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Inference for Nonprobability Samples
Michael R. Elliott and Richard Valliant

Abstract. Although selecting a probability sample has been the standard for
decades when making inferences from a sample to a finite population, incen-
tives are increasing to use nonprobability samples. In a world of “big data”,
large amounts of data are available that are faster and easier to collect than
are probability samples. Design-based inference, in which the distribution for
inference is generated by the random mechanism used by the sampler, cannot
be used for nonprobability samples. One alternative is quasi-randomization in
which pseudo-inclusion probabilities are estimated based on covariates avail-
able for samples and nonsample units. Another is superpopulation modeling
for the analytic variables collected on the sample units in which the model is
used to predict values for the nonsample units. We discuss the pros and cons
of each approach.

Key words and phrases: Coverage error, hierarchical regression, quasi-
randomization, reference sample, selection bias, superpopulation model.

1. INTRODUCTION

Probability sampling became the touchstone for
good survey practice some decades ago after Neyman
(1934) presented the theory for stratified and clus-
ter sampling based on the randomization distribution.
Neyman also showed that a type of nonrandom quota
sample of Italian census records drawn by Gini and
Galvani had failed to provide satisfactory estimates for
many variables in the census. Quoting Smith (1976),
“This combined attack was overwhelming and since
that day random sampling has reigned supreme.” An-
other early nail in the coffin of nonrandom sampling
was the notable failure of a one enormous, but non-
probability, sample to correctly forecast the 1936 US
presidential election result. In pre-election polls, the
Literary Digest magazine collected 2.3 million mail
surveys from mostly middle-to-upper income respon-
dents. Although this sample size was huge, the poll
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incorrectly predicted that Alf Landon would win by a
landslide over the incumbent, Franklin Roosevelt. In
fact, Roosevelt won the election in a landslide, carry-
ing every state except for Maine and Vermont (Squire,
1988). As Squire noted, the magazine’s respondents
consisted mostly of automobile and telephone owners
plus the magazine’s own subscribers. This pool under-
represented Roosevelt’s core of lower-income support-
ers. In the same election, several pollsters (Gallup,
Crossley and Roper) using much smaller but more
representative quota samples correctly predicted the
outcome (Gosnell, 1937). However, it is worth noting
that in the 1948 US presidential elections, Gallup and
Roper erroneously forecasted that Dewey would win
using quota sampling methods similar to those from
1936. Quota samples are themselves nonprobability
samples but are controlled to be distributed more like a
random sample from a population would be.

More recent examples of polls that failed to correctly
predict election outcomes are the 2015 British par-
liamentary election (Cowling, 2015), the 2015 Israeli
Knesset election (Liebermann, 2015) and the 2014
governor’s race in the US state of Maryland (Enten,
2014). The widespread failure of the British 2015 polls
led to an extensive evaluation by two professional soci-
eties (Sturgis et al., 2016). There were various potential
reasons for the misfires, including samples with low
contact and response rates, samples based on unrep-
resentative volunteer panels, inability to predict which
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respondents would actually vote, question wording and
framing, deliberate misreporting, and volatility in vot-
ers’ opinions about candidates. The samples for the
2015 British polls were online or telephone polls that
could not be considered probability samples of all reg-
istered voters. Demographic population totals for char-
acteristics like age, sex, region, social grade and work-
ing status were used to set quota sample and weighting
targets. After evaluating eight putative explanations,
Sturgis et al. (2016) concluded that the British polls
were wrong because of their unrepresentative samples.
The statistical adjustment procedures that were used
did not correct this basic problem.

On the other hand, selecting a probability sample
does not guarantee that the cooperating units will pro-
vide a good basis for inference to a population. In
many types of surveys response rates have declined
dramatically, casting doubt on how well these samples
represent the population. Pew Research reported that
their response rates (RRs) in typical telephone surveys
dropped from 36% in 1997 to 9% in 2012 (Kohut et al.,
2012). With such low response rates, a sample initially
selected randomly can hardly be called a probability
sample from the desired population. Low RRs raise the
question of whether probability sampling is a viable
methodology for general population surveys without
expensive face-to-face data collection methods which
usually have higher response.

For some purposes, convenience samples or other
types of nonprobability samples have long been ac-
ceptable. For example, using convenience samples in
experimental studies is standard practice, even when
the conclusions are intended to apply to some larger
population. The inferences are model-based and come
from assuming that the experimental effects are ho-
mogeneous among all units in the relevant population.
Models are also used for inference in observational
studies where, in contrast to designed experiments, as-
signments of interventions or treatments are not con-
trolled by an experimenter. However, the lack of ran-
domization in those studies may threaten their validity
(Madigan et al., 2014). Inferences from nonprobability
samples must also rely on models, rather than the dis-
tribution generated by random sampling, to project a
sample to a larger finite population.

Obtaining data without exercising much control over
the set of units for which it is collected is often cheaper
and quicker than probability sampling where efforts are
made to use a frame that covers most or all of the popu-
lation, and units are randomly selected from the frame.

Repeatedly attempting to get nonrespondents to coop-
erate, which is standard procedure in probability sam-
ples, can be expensive and time-consuming. Eliminat-
ing nonresponse followup is also an expedient way of
cutting costs. In telephone-only surveys, no amount of
nonresponse followup is likely to boost response to the
rates that were considered minimally acceptable 10 to
15 years ago. For these reasons, nonprobability sam-
pling is currently staging a kind of renascence (e.g.,
see Berzofsky, Williams and Biemer, 2009, Dever and
Valliant, 2014).

There are also other data sources that are currently
receiving attention and might be considered for fi-
nite population estimation (Couper, 2013). Social me-
dia and other data that can be scraped from the web
might be used for gauging public opinion (Murphy
et al., 2015) or measuring changes in consumer prices
(Cavallo and Rigobon, 2016). Although the inferential
issues raised subsequently apply to these “big data,” we
mainly concern ourselves with nonprobability samples
that were directly collected for the purposes of making
finite population estimates.

