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SUMMARY

We present a new method for Bayesian Markov Chain Monte Carlo–based inference in certain types
of stochastic models, suitable for modeling noisy epidemic data. We apply the so-called uniformization
representation of a Markov process, in order to efficiently generate appropriate conditional distributions
in the Gibbs sampler algorithm. The approach is shown to work well in various data-poor settings, that is,
when only partial information about the epidemic process is available, as illustrated on the synthetic data
from SIR-type epidemics and the Center for Disease Control and Prevention data from the onset of the
H1N1 pandemic in the United States.
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1. INTRODUCTION

Historically, infectious disease spread through populations has been modeled using the deterministic
dynamics of ordinary differential equations (ODEs). Such ODE models have the advantage of simplicity,
as they rely on the appropriate law of large numbers (see, e.g.Andersson and Britton, 2000a, Chapter 5) to
describe longitudinally the average epidemic trends in the population. However, the disease propagation is
an inherently stochastic phenomenon, and stochastic models are needed to properly capture the transmis-
sion dynamics (see, e.g.Keelingand others, 2001). The aims of this paper were to introduce a rigorous
Bayesian inference method for partially and discretely observed stochastic kinetic models and to explore
its applicability to some contemporary epidemic data. The need for accurate modeling of the epidemic
process is becoming increasingly apparent as the financial consequences of infectious disease outbreaks
are growing, 3 important recent examples being the 2001 foot and mouth disease outbreak in the UK, the
severe acute respiratory syndrome epidemic in the spring of 2003, and the worldwide A/H1N1 (swine
flu) pandemic of 2009 (see, e.g.Keelingand others, 2001; Lipsitch and others, 2003; Balcanand others,
2009).

In this paper, we present a general inference method for the so-called Markovian stochastic kinetic
network (SKN) models described in Chapters 5 and 9 ofAndersson and Britton(2000a). For readers
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convenience, a brief description of SKNs is provided in Section A of the supplementary material (available
at Biostatisticsonline). The inference method utilizes modern Bayesian techniques via the usual Markov
Chain Monte Carlo (MCMC), extending some of the earlier work in this area. In particular, it is partially
based on the ideas ofGibson and Renshaw(1998), who presented a first statistical analysis of a SIR-type
model based on MCMC methods, as well as onO’Neill and Roberts(1999). Although we concentrate
on Markovian models, this setting may be in fact extended, in a manner similar toStreftaris and Gibson
(2004). The main methodological contributions of the current paper are presented in Sections2 and3.
In Section4, we use our approach to analyze the data, by now famous, from the early stages of the
US H1N1 pandemic of 2009. In Section5, we give a brief summary of the paper’s main points and
offer some concluding remarks. Additional simulation studies and discussions are provided in the papers’
supplementary material available atBiostatisticsonline.

1.1 Example: SIRS epidemic model

As an introductory example, consider the “endemic” modification of the classical SIR model of Kendal
and McKendrick (cf., e.g. Chapter 1 ofAndersson and Britton, 2000a). The classical SIR model assumes a
fixed population size (M) with 3 time-varying species: susceptible (x), infective (y), and removed (z, dead
or recovered), such that for anyt > 0, we havex(t) + y(t) + z(t) = M . In the SIRS model, in addition to
the usual SIR interactions, we assume an additional one, converting removed back into susceptibles. The
general deterministic law of mass action model (see Section A of the supplementary material (available at
Biostatisticsonline) for details) specializes then to the following ODE system

ẋ(t) = −θ1x(t)y(t) + θ3z(t)

ẏ(t) = θ1x(t)y(t) − θ2y(t)

ż(t) = θ2y(t) − θ3z(t), (1.1)

with the initial conditionsx(0) = M − 1, y(0) = 1, andz(0) = 0.
The above ODE represents one of the simplest classical models of an endemic disease spread within

fixed-size population (M), and its various variants seem to be still in use for some simple epidemics (e.g.
certain sexually transmitted diseases, cf.Kouyosand others, 2010). Note that from the above model, it
follows that, for example the SIRS epidemic threshold function (cf. alsoAndersson and Britton, 2000a,
Chapter 5) is given byR0(t) = θ1x(t)/θ2.

