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Abstract: Individual Level Models (ILMs), a new class of models, are being applied

to infectious epidemic data to aid in the understanding of the spatio-temporal

dynamics of infectious diseases. These models are highly flexible and intuitive,

and can be parameterised under a Bayesian framework via Markov chain Monte

Carlo (MCMC) methods. Unfortunately, this parameterisation can be difficult to

implement due to intense computational requirements when calculating the full

posterior for large, or even moderately large, susceptible populations, or when

missing data are present. Here we detail a methodology that can be used to estimate

parameters for such large, and/or incomplete, data sets. This is done in the context

of a study of the UK 2001 foot-and-mouth disease (FMD) epidemic.
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1. Introduction

The spatio-temporal modelling of infectious diseases is an area of great im-
portance. Accurately modelling the infectious dynamics of a disease enables
scientists to understand risk factors associated with transmission and, through
this, develop viable control strategies for potential future outbreaks. There are
obvious public health and/or economic benefits in understanding the infectious
dynamics of diseases in humans, animals, and plants. Furthermore, it is well un-
derstood how important the spatial aspect to these dynamics is in understanding
disease spread (e.g., Lawson (2001)).

The focus of this paper is on modelling infectious disease epidemics through
time and space at the level of individuals in a population. Here, individuals are
represented as discrete points in time and space. In the resulting ‘individual-level
model’ (ILM) (sometimes known as an individual-based model), the probability of
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a susceptible individual being infected from the infectious pressure exerted upon
it from the surrounding infectious population is quantified. The resulting models
are highly intuitive and flexible (e.g., Gibson (1997), Keeling, Woolhouse, Shaw,
Matthews, Chase-Topping, Haydon, Cornell, Kappey, Wilesmith and Grenfell
(2001), and Jamieson (2004)). However, they are also typically computationally
costly to parameterise.

Examples of such models are not readily found in the literature. Lawson
(2001) develops an approach wherein infectious individuals are modelled explic-
itly as individuals, and the susceptible population through a random field. Gib-
son and Austin (1996) detail the use of an ILM in plant epidemiology. Gibson
(1997) and Marion, Gibson and Renshaw (2003) use Markov chain Monte Carlo
(MCMC) methodology and importance sampling, respectively, to develop infer-
ence for this model. Neal and Roberts (2004) detail a two-level ILM to study a
localised outbreak of measles in school children in a village in Germany. Also,
Jamieson (2004) develops an ILM to study the spatio-temporal dynamics of citrus
canker.

There are a number advantages to setting such models within a Bayesian
MCMC framework. First, there are the obvious desirable mathematical and
philosophical properties of the Bayesian approach itself (e.g., Robert (2001)).
MCMC affords us a very powerful tool for carrying out inference on highly com-
plex models, and hence great flexibility in our choice of model. Another highly
desirable feature of this framework is the ability to easily impute missing data,
which is a major cause for concern in spatial epidemiology, and to estimate
marginal posterior densities for these data. In terms of practical outcomes, us-
ing the full-posterior Bayesian approach also allows parameter (and, in theory,
model) uncertainty to be incorporated into simulation studies used to test con-
trol strategies. This can be especially important when looking at extremes (e.g.,
worst-case scenario problems).

However, a major problem with using ILMs can be the computational diffi-
culty in calculating the full likelihood. This is especially the case in epidemics in
large populations (examples cited above are all for relatively small epidemics) or
if imputing a large amount of missing data. Approximate techniques can be con-
sidered (e.g., Filipe and Gibson (2001), and Diggle (2006)) although these tend
to have case specific downsides, as well as losing some or all of the advantages
mentioned above.

In this paper we show how to carry out full posterior computation for ILMs by
separating the likelihood into a small component, which needs to be recalculated
as parameters vary, and a large component which remains constant as parameters
vary. This may require care in choosing our ILM model, as we shall see, as the
inference techniques here developed are applied to data from the UK 2001 foot-
and-mouth disease (FMD) epidemic.
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In Section 2 we introduce the type of data we are interested in analysing, and
the general form of the ILM which is to be used. In Section 3 we present some
background information about the 2001 UK FMD epidemic, and the original
model of Keeling et al. (2001) from which our models are developed. In Section
4 we detail an extension of the model of Keeling et al. (2001) and the motivation
behind the extension. In Section 5 we discuss the Bayesian framework in which
the model is set, along with the computational problems in calculating the full
likelihood for ILMs and the computational methodology used to make the like-
lihood computable within a non-prohibitive time span. In Section 6 we discuss
an example of the methodology which can be used in the context of missing data
in ILMs; in this case, that used to impute the infection dates of certain high
risk farms. We then present some results regarding parameter estimation for the
UK 2001 FMD epidemic in Section 7, and go on to discuss some possible future
directions for research into infectious disease epidemics in Section 8.

Additionally, the results of a small simulation study carried out in the context
of using the Bayesian model to optimise a particular FMD control policy is
contained in Section 12 of the on-line supplementary material (http:://www.stat.
sinica.edu.tw/statistica).