1.1 Types of Nonprobability Samples

There are a number of types of nonprobability sam-
ples that are summarized briefly below. Regardless of
type, there is quite a bit of controversy about the use
of nonprobability surveys for making inferences. Sec-
tion 2 describes the potential problems with nonproba-
bility samples that can bias inferences. However, these
concerns are not limited to finite population inference.
Keiding and Louis (2016) is a recent discussion of
problems with self-selected entry to epidemiological
studies and surveys. Stuart et al. (2011) considers the
use of propensity cores to generalize results from ran-
domized trials to populations. Kaizar (2015) reviews
approaches that have been proposed for combining ran-
domized and nonrandomized studies in the estimation
of treatment efficacy. O’Muircheartaigh and Hedges
(2014) describe the use of stratified propensity scores
for analyzing a nonrandomized social experiment.

For finite population sampling, the American Asso-
ciation of Public Opinion Research (AAPOR) has is-
sued two task force reports on the use of nonprobabil-
ity samples—neither of which favored their use. Baker
et al. (2010) studied the use of online Internet panels;
Baker et al. (2013a, 2013b) cover nonprobability sam-
pling generally. Baker et al. (2010) recommended on
several grounds that researchers not use online pan-
els if the objective is to accurately estimate popula-
tion values. Among other reasons, they noted that (i)
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some comparative studies showed that nonprobability
samples were less accurate than probability samples;
(ii) the demographic composition of different panels
can affect estimates; and (iii) not all panel vendors
fully disclose their methods. Baker et al. (2013a) took
a more nuanced view that inferences to a population
from nonprobability samples can be valid but that the
modeling assumptions needed are difficult to check.

Nonprobability surveys capture participants through
various methods. The AAPOR task force on nonprob-
ability sampling (Baker et al., 2013a) characterized
these samples into three broad types:

1. Convenience sampling.
2. Sample matching.
3. Network sampling.

Baker et al. (2013a) describe these in some detail;
we briefly summarize them here. Convenience sam-
pling is a form of nonprobability sampling in which
easily locating and recruiting participants is the pri-
mary consideration. No formal sample design is used.
Some types of convenience samples are mall inter-
cepts, volunteer samples, river samples, observational
studies and snowball samples. In a mall intercept sam-
ple, interviewers try to recruit shoppers to take part in
some study. Usually, neither the malls nor the people
are probability samples.

Volunteer samples are common in social science,
medicine and market research. Volunteers may partici-
pate in a single study or become part of a panel whose
members may be recruited for different studies over the
course of time. A recent development is the opt-in web
panel in which volunteers are recruited when they visit
particular web sites (Schonlau and Couper, 2017). Af-
ter becoming part of a panel, the members may par-
ticipate in many different surveys, often for some type
of incentive. River samples are a version of opt-in web
sampling in which volunteers are recruited at a number
of websites. Some thought may be given to the set of
websites used for recruitment with an eye toward ob-
taining a cross-section of demographic groups.

In sample matching, the members of a nonproba-
bility sample are selected to match a set of important
population characteristics. For example, a sample of
persons may be constructed so that its distribution by
age, race-ethnicity and sex closely matches the distri-
bution of the inference population. Quota sampling is
an example of sample matching. The matching is in-
tended to reduce selection biases as long as the covari-
ates that predict survey responses can be used in match-
ing. Rubin (1979) presents the theory for matching in

observational studies. A variation of matching in sur-
vey sampling is to match the units in a nonprobability
sample with those in a probability sample. Each unit in
the nonprobability sample is then assigned the weight
of its match in the probability sample. Rivers (2007)
describes this type of sampling matching in the con-
text of web survey panels. Other techniques developed
by Rosenbaum and Rubin (1983) and others for ana-
lyzing observational data have also been applied when
attempting to develop weights for some volunteer sam-
ples.

In network sampling, members of some target pop-
ulation (usually a rare one like intravenous drug users
or men who have sex with men) are asked to identify
other members of the population with whom they are
somehow connected. Members of the population that
are identified in this way are then asked to join the
sample. This method of recruitment may proceed for
several rounds. Snowball sampling (also called chain
sampling, chain-referral sampling or referral sampling)
is an example of network sampling in which existing
study subjects recruit additional subjects from among
their acquaintances. These samples typically do not
represent any well-defined target population, although
they are a way to accumulate a sizeable collection of
units from a rare population.

Sirken (1970) is one of the earliest examples of
network or multiplicity sampling in which the net-
work that respondents report about is clearly defined
(e.g., members of a person’s extended family). Prop-
erly done, a multiplicity sample is a probability sample
because a person’s network of recruits is well-defined.
Heckathorn (1997) proposed an extension to this called
respondent driven sampling (RDS) in which persons
would report how many people they knew in a rare
population and recruit other members of the rare popu-
lation. RDS has been used in many applications. For
example, Frost et al. (2006) used RDS to locate in-
travenous drug users; Schonlau, Weidmer and Kapteyn
(2014) used it in an attempt to recruit an internet panel.
If some restrictive assumptions on how the recruiting
is done are satisfied, probabilities of being included in
a sample can be computed and used for inferences to
a full rare population, but these assumptions can easily
be violated (e.g., see Gile and Handcock, 2010). Be-
cause the network applications are extremely special-
ized, we will not address them further.

1.2 General Framework for Inference

Smith (1983) discusses the general problem of mak-
ing inferences from nonrandom samples. His formula-
tion is to consider the joint density of the population



252 M. R. ELLIOTT AND R. VALLIANT

vector of an analysis variable, Y = (Y1, Y2, . . . , YN)

and the population vector of 0–1 indicator variables,
δs = (δ1, δ2, . . . , δN) for a sample s. The presentations
of Rubin (1976) and Little (1982) on selection mecha-
nisms and survey nonresponse are closely related. Sup-
pose that X is an N × p matrix of covariates that can
be used in designing a sample or in constructing es-
timators. The conditional density of Y given X and
a parameter vector � is f (Y|X;�). The density of
δs given Y, X, and another unknown parameter � is
f (δs |Y,X;�). The joint model for Y and δs is

(1) f (Y, δs |X;�,�) = f (Y|X;�)f (δs |Y,X;�).