Using the biochemical notational convention (see Section A of the supplementary material available
atBiostatisticsonline), the SKN for the above SIRS model is given by

X + Y
h1−→ 2Y; h1 = h1(X, Y, Z) = θ1XY

Y
h2−→ Z; h2 = h2(X, Y, Z) = θ2Y

Z
h3−→ X; h3 = h3(X, Y, Z) = θ3Z. (1.2)

Note thatR0(t) is now stochastic and its distribution is, in general, not tractable but may be simulated
from (1.2), for a given vector of constantsθθθ = (θ1, . . . , θ3). In Figure1, we present the simulated (via the
Gillespie algorithm, as given inGibson and Bruck, 2000) realizations of 3 stochastic trajectories for the
SIRS network (1.2) as compared to the deterministic trajectories obtained from (1.1) with M = 101 and
θθθ = (0.01, 0.2, 0.1).
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Inference for Stochastic Kinetic Networks 155

Fig. 1. ODE and SKN trajectories for SIRS model species (susceptibles, infectives, and removed, respectively, top,
middle, and bottom curve at the origin) with total population sizeM = 100.

2. STATISTICAL INFERENCE

The SKN inferential procedure for the case when the entire single trajectoryXXX is observed is rather
straightforward (Boysand others, 2008). For completeness, we review it briefly in Section B of the sup-
plementary material available atBiostatisticsonline. Due to the form of the likelihood function derived
there, a family of independent gamma distributions is seen as a natural set of conjugate priors, that is
θs ∼ 0(as, bs), s = 1, . . . , v. Under this family of priors the application of Bayes’ theorem produces
posterior gamma distributions (given the trajectoryXXX = xxx) which retain independence, that is

θs|xxx ∼ 0

(
as + rs, bs +

∫ T

0
gs(x(t)) dt

)
, s = 1, . . . , v. (2.1)

Note that the maximum aposteriori (MAP) estimator is simply the mode of the posterior distribution,
that is the adjusted maximum likelihood estimator (MLE). In particular, in case of “uninformative and
improper” priors withas = 1 andbs = 0, MLE and MAP estimators coincide.

2.1 MCMC—Gibbs sampler

In practice, information about the entire trajectoryX is rarely available. Typically, the data are only
collected as species counts at some fixed set of time points (e.g. daily or weekly) with no informa-
tion in-between. This results in incomplete trajectory information, say,Xobs. There may be also other
complications associated with data collection, for instance, some of the species may not be observable,
or their counts may be obtained with large errors. Both these situations may be handled in our current
framework.
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Within our Bayesian inferential framework, the focus is on the posterior distribution of both model
parameters and the missing parts of the trajectories, to be denoted(θθθ, X|Xobs). There are several ways
of obtaining this distribution, typically within the realm of various MCMC methods utilizing versions
of the Metropolis–Hastings algorithm (MHA; see, e.g. Chapter 11 inAndersson and Britton, 2000a).
For instance,Boys and others(2008) proposed to use the nested Metropolis–Hastings–Gibbs sampler
approach which, in order to properly sample the hidden trajectory, calls first for sampling from certain
approximate process within the Gibbs sampler, and then for correcting the result via the Metropolis–
Hastings step. The method was seen to work well for some simple SKNs, like, the stochastic Lotka–
Volterra model.

In the current paper, we propose a different way of tackling the problem of trajectory sampling. It
does not require MHA, but rather takes advantage of the relation (2.1) and the ability to generate SKN
conditionally on the partially observed trajectory. The lack of an algorithm for the latter has been a
major obstacle in building effective Gibbs samplers in settings similar to ours (Boys and Giles, 2007).
However, as it turns out, an elegantly simple solution is available with the help of the “uniformization”
technique (Hobolth and Stone, 2009) applied to sequential path generation, conditional on the observed
states. Similar ideas were applied recently in a somewhat different context of codon substitution analysis
(Rodrigueand others, 2008). Details are deferred to Section3 below.

