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Summary

We derive an estimator of the asymptotic variance of both single and multiple imputation

estimators. We assume a parametric imputation model but allow for non- and semipara-

metric analysis models. Our variance estimator, in contrast to the estimator proposed by

Rubin (1987), is consistent even when the imputation and analysis models are misspecified

and incompatible with one another.

Some Key Words: Asymptotic Variance; Influence Function; Missing Data.

1. Introduction

In both observational and randomised studies, data are often missing either by chance

or design. In recent years, the parametric multiple imputation method proposed by Rubin

(1978, 1987) has become one of the most popular methods for handling missing data. His

original goal was to impute m completed datasets for public usage in the context of public

surveys in which a response rate of less than 60 percent for any variable was rare. Rubin

(1987, 1996) envisaged the imputer as a trained statistician familiar with state-of-the-art

missing data methods, knowledgeable about the reasons for non-response, and with possible

access to additional confidential information, such as exact addresses and neighbourhood

relationships. The user was conceptualised as a non-statistician who would only have access

to standard complete data analysis models and software. As a result of its ease of implemen-

tation, Rubin’s method is now also being used in settings where the fraction of missing data

is large and the user and imputer are the same individual who chooses multiple imputation

because of its convenience. Examples include the papers by Little & Yao (1996), Paik (1997),

Taylor et al. (1990), Tu, Meng & Pagano (1993) and Clayton et al. (1998).



Unfortunately, Fay (1992, 1994, 1996), Meng (1994), Rubin (1996) and Clayton et al.

(1998) have shown that, in certain settings, the variance estimator Σ̂Rubin proposed by Rubin

will be inconsistent with upward bias, resulting in conservative confidence intervals whose

expected length is longer, and occasionally much longer, than necessary. In § 4 we derive a

general formula for the large sample bias of Σ̂Rubin which not only confirms the findings of the

above authors but also indicates there are other scenarios under which Σ̂Rubin is downwardly

biased, resulting in anti-conservative confidence intervals whose actual coverage rates are less

than nominal.

The purpose of this paper is to provide a variance estimator which overcomes the defi-

ciencies of Rubin’s. The price we pay for the better performance of our variance estimator is

a slight increase in computational complexity. However, with small modifications to existing

complete data software, we show that this increased computational burden can be made

invisible to the user.

Wang & Robins (1998) have recently proposed a variance estimator for imputation esti-

mators under the assumption that the imputation and analysis model are the same correctly

specified parametric model. This paper extends their results by allowing (i) for misspecifi-

cation and incompatibility of the models and (ii) for non- or semiparametric analysis proce-

dures. One final point is that the method we propose does not require multiple imputations.

It works perfectly well if one decides to fill in the missing data with a single imputation,

although this may not be the most efficient choice except when computational and data

storage resources severely limit one’s options.

2. Fully parametric probability model imputation

In this section, we suppose the imputer uses a fully parametric probability model. Let

Y denote the complete data, which may not be not fully observed. Rather, we assume

we observe n independent and identically distributed copies (Y i
R, Ri) of (YR, R) where YR =

cR (Y ) is a known function, that is, a coarsening cR (·) of Y depending on R, where R indexes

which part of Y is observed. Missing data is a special case of coarsened data in which each

univariate component Yk of Y = (Y1, . . . , Yp)
′ is either observed exactly or not at all. With

missing data, we let R = (R1, . . . , Rp)
′ be a vector of 0’s and 1’s satisfying Rk = 1 only if

Yk is observed. We assume the imputer models the joint density of (Y,R) as belonging to a

parametric family of densities, {f (Y,R; ψ) ; ψ ∈ Ψ ⊂ Rq}. Note that this model allows for

non-ignorable missing data mechanisms (Rubin, 1987, p. 203).
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To avoid extraneous issues, we assume that (i) the observed data maximum likelihood

estimator ψ̂ is the unique solution to the observed data score equation,
∑

Siobs (ψ) = 0, where

Sobs (ψ) = Eψ {S (ψ) | YR, R} , S (ψ) = s (Y,R; ψ) = ∂ log f (Y,R; ψ) /∂ψ, (ii) ψ̂ converges

in probability to a limit ψ∗, and (iii) ψ̂ is an asymptotically linear estimator of ψ∗ with

influence function

D (ψ∗) = I−1
obsSobs (ψ∗) , (1)

where

Iobs = −E {∂Sobs (ψ) /∂ψ′}ψ=ψ∗ .