Note that this allows the possibility that being in the
sample depends on Y, that is, to be not missing at ran-
dom (NMAR). In a probability sample (without nonre-
sponse or other missingness that is out of control of
the sampler), f (δs |Y,X;�) = f (δs |X). The density
f (δs |X) is the randomization distribution and is the
basis for design-based inference. However, in a non-
probability sample, the distribution of δs can depend
on both Y and an unknown parameter �. Depending
on the application, inference can be based on either
f (Y|X;�) or f (δs |Y,X;�) or on a combination of
both.

We term two general approaches to making infer-
ences from nonprobability samples as quasi-random-
ization and superpopulation. Quasi-randomization is
described in Section 3 and requires modeling f (δs |
Y,X;�). Ideally, the probability of being in the sam-
ple is not NMAR and a model can be found for
f (δs |X;�). The superpopulation approach is cov-
ered in Section 4 and involves modeling f (Y|X;�).
Both of these approaches involve models, but the ap-
proaches are fundamentally different. In the quasi-
randomization approach the probability of a unit’s be-
ing included in the sample is modeled. In the superpop-
ulation approach, the analytic variables (y’s) collected
in the sample are modeled. Deville (1991) also covers
these approaches in the context of quota sampling.

Descriptive statistics, like means and totals, and ana-
lytic statistics, like model parameters, are common es-
timands in finite population estimation. Detailed dis-
cussion of the latter is given in Lumley and Scott
(2017). Finite population totals are the simplest target
to discuss. A total of some quantity Y can be written
as the sum of the values over the set of sample units, s,
and the sum over the nonsample units s̄:

tU = ∑
i∈s

yi + ∑
i∈s̄

Yi ≡ ts + ts̄ .

Since the sample values are observed, we use lower
case y for them; upper case is used for the unobserved,
nonsample values. In this simple case, the nonsample
sum, ts̄ , is often estimated (or predicted) by a weighted
sum of the sample observations, that is, t̂s̄ = ∑

i∈s wiyi

where wi is a weight that may be dependent on the
units in the sample. [Alternative ways of calculating
weights in probability samples are discussed in Haziza
and Beaumont (2017)]. Typically, the estimator can
also be written as t̂s̄ = ∑

i∈s̄ ŷi where ŷi is a prediction
for nonsample unit i. Thus, for totals the estimation
problem is one of prediction.

Estimation of model parameters often requires solv-
ing a set of estimating equations for the parameter es-
timates. The estimating equations can be linear in the
parameters, as for linear regression or nonlinear, as for
generalized linear models. In design-based finite popu-
lation estimation, the estimating equations include sur-
vey weights and are estimators of types of finite pop-
ulation totals (Binder and Roberts, 2009). If weights
are constructed for a nonprobability sample that are
appropriate for estimating totals, then those weights
can also be used in the estimating equations. Conse-
quently, weight construction for nonprobability sam-
ples can play the same role in estimation as in proba-
bility sampling.

Baker et al. (2013a) discuss the methods that have
been proposed for weighting nonprobability samples.
Such samples lack many of the features that guide
weighting in probability samples. A nonprobability
sample is not selected randomly from an explicit sam-
pling frame. Consequently, selection probabilities can-
not be computed, and the usual method of comput-
ing base weights (inverses of selection probabilities)
does not apply. Weights can, however, be computed
using the quasi-randomization or superpopulation ap-
proaches noted above.

2. POTENTIAL PROBLEMS WITH
NONPROBABILITY SAMPLES

Since nonprobability samples are often obtained in
a poorly controlled or uncontrolled way, they can be
subject to a number of biases when the goal is infer-
ence to a specific finite population. Several issues are
listed here in the context of voluntary Internet panels,
but other types of nonprobability samples can suffer
from similar problems.

Selection bias occurs if the seen part of the popula-
tion (the sample) differs from the unseen (the nonsam-
ple) in such a way that the sample cannot be projected
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FIG. 1. Illustration of potential and actual coverage of a target
population.

to the full population. Whether a nonprobability sam-
ple covers the desired population is a major concern.
For example, in a volunteer web panel only persons
with access to the Internet can join a panel. To describe
three components of coverage survey bias, Valliant and
Dever (2011) defined three populations, illustrated in
Figure 1: (1) the target population of interest for the
study U ; (2) the potentially covered population given
the way that data are collected, Fpc; and (3) the actual
covered population, Fc, the portion of the target popu-
lation that is recruited for the study through the essen-
tial survey conditions. For example, consider an opt-in
web survey for a smoking cessation study. The target
population U may be defined as adults aged 18–29 who
currently use cigarettes. The potentially covered pop-
ulation Fpc would be those study-eligible individuals
with Internet access who visit the sites where study re-
cruitment occurs; those actually covered Fc would be
the subset of the potential covered population who par-
ticipate in the study. Selecting a sample only from Fc

results in selection bias. The sample s are those per-
sons who are invited to participate in the survey and
who actually do. The U −Fpc area in the figure are the
many persons who have Internet access but never visit
the recruiting websites or who do not have Internet ac-
cess at all. In many situations, U − Fpc is vastly larger
than either Fc or Fpc.

To illustrate a case that is rife with coverage prob-
lems, we further consider surveys done using panels
of persons recruited via the Internet. Table 1 lists per-
centages of households in the US in 2013 estimated
from the American Community Survey (ACS) that
have some type of Internet subscription (File and Ryan,
2014). The ACS estimates are based on a sample of
about 3.5 million households. About 25% of house-
holds had no Internet subscription, which in itself is a

substantial amount of undercoverage of the full popula-
tion. The coverage varies considerably by demographic
group. Only 58.3% of households where the head is
65 or older have the Internet. Black non-Hispanic and
Hispanic households are less likely to have access than
other race-ethnicities. Households in metropolitan ar-
eas are more likely to have access. There is also a clear
dependence on income and education. As income and
education increase, so does the percentage of house-
holds with access. As illustrated in Dever, Rafferty and
Valliant (2008), these coverage errors can lead to bi-
ased estimates for many items.