2. Infectious Disease Data and the General Model

The models with which we are concerned are formulated as discrete-time
SEIR models (here we use the notation SEIR). This means that at any given
point in time an individual i can be in one of four states: i ∈ S implies individual
i is susceptible to the disease; i ∈ E implies that individual i has been exposed
to the disease (i.e., has been infected, but is not yet infectious); i ∈ I implies
that individual i is infectious; i ∈ R implies that individual i has been removed
from the population (e.g., through recovery accompanied by gained immunity to
the disease). Models within other compartmental frameworks (e.g., SEIS) could
also be parameterised using the methodology of this paper, but we do not cover
this here.

In order to parameterise the ILMs it is necessary to have knowledge (actual
or estimated) about the event history of individuals. That is, for t = 1, . . . ,∞,
it is necessary to know if individual i is in state S, E , I or R. We refer to an
individual i in one of these four states at a given time t as being in the sets S(t),
E(t), I(t) or R(t) respectively. Note that here we discretise time so that an event
which occurs in the continuous time interval [t, t + 1) is referred to as occurring
at time t.

2.1. The general model

In this section we present the general form of the epidemic ILM. Here we
consider that the transitions from E to I and I to R, defined by the rates µI
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and µR, respectively, are fixed and known. However, it would be quite possible
to extend this model to the case where we estimate µI and µR.

Letting P (i, t) denote the probability that previously uninfected (susceptible)
individual i is newly exposed within the time interval [t, t + 1), the general ILM
is given by

P (i, t) = 1 − exp

[{
− ΩS(i)

∑
j∈I(t)

ΩT (j)κ(i, j)
}

+ ε(i, t)

]
, (2.1)

where I(t) is the set of infectious individuals at time t; ΩS(i) represents risk
factors associated with susceptible i (i.e., susceptibility); ΩT (j) represents risk
factors associated with infectious individual j (i.e., transmissibility); κ(i, j) is
an infection kernel representing risk factors involving both the infected and sus-
ceptible individuals (often based upon their separation distance, dij); and ε(i, t)
is some infection process which describes some other random behaviour (this
might represent infections from outside the population considered, or those not
explained by the basic framework of the model).

ΩS(i) and ΩT (j) could be functions of various risk factors; for example,
they could represent social interaction measures, genetic information, the size of
sub-population (if an individual refers to a sub-population of susceptibles such
as on a farm), or environmental risk factors associated with the location of the
individual.

The infection kernel κ(i, j) is often used to characterise the risk of infection
over some distance measure. For example, κ(i, j) could be a function of Euclidean
or road distance (Savill, Shaw, Deardon, Tildesley, Keeling, Brooks, Woolhouse
and Grenfell (2006)). Alternatively, it could represent traffic flows between towns,
cities or farms.

The term, ε(i, t), that represents infections which are not well explained
by the model structure as given by ΩS(i), ΩT (j) and κ(i, j), could be a purely
random infection sparks term (ε(i, t) = ε). Alternatively, it could be a function
of susceptible factors (e.g., ε(i, t) = ε(i) = εΩS(i)), or could be a function of the
current size of the epidemic.

Given a record of infection events at discrete time points t = 0, . . . , T during
the epidemic, the likelihood is simply a product over those time points so that

f(S, E, I, R|θ) =
T∏

t=0

ft(S, E, I, R|θ), (2.2)

where

ft(S, E,I, R|θ) =

[ ∏
i∈E(t+1)\E(t)

P (i, t)

][ ∏
i∈S(t+1)

{1 − P (i, t)}

]
,
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S = {S(t)}T
t=1, E = {E(t)}T

t=1, I = {I(t)}T
t=1, R = {R(t)}T

t=1, and θ is the
vector of unknown parameters. That is, ft(S, E, I, R|θ) is the probability of all
observed new infections in time interval [t, t+1) being infected, and all observed
non-infected individuals in time interval [t, t + 1) not being infected.

The primary purpose of this paper is to present a general methodology for
parameterising infectious disease ILMs when large datasets are being used. This
is done using the 2001 UK FMD epidemic as a case study.

3. Case Study: Foot and Mouth Epidemic of 2001

To illustrate the application of the general ILM of Section 2.1 in a large
population, we look to the UK foot-and-mouth disease (FMD) epidemic of 2001.

The UK foot-and-mouth epidemic of 2001 is thought to have entered the UK
in early February of that year. By the time it had been discovered and movement
restrictions imposed, around 70 farms had been infected (Anderson (2002)). The
epidemic resulted in recorded known infections and culls at Infected Premises
(IPs) across the UK. Over 10,000 other farms with unknown infection status,
but determined to be at high risk, had animals slaughtered. In total over four
million animals were slaughtered as part of the control program to eradicate the
disease.

The additional (non-IP) slaughter policy had two main components. One
was the slaughtering of animals on farms designated Contiguous Premises (CPs),
which were farms judged to have shared a common border with an IP. The second
was the slaughtering of animals on farms designated Dangerous Contacts (DCs).
These were farms in which there had been known contact of some sort with an
IP (e.g., a milk tanker had visited a DC shortly after visiting an IP).