That is,

n1/2
(
ψ̂ − ψ∗

)
= n−1/2

∑
i

Di (ψ∗) + op (1) , (2)

so that n1/2(ψ̂ − ψ∗) is asymptotically normal with mean zero and covariance matrix

Λ (ψ∗) = E
{
D (ψ∗)⊗2} = I−1

obsE
{

S
⊗2

obs (ψ∗)
}

I−1
obs , (3)

where A⊗2 = AA′. We do not assume that the model f (Y,R; ψ) is correctly specified. That

is, there may be no value of ψ for which f (Y,R; ψ) is the true joint density f0 (Y,R) of

(Y,R).

We now describe the procedure for estimation by imputation. Suppose, in the absence of

missing data, the user would report an estimator β̂c that solves the complete data estimating

equation

0 =
∑

U i (β) , (4)

where U i (β) = u {Y i; β}. For example, let Y = (Z,X ′,W ′)′ and u (Y, β) = (Z − β′X) X.

Then β̂c is the ordinary least squares estimator of the regression of Z on X, ignoring the

data on W . Throughout we suppose the user has available an off-the-shelf commercial

software package that computes β̂ from n independent observations Y i, i = 1, . . . , n, and

has some ability to do simple matrix calculations. In general,
∑

U i (β) may be a complete

data estimating equation under a non-, semi- or parametric statistical model that (i) may

be misspecified and (ii) may have no connection at all and indeed may be incompatible with

the imputer’s model f (Y,R; ψ).
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In the presence of missing data, the imputer, for each subject i, imputes m completed data

vectors Y ij = (Y ij

R
, Y i

R), j = 1, . . . ,m, of Y . Each Y ij

R
≡ Y ij

R
(ψ̂) is drawn independently from

the conditional density f(YR | Y i
R, Ri; ψ̂) of YR given the observed data (Y i

R, Ri) evaluated at

the maximum likelihood estimator ψ̂. The user then reports the estimator β̂ solving

0 =
∑

U
i
(
ψ̂, β

)
, (5)

where U
i
(ψ̂, β) = m−1

∑
j U ij(ψ̂, β) and U ij(ψ̂, β) = u{Y ij(ψ̂), β}. Note that, for a subject i

without missing data, Y ij(ψ̂) ≡ Y i and U ij(ψ̂, β) ≡ U i(β), for all j. To compute β̂, the user

simply inputs the mn observations {Y ij(ψ̂)} as ‘independent’ observations to an off-the-shelf

software package. We will assume that, with probability tending to 1, equation (5) has a

unique solution β̂ which converges to a limit β∗.

The following theorem provides the asymptotic distribution of n1/2(β̂ − β∗). In the the-

orem and elsewhere, for any H = h
(
R, YR, Y 1

R
, Y 2

R
, . . . , Y m

R

)
, E (H) denotes the expectation

of H with respect to the density f(R, YR, Y 1
R
, . . . , Y m

R
) =

∏
j f(Y j

R
| YR, R; ψ∗)f0(YR, R),

where f0(YR, R) is the true marginal density of (YR, R).

THEOREM 1. Under the regularity conditions given in the Appendix, n1/2(β̂ − β∗) is

asymptotically normal with mean zero and variance Σ = τ−1 Ω (τ ′)−1, where

τ = −E
{
∂U (ψ∗, β) /∂β′

}
β=β∗

,

Ω = E
{
U (ψ∗, β∗)⊗2}+ κΛ (ψ∗) κ′+ E

[
κD (ψ∗) U (ψ∗, β∗)′ +

{
κD (ψ∗) U (ψ∗, β∗)′

}′]
,

κ = E
{
U (ψ∗, β∗) Smis (ψ∗)′

}
, and Smis (ψ∗) = ∂ log f (Y | YR, R; ψ) /∂ψ |ψ=ψ∗.

Note that, in Theorem 1, β̂ is centred around its probability limit β∗. As discussed further

in § 6, Theorem 1 is totally agnostic as to bias in the sense that it is true regardless whether

or not β∗ equals the probability limit β0 of β̂c that would be obtained in the absence of

missing data. A non-zero difference β∗− β0 implies that the imputation model f (Y,R; ψ) is

misspecified. The results in Theorem 1 suggest the following consistent estimator Σ̂ of Σ.