Selection bias occurs when some groups are also
more likely to volunteer for a panel. Bethlehem (2010)
reviews this issue for web surveys. Vonk, van Ossen-
bruggen and Willems (2006) report that ethnic minori-
ties and immigrant groups were systematically under-
represented in Dutch panels. They also found that, rel-
ative to the general population, the Dutch online pan-
els contained disproportionately more voters, more So-
cialist Party supporters, more heavy Internet users and
fewer churchgoers.

Nonresponse of several kinds affects web panels.
Many panel vendors have a “double opt-in” procedure
for joining for a panel. First, a person registers his/her
name, email and some demographics. Then the vendor
sends the person an email that must be responded to in
order to officially join the panel. This eliminates peo-
ple who give bogus emails but also introduces the pos-
sibility of registration nonresponse since some people
do not respond to the vendor’s email. People may also
click on a banner ad advertising the panel but never
complete all registration steps. Alvarez, Sherman and
Van Beselaere (2003) report that, during the recruit-
ment of one panel, just over 6% of those who clicked
through a banner ad to the panel registration page even-
tually completed all the steps required to become a
panel member. Finally, a panel member asked to par-
ticipate in a survey may not respond.

Attrition is another problem—persons may lose in-
terest and drop out of a panel. Many surveys are tar-
geted at specific groups, for example, young Black fe-
males. A panelist that is in one of these “interesting”
groups may be peppered with survey requests and drop
out for that reason. Another reason that some groups,
like the elderly, are over-burdened is that they may be
oversampled to make up for anticipated nonresponse.

Measurement error is also a worry in nonprobabil-
ity surveys as they are in any survey. The types of error
that have been demonstrated in some studies are effects
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TABLE 1
Percentages of US households with Internet subscriptions;

2013 American Community Survey

Percent of households with
some Internet subscription

Total households 74.4
Age of householder
15–34 years 77.7
35–44 years 82.5
45–64 years 78.7
65 years and older 58.3

Race and Hispanic origin of householder
White alone, non-Hispanic 77.4
Black alone, non-Hispanic 61.3
Asian alone, non-Hispanic 86.6
Hispanic (of any race) 66.7

Limited English-speaking household
No 75.5
Yes 51.4

Metropolitan status
Metropolitan area 76.1
Nonmetropolitan area 64.8

Household income
Less than $25,000 48.4
$25,000–$49,999 69.0
$50,000–$99,999 84.9
$100,000–$149,999 92.7
$150,000 and more 94.9

Educational attainment of householder
Less than high school graduate 43.8
High school graduate 62.9
Some college or associate’s degree 79.2
Bachelor’s degree or higher 90.1

due to questionnaire design, mode and peculiarities of
respondents. For example, the persons who participate
in panels tend to have higher education levels. The mo-
tivation for participating may be a sense of altruism for
some but may be just to collect an incentive for oth-
ers. Participants are often paid per survey completed.
Some respondents speed through surveys, answering
as quickly as possible to collect the incentive. This is a
form of “satisficing” where respondents do just enough
to get the job done (Simon, 1956). On the other hand,
self-administered online surveys do tend to elicit more
reports of socially undesirable behaviors, like drug use,
than do face-to-face surveys. Higher reports are usu-
ally taken to be more nearly correct. But, it may be that
the people taking those surveys just behave undesirably
more often than the general population.

Baker et al. (2010, page 739) list 19 studies where
the same questionnaire was administered by interview-

ers to probability samples and online to nonprobabil-
ity samples. As they noted, “Only one of these studies
yielded consistently equivalent findings across meth-
ods, and many found differences in the distributions
of answers to both demographic and substantive ques-
tions. Further, these differences generally were not sub-
stantially reduced by weighting.”

Despite all of these actual and potential problems,
online panels are now widely used. For example, the
Washington Post newspaper and the company, Survey-
Monkey, have recently mounted a nonprobability, on-
line poll of over 75,000 registered voters that covers all
50 states in the US (Clement, 2016). Baker et al. (2010)
quotes the market research newsletter, Inside Research
as estimating the total spent on online research in 2009
at about $2 billion USD, the vast majority of which is
supported by online panels.
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3. QUASI-RANDOMIZATION APPROACH

In the quasi-randomization approach, pseudo-
inclusion probabilities are estimated and used to cor-
rect for selection bias. Given estimates of the pseudo-
probabilities, design-based formulas are used for point
estimates and variances. Using the earlier notation, the
goal is to estimate f (δs |Y,X;�) or f (δs |X;�). Hav-
ing a situation where the sample inclusion probabilities
do not depend on the Y ’s is ideal since the nonsample
Y ’s are unknown, but verifying that this is the case is
impossible in most applications. There is some liter-
ature on estimation when nonsample data are NMAR
(e.g., see Little, 2003), but the methods generally re-
quire information on nonsample units that is available
only in specialized applications. Thus, the practical ap-
proach is to estimate f (δs |X;�).

To illustrate how involved estimating these probabil-
ities may be, consider a case in which a volunteer panel
of persons is recruited to provide a pool from which a
sample of persons is selected. To respond to a survey,
a person must have Internet access, volunteer for the
panel, be selected for the particular survey and then re-
spond. Considering all of these, the probability of per-
son i participating in that Web survey [using a simpler
notation than f (δs |X;�) above] can be decomposed
as

P(xi )

= P
(
i ∈ I |xi

)
P

(
i ∈ V |I,xi

)
(2)

· P (
i ∈ sV |V, I,xi

)
P

(
i ∈ sV R|sV ,V , I,xi

)
,

where

xi = a vector of covariates for person i that are
predictive of participation;

I = set of persons with Internet access, that is,
Fpc in Figure 1; V = set of persons who volunteer;

P(i ∈ I |xi ) = probability of having access to the
Internet;

P(i ∈ V |I,xi) = probability of volunteering for
an opt-in panel given that person i has access to the
Internet;

P(i ∈ sV |V, I,xi) = probability that person i

was subsampled from the panel and asked to partici-
pate with sV denoting the subsample from the panel;

P(i ∈ sV R|sV ,V , I,xi) = probability that per-
son i responds given selection for the subsample with
sV R denoting the set of survey respondents.