Assuming, for the time being, that we have a way of sampling the hidden process, the following
procedure approximately samples the required posterior distribution.

ALGORITHM 1 (Gibbs sampler for partially observed SKN)

1. Initialize the algorithm with a valid sample path, given observed dataXobs.
2. Sampleθ ’s from their full gamma conditionals, given the current path, via (2.1).
3. Sample paths space (hidden events and times), given observed dataXobs andθ ’s, via the

“uniformization” method described below.
4. Repeat steps 2–3 until convergence occurs.

3. UNIFORMIZATION AND PATH SAMPLING

We now present a method for sampling the conditional process(X|θθθ, Xobs) on the bounded interval(0, T ].
First, we need to introduce the so-called uniformization procedure for SKN (see, e.g.Hobolth and Stone
2009and references therein).

Let Q = [qi j ] be the infinitesimal generator of a Markov process{X(t)} evolving in time 0< t < T <
∞ over state spaceS. Each off-diagonal entry inQ specifies the instantaneous rate of transition from one
state to another, and the diagonal entries are set so the sum of each row equals zero (i.e.qii = −

∑
i 6= j qi j ).

For any infinitesimal increment1t , P(X(t + 1t) = j |X(t) = i ) = qi j 1t + o(1t), P(X(t + 1t) =
i |X(t) = i ) = 1 −

∑
j 6=i qi j 1t + o(1t). By truncating the state space of the original process by time

T < ∞, we may assume that the dimension ofQ is bounded with high probability. (In particular, with
probability 1 when the system is closed, that is the total size of the population is constant). Under this
assumption, consider the Poisson process{N(t)} on (0, T ] with rateμ such that

μ >
∑

j 6=i

qi j , i ∈ S (3.1)

and recall from basic theory that{N(t)} is defined as a counting process satisfying
P(N(t + 1t) − N(t) = 1|N(t) = k) = μ1t + o(1t), for any integerk > 0.

The uniformization procedure transforms the process defined byQ into a process allowing for virtual
events or self-transitions (from the statei to i ). This is done by first defining the discrete time Markov
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chain{Zn} with state spaceSand transition probability matrixR where

R =
1

μ
Q + I (3.2)

and I is the identity matrix. One can now easily argue that on the trajectories on whichX(t) is uniformly
bounded (note that this is true with arbitrarily high probability on a bounded time interval) we have
X(t) = ZN(t) in distribution. Indeed, note that, for the trajectories for which (3.1) holds, both processes
have the same generators, sinceP(ZN(t+1t) = j |ZN(t) = i ) = μ1t

qi j
μ + o(1t) = qi j 1t + o(1t) =

P(X(t + 1t) = j |X(t) = i ).

3.1 Sampling hidden trajectories under constraints

With the uniformization procedure in hand, we may now describe the method for exact sampling of the
hidden path of the process{X(t)}, conditional on the observed values and under the constraint (3.1). Due
to the assumed Markov property, the hidden trajectories in-between observations are independent of each
other (see, e.g. formula (5) inBoys and others2008), and therefore, it suffices to consider a sampling
scheme for a single time interval between any 2 adjacent observed values, say,X(0) = i andX(t) = j .
The overall method for sampling the hidden process{X(s)} for 0 < s < t can be summarized as a 3-stage
progressive demarginalization: (i) sample the number of events (including virtual ones) marginalized over
their nature and timing; (ii) sample the nature of events in order, marginalized over their exact timing; and
(iii) sample the timing of events (Fearnhead and Sherlock, 2006). Note that in view of our definition of
the chain{ZN(t)}, we have

P(X(t) = j |X(0) = i, N(t) = n) = Rn
i j (3.3)

as well as

P(X(t) = j |X(0) = i ) =
∞∑

n=0

Rn
i j

(μt)n exp(−μt)

n!
=
[

e−μt

∑∞
n=0(μt R)n

n!