COROLLARY 1: Σ̂ = τ̂−1 Ω̂ (τ̂ ′)−1 is a consistent estimator of Σ, where

τ̂ = τ̂
(
ψ̂, β̂

)
= −n−1

n∑
i=1

∂U
i
(
ψ̂, β

)
/∂β′ |β=β̂,

Ω̂ = Ω̂
(
ψ̂, β̂

)
= Ω̂c + κ̂Λ̂

(
ψ̂
)

κ̂′ + n−1
n∑
i=1

[
κ̂D̂i

(
ψ̂
)

U
i
(
ψ̂, β̂

)′
+

{
κD̂i

(
ψ̂
)

U
i
(
ψ̂, β̂

)′}′]
,

Ω̂c = Ω̂c

(
ψ̂, β̂

)
= n−1

n∑
i=1

U
i
(
ψ̂, β̂

)⊗2

, κ̂ = κ̂
(
ψ̂, β̂

)
= (nm)−1

n∑
i=1

m∑
j=1

U
ij
(
ψ̂, β̂

){
Sijmis

(
ψ̂
)}′

,
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Sijmis

(
ψ̂
)

= ∂ log f
{

Y ij
(
ψ̂
)
| Y i

R, Ri; ψ
}

/∂ψ |ψ=ψ̂ , Λ̂
(
ψ̂
)

= n−1
n∑
i=1

D̂i
(
ψ̂
)⊗2

,

D̂i
(
ψ̂
)

= −
{

n−1
n∑
i=1

∂Siobs

(
ψ̂
)

/∂ψ′
}−1

Siobs

(
ψ̂
)
.

Note that, for a subject i without missing data, Sijmis(ψ) ≡ 0, for all j. Our results are

completely non-parametric in the sense that our variance estimator is consistent whatever

be the true but unknown joint distribution of the observed data (YR, R). Wang & Robins

(1998) provided an alternative consistent estimator for the asymptotic variance of β̂ in the

special case in which (i) the model f (Y,R; ψ) is correctly specified and (ii) U (β) = S (ψ)

and β = ψ. When either (i) or (ii) is false, the variance estimator of Corollary 1 must be

used, even when β̂ is asymptotically unbiased in the sense that β∗ = β0.

It follows from the Corollary that a (1− α) large sample confidence interval for c′β∗ for

a given constant vector c is c′β̂ ± z(1−α/2)n
−1/2{c′Σ̂c}1/2, where zα is the α-quantile of the

standard normal distribution. The asymptotic coverage of this interval is 1−α, so it is valid

without being conservative. In the absence of bias, this interval is also a (1− α) large sample

confidence interval for c′β0.

3. Software needed to compute the variance estimator Σ̂

We now discuss the software needed to compute Σ̂ = τ̂−1 Ω̂ (τ̂ ′)−1. When the user inputs

the mn observations {Y ij(ψ̂)}, as ‘independent’ observations, τ̂−1/(nm) will most often be

output by the user’s software package as a component of the ‘variance’ of β̂. For example,

if, as in generalised estimating equation models, the software outputs a ‘robust’ sandwich

variance estimator, then τ̂−1/(nm) will be the ‘outside’ of the sandwich.

Thus it remains to compute Ω̂. In order to do so, one needs the 2q + q∗ variables

{Sijmis(ψ̂)′, D̂i(ψ̂)′, U ij(ψ̂, β̂)′}, where q is the dimension of ψ and q∗ is the dimension of β.

The additional variables {Sijmis(ψ̂)′, D̂i(ψ̂)′} can be appended by the imputer at the end of

each of the nm rows Y ij(ψ̂) of the observation matrix. These additional variables do not

depend on the specific analysis chosen by the user, and are offered by the imputer as the

essential information about his/her model which is needed to calculate Σ̂. When the assumed

imputation model is simple, Sijmis and D̂i can often be obtained analytically. In any case, they

are readily available from an estimate of Siobs, which can always be obtained by a numerical

or Monte Carlo approximation to Eψ̂{s(Y,R; ψ̂) | Y i
R, Ri} since Sijmis(ψ) = Sij(ψ) − Siobs(ψ)

(Meilijson, 1989). Furthermore, it will be computationally convenient for the imputer to
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supply separately the matrix Λ̂(ψ̂), rather than to require the user to calculate it from

the D̂i(ψ̂).

