� Richardson and Spiegelhalter� ����
� We have not used MCMC� however� instead

choosing to base our methods on the SIR algorithm� The reason is that it is not clear how to

implement MCMC in the present context� since it requires the availability of code to compute

the �unnormalized
 posterior density� which is not available here� Pooling can be implemented

in a natural way via the SIR algorithm� but not� as far as we can see� with MCMC� A further

di�culty with MCMC in this context is that our posterior distributions tend to be concentrated

near nonlinear submanifolds of the parameter space� and it is well known that designing MCMC

algorithms for this kind of situation can be extremely delicate� However� if these two obstacles

could be overcome and an e�cient and reliable MCMC algorithm designed for sampling from the

Bayesian melding posterior distribution� this could be very useful as such an algorithm would tend

to stay in or close to the high posterior density region and hence could be more e�cient than our

present proposal� This would seem to be a good topic for further research�

Since Wolpert ����	
 pointed out that the Bayesian synthesis approach is subject to the Borel

paradox� various other solutions have been proposed� As we have discussed here� the Borel paradox

arises from the presence of a prior on outputs as well as inputs� and one proposed solution has been

to simply discard the prior on the outputs �Butterworth and Punt� ���	� Punt and Butterworth�

���
� This may be satisfactory in some contexts� but not in others� The speci�cation of a prior on

outputs originally arose when it became apparent that plausible values of both inputs and outputs

to the BALEEN II model could give rise to highly implausible oscillating trajectories �Givens et al��

���	
� The solution proposed at the time in the context of the Bayesian synthesis method was to

specify a prior on the output� �Maximum Calf�to�Mother Ratio� �MCM
� preventing it from being

higher than one� which was a universally agreed biological upper limit� This was very simple and

quick to implement� and worked very well to exclude the implausible oscillatory trajectories� Just

ignoring this prior on the outputs would have led to unsatisfactory results�

Subsequently� Punt and Butterworth �����
 reparameterized the BALEEN II model in the form

we have used here� so that maximum fertility rate became an input� fmax� and a prior on this input

quantity was enough to avoid the oscillatory trajectories� This is a sensible solution in this case�

although it was fairly time�consuming� requiring several years to reprogram the model� validate the

code� and obtain approval from the Scienti�c Committee for the reformulated model� Essentially

the same result had been achieved very quickly several years earlier by simply specifying a prior

on the relevant output� MCM� With Bayesian melding� this can now be done in a way that is not

subject to the Borel paradox� In other complex examples� it may not be feasible to reformulate the

model in a way that eliminates the need for a prior on the outputs�

Another approach� proposed in an IWC Scienti�c Committee meeting by Stephen T� Buckland�

��



is to display the di�erent priors for inputs and outputs on a computer screen� together with the

priors they induce on other inputs and outputs as well as other quantities of interest� The user would

then interactively modify the priors so that the di�erent priors on the same quantities �explicit prior

and induced prior
 came closer to agreement� This seems like an excellent idea� although it might

be hard to zero in exactly on a fully coherized set of priors using this approach� Our suggestion

above of choosing � interactively using a slider could be viewed as one version of this suggestion�

that is less $exible but is also guaranteed to yield fully coherized priors�

Another option in the context of expert opinion consensus is the �supra�Bayesian� approach�

Here� a group decision maker or meta�expert considers the individual expert opinions as data� and

then updates his or her own prior beliefs using Bayes� rule� Lindley ���	
 proposed supra�Bayesian

pooling when the parameter space is �nite� However� most derivations have been for a very simple

scenario such as a single event� Extensions to complex simulation modelling would be challenging�

Another practical consideration is the choice of the meta�expert� Givens and Roback ����
 have

discussed the supra�Bayesian approach in the context of deterministic models�

Schweder and Hjort �����
 have proposed the likelihood synthesis approach� in which prior

distributions are viewed as deriving from likelihoods for an implicit data set� which are then turned

into �con�dence distributions� for quantities of interest� One issue with this approach is how the

con�dence distributions are to be interpreted� as they do not seem to have either a clear frequentist

interpretation or a Bayesian interpretation�

We have discussed the e�ect of the Borel paradox in the application of Bayesian methods to

inference for deterministic models� Other paradoxes have arisen in di�erent contexts within the

general framework of Bayesian inference� For example� Dawid et al� �����
 examined posterior

marginalization paradoxes that result from the use of improper prior distributions�

We have focused here on deterministic simulation models� but our approach could also be applied

to stochastic models� For example� in our BALEEN II bowhead PDM� the numbers of births

and deaths in a year could be modeled as binomial random variables rather than approximated

by their expectations� We would proceed as before� except that instead of applying the model

deterministically for each run� we would simulate a stochastic trajectory� Note that even if the

model were made stochastic� the Bayesian synthesis method would still be subject to the Borel

paradox� and so pooling would still be necessary� Bayesian melding should provide a valid solution

for stochastic models as well as deterministic ones�
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Appendix

Proof of Theorem �� The joint distribution of ���� ��
 is

p����� ��
 � p�g��
� ���
� g��
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and rewriting the model � � M��
 in terms of �� and �� with �� as the output� yields

�� � g��M�g��
� ���
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Now consider the transformation ���� ��
 � �U� V 
 where
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It follows that the joint distribution of U and V is
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Now noting that U � � � �� � g��M�g��
� �v


� � � M��
� we have
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Since V � �� and conditioning on U � � is equivalent to conditioning on the model ��
� this is

exactly the Bayesian synthesis post�model distribution of ��� Writing in terms of ��� we have
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To express the post�model distribution in terms of �� we transform �� � � which has inverse

Jacobian
���dg�	�
d�

���� Noting the identities
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and
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as in ��
�
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Proof of Theorem �� We �rst consider the continuous case� For � � � and � � � the result

is trivially true from the assumptions� For � � ��� �
� the function h�x
 � x� is concave on

����
 because h���x
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x��� � �� Noting that the ratio q����
�q���
 has range ����
 for

� � � n f� � q����
 � q���
 � �g� and applying Jensen�s inequality� we have

Z
q����


�q���

���d� � Eq�

��
q����


q���


���

�

�
Eq�

�
q����


q���


���
� �� � �

since

Eq�

�
q����


q���


�
�

Z
q����
d� � ��

So
R
q����


�q���

���d� � � � �� and the normalizing constant k� can be found� Note that

the proof proceeds analogously in the discrete case except that the integrals are replaced by the

appropriate sums�
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Proof of Theorem �� We �rst note that
S
Ai �

S
Cj and that the Cj are mutually exclusive because

each Ai appears in only one Cj � namely Cm	i
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Proof of Theorem �� We write � � ���� � � � � �n
 and � � ���� � � � � �n
� Denote the components of M

as follows�
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From Theorem �� !q�����
 is a proper density function for all � � ��� � � We now show that !q�����


in ��
 is simply the distribution of a transformation of � when � � !q�����
� Fix a value of i� and

consider � � q���
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indicating that !q�� ���
 integrates to unity on its support and marginalizes �over �
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