]

i j

= [ e−μt I eμt R]i j = [ eμt (R−I )]i j

= [exp(t Q)]i j , (3.4)

where the last identity follows from (3.2). In view of (3.3) and (3.4), we may first sample the number of
hidden events (including virtual ones) between(0, t) using the fact that

P(N(t) = n|X(t) = j, X(0) = i ) =
(μt)n exp(−μt)

n!

Rn
i j

[exp(t Q)]i j
. (3.5)

The sampling from (3.5) may be done easily via the usual method of inversion of the distribution function
(see, e.g.Gibson and Bruck, 2000). Having sampled the number of eventsn, we now wish to sample
the specific series of events, says0 = X(0) = i, s1, s2, . . . , sn = X(t) = j , leading fromi to j .
This is done sequentially as follows. The states1 is sampled froms1 ∼ P(s1 = l |s0 = i, sn = j ) =
Ril Rn−1

l j
Rn

i j
. Subsequently, the states2 is sampled froms2 ∼ P(s2 = m|s1 = l , sn = j ) =

Rlm Rn−2
mj

Rn−1
l j

, and

so on, untiln events are sampled. Note that the second factor in the numerator in the above formulas
ensures that the state sampled will not trap the trajectory into a statesk which could not lead tosn =
j in n events. Finally, having sampled the sequence of events, sampling of their timings can be done
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simply by drawingn independent identically distributed uniformU (0, t) variables (cf. e.g.Durrett, 1999,
Chapter 3, Theorem 5.1). After removing the virtual events, one obtains the trajectory of the desired
process(X|θθθ, Xobs) on (0, T ], conditional on (3.1).

3.2 Partially observed species

In the sampling algorithm above, we have assumed that the entire vectorX(t) is available at all the points
of observation. However, in practice, this is often not the case. For instance, in the SIRS model, one might
consider removed as relatively easy to observe and count, but not necessarily infectives or susceptibles. In
general, suppose we haveX(t) = (Xo(t), Xu(t)) whereXo(t) andXu(t) are, respectively, observed and
unobserved parts of the vectorX(t) and assume we observe atn time pointsXo(tk) = j o

k , k = 0 . . . , n.
Since the state space for the underlying discrete Markov chain (3.3) is finite andP(X(t) = j o|X(0) =
i, N(t) = n) =

∑
j u Rn

i,( j o, j u), the algorithm from the previous section may be modified in an obvious
way to sample the additional space of missing components, via an extra layer of de-marginalization in
parts (i) and (ii). However, such modification will necessarily increase (typically, by an order of magni-
tude) the computational overhead, and, therefore, the following approximate algorithm may be often more
useful (see Section C of the supplementary material (available atBiostatisticsonline) for some numerical
examples).

In order to approximately identify the unobserved speciesXu(t), we maximize the joined probability

max
j u
0 ,..., j u

n

P(Xo(t0) = j o
0 , . . . , Xo(tn) = j o

n , Xu(t0) = j u
0 , . . . , Xu(tn) = j u

n ) (3.6)

and take the maximizer( j u
0 , . . . , j u

n )∗ as the imputed trajectory. To this end, we apply the Bellman
dynamic optimization principle (BOP, cf. e.g.Bellman and Dreyfus 1959) in the following way. De-
note δk( j ) = maxj u

0 ,..., j u
k−1

P(Xo(t0) = j o
0 , . . . , Xo(tk) = j o

k , Xu(t0) = j u
0 , . . . , Xu(tk) = j ) for

k = 1 . . . , n. The Markov property of the complete chainX(ti ) = (Xo(ti ), Xu(ti )), i = 0 . . . , n, yields
the decomposition

P(Xo(t0) = j o
0 , . . . , Xo(tk) = j o

k , Xu(t0) = j u
0 , . . . , Xu(tk) = j )