The q∗ variables U ij(ψ̂, β̂) are supplied by the user and depend on the user’s choice

of analysis procedure. Unfortunately, most off-the-shelf software packages will not, upon

convergence, output a dataset containing the nm individual contributions, U ij(ψ̂, β̂), to the

estimating equation 0 =
∑∑

U ij(ψ̂, β̂). However, the users can often calculate the U ij(ψ̂, β̂)

for themselves with a few lines of additional programming. Specifically, in the aforementioned

linear regression example, most software packages will output a dataset of predicted values

β̂′X ij corresponding to each of the nm observations Y ij(ψ̂) = Y ij = (Zij, X ij′,W ij′)′. It

is then straightforward to compute U ij(ψ̂, β̂) = (Zij − β̂′X ij)X ij. Finally, the simple al-

gebra given in Corollary 1 can then be used to compute Σ̂ = τ̂−1 Ω̂ (τ̂ ′)−1 for the dataset

{Y ij(ψ̂)′, D̂i(ψ̂)′, Sijmis(ψ̂)′, U ij(ψ̂, β̂)′}. We hope that, in the future, software developers will

create packages that not only output the contributions U ij(ψ̂, β̂) but also include a small

program to compute Ω̂.

Clayton et al. (1998) derive an alternative analytic estimator for the asymptotic variance

of imputation estimators. However, their variance estimator is not expressed in a form that

lends itself to the creation of software that makes the calculation of the estimator essentially

invisible to the user.

4. Large sample bias of Σ̂Rubin

In Theorem 2 below, we characterise the large sample bias of Rubin’s variance estima-

tor Σ̂Rubin. Recall that β̂c is the solution to (4) were there no missing data. In that case,

n1/2(β̂c−β0) is asymptotically normal with mean zero and variance that can be consistently

estimated by the sandwich variance formula V̂ (ψ̂, β̂c) = τ̂(ψ̂, β̂c)
−1 Ω̂c(ψ̂, β̂c) {τ̂(ψ̂, β̂c)

′}−1.

Rubin (1987, p. 76) proposed an estimator Σ̂Rubin for the variance of the multiple im-

putation estimator β̂Rubin = m−1
∑

j β̂cj, where β̂cj is the value of β̂c based on the jth

completed dataset, and the imputed values for the jth completed dataset are drawn from

f(YR | YR, R; ψj), with ψj drawn from the posterior distribution of ψ under a Bayesian

model. Specifically, Σ̂Rubin = V̂• + (1 + m−1)B, where V̂• = m−1
∑

V̂j, V̂j = V̂ (ψj, β̂cj)

and B = n(m − 1)−1
∑

j(β̂cj − β̂Rubin)
⊗2. The following theorem restricts consideration to

the situation in which the number of imputations m is infinite. Meng (1994) and Rubin

(1996) also restricted their theoretical calculations to the infinite-m case. By arguments

analogous to those in Wang & Robins (1998), it can be shown that, when the number of
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imputations m is infinite, the estimator β̂Rubin and the estimator β̂ solving (5) are asymp-

totically equivalent with asymptotic mean β∗ and the asymptotic variance, Σ, specified in

Theorem 1. In contrast, for finite m, β̂ and β̂Rubin are asymptotically normal with the same

mean β∗; however, the asymptotic variance Σ of β̂ is strictly smaller than that of β̂Rubin. In

the infinite-m case, the large sample bias of Rubin’s variance estimator Σ̂Rubin is defined to

be ΣRubin − Σ, where ΣRubin is the limit of Σ̂Rubin, as n,m go to infinity.

THEOREM 2. Under the regularity conditions given in the Appendix, in the infinite-m

case, ΣRubin − Σ = τ−1
[
G + G′ + κI−1

obs

{
Iobs − E

(
S
⊗2

obs

)}
I−1
obsκ

′
]

(τ ′)−1, where G =

E [var {U (ψ∗, β∗) | R, YR}]−κE
{
D (ψ∗) U (ψ∗, β∗)′

}
, and E

(
S
⊗2

obs

)
= E

{
S
⊗2

obs (ψ∗)
}
.

Remark: Note that, if the imputation model is correctly specified then (i) Iobs will equal

E(S
⊗2

obs) and the third term in the square braces is zero, and (ii) if the user chooses

β = ψ and U (β) = S (ψ), so that the user computes the maximum likelihood estimator

under the imputer’s model, then G is zero and Rubin’s variance estimator is without

large sample bias (Meng, 1994; Wang & Robins, 1998).