There is evidence to show that at least some aspects of the slaughter policy
used were critical in controlling the epidemic (Keeling et al. (2001), Ferguson,
Donnelly and Anderson (2001a,b), and Morris, Wilesmith, Stern, Sanson and
Stevenson (2001)). However, there is little evidence to suggest that this slaughter
policy was optimal in terms of disease control. Work has been carried out (Keel-
ing, Woolhouse, May, Davies and Grenfell (2003), and Tildesley, Savill, Shaw,
Deardon, Brooks, Woolhouse, Grenfell and Keeling (2006)) to develop improved
control strategies to inform future culling and/or vaccination policies. (DEFRA’s
current policy on vaccination and control is detailed in DEFRA (2005)). How-
ever, in order to devise a good control policy based on the 2001 UK epidemic, as
good a model of that epidemic, and as rigorous an approach to the problem of
parameterisation as possible, are required.

The data which we use to parameterise the models come from two sources.
The first is the UK census of June 2000 which gives a list of all farms contained in
the set S0 (i.e., potential susceptibles). The census lists the number of different
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types of animals at each farm, as well as an X and Y ordnance survey location for
the farmhouse of the farm. The second is the dataset of farms which were directly
involved in the 2001 epidemic, all farms known to have been infected (IPs) and
farms on which animals were culled. This data set directly gives the cull-dates
of each farm on which animals were culled. Dates of exposure and infectiousness
for IPs are inferred from disease reporting dates, expert veterinary opinion about
the extent of disease progress at reporting, and assumptions about the length of
the disease latency period (the time from exposure to infectivity). Thus, we have
a data set from which the sets, S(t), E(t), I(t), and R(t), t = 1, . . . ,∞ can be
inferred in the case of IPs and farms not exposed to FMD.

Of course, this is not the case for CPs and DCs for which the date of removal
from the population is known, but the dates of exposure (and on which infectivity
began) are not. This is dealt with in Section 6. We also assume that farms
on which animals were culled that were not CP or DC culls (e.g., welfare cull
farms; see Anderson (2002)) were uninfected before slaughter. For farms on which
animals were not culled the assumption is made that they were never exposed to
FMD; that is, there was no exposure to FMD in 2001 which died out naturally
without being observed.

(N.B. The data has been extensively cleaned for the analyses of this paper,
as well as that of Tildesley et al. (2006) and Savill et al. (2006); this will be
detailed in work to be published.)

3.1. The Keeling model

Keeling et al. (2001) details an explicitly spatial ILM and the general form
of Section 2.1 holds as follows. Individuals, here, are farms rather than animals
upon the farms. Time, here, is measured in days. It is assumed that once exposed
to FMD, the farm would remain in that exposed state for five days, and then
become infectious for four days. After this point, it is assumed that symptoms
would be visible and so the farm would be reported and subsequently removed
from the population through animal slaughter (state R).

Under this model, which we refer to as the Keeling model, the probability of
susceptible farm i being infected during time period [t, t + 1) is given by (2.1),
where ΩS(i) = SN i, ΩT (j) = TN j , κ(i, j) = KT (dij), and ε(i, t) = 0. Here,
S denotes a susceptibility vector, (Ss Sc), where Ss and Sc describe the rate
of increase in susceptibility of a susceptible farm per additional sheep and cow,
respectively. Similarly, T denotes the transmissibility vector, (Ts Tc), where Ts

and Tc denote parameters describing the rate of increase in infectious pressure
per additional sheep and cow, respectively, that an infectious farm exerts on the
susceptible population. N i denotes the number of animals vector, (Ni,s Ni,c)T ,
where Ni,s is the number of sheep on farm i, and Ni,c is the number of cattle on
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farm i. Finally, KT (dij) denotes a distance-based kernel estimated from DEFRA
tracing data (Keeling et al. (2001)), where dij denotes the distance between the
farmhouses of farms i and j. The tracing kernel is described in Section 4.1 and
is shown in Figure 1. To ensure identifiability, Ss = 1.0 is fixed and, thus, the
only free parameters in the Keeling model are T and Sc.

Parameterisation of the model was originally carried out using a mixture of
maximum likelihood estimation and fine tuning by running forward simulations,
and using a goodness-of-fit measure. This procedure produces forward simu-
lations that mimic important characteristics of the 2001 epidemic, suggesting
a reasonable model. However, it is well known that such conditional param-
eterisation can lead to misleading results. Also, parameterisation via forward
simulations and goodness-of-fit requires the mimicry of the 2001 culling policy
which is difficult, and may introduce some bias in the parameterisation. There
is obviously a case for carrying out a more rigorous attempt at the parameteri-
sation, although, of course, the approach of Keeling et al. (2001) (as well as that
of Diggle (2006) and Ferguson et al. (2001a,b)) has the advantage of relatively
simple and quick parameterisation methods which a more rigorous approach does
not necessarily allow.

4. Extending the Model

We extend the basic model of Keeling et al. (2001) in several key ways: we
introduce a geometric change-point transmission kernel whose parameters will be
estimated along with other key model parameters; we introduce a sparks term
which allows for spontaneous unexplained infection; and we allow for a non-linear
relationship between animal numbers and both infectivity and susceptibility. The
purpose of these extensions is given in Sections 4.1−4.3.