Standard methods (e.g., see Valliant, Dever and
Kreuter, 2013) can be used to compute the last two

terms in (2). The first two probabilities—having Inter-
net access and volunteering for the panel—are more
difficult. Both are likely to depend on the xi covariates
and, in a worse case, upon the Y ’s. For example, per-
sons with higher socioeconomic status are more likely
to have access; younger people are more likely to join
a panel than older ones. In some countries, probabil-
ity samples that represent the full population may in-
clude questions on Internet access. The US National
Health Interview Survey routinely includes such ques-
tions. The probability of volunteering (given Internet
access) is harder to estimate.

Reference survey. One approach is to use a reference
survey in parallel to the nonprobability survey. The ref-
erence survey can be a probability survey selected from
either (i) the population of persons who have Internet
access or (ii) the full population including persons that
do not have the Internet. The reference sample might
also be a census that covers the entire population. The
statistical approach is to combine the reference sample
and the sample of volunteers and fit a model to predict
the probability of being in the nonprobability sample,
as described in Section 3.1.

A key requirement of the reference survey is that it
include the same covariates xi as the volunteer sur-
vey so that a binary regression can be fitted to per-
mit estimation of inclusion probabilities for the volun-
teers. One possibility for a reference survey is to use a
publicly available dataset collected in a well designed
and executed probability survey (like one done by a
central government agency). Another possibility is for
the survey organization to conduct its own reference
survey. In the latter case, some specialized questions,
beyond the usual age/race/sex/education types of de-
mographics, can be added that are felt to be predic-
tive of volunteering and of the analysis variables for
the volunteer survey. Schonlau, van Soest and Kapteyn
(2007) refer to these extra covariates as webographics.
However, identifying webographics that are useful be-
yond the standard demographics (age, race-ethnicity,
sex, income and education) is difficult (Lee and Val-
liant, 2009). Of course, another problem with conduct-
ing your own reference survey is that doing a high qual-
ity survey with good coverage of the target population
is expensive and may be beyond the means of many
organizations.

Sample matching is another approach to attempting
to reduce selection biases in a nonprobability sample.
As noted in Baker et al. (2013a), the matching can
be done on an individual or aggregate level. If, for
each case in a volunteer sample, a matching case is
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found in a probability, reference sample, this would
be individual-level matching. The matches would be
found based on covariates available in each dataset.
This may be done based on individual covariate values
or on propensity scores as described in Rosenbaum and
Rubin (1983). This is an example of predictive mean
matching in which an imputation of an inclusion prob-
ability is made for each nonprobability unit.

Matching at the aggregate level consists on making
the frequency distribution of the nonprobability sample
the same as that of the population. Quota sampling is
an example of this. For example, the age × race distri-
bution of the sample might be controlled to be the same
as that in the population. If we start with a large panel
of volunteers, a subsample might be selected to achieve
this kind of distributional balance. Each person would
receive the same weight, which is the same way that
a proportionally allocated probability sample would be
treated. Considered in this way, quota sampling falls
into the quasi-randomization framework.

A probability sample used as a reference survey or
in sample matching ideally must not be subject to cov-
erage or other types of bias. As noted in Section 1,
many probability samples are now subject to high non-
response rates and are tantamount to nonprobability
samples themselves. Poor quality reference or match-
ing samples can lead to biased estimators of the in-
clusion probabilities in (2) and, consequently, biased
estimators from the nonprobability sample. This is an
argument for using large, well-controlled samples con-
ducted by central governments for reference or match-
ing samples if at all possible. For example, in a house-
hold survey in the US, the American Community Sur-
vey (https://www.census.gov/programs-surveys/acs/)
would be a good choice.

3.1 Estimation Using Pseudo-Weights

This approach assumes that the nonprobability sam-
ple actually does have a probability sampling mecha-
nism, albeit one with probabilities that have to be es-
timated under identifying assumptions. The goal is to
estimate this unknown probability of selection relying
on a true probability sample or a census with common
variables that explain the unknown sampling mecha-
nism (Elliott, 2009, Elliott et al., 2010). Let Si denote
the sampling indicator for the probability sample, S∗

i

denote the indicator for the nonprobability sample, and
xi be the set of common covariates available to both
samples that are assumed to fully govern the sampling
mechanism for both. Applying Bayes rule, we have

(Elliott and Davis, 2005):

P
(
S∗

i = 1|xi = xo

)

= P(xi = xo|S∗
i = 1)P (S∗

i = 1)

P (xi = xo)
(3)

= P(xi = xo|S∗
i = 1)P (S∗

i = 1)P (Si = 1|xi = xo)

P (Si = 1)P (xi = xo|Si = 1)

∝ P(xi = xo|S∗
i = 1)P (Si = 1|xi = xo)

P (xi = xo|Si = 1)
,

where P(Si = 1)/P (S∗
i = 1) can be treated as a nor-

malizing constant.
Estimating P(xi = xo|S∗

i = 1) and P(xi = xo|Si =
1) can be difficult for a general joint distribution of
covariates x, but extensions of discriminant analysis
(without making a normality assumption) provide a
way around this problem. Combine the probability and
nonprobability samples and let Zi = 1 for nonproba-
bility cases (i.e., S∗

i = 1, Si = 0) and Zi = 0 for the
probability cases (i.e., S∗

i = 0, Si = 1) conditional on
being in the combined probability-nonprobability sam-
ple (i.e., S∗

i + Si = 1). Then

P(xi = xo|Zi = 1)

P (xi = xo|Zi = 0)

= P(Zi = 1|xi = xo)P (xi = xo)/P (Zi = 1)

P (Zi = 0|xi = xo)P (xi = xo)/P (Zi = 0)
(4)

∝ P(Zi = 1|xi = xo)

P (Zi = 0|xi = xo)
.