Example 1. We consider a simple hypothetical example which illustrates that Rubin’s vari-

ance estimator may be either upwardly or downwardly biased even when β̂ is asymptotically

unbiased in the sense that β∗ = β0. Suppose there are two classes at a daycare centre. The

relevant variables are the classroom indicator A, with 0 denoting infants and 1 denoting

toddlers, the age X of the children, the child’s score Z on a test of gross motor skills and the

indicator variable R, that takes the value 1 if Z is observed and is 0 otherwise. A fraction

π of the toddlers are missing Z because of illness on the day the test was given. There is no

missing data among the infants.

The data are generated as follows. For i = 1, . . . , n, (Ri, Y i) = (Ri, Ai, X i, Zi) is inde-

pendent, identically distributed realisation of (R,A,X,Z); pr(A = 0) = 2/3, so there is a

two-to-one infant to toddler ratio; [X | A = 0] is Un[0.1, 0.8] and [X | A = 1] is Un[0.8, 2.0];

Z | A,X ∼ N
(
βX, σ2Xη∗A

)
; and pr(R = 0 | X,A,Z) = Aπ, so that missingness among the

toddlers is completely at random.

The imputer specifies that the data in the toddlers are missing completely at random

and that Z | A,X ∼ N (βX, σ2Xη) , where η is regarded as known and (β, σ2) are unknown

parameters to be estimated. Thus, the imputer’s model is correctly specified when η = η∗0

= η∗1. The imputer fits his/her model to the data on all the children.
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The user’s procedure is to fit the no-intercept regression model Z = βX + ε by ordinary

least squares through the origin. In this example, β∗ = β0 = β.

Scenario 1. In our first scenario, in order to estimate β for the toddlers, the user fits only

the completed data in the toddlers, ignoring the data on the infants. Table 1 reports the

infinite-m relative bias (ΣRubin − Σ) /Σ as a function of π when η = η∗0=η∗1 = 0, so that the

imputer’s and user’s models are both correct. This example is similar in spirit to the example

discussed in Meng (1994). As in Meng (1994), Rubin’s variance estimator is upwardly biased.

Scenario 2. In our second scenario, in order to estimate β for all children, the user fits the

completed data on both toddlers and infants by ordinary least squares through the origin.

The imputer continues to assume the errors are homoscedastic, that is, η = 0. However,

η∗0 = η∗1 = 1, η∗0 = η∗1 = −1 or η∗0 = 2 and η∗1 = 1. Note that, since η∗ 6= η, the imputer’s

model is misspecified. Reading from Table 1, we observe that Rubin’s variance estimator

can suffer from substantial downward bias.

Scenario 3. Our final scenario differs from Scenario 2 only in that now η = η∗0 = η∗1, with

all equal to either −1 or 1, so that the imputer’s model is again correct. Even when the

imputer’s model is correct, Rubin’s variance estimator can still be downwardly biased when

η = η∗0 = η∗1 = −1, although the magnitude of the bias is much smaller than that in Scenario

2.

We conducted a small simulation study under Scenario 2 to determine whether the large

sample downward bias of Σ̂Rubin reported for Scenario 2 in Table 1 is also present in small

to moderate size samples. In our simulation study, we chose n = 150, β = 1, σ2 = 1, η∗0 = 2,

η∗1 = 1, η = 0 and π = 0.6. The number of completed datasets m was either 5 or 20. Results

for the estimators β̂ and Σ̂ and the nominal 95% interval β̂ ± 1.96Σ̂1/2 are reported in the

rows ‘R-W’. Results based on β̂Rubin and Σ̂Rubin and the nominal 95% t-interval proposed

by Rubin (1987, p. 77) are reported in the row ‘Rubin’. To carry out Rubin’s procedure,

it was necessary to specify a prior distribution for the unknown parameters (β, σ2) of the

imputer’s model. We chose independent flat priors on β and log σ2 as suggested by Rubin

(1987, p. 166). Reading from Table 2, we observe that Σ̂Rubin has a large downward bias,

underestimating the simulation variance of β̂Rubin by over 50%. As a consequence, Rubin’s

interval estimator undercovers. Note also that both β̂ and β̂Rubin are essentially unbiased

for β = 1. Furthermore, as expected, when m = 5, β̂Rubin is slightly less efficient than β̂.

Finally, because the user’s model is mispecified, the variance estimator of Wang & Robins

(1998) would also be biased since it fails to properly account for heteroscedacticity.
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5. A conditional imputation model

So far, we have assumed that the imputation model was a fully parametric probability

model for the joint distribution of (Y,R). However, since all imputations are drawn from the

law of Y given YR and R, we can in fact specify a parametric model f(Y | YR, R; ψ) for the

law of Y given YR and R, and leave the rest of the joint distribution of (Y,R) unspecified.