= P(Xo(tk) = j o
k , Xu(tk) = j |Xo(tk−1) = j o

k−1, Xu(tk−1) = j u
k−1) x

P(Xo(t0) = j o
0 , . . . , Xo(tk−1) = j o

k−1, Xu(t0) = j u
0 , . . . , Xu(tk−1) = j u

k−1),

which implies the following BOP recursion fork = 1, . . . , n

δk( j ) = max
y

{δk−1(y)P(Xo(tk) = j o
k , Xu(tk) = j |Xo(tk−1) = j o

k−1, Xu(tk−1) = y)}

= max
y

{δk−1(y) exp[(tk − tk−1)Q]( j o
k−1,y),( j o

k , j )}. (3.7)

The above leads to the following simple algorithm for finding the maximizing path( j u
0 , . . . , j u

n )∗ in (3.6),
reminiscent of the “Viterbi path” method, a popular tool in the hidden Markov models theory (see, e.g.
Koski 2001, Chapter 14)

ALGORITHM 2 (BOP-based imputation for partially observed species)

1. Given j o at t = 0, initializeδ0( j ).
2. Fork = 1, . . . , n computeδk( j ) via (3.7) for all j s.t.δk−1( j ) > 0 and store the associated maxi-

mizer y∗
j,k.

3. Take( j u
n )∗ = argmaxj δn( j ), and recursively backtrack( j u

k−1)
∗ = y∗

( j u
k )∗,k for k = n, . . . , 1.
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4. EXAMPLES

We illustrate the performance of the Gibbs sampler algorithm described in Section2.1, with and without
data imputation via Algorithm2 from the previous section, using 2 examples: simulated data from the
SIRS model and real data obtained from the Center for Disease Control and Prevention (CDC) database
tracking the onset of the 2009 H1N1 pandemic in the United States.

4.1 Analysis of synthetic data from SIRS model

As the first example, we consider some synthetic data generated from the SIRS model (1.1). In the sim-
ulation, in order to make the stochastic effects more pronounced, we took a smaller population size than
that depicted in Figure1, with M = 25 and the initial number of infectives equal to 1(Y(0) = 1) and
setθθθ = (0.02, 0.2, 0.1). As readily seen in the trajectory data plot of Figure2, this SKN model fluctuates
much more heavily than the one depicted in Figure1, whereM = 100.

In order to assess the proposed method’s performance, we have simulated a single trajectory for the
SKN corresponding to the SIRS model given by (1.2) with T = 30, and, in various scenarios, collected
model species counts at the equidistant time intervals of lengthm = 1, 2, 3 (thus generating between 10
and 30 observed data points). The trajectory data are presented in Figure2. More extensive comparative
analysis for other trajectories, with different values ofM and with partially observed species only, are
given in Section C of the supplementary material(available atBiostatisticsonline). Overall, we did not
notice much dependence of the inference results on the particular trajectory selected. For the simulated
data, in order to illustrate the effects of trajectory undersampling and varying sample sizes, we have
divided the longitudinal observations into 3 batches of consecutive time points (10 time points in each
batch, marked by the vertical lines in Figure2). We then ran the Metropolis-Hestings step (MH) and
uniformization Gibbs samplers based on 5 data scenarios: (i) data from batch 1 only (first 10 observation
points), (ii) data from batches 1 and 2 (first 20 points), (iii) data from all batches combined (all 30 points
from the trajectory included), as well as (iv) data from all batches in 2-unit intervals (15 points,m = 2)
and (v) data from all batches in 3-unit intervals (10 points,m = 3). The observation batches are depicted
in Figure 2, and the corresponding numerical results of the Gibbs sampler algorithm (Algorithm1 in
Section2) are summarized in Table1. For comparison, we have also provided the results of the same
data analysis performed using the Gibbs sampler with nested MH, as described inBoysand others(2008)
and implemented in their “StochInf” software. In both cases, the values are based on the 5000 steps