As long as sampling fractions are small, P(Si =
1, S∗

i = 0) ≈ P(Si = 1) and P(Si = 0, S∗
i = 1) ≈

P(S∗
i = 1), so P(xi |Zi = 0) = P(xi |Si = 1, S∗

i = 0) ≈
P(xi |Si = 1) and P(xi |Zi = 1) = P(xi |Si = 0, S∗

i =
1) ≈ P(xi |S∗

i = 1). Thus,

P
(
S∗

i = 1|xi = xo

)
·∝ P(Si = 1|xi = xo)

P (Zi = 1|xi = xo)

P (Zi = 0|xi = xo)
.

The resulting “pseudo-weight” is given by

wi = 1/P̂
(
S∗

i = 1|xi = xo

)
(5)

∝ 1/P̂ (Si = 1|xi = xo)
P̂ (Zi = 0|xi = xo)

P̂ (Zi = 1|xi = xo)
.

If the covariates xi that are available in both the non-
probability and probability sample match those used
to design the probabilities of selection/inclusion in the

https://www.census.gov/programs-surveys/acs/
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probability sample, (5) can be written as

wi = 1/P̂
(
S∗

i = 1|xi = xo

)
(6)

∝ w̃i

P̂ (Zi = 0|xi = xo)

P̂ (Zi = 1|xi = xo)
,

where w̃i is the inverse of the probability of selection
for the nonprobability unit in the probability sampling
frame. Otherwise, in the more likely setting where xi

does not correspond precisely to the probability sample
design variables, P̂ (Si = 1|xi = xo) can be estimated
by regressing xi on w̃−1

i via beta regression (Ferrari
and Cribari-Neto, 2004) in the probability sample, and
predicting P(Si = 1|xi = xo) for the nonprobability
sample elements.

The term P̂ (Zi = z|xi = xo) can be obtained via lo-
gistic regression, or, to reduce model misspecification
if xi is of high dimensionality, via least absolute shrink-
age and regression operator (LASSO) (Tibshirani,
1996, LeBlanc and Tibshirani, 1998), Bayesian addi-
tive regression trees (BART) (Chipman, George and
McCulloch, 2010), or super learner algorithms that
combine estimators from numerous model fitting meth-
ods (Van der Laan, Polley and Hubbard, 2007). In some
settings, the nonprobability sample will represent only
a portion of population; for example, in a setting with
a binary outcome Y (e.g., injured/uninjured) only pos-
itive outcomes Y = 1 (e.g., injuries) might be repre-
sented in the nonprobability dataset; in this case (5) is
updated as

wi = 1/P̂
(
S∗

i = 1|xi = xo

)

∝ 1/P̂ (Si = 1|xi = xo, Yi = 1)(7)

· P̂ (Zi = 0|xi = xo)

P̂ (Zi = 1|xi = xo)
.

An alternative to estimating the probability of unit
i’s being in the nonprobability sample is used by some
panel vendors. The probability (reference) and non-
probability samples are combined, but a logistic regres-
sion is run to estimate P(S∗

i = 1|xi = xo), not condi-
tioned on being in the combined probability and non-
probability sample (e.g., see Valliant and Dever, 2011).
This is done by assigning a weight of 1 to the non-
probability cases, the probability sampling weight to
the probability cases, and running a weighted logistic
regression. The model predictions, thus, refer to the
unconditional probability, P(S∗

i = 1|xi = xo), not the
probability conditional on being in the combined sam-
ple. Whether this method is better or worse than (5)
has not been studied, although, as noted above, (5) can

be adapted to cases where the nonprobability sample
represents only a portion of the population.

If analysis of the nonprobability sample only is re-
quired, the pseudo-weight construction is complete. If
the nonprobability and probability samples are to be
combined, the nonprobability sample pseudo-weights
and probability sample weights are normalized so that
the weighted fraction of the nonprobability sample is
equal to the unweighted fraction of the nonprobabil-
ity sample cases in the combined dataset, and similarly
the weighted fraction of the probability sample is equal
to the unweighted fraction of the probability sample
cases in the combined dataset (Korn and Graubard,
1999, pages 278–284). This ensures that the sum of
the combined weights continues to approximate the
population size, and that each sample will contribute
in proportion to their unweighted sample size. This
is accomplished by setting ŵi = CS∗ × wi for CS∗ =
nS∗/(nS + nS∗) × ∑

i I (Zi = 0)w̃i/
∑

i I (Zi = 1)wi

for the nonprobability sample cases and ŵi = CS × w̃i

for CS = nS/(nS + nS∗).
To obtain inference, the pseudo-weights or the nor-

malized pseudo-weights and probability sample
weights in the combined dataset can be used to ob-
tain weighted point estimates. For variance estimation,
a bootstrap or jackknife estimator should be used to in-
corporate both sampling variability in the estimation of
the pseudo weights and in the estimation of the main
quantity of interest. In the absence of true design infor-
mation in the nonprobability sample, resampling at the
subject level for the bootstrap or leave-one-out compu-
tation of the pseudo-estimate for the jackknife can be
applied. However, some thought must be given to the
structure of the convenience sample. For example, the
websites used to recruit a volunteer web panel might
properly be considered as clusters if different types of
persons visit the different sites (Brick, 2015). For the
probability sample, resampling clusters within strata
and use of the Rao–Wu bootstrap (Rao and Wu, 1988,
Rao, Wu and Yue, 1992) to accommodate weights can
be used. For the jackknife, clusters within strata should
be dropped, with standard weighting up by the number
of clusters divided by the number of clusters retained
to maintain the stratum size should be used. For each
bootstrap or jackknife iteration, the pseudo-weights
should be recomputed as well as the point estimator
using the dropped-out or resampled data.