4.1. Distance kernel

The DEFRA tracing data distance kernel was estimated by veterinarians on
the ground considering the event history at the time of an IP being reported and
making a best guess at the source of the infection. The distances between IPs
and their tracing data source were then normalised to form the kernel, KT (dij).
However, it could be argued that such a subjectively-based distance kernel would
overestimate the effect of short distance infections and underestimate the effect
of the long distance infections. We therefore extend the Keeling model by intro-
ducing a more general kernel whose parameters are estimated using the infection
data described in the previous section.

A geometric distance kernel was chosen, although it would be possible to
use an exponential-based kernel. The geometric kernel was preferred since it has
more mass in the tails of the kernel, and thus allows for the possibility of longer
distance infections.
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Experimentation with the FMD data suggested that the geometric kernel
failed to adequately describe short range transmissions as the geometric shape
was largely determined by a tail that describes the longer-range transmissions.
Over shorter distances, different disease transmission dynamics come into play
with close farms tending to share boundaries. Also, the assumption that the dis-
tance between farmhouses adequately reflects the distance between the location
of farm animals begins to break down. Thus, we introduce a change-point to our
model at some distance δ0, to be determined, within which we assume a constant
disease transmission rate, k0.

Thus, we have a disease transmission kernel of the following form:

κ(i, j) = KA(dij) =


k0 0 < dij ≤ δ0

db
ij δ0 < dij ≤ δmax

0 otherwise

with parameters k0, δ0 and b. δmax is fixed a priori and restricts the maximum
distance over which infections can occur. Here we set δmax = 30km. The selec-
tion of δmax clearly has some bearing on the results, with more of the epidemic
being generated by infection sparks (Section 4.3) as δmax is reduced. However,
increasing δmax above 30km produces relatively little change in other parameters.

Clearly if δ0 = 0, the kernel simplifies to KA(dij) = db
ij , a kernel that roughly

describes the shape of the tracing data kernel, KT (dij). We use the tracing data
kernel to provide the prior information for b. This is described in Section 7.1.

4.2. Introducing non-linearity

In the original model of Keeling et al. (2001) the assumption was made that
the relationships between numbers of animals on infecting, and susceptible, farms
and the infection rate was linear. To test this assumption we redefine the ΩS

and ΩT functions so that

ΩS(i) = S

(
Ni,s

ψS,s

Ni,c
ψS,c

)
and ΩT (j) = T

(
Ni,s

ψT,s

Ni,c
ψT,c

)
.

Clearly, the original linear model is a special case of this more general specifica-
tion.

It might be expected that transmissibility and susceptibility as defined here
would be, at least in part, surrogates for the risk of animals from different farms
mixing (e.g., due to animal movements). If this is so, it would seem unlikely
that the linear assumption would be an accurate one to make, since we might
expect that the risk of mixing does not increase by the same degree when a given
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increase in animal numbers starts from a low number, as when the increase starts
from a high number.

4.3. Infection sparks

Finally, we introduce a new parameter which allows for spontaneous infec-
tions that is unexplained by the susceptibility, transmissibility and kernel com-
ponents of the model. This term traditionally allows for infectious pressure from
outside the study area. In our case, it allows for infection beyond the δmax limit
(e.g., long distance movement of vehicles or people, for example).

Though other choices are possible, we assume that the risk of spark infection
on farm i at time t is directly affected by the susceptibility, ΩS(i), and by the
number of infectious farms during the interval [t, t + 1), |I(t)|. In this way, the
risk of infection through the ε term increases with the underlying susceptibility
of the farm, but also follows the course of the epidemic so that a spark-based
infection will be most likely when there are large numbers of infectious farms, and
will tend to zero as this number decreases. Thus, we take ε(i, t) = −εΩS(i)|I(t)|.

4.4. Resulting model

These extensions together give us a new model with associated probability
of susceptible farm i being infected during time period [t, t + 1) given by

PA(i, t) = 1 − exp

(
− SN

ψS
i

[{ ∑
j∈I(t)

TN
ψT
j KA(dij)

}
− ε|I(t)|

])
. (4.1)

As before, we set Ss = 1 to make the model identifiable and so the vector of model
parameters to be estimated is given by θA = (Ts, Tc, Sc, b, ε, δ0, k0, ψS,s, ψS,c,
ψT,s, ψT,c).

Some examples of possible distance kernels and susceptibility/transmissi-
bility curves are given in Figures 4 and 5, which can be found in the on-line
supplementary material.

5. Bayesian Computation

5.1. The posterior and simulation

Parameter estimation is carried out here within a Bayesian framework. The
likelihood for our model is obtained by the substitution of (4.1) into (2.2) to give

fA(S, E, I,R|θ) =
∏

t

[ ∏
i∈E(t+1)\E(t)

PA(i, t)

][ ∏
i∈S(t+1)

{1 − PA(i, t)}

]
. (5.1)
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We assume priors for our parameters (Section 7.1) to obtain our posterior
distribution πA(θ|S, E, I, R) up to a constant of proportionality. We explore
the posterior via Markov chain Monte Carlo (MCMC) with Metropolis Hastings
parameter updates (Section 7.2). For a more detailed description of MCMC
within a Bayesian framework see, for example, Gammerman and Lopez (2006).