Fig. 2. Datapoints along the trajectories for susceptibles, infectives, and removed (top, middle, and bottom curve at
the origin, respectively) in the SIRS model. Vertical lines indicate the data batches used for the 3 first dense grid
scenarios (m = 1) reported on in Table1. Circled values mark the data set used in fourth (sparse grid) scenario when
m = 3.
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Table 1. Posterior means (standard deviations) of the SIRS model parameters with M= 25 for the
uniformization Gibbs sampler (U) and the Gibbs sampler with nested MH for different data collection

scenarios and interval lengths (m)

Sampler type θ̂1 θ̂2 θ̂3

First 10 points(m = 1) U 0.0133 (0.0053) 0.1405 (0.0807) 0.0135 (0.0427)
MH 0.0113 (0.0046) 0.1135 (0.0653) 0.0007 (0.0066)

First 20 points (m = 1) U 0.018 (0.0039) 0.1443 (0.0415) 0.0662 (0.0379)
MH 0.0179 (0.0037) 0.1388 (0.0403) 0.061 (0.0364)

All 30 points (m = 1) U 0.0197 (0.0039) 0.1902 (0.0392) 0.1059 (0.0322)
MH 0.0199 (0.0039) 0.1885 (0.0394) 0.1059 (0.0318)

Sparse 10 points (m = 3) U 0.0178 (0.0041) 0.1762 (0.0433) 0.112 (0.0355)
MH 0.0562 (0.0134) 0.546 (0.1362) 0.3424 (0.1129)

Sparse 15 points (m = 2) U 0.0197 (0.0043) 0.1863 (0.0426) 0.1119 (0.0354)
MH 0.04 (0.0088) 0.3698 (0.085) 0.2364 (0.0695)

True values 0.02 0.2 0.1

of the Gibbs samplers after 1000 burn-in period, with the samplers convergence assessed via the usual
Gelman–Rubin statistic (Gelman and Rubin, 1992). The noninformative proper priors (as = 0.1 and
bs = 0.1) were used for allθs, in which case the posterior means of the marginals approximately coincided
with the MLEs. Note that the posterior marginal gamma distributions ofθθθ could be estimated, after the
usual thinning procedure (cf., e.g.O’Neill , 2002), by the sample from the converged Gibbs sampler. The
examples of such estimates with some further discussions are presented in Section C of the supplementary
material available atBiostatisticsonline.

The numerical values of the estimates for both Gibbs samplers in each data scenario are listed in the 3
last columns of Table1. As we may readily see, increasing the number of samples and the trajectory length
T generally decreases biases and standard errors of the Bayesian estimates, suggesting the consistency of
both sampler algorithms when using the sufficiently dense regular grid over largeT . However, we also
note the significant downward bias in the posterior mean estimates based on the data from the first batch
only. This behavior illustrates the problem of possible temporal bias caused by a too short sampling inter-
val, a phenomenon not uncommon in longitudinal analysis with dependent data (Andersson and Britton,
2000b). As to comparing the 2 samplers’ performance, note that whereas for the dense grid scenarios
(m = 1), both seem to produce very similar results, the slower convergence of the MHA-based Gibbs
sampler is clearly visible for sparse data (m = 2, 3), where a much larger number of hidden reactions
needs to be sampled in-between observations. More details on this convergence rate comparison, along
with further examples, are provided in Section C of the supplementary material available atBiostatistics
online.

4.2 Analysis of data from H1N1 pandemic

In order to illustrate the method in a more realistic setting, we have also analyzed data from the recent
influenza A/H1N1 pandemic. For the benefit of the journal readership, we briefly recall some basic facts.
Influenza A/H1N1 virus is a subtype of influenza “A” virus, and in 2009 was the most common worldwide
cause of human influenza (flu). In April 2009, an outbreak of influenza-like illness occurred in Mexico,
and the US CDC reported several cases of novel A/H1N1 influenza, dubbed the “swine flu” by the media,
in the southwestern United States. By April 24, 2009, it became clear that the outbreak in Mexico and
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the confirmed cases of influenza A in the southwestern United States were related (Lipsitch and others,
2009) and caused by a novel A/H1N1 influenza strain, at which time a national-level daily monitoring of
A/H1N1 cases was undertaken. The disease was seen to spread very rapidly, with the number of confirmed
cases in the United States rising from 20 on April 26 to 4298 on May 14 (Garskeand others, 2009).