In this approach, which was suggested by Clayton et al. (1998), we do not even require that

the model f(Y | YR, R; ψ) be internally consistent in the sense that there exists some single

probability law for (Y,R) that has the implied functional form f(Y | YR, R; ψ), as (YR, R)

varies. Indeed, all that is required is some method for constructing an estimator ψ̂ of ψ from

the observed data so that we can simulate from f(Y | YR, R; ψ̂). Specifically, we shall assume

that we have available an estimator ψ̂ obtained by solving some set of estimating equations

based on the observed data (Ri, Y i
R, i = 1, . . . , n) and that (i) ψ̂ converges to a limit ψ∗ and

(ii) there exists a zero mean finite variance influence function of ψ̂, D(ψ∗). Then Theorem 1

and its corollary remain true, except that the influence function of ψ̂, D(ψ∗), will no longer

be obtained based on the right-hand sides of (1) and (2). Rather, if ψ̂ solves

0 =
n∑
i=1

Mi (ψ) , (6)

where M(ψ) = m(YR, R, ψ), then by a Taylor expansion we obtain

D (ψ∗) = [−E {∂M (ψ) /∂ψ′}]−1
ψ=ψ∗ M (ψ∗) , D̂

(
ψ̂
)

= {−n−1
∑

i ∂Mi (ψ) /∂ψ′}−1

ψ=ψ̂
M
(
ψ̂
)

.

To make the above concrete, we shall use data given in Clayton et al. (1998), where the

aforementioned conditional imputation approach was applied, to illustrate the performance

of the proposed consistent variance estimator. This dataset, which was referred to as dataset

1 in Clayton et al. (1998), was made available to us by David Clayton. Clayton et al. (1998)

also analysed this dataset using a conditional imputation approach. The complete data are

Y = (D0, D1, S0, S1, X), where, for j = 0, 1, Dj recorded a subject’s dementia status at time

j as diagnosed by a physician, Sj was a subject’s mini-mental status exam score at time j

and X=( 1,sex,age′) ′, with sex indicating male/female and age being a vector of five dummy

variables encoding six age categories. Following Clayton et al. (1998), our analysis model is

a linear logistic model for development of dementia between times 0 and 1 as a function of

the regressors X, that is,

pr (D1 = 1 | X,D0 = 0) = expit (β′X) where expit (u) = exp(u)/ {1 + exp(u)} .

9



Thus U(β) = {D1− expit(β′X)}X(1−D0) is the usual score function for logistic regression

restricted to subjects without dementia at time zero. In dataset 1, Y was not fully observed;

of the ten thousand study subjects, the proportions of subjects missing both D1 and D0,

missing D1 alone and missing D0 alone are, respectively, 55, 18 and 19 percent. The observed

data were R = (R0, R1), YR = (R0D0, R1D1, X, S), where S = (S0, S1)
′ and Rj = 1 if Dj was

observed and Rj = 0 otherwise.

We used Clayton et al.’s conditional imputation model f(Y | R, YR; ψ) for the above

three patterns of missing data; for j = 0, 1,

f (Dj | Rj = 0, R1−j = 1, D1−j, X, S; ψ) = gj (Dj, X, Sj, ψ) ,

where gj(1, X, Sj, ψ) = expit(ψ′Wj) with Wj = {X ′, jX ′, (age× sex)′, j(age× sex)′, Sj, S
2
j }′,

and age×sex encoding the gender-age interaction. In addition, for k, ` = 0, 1,

f (D0 = k,D1 = ` | R0 = 0, R1 = 0, X, S) = g0 (k,X, S0, ψ) g1 (`,X, S1, ψ) .

We estimated ψ from the complete cases, with R0 = R1 = 1, by logistic regression, treating

each subject’s two outcomes D0 and D1 as independent. That is, in (6), we chose M(ψ) =

M0(ψ) + M1(ψ), where Mj(ψ) = R0R1{Dj − expit(ψ′Wj)}Wj. We then imputed m = 5

completed datasets from f(Y | R, YR; ψ̂).

Following Clayton et al. (1998), we shall focus on the sex effect βsex. The estimated

standard error of β̂sex based on Corollary 1 was 0.1639. It is of some interest to compare

this with the nonparametric bootstrap estimate of the standard error of β̂sex (Efron & Tib-

shirani, 1993, Ch. 6; Efron, 1994), since, like our standard error estimator, the bootstrap

estimator is consistent for the asymptotic standard error of n1/2(β̂sex − β∗sex) regardless of

model misspecification or incompatibility.