5.2. Minimising computational expense

Bayesian computation via Metropolis-Hastings MCMC requires the recalcu-
lation of πA(θ|S, E, I, R) many, many times, with varying θ, to obtain a depen-
dent sample from the posterior. The 2001 FMD dataset records over 160,000
farms, with just over 10,000 of those being directly affected by FMD either
through being infected or culled. Thus, for any given t, the set S(t + 1) con-
sists of around 150,000 elements. This means that the calculation of (5.1) at
every MCMC iteration becomes prohibitive due to the need to compute, for each
t, the right-hand product

χA(t) =
∏

i∈S(t+1)

{1 − PA(i, t)}

= exp

( ∑
i∈S(t+1)

−SN
ψS
i

[{ ∑
j∈I(t)

TN
ψT
j KA(dij)

}
− ε|I(t)|

])
. (5.2)

(The set I(t) will, of course, comprise far fewer elements for any given day
of the epidemic than S(t + 1), so the left-hand product of (5.1) is much more
manageable.)

To facilitate the computation for large data sets we seek to avoid recalculating
(5.2) in its entirety at every MCMC iteration. In this section, we assume that
the infection status of all farms is known from the start of the simulation and
remains fixed throughout. (Dates of infection may be considered variable in
the case of CP and DC-culled farms, however, and this case is discussed in
Section 6.) We then show how, by linearising the model, we are able to split
the time-consuming summations in the likelihood into two groups: those which
are computationally expensive but need to be calculated only once; and those
which are much quicker to compute but change with the parameter values and
therefore need to be recalculated throughout the simulation.

5.3. Linearising the model

The model is linearised by taking Taylor series expansions of the appropriate
terms in (4.1) so that the summations are split into two distinct groups. In our
case the ΩS(i), and κ(i, j) terms require linearisation. Let Lk(f ; x, x0) denote the
kth-order Taylor series expansion of the function f(x) around the point x0. Then
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the probability of susceptible farm i being infected during time period [t, t + 1)
is given by

PB(i, t) = 1 − exp

(
−SL2(NψS

i , ψS , φS)

[{ ∑
j∈I(t)

TN
ψT
j KB(dij)

}
− ε|I(t)|

])
,

(5.3)
where

L2(NψS
i ; ψS , φS) =

(
L2(Ni,s

ψS,s ; ψS,s, φS,s)

L2(Ni,c
ψS,c ; ψS,c, φS,c),

)
,

L2(Ni,q
ψS,q ; ψS,q, φS,q) = Ni,q

φS,q + Ni,q
φS,q(ψS,q − φS,q) ln(Ni,q)

+
1
2
Ni,q

φS,q(ψS,q − φS,q)2 ln2(Ni,q)

for q ∈ {s, c}; here KB(dij) is a linearised version of distance kernel KA(dij),

KB(dij) =


k0 0 < dij ≤ δ0

L2(db
ij ; b, β) δ0 < dij ≤ deltamax

0 otherwise

,

and L2(db
ij ; b, β) = dβ

ij + dβ
ij(b − β) ln(dij) + (1/2)dβ

ij(b − β)2 ln2(dij).
So, for the new model, PB(i, t) → PA(i, t) as b → β, ψS,s → φS,s and

ψS,c → φS,c. The choice of β, φS,s and φS,c is discussed in Section 5.5.

5.4. Partitioning the summations

We now consider how to partition the likelihood in such a way as to make
the calculation computationally feasible. Replacing PA(i, t) by PB(i, t) in (5.2)
gives

χB(t) =
∏

i∈S(t+1)

{1 − PB(i, t)} (5.4)

and, substituting (5.3) into (5.4),

χB(t) = exp

( ∑
i∈S(t+1)

−SL2(NψS
i ; ψS , φS)

[{ ∑
j∈I(t)

TN
ψT
j KB(dij)

}
− ε|I(t)|

])

= exp

{ ∑
i∈S(t+1)

SL2(NψS
i ; ψS , φS)ε|I(t)|

}

× exp

{ ∑
i∈S(t+1)

−SL2(NψS
i ; ψS , φS)

∑
j∈I(t)

TN
ψT
j KB(dij)

}
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= χ
(L)
B (t)χ(R)

B (t),

say.
We now show how the sums in these expressions can be separated into those

which either depend on the model parameters, and therefore require calculation
throughout the simulation, or depend only on the data and therefore can be
calculated just once at the outset.

Consider the term χ
(L)
B (t) which can be rewritten as

χ
(L)
B (t)=exp

{
ε|I(t)|S

∑
i∈S(t+1)

L2(NψS
i ; ψS , φS)

}

=exp

{
ε|I(t)|(SsSc)

∑
i∈S(t+1)

(
L2(Ni,s

ψS,s ; ψS,s, φS,s)
L2(Ni,c

ψS,c ; ψS,c, φS,c)

)}

=exp

ε|I(t)|(SsSc)

ζ
(s)
1,1(t)+(ψS,s−φS,s)ζ

(s)
1,2(t)+(ψS,s−φS,s)2ζ

(s)
1,3(t)

ζ
(c)
1,1(t)+(ψS,c−φS,c)ζ

(c)
1,2(t)+(ψS,c−φS,c)2ζ

(c)
1,3(t)