In view of the great interest in modeling spread of H1N1, in addition to analyzing the synthetic data
from the SIRS model (1.1), we have also applied our inferential method to a simplified stochastic model
of A/H1N1 influenza early pandemic, using the data collected by the CDC and available through the
resources on their websitehttp://www.cdc.gov/h1n1flu/. The specific data set we have used consists of
daily counts of confirmed new A/H1N1 influenza cases in the US population, dating from April 26, 2009
until May 14, 2009, at which date the nationwide tracking of individual influenza cases was suspended.
The data set is presented for reference in Table2.

Due to a large number of susceptibles at the early stages of H1N1, the simplified (local) SIRS model
may be used as an approximation of the epidemic data presented in Table2. This simplified model assumes
that the susceptible population is approximately constant as compared to infectives, that is the increase
in the number of infections (and removals) does not, in any meaningful way, change the number of sus-
ceptibles in the population. Whereas the actual counts of infectives are unknown, the daily data in Table
2 may be considered as the counts of “symptomatic” infectives. The simplified SIRS model considers
therefore the interactions between 2 infective species types: the “latent” (active) and the “symptomatic”
(quarantined). Comparing with (1.2), the former plays the role of an “infective” (Y) and the latter is the
surrogate for a “removed” (Z). Denoting thus for simplicity, these species byY, Z, respectively, the model
then becomes

Y
h1−→ 2Y; h1 = h1(Y) = θ1Y

Y
h2−→ Z; h2 = h2(Y) = θ2Y

Z
h3−→ ∅; h3 = h3(Z) = θ3Z. (4.1)

Assuming that the process which generated the count data in Table2 may be approximated by the above
SKN, the inferential problem forθθθ = (θ1, θ2, θ3) is seen as the partially observed species problem (Sec-
tion 3.2) amenable to the analysis via Algorithm1 of Section2, with the unobserved{Xu(ti ) = Yi }19

i =1
values imputed via BOP (Algorithm2 of Section3). Note thatθ2 may be now interpreted as the rate of
H1N1 latency (the serial interval), andθ3 as the rate of recovery. The basic reproduction number (or the
epidemic threshold, see Section1) is in this caseR0 = θ1/θ2.

In our analysis, we first preprocessed the data in Table2 via local
“exponential smoothing,” rounding to the nearest integer values. We then assumed that such preprocessed
data were approximately free of miscounts. For better numerical stability in calculating the generator
matrix Q (see, Section3), we also found it convenient to rescale the time unit so as to havea priori
θ3 ∼ 0(16, 16), that is to assume that the prior recovery rate follows gamma distribution with unit
mean and standard deviation of 1/4. This simplification allowed us to express the remaining parame-
ters in relation to the averagea priori recovery rate from the A/H1N1 virus (which is assumed to be
known).

Table 2. Daily counts of the confirmed number of H1N1 cases in the continental United States from
April 26, 2009 until May 14,2009

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819

Count 20 40 64 91 109 141 160 226 279 403 642 896 1639 2254 2532 2600 3009 33524298
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As in the previous example, the data analysis was performed based on 5000 iterations of the Gibbs
sampler (excluding the 1000 iterations burn-in period), with the posterior values of the estimates found
as independent gamma variates with meansθ̂θθ = (4.38, 3.36, 0.90) and standard deviationsSD(θθθ) =
(1.97, 1.29, 0.36). The results of the analysis based on the posterior distributions are presented in
Figure 3. The 2 top panels show the posterior distributions of the reproduction numberR0 = θ1/θ2
(left) as well as the recovery rateθ3 (right). The 2 bottom panels summarize the cross-sectional and
the longitudinal stochastic trajectory analysis. The bottom-left panel presents the posterior daily cross-
sectional distributions of the “latent” infectives, as obtained from Algorithm2, overlaid with the raw
and the smoothed “symptomatic” infective counts{Zi } presented as solid-dot and dash-dot lines. The