The bootstrap estimate of the standard error of β̂sex based on 200 bootstrap resamples of

the 10,000 observed data vectors was 0.1652, which, as predicted by our asymptotic theory,

was similar to our analytic estimate of 0.1639. Indeed, the nonparametric bootstrap variance

estimator could be an alternative to our analytic estimator. However, as pointed out by

Rubin (1994, 1996), the nonparametric bootstrap estimator is much more computationally

intensive, especially in handling a dataset as large as the current one, and this computational

burden is on the users rather than on the imputer.

6. Discussion

10



We have derived an estimate of the asymptotic variance of the imputation estimator β̂

that is consistent even when the imputation analysis models are misspecified and incompati-

ble with one another. It follows that in large samples the associated Wald interval estimator

will cover the limit β∗ of β̂ at its nominal rate. An important limitation of our approach as

well as those of Rubin and Clayton et al. is that, if the parametric imputation model is mis-

specified, then the parameter β0 that would be estimated in the absence of missing data may

greatly differ from β∗. In that case, β∗ may be of no scientific interest and our Wald intervals

will fail to cover β0 at the nominal rate. For this reason, one should consider, when pos-

sible, alternative estimators that are more robust than a parametric imputation estimator.

For example, when the only source of missing data is by design and thus the non-response

probabilities are known, the locally semiparametric efficient augmented inverse probability

of response weighted estimators described by Robins & Wang (1998), Robins & Ritov (1997)

and Robins, Rotnitzky & Zhao (1994) guarantee asymptotic unbiasedness, while often vastly

improving upon the poor efficiency of the estimator of Horvitz & Thompson (1952).

Indeed, even when missingness is unplanned rather than by design, locally semiparametric

efficient augmented inverse probability of response weighted estimators are still considerably

more robust than parametric multiple imputation estimators. Specifically, if non-response is

non-ignorable, consistency of a locally semiparametric efficient estimator only requires a cor-

rectly specified model for the non-response probabilities (Rotnitzky & Robins, 1997; Robins,

1997; Robins, Rotnitzky & Scharfstein, 1999). In contrast, for consistency, a parametric

multiple imputation estimator additionally requires a correctly specified parametric model

for the marginal distribution of the complete data. If non-response is ignorable, a locally

semiparametric efficient estimator is doubly protected; that is, it is consistent if either a

model for non-response or a parametric model for the complete data can be correctly speci-

fied. On the other hand, consistency of a parametric multiple imputation estimator requires

correct specification of a parametric model for the complete data (Scharfstein, Rotnitzky &

Robins, 1999).

Thus, to avoid bias, one should always be cautious in the use of parametric imputation

models. However, in cases in which the variance of the ‘inverse probability’ weights is

very large, the sampling distribution of a locally semiparametric efficient augmented inverse

probability of response weighted estimator can be markedly skew and highly variable, and a

parametric imputation estimator may be preferred. Since the specification of the parametric

imputation model f(Y,R; ψ) cannot be fully checked from the observed data, we would

11



recommend a sensitivity analysis in which the data are reanalysed under a number of different

models f(Y,R; ψ). Finally, a small note of caution: as with any procedure motivated by large

sample theory, the performance of our variance estimator may degrade in small samples.

When there is doubt, investigation by simulation would be warranted.
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Appendix

Assumptions and proofs

Along with the regularity assumptions mentioned in the text, we further assume that the

following conditions hold for Theorem 1, for all (ψ, β) in a neighbourhood of (ψ∗, β∗).

(S1). Let λ(ψ, β) be E{U(ψ, β)}; note the definition of the ‘expectation operator’ given in

§ 2. We also assume that ∂λ(ψ, β)/∂ψ′ and ∂λ(ψ, β)/∂β′ exist and are continuous in (ψ, β);

in addition, the inverse of (∂/∂β′)λ(ψ, β) exists.

(S2). Both ∂ log f(YR|YR, R, ψ)/∂ψ′ and ∂U(ψ, β)/∂β′ exist and are bounded in L2.

(S3). Let Zn,β(ψ1, ψ2) = n−1/2 |
∑

U
i
(ψ1, β) −

∑
U
i
(ψ2, β) − λ(ψ1, β) + λ(ψ2, β) | . We

assume that there exists a positive ι such that, for any ψ1, ψ2 in a neighbourhood of ψ∗,

sup|ψ1−ψ2|<ιZn,β(ψ1, ψ2)→ 0 uniformly in β as n→∞.