 ,

(5.5)

where the ζ
(q)
1,x, for x ∈ {1, 2, 3} and q ∈ {s, c}, are given in the Appendix in the on-

line supplementary material (http://www.stat.sinica.edu.tw/statistica).
It is clear that each of the ζ1,x terms are independent of the model parameters

and can therefore be calculated at the start of the simulation. Similarly, we can
split the summations in χ

(R)
B (t), though this is complicated somewhat by the

dependence of the kernel on δ0.
First, note that we can rewrite the definition of χ

(R)
B (t) as

χ
(R)
B (t) = exp

(
− T

∑
j∈I(t)

N
ψT
j S

∑
i∈S(t+1)

L2(NψS
i ; ψS , φS)KB(dij)

)

= exp

(
− T

∑
j∈I(t)

N
ψT
j S

[ ∑
i∈A1(j,t)

L2(NψS
i ; ψS , φS)L2(db

ij ; b, β)

−
∑

i∈A2(j,t)

L2(NψS
i ; ψS , φS)

{
L2(db

ij ; b, β) − k0

}])

=

(
exp

[
− T

∑
j∈I(t)

N
ψT
j S

∑
i∈A1(j,t)

L2(NψS
i ;ψS ,φS)L2(db

ij ; b, β)
])

×

(
exp

[
− T

∑
j∈I(t)

N
ψT
j S

∑
i∈A2(j,t)

L2(NψS
i ; ψS , φS)

http://www.stat.sinica.edu.tw/statistica
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×
{
L2(db

ij ; b, β) − k0

}])−1

=
χ

(R)
B1 (t)

χ
(R)
B2 (t)

, (5.6)

where A1(j, t) = {i : i ∈ S(t + 1) and dij ∈ [0, δmax]}, and A2(j, t) = {i : i ∈
S(t + 1) and dij ∈ [0, δ0]}.
Now we can rewrite χ

(R)
B1 (t) as

χ
(R)
B1 (t) = exp

[
− T

∑
j∈I(t)

N
ψT
j S

{ ∑
i∈S(t+1)

L2(N i
ψS ; ψS ,φS)L2(db

ij ; b, β)
}]

= exp

[
− T

∑
j∈I(t)

N
ψT
j

{
(Ss Sc)

ζ
(s)
2 (j, t)

ζ
(c)
2 (j, t)

 }]
,

where,

ζ
(q)
2 (j, t) = ζ

(q)
2,1(j, t) + (b − β)ζ(q)

2,2(j, t) + (b − β)2ζ(q)
2,3(j, t)

+(ψS,q − φS,q)ζ
(q)
2,4(j, t) + (b − β)(ψS,q − φS,q)ζ

(q)
2,5(j, t)

+(b − β)2(ψS,q − φS,q)ζ
(q)
2,6(j, t)

+(ψS,q − φS,q)2ζ
(q)
2,7(j, t) + (b − β)(ψS,q − φS,q)2ζ

(q)
2,8(j, t)

+(b − β)2(ψS,q − φS,q)2ζ
(q)
2,9(j, t), (5.7)

with the ζ
(q)
2,x(j, t), for x ∈ {1, . . . 9} and q ∈ {s, c} as defined in the Ap-

pendix in the on-line supplementary material (http://www.stat.sinica.edu.
tw/statistica). As before, it is clear that each of the ζ

(q)
2,x terms are indepen-

dent of the model parameters and can therefore be calculated once at the start
of the simulation.

Of course, χ
(R)
B2 (t) cannot be made independent of all parameters in the

same way as χ
(R)
B1 (t), because it explicitly depends on the change point, δ0, in

the range of summation. However, assuming the number of elements in A2(j, t)
is relatively small (which is the case for the UK 2001 FMD data), χ

(R)
B2 (t) can

be fairly cheaply calculated with careful programming. The algorithm used here
requires a maximum value of δ0, δ

(max)
0 , to be set. Here δ

(max)
0 = 3, 000m was

found to be adequate.
Of course, these Taylor series expansions require the specification of an ap-

propriate centering point which we briefly consider in the next section.

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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5.5. Values of β, φS,s and φS,c

The computational methodology of this section provides a way of forming a
likelihood which is computationally feasible within the framework of full-posterior
sampling. Unfortunately, the parameter space of the linearised model, PB(i, t),
is different from that of model PA(i, t), except when b = β, ψS,s = φS,s and
ψS,c = φS,c. This difference means that as b deviates from β, ψS,s deviates
from φS,s, and ψS,c deviates from φS,c, the parameters b, ψS,s, and ψS,c, become
harder to interpret, respectively. Thus, it is useful to try and find sensible values
for these parameters that approximate the values we might expect for the true
parameter values.

The availability of the tracing data kernel, KT (dij), provides an obvious
means for selecting a suitable value of β. Here β̂ was obtained by fitting the
model

αdβ+1
l = dlKT + εl, ∀l ∈ L, (5.8)

where L denotes the set of discretised distances over which the tracing data
kernel is defined and εl ∼ N(0, σ2). Along with the scale parameter estimate
α̂ = 1, 284.2, the rate parameter estimate was given by β̂ = −1.62, and the
variance parameter by σ̂2 = 0.000350.