4. SUPERPOPULATION MODEL APPROACH

In the superpopulation modeling approach, a statis-
tical model is fitted for a Y analysis variable from the
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sample and used to project the sample to the full pop-
ulation. That is, inferences are based on f (Y|X;�).
This approach could, of course, also be used with a
probability sample. The difference here is that design-
based inference, where the randomization distribution
is under the control of the sampler, is not an option for
a nonprobability sample. As noted in Smith (1983), the
sample selection mechanism can be ignored for model-
based inferences about the distribution of Y if

(8) f (δs |Y,X;�) = f (δs |X;�),

which would be the formal justification for using only
f (Y|X;�). There are purposive, nonprobability sam-
ples that satisfy (8). For example, selecting the n units
with the largest x values as is done by US Energy
Information Administration (2016), or sampling bal-
anced on population moments of covariates (Royall,
1970, 1971) are ignorable, nonprobability plans. How-
ever, in nonprobability samples where the selection of
sample units is not well-controlled, (8) may not hold
and the quasi-randomization and superpopulation ap-
proaches could be combined.

Note that Y can be partitioned between the sam-
ple and nonsample units as Y = (Ys,Ys̄ ). Thus,
f (Y|X;�) = f (Ys |Ys̄ ,X;�)f (Ys̄ |X;�). If f (Ys |
Ys̄ ,X;�) = f (Ys |X;�), then Ys and Ys̄ are inde-
pendent conditional on the covariates, X. If model-
based inferences are desired for �, these can be done
based only on f (Ys |X;�). However, if descriptive in-
ferences are required for the full population Y, then
f (Ys̄ |X;�) must be estimated. If this model has the
same form as f (Ys |X;�), then the model fitted from
the sample can be used to predict values for the non-
sample. If this is not the case, inference to the full pop-
ulation may be difficult or impossible.

To introduce the superpopulation approach, consider
the simple case of estimating a finite population total.
The general idea in model-based estimation when es-
timating a total is to sum the responses for the sample
cases and add to them the sum of predictions for non-
sample cases. The key to forming unbiased estimates
is that the variables to be analyzed for the sample and
nonsample follow a common model and that this model
can be discovered by analyzing the sample responses.
When both the sample and nonsample units follow the
same model, model parameters can be estimated from
the sample and used to make predictions for the non-
sample cases. An appropriate model usually includes
covariates, as in f (Ys |X;�) above, which are known
for each individual sample case. The covariates may
or may not be known for individual nonsample cases.

For some common estimation methods like poststrat-
ification, only population totals of the covariates are
required to construct the estimator, so that individual
nonsample X values are unnecessary. Suppose that the
mean of a variable yi follows a linear model:

EM(yi |xi ) = xT
i β,

where the subscript M means that the expectation is
with respect to the model, xi is a vector of p covariates
for unit i and β is a parameter vector. Given a sample s,
an estimator of the slope parameter is β̂ = A−1

s XT
s ys

where As = XT
s Xs , Xs is the n×p matrix of covariates

for the sample units, and ys is the n-vector of sample
y’s. (Weighted least squares might also be used if there
were evidence of nonhomogeneous model variances.)
A prediction of the value of a unit in the set of nonsam-
ple units, denoted by r , is ŷi = xT

i β̂ . A predictor of the
population total is

t̂1 = ∑
i∈s

yi + ∑
i∈s̄

ŷi

(9)
= ∑

i∈s

yi + (tUx − tsx)T β̂,

where tUx is the total of the x′s in the population and
tsx is the sample sum of the x′s. This estimator is also
equal to the general regression estimator (GREG) of
Särndal, Swensson and Wretman (1992) if the inverse
selection probabilities in that estimator are all set to 1.
The theory for this prediction approach is extensively
covered in Valliant, Dorfman and Royall (2000). If the
sample is a small fraction of the population, as would
be the case for most volunteer web surveys, the predic-
tion estimator is approximately the same as predicting
the value for every unit in the population and adding
the predictions:

(10) t̂2 = ∑
i∈U

ŷi = tTUx β̂.

The population mean of y can be estimated by ˆ̄Y =
X̄T

U β̂ where X̄U = tUx/N , the population vector of co-
variate means.

The estimators in (9) or (10) are quite flexible in
what covariates can be included. For example, we
might predict the amount that people have saved for re-
tirement based on their occupation, years of education,
marital status, age, number of children they have and
region of the country in which they live. Constructing
the estimator would require that census counts be avail-
able for each of those covariates. Another possibility is
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to use estimates from some other larger or more accu-
rate survey (e.g., Dever and Valliant, 2010, 2016). The
reference surveys mentioned earlier could be a source
of estimated control totals in which webographic co-
variates might be used.

Both (9) and (10) can be written so that they are
weighted sums of y’s. If (9) is used, the weight for unit
i is w1i = 1 + tTrxA−1

s xi where trx = tUx − tsx . In (10),
the weight is w2i = tTUxA−1

s xi . The estimated total for
an analysis variable can be written as t̂ = ∑

s wiyi

where wi is either w1i or w2i . Notice that these weights
depend only on the x’s not on y. As a result, the same
set of weights could be used for all estimates. It is true
that a single set of weights will not be equally efficient
for every y, but this situation is also true for design-
based weights.

In the superpopulation (y-model) approach, statis-
tical properties, like bias and variance, are computed
conditional on the set of sample units that is ob-
served. This contrasts to the quasi-randomization ap-
proach where the pseudo design-based calculations av-
erage over the random appearance in the sample of
units that have the same configuration of covariates ob-
served in the sample. A quasi-randomization estima-
tor that only uses inverse estimated inclusion probabil-
ities as weights will be biased under a y-model where
EM(y|x) depends on covariates. Consequently, the y-
model approach to constructing estimators can produce
more precise estimators than the quasi-randomization
approach alone. Chen (2015) gives some numerical il-
lustrations of this approach applied to a nonprobability
sample.

4.1 Variance Estimation for Prediction Estimators

For the frequentist methods, estimating the vari-
ance of an estimator is the usual step toward mak-
ing inferences about population values. There are sev-
eral choices for variance estimators when model-based
weighting is used. These are described in Valliant,
Dorfman and Royall (2000, Chapter 5). To fully de-
fine the model, we need to add a variance specification.
The ones we summarize here are appropriate for mod-
els in which units are mutually independent. Although
model-based estimators have been extended to cases
where units are correlated within clusters (Valliant,
Dorfman and Royall, 2000, Chapter 9), these clustered
structures are often unnecessary for the web surveys
and similar cases that we cover here. Suppose that the
full model is

EM(yi |xi ) = xT
i β

(11)
VM(yi |xi ) = vi,

where vi is a variance parameter that does not have to
be specifically defined. The variance estimators below
will work regardless of the form of vi (as long as it is
finite).