Fig. 3. Results of the H1N1 model analysis. Top panel left: the posterior distribution of the reproduction number
R0 = θ1/θ2. Top panel right: the posterior distribution ofθ3 or the rate of conversion from “latent” to “symptomatic”
infectives (the serial interval). Bottom panel left: model predicted posterior cross-sectional distributions of the time-
specific counts of “latent” infectives (bar plots) along with observed and smoothed counts (bullets) of H1N1 cases
in the continental United States during the onset of the epidemic. Bottom panel right: goodness of fit analysis. The
comparison of the observed data with the model predicted 95% posterior credibility bounds (dashed lines) along with
the cross-sectional distributions of the observed counts generated from the model with estimated parameters.
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bottom-right panel presents the goodness of fit analysis, comparing the raw-observed and the
smoothed-observed counts of “symptomatic” infectives with their cross-sectional distributions obtained
by simulating the posterior model (4.1). The longitudinal, model predicted 95% credibility envelopes are
also drawn. As we may readily see, the model seems to fit reasonably well, showing good agreement be-
tween the observed data (marked by the dots) and the prediction 95% credibility envelopes (marked by the
dashed lines). We note that, as expected (see, e.gBalcanand others2009), with the increase in the number
of infectives, the uncertainty in the model prediction of the absolute species counts also increases. It is im-
portant to note that the analysis presented here is very different from simply fitting the exponential curve
to data in Table2, in which case, in general, neither the counts of cross-sectional distributions nor the cred-
ibility bounds or probability of the disease persistence would be available. From our analysis, it follows in
particular (see the top-left panel distribution of reproductive number) that there was about 30% chance
of the epidemic dying out in its early stages (as represented by the density mass left of the vertical line
drawn at one).

5. SUMMARY AND CONCLUSIONS

Stochastic epidemic modeling techniques are increasingly relevant in epidemiology due to their potential
for more accurate predictions of epidemic trends, as illustrated here with the H1N1 data. The need for
developing reliable and efficient statistical methods for data fitting in such cases is very obvious, and a
current paper makes a step toward addressing it. Historically, infectious disease spread through population
has been modeled using the deterministic dynamics of the ODEs, but such deterministic approximation
may often be too simplistic, particularly in the early stages of epidemics or when studying the effects of
defensive actions, like vaccinations or quarantines. The stochastic versions of the classical ODE epidemic
models are appealing, but they are computationally more demanding than their deterministic counterparts
and also considerably more difficult to fit to the experimental data. In this paper, we have focused on
a particular class of stochastic models, referred to as the SKNs. As we have shown herein, SKNs may
be used to obtain stochastic versions of the classical SIR epidemic models as well as some new ones,
like, the early H1N1 epidemic. In case of the completely observed trajectory, the statistical inference for
SKN’s parameters is seen to be straightforward. In most cases, the complete trajectory is not available
however, and the missing data need to be reconstructed given the available information, typically via the
familiar Gibbs sampler procedures. Whereas the Gibbs sampler methods were applied to this problem
before, in most circumstances they had to resort to techniques unreliable in data-poor settings, like the
Metropolis–Hastings-within-Gibbs sampler. As we have illustrated, if at least some longitudinal data from
the model variables are available, the so-called uniformization method may be applied instead, in order
to obtain the correct samples of the hidden trajectories (i.e. the unobserved states of the process). The
resulting sampling method, conditionally on the parameters, uses no MCMC approximation. This allows
one to build a very efficient Gibbs sampler, which produces reliable rate estimates, even for systems
with relatively large stochastic noise (e.g. small population epidemics). Moreover, as also illustrated, the
uniformization-based approach naturally and efficiently incorporates the Bellman dynamical optimization
principle into the sampling algorithm, which makes it also applicable to data with only partially observed
species.

SUPPLEMENTARY MATERIAL

Supplementary material is available athttp://biostatistics.oxfordjournals.org.
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