Various settings of φS,c ∈ (0, 1.5) and φS,s ∈ (0, 1.5) were tested. It was
found that the setting φS,c = φS,s = 1.0 produced high levels of likelihood and
good MCMC mixing properties. These values of φS,c and φS,s also resulted in
marginal mean posterior estimates of ψS,s and ψS,c for which ψS,s ≈ φS,s and
ψS,c ≈ φS,c, thus aiding interpretation of ψS,s and ψS,c.

6. Imputing the Dates of Infection of CPs and DCs

The methodology described so far relies on the assumption that the infection
status of all farms is known throughout the epidemic. Section 3 detailed how this
information was arrived at for IPs. However, no such information is available
for CP and DC farms since they could have been infected but culled before
symptoms appeared. We consider the estimation of the proportion of these farms
which were infected before culling, λC . The computational methodology used to
do this is detailed in Section 9 in the on-line supplementary material (http:
//www.stat.sinica.edu.tw/statistica).

7. Parameter Estimates for the UK 2001 FMD Epidemic

7.1. Priors

When included in the model, b, the kernel power-law parameter, is informed
by the tracing data. However, a fairly vague prior is used, p(b) ∼ N (β̂, 10 ×
s.e.(β̂)2), where β̂ is the estimate of β as obtained by fitting the model shown in

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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(5.8), and s.e.(β̂), its standard error. Recall from Section 5.4 that β̂ = −1.62 and
s.e.(β̂)2 = 0.000350. A small sensitivity analysis was carried out that appeared to
show that increasing the variance of p(b) has little effect upon the mean posterior
of b.

Positive half-normal priors with high variance (σ2 = 10, 000) are assigned
to the model parameters Ts, Tc, Sc, ψS,s, ψS,c, ψT,s and ψT,c. Parameter k0 is
assigned the same prior when included in the model. Normal priors with the same
variance, but centered around high positive values (e.g., 1,000), produce very
similar results to the half-normal priors, implying they are non-informative. A
negative half-normal prior with variance σ2 = 10, 000 is assigned to ε. Finally δ0,
when included in the model, is assigned a uniform prior over the range [0, δ(max)

0 ].

7.2. Results

Section 10 in the on-line supplementary material (http://www.stat.
sinica.edu.tw/statistica) details a comparison between the models used
here, and that of Keeling et al. (2001). Section 11, in the on-line supplementary
material, details a small simulation study used to ascertain that the estimation
procedures employed in this paper are working correctly.

Parameter estimates for two versions of the model are given. Both models
include a sparks term (ε) and allow for non-linear susceptibility and transmissi-
bility. The first model, PT , uses the tracing data kernel and the second, PB, uses
the change-point kernel. The full expression for PT is

PT (i, t) = 1 − exp

(
−SL2(NψS

i ; ψS , φS)

[{ ∑
j∈I(t)

TN
ψT
j KT (dij)

}
− ε|I(t)|

])
,

(7.1)
and PB is given in (5.3).

The estimation was carried out with a Metropolis Hastings MCMC algorithm
using, in the main, random walk proposals to update parameters. When included
in the model, parameters b, Sc, ε, k0, δ0, ψS,s, and ψS,c were updated using single
component normally distributed random walk proposals. Parameters Ts and
ψT,s, and, Tc and ψT,c, were updated as two separate block updates to allow for
correlation between each respective pair.

Marginal posterior density means and 95% HPDIs for both the PT and PB

models are shown in Table 1. Of those parameters which are estimated in both
models, Sc and the non-linearity parameters ψT,s, ψT,c, ψS,s, and ψS,s do not
seem to differ significantly (e.g., there is overlap in the 95% HPDIs for these
parameters).

The transmissibility parameters, Tc and Ts, are not really comparable due
to the difference in scale of the infection kernels used in each model and the fact

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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Table 1. Means (with 95% HPDIs) of marginal posterior densities for pa-
rameters for models fitted to the UK 2001 FMD epidemic data.

Parameter Model Model
PT PB

b n/a -1.66
(-1.70, -1.62)

Ts 1.18 × 10−4 2.62 × 10−1

(0.21, 2.16) × 10−4 (0.64, 4.00) × 10−1

Tc 9.00 × 10−5 1.22 × 10−1

(2.40, 17.3) × 10−5 (0.23, 2.55) × 10−1

Ss 1.00 1.00

Sc 6.03 7.14
(4.38, 7.78) (5.28, 9.07)

ε −5.76 × 10−10 −2.45 × 10−10

(-7.11, -4.40)×10−10 (−3.16,−1.76) × 10−10

k0 n/a 1.85 × 10−5

(0.84, 2.93) × 10−5

δ0 n/a 719
(435, 1138)

ψT,s 0.113 0.074
(0.000, 0.249) (0.000, 0.186)

ψT,c 0.304 0.321
(0.147, 0.471) (0.139, 0.509)

ψS,s 0.908 0.908
(0.877, 0.941) (0.879, 0.939)

ψS,c 0.887 0.886
(0.842, 0.934) (0.844, 0.929)

λC 0.063 0.035
(0.053, 0.073) (0.027, 0.043)
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Figure 1. Distance kernels for models PT and PB .

that they are meaningless without consideration of ψT,s and ψT,c. In the case of
ε, the mean posterior value for the PT model (5.76× 10−10) is more than double
that of the PB model (2.45×10−10). The distance kernels obtained via the mean
posterior distribution for each of the two models are shown in Figure 1. KB

is rescaled to take account of the difference in scale of transmissibility between
PB and PT . We can see that the estimated kernel of PB does indeed suggest
(as mentioned in Section 4.1) that the tracing data kernel overestimates the risk
of short-distance infection, and underestimates that of long-distance infections.
The larger magnitude of ε in the PT model is likely correcting for this, allowing
for more long-range infections. It should also be noted that though the values
of ε given are small for both models, this still accounts for a sizeable number of
infections.