(S4). There exists a positive d such that E{U(ψ, β)2+d} is finite.

Sketch proof for Theorem 1. The proof of Theorem 1 mimics that in Wang & Robins

(1998) with their score function S replaced by our U . Note that Wang & Robins assumed

a correctly specified parametric distributional structure, but we do not. Their Smis denotes

the derivative of the ‘true’ log conditional density of YR given the observed data, while the

Smis here is the derivative of the ‘assumed’ log conditional density of Y given the observed

data under the imputation model. By (S1) and (S2),{
∂

∂ψ̃′
λ
(
ψ̃, β

)}∣∣∣∣
ψ̃=ψ∗

= E

{∫
U(ψ̃, β∗)

∂

∂ψ̃′
f(YR|YR, R, ψ̃)dYR

∣∣∣∣
ψ̃=ψ∗

}

and ∂f(YR|YR, R, ψ̃)/∂ψ̃′ = Smis(ψ̃)f(YR|YR, R, ψ̃). The rest of the proof follows closely the

proof of Theorem 1 in Wang & Robins (1998).
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Sketch proof for Theorem 2. Let νj = ψj − ψ̂. By an argument analogous to that in the

Appendix of Wang & Robins (1998), limnm−1
∑

(νj − ν̄)⊗2 converges to lim{nE(ν1− ν̄)⊗2}
= I−1

obs. Denote Eψ{U(ψ, β)|YR, R} by Uobs(ψ, β). Write B as n(m − 1)−1
∑

j{(β̂cj − β∗) −
(β̂Rubin − β∗)}⊗2. Straightforward derivations show that, as m,n→∞, B converges to

τ−1
[
κ lim
n→∞

{
nE (ν1 − ν̄)⊗2}κ′ + E {U(ψ∗, β∗)− Uobs(ψ

∗, β∗)}⊗2
]
(τ ′)−1, (A1)

while V̂• converges to

τ−1E
[
Uobs(ψ

∗, β∗)⊗2 + {U(ψ∗, β∗)− Uobs(ψ
∗, β∗)}⊗2] (τ ′)−1. (A2)

Hence, ΣRubin is the sum of (A1) and (A2). Furthermore, Ω, as defined in Theorem 1,

converges to

E
{
Uobs(ψ

∗, β∗)⊗2
}

+ κΛ (ψ∗) κ′ + κE
{
D (ψ∗) U (ψ∗, β∗)′

}
+ E

{
D (ψ∗) U (ψ∗, β∗)′

}′
κ′.
(A3)

Note that E
(
Eψ∗

[
{U(ψ∗, β∗)− Uobs(ψ

∗, β∗)}⊗2 |YR, R
])

= E [var {U(ψ∗, β∗)|YR, R}] . Re-

place Λ(ψ∗) in (A3) by its second expression in (3) and recall that Σ = τ Ω (τ ′)−1. Theorem 2

now follows directly from a comparison of (A1), (A2) and (A3).
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Table 1. Theoretically calculated percent bias ratios, 100× (ΣRubin − Σ) /Σ.

π = 0.2 π = 0.4 π = 0.6 π = 0.8
Scenario 1
η = η∗0 = η∗1 = 0 7.88 16.4 25.7 35.8

Scenario 2
η = 0, η∗0 = 1, η∗1 = 1 -13.8 -26.2 -36.5 -42.6
η = 0, η∗0 = −1, η∗1 = −1 44.4 79.0 99.4 98.0
η = 0, η∗0 = 2, η∗1 = 1 -16.6 -31.7 -45.1 -54.7

Scenario 3
η = η∗0 = η∗1 = 1 10.7 21.8 33.4 45.4
η = η∗0 = η∗1 = −1 -2.18 -5.03 -8.61 -13.0

Table 2. Results based on 1000 simulations for Scenario 2 with
π = 0.6, n = 150, β = 1, η∗0 = 2, η∗1 = 1, η = 0.

Monte Carlo Monte Carlo Monte Carlo Average Empirical
Mean Variance Estimated Variance Coverage Probability

m = 20
R-W 0.9904 0.01770 0.01636 0.941
Rubin 0.9900 0.01773 0.00830 0.811
m = 5
R-W 0.9895 0.01773 0.01661 0.937
Rubin 0.9900 0.01806 0.00834 0.826

R-W: results from the method in this paper
Rubin: results from Rubin’s method
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