We can see that λC is larger for PT (0.063) than for PB (0.035); this difference
may be due to the fact that the infection of CP culls, which tend to be close to
IPs, are more likely under model PT wherein the tracing data kernel is used.

Note that there is a small discontinuity at the change point for PB, since
no constraint is made that the lines on either side of the change point should
meet. Intuitively, it would seem more natural for the lines to be forced to meet
if describing a simple biological process. However, since the distance kernel is
an approximation of a number of disparate infection mechanisms, we felt this
constraint would be unreasonable, and allowed the kernel to be more empirically
based.
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The relationships between animal numbers and susceptibility, and animal
numbers and transmissibility, given for the posterior mean, are shown in Figures
2 and 3. These plots show how the susceptibility (SqNi,q

ψS,q , q ∈ {s, c}), and
transmissibility (TqNi,q

ψT,q , q ∈ {s, c}), for each animal species under each model,
PT and PB, vary as animal numbers vary.

We observe from these plots that the qualitative conclusions of Keeling et al.
(2001), that each individual cow was more likely to transmit the disease, and
also likely to be more susceptible to the disease than each individual sheep, are
supported here. It would appear, however, that the linear assumption made in
that paper was questionable in terms of transmissibility (a linear approximation
looks more reasonable in the case of susceptibility).

Both in terms of susceptibility and transmissibility, the relationship with
numbers of sheep, as compared with that of cattle, seems to be almost flat.
More specifically, in terms of susceptibility, it would appear that an increase in
sheep numbers on a farm has a unimportant effect, relative to a similar increase
in cattle, on the risk of that farm being infected. In terms of transmissibility, it
would appear that an increase in sheep numbers above a certain low threshold
(around 20, dependent upon which model we consider), on a given infectious
farm, has almost no effect on the risk of infection of susceptible farms.

It also appears that the relationship between susceptibility and animal num-
bers is very similar under both models PT and PB, with the susceptibility ratio
between sheep and cattle being slightly lower when the tracing data kernel is
used. This plot also suggests that the transmissibility ratio between sheep and
cattle is higher when the tracing data kernel is used, and the magnitude of this
ratio difference increases as animal numbers increase.

8. Discussion

We consider some work that might be carried out in the future. First, in the
FMD example in this paper, we assumed a constant latent period. This latent
period could, however, be allowed to vary, and thus be estimated. To do this, the
‘static’ ζ terms of Section 5 would need to be calculated and stored for different
latent periods (i.e., an extra dimension added to the ζ variables). The techniques
used to impute missing infection times in Section 6 could also be extended to
allow for a variable infectious period. Similar techniques would be required to
carry out reversible jump MCMC to incorporate model uncertainty into our
inference problem and thus sample from the joint model and parameter posterior
distribution. This would be useful to test, not only if various parameters should
be included in the model, but also the structure of the model. For example,
is it wise to multiply the sparks term by the susceptibility of farm i in (4.1)
and (5.3), or should it be included without the susceptibility term? Due to the
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(a)

(b)

Figure 2. Mean posterior farm susceptibility (SNψS ) against number of
animals: (a) under model PT ; (b) under model PB .
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(a)

(b)

Figure 3. Mean posterior farm transmissibility (TNψT ) against number of
animals: (a) under model PT ; (b) under model PB .
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computational requirements of such a scheme, however, this would not be a trivial
development.

Questions about the sensitivity of conclusions to the choice of variables, such
as the Taylor series centre-points, will be addressed in future work that will also
consider the related issue of model choice.

ILMs could be applied to a wide range of infectious diseases where data
expressing spatial location, exposure, and removal time is available. There are
obvious applications in other agricultural problems for both animals (e.g., avian-
flu in domestic poultry), or plants (e.g., citrus canker in trees) where individuals
do not move. However, there appears to be no theoretical barrier to applying
ILMs to situations where the individuals are mobile (e.g., human and wildlife
diseases), as long as at least partial spatial location data are available over time.
Neither does the infection kernel, κ(i, j), in (2.1) need to refer to a Euclidean
distance kernel. As well as the possibility of using other distance metrics (e.g.,
road distance), some sort of contact measure could be used. For example, in a
study of the transmission of a human epidemic around the globe, an infection
kernel representing traffic flows between airports could be considered. This may
have relevance to diseases such as SARS or influenza.

The vital issue of goodness-of-fit for infectious disease models, which does
not fit as naturally into the Bayesian setting, is not addressed in this paper.
However, it is a key area of research which the authors intend to address in
future work.
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