For use below, define ai to be wi − 1 where wi is
either w1i or w2i . The variance estimators below then
apply for either of the w1i or w2i weights. The predic-
tion variance of an estimator of a total, t̂ , is defined
as

(12) VM(t̂ − tU ) = ∑
i∈s

a2
i vi + ∑

i∈r

vi .

The population total of y, tU , is subtracted on the
left-hand side because the sum is random under the
model. As long as the fraction of the population that
is sampled is very small, the second term on the right-
hand side above is inconsequential compared to the
first. The variance estimators are built from the model
residuals, ri = yi −xT

i β̂ . An estimator of the dominant,
first term is

(13)
∑
s

a2
i v̂i ,

where v̂i can be any of three choices: (i) r2
i , (ii) r2

i /(1−
hii), or (iii) [ri/(1−hii)]2 where hii is the leverage for
unit i, defined as the diagonal element of the hat matrix
H = XT

s A−1
s Xs . As the sample size increases and if no

x is extreme, each leverage will converge to zero.
The estimators of the first term are robust in the sense

that they are approximately model-unbiased regardless
of the form of vi (which is unknown) as long as the
sampling fraction is small. The first choice, v̂i = r2

i ,
when used in (13), gives an example of a sandwich es-
timator. The second choice adjusts for the fact that r2

i

is slightly biased for vi . The third choice is very simi-
lar to the jackknife in which one sample unit at a time
is deleted, a new estimate of the total computed, and
the variance among those delete-one estimates is used.
Since the second term in (12) is usually negligible com-
pared to the first, misspecifying its form is likely to be
unimportant. Valliant, Dorfman and Royall (2000) pro-
vide some options for estimating that term.

The bootstrap is another replication estimator that
should be equally robust, although, to our knowledge,
finite population, model-based theory has not been
worked-out for the bootstrap. The bootstrap should
also be consistent for estimating the variance of esti-
mated quantiles, unlike the jackknife. If the population
totals for some of the covariates are estimated from an
independent survey, then the variance in (12) should
be modified by adding a term to reflect that additional
uncertainty (e.g., see Dever and Valliant, 2010, 2016).
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4.2 Hierarchical Regression Modeling

This approach can be explained by viewing calibra-
tion approaches such as poststratification and raking as
flowing from special cases of model (11). In the case of
poststratification, this can be viewed as regression on
all of the (discrete) calibration variables and their in-
teractions. Assume that the calibration variable xi con-
sists of p binary indicators, xi1, . . . , xip:

μyi = EM(yi |xi )

= β0 +
p∑

k1=1

βk1I (xik1 = 1)

+
p∑

k1=1

p∑
k2=2

βk1,k2I (xik1 = 1)I (xik2 = 1) + · · ·(14)

+
p∑

kp−1=p−1

βk1,k2I (xikp−1 = 1)I (xikp = 1)

+ · · · + βk1,k2,...,kp

p∏
l=1

I (xikl
= 1),

where I (·) is a binary indicator variable. Raking as-
sumes main effects only:

(15) μyi = EM(yi |xi ) = β0 +
p∑

k=1

βkI (xik = 1).

Denote the 2p possible combinations of values of
x1, . . . , xp by h = 1, . . . ,2p . The resulting estimates of
a population mean are given by

(16) Ŷ =
2p∑

h=1

Phμ̂h,

where Ph is the proportion of the population whose
combination of binary indicator variables is equal to h.
That is, the Ph are special cases of X̄U at the beginning
of this section.

The estimated mean, μ̂h, of the hth combination is
found by replacing each β with an estimator, β̂ , in (14)
for the poststratification estimator and in (15) for the
raking estimator. (Note that μ̂h is an estimator of μyi

for each unit in combination h.) These correspond to
the weighted estimates obtained from poststratification
or raking. Both of these models can be extended to gen-
eralized linear regression by replacing μyi with the ap-
propriate link function g(μyi) (logistic link for logistic
regression of a binary outcome, log link for a count out-
come, etc.). Intermediate models between poststratifi-
cation (14) and raking (15) can be fit by incorporating
some but not all possible interaction terms.

To deal with instabilities in the estimation of β ,
a number of authors have considered adding hierar-
chical models to the mean regression model. Holt and
Smith (1979) first suggested a model for unit i in com-
bination h of the form:

yih|μh ∼ N
(
μh,σ

2)
(17)

μh ∼ N
(
μ,τ 2)

.

The mean estimator is again given by (16), where μ̂h =
E(μh|y) = τ 2

σ 2/nh+τ 2 yh + σ 2/nh

σ 2/nh+τ 2 y for known σ 2 and

τ 2 and sample sizes nh within the hth combination of
x’s, and n = ∑

h nh; ȳh is the sample mean for units in
the hth combination and ȳ is the mean for all units. In
practice, σ 2 and τ 2 are replaced, for example, with em-
pirical Bayes estimators. Simulation studies in Elliott
and Little (2000) showed that exchangeable priors of
the form (17) were somewhat fragile, tending to over-
smooth when σ 2 and τ 2 were approximately equal. Al-
ternative priors that ordered the strata or poststrata h

by sampling weights wh = Nh/nh for population size
Nh and included information about this structuring in
either the prior mean or the variance (e.g., having the
mean be a function of wh, or the variance an autore-
gressive structure as a function of |h − h′|) had much
better performance with respect to coverage and mean
square error.

Wang et al. (2015) used an extension of this hier-
archical model approach, termed multilevel regression
and stratification (MRP), to obtain estimates of voting
behavior in the 2012 US Presidential election from a
highly nonrepresentative convenience sample of nearly
350,000 Xbox users, empaneled 45 days prior to the
election. This large sample, combined with highly pre-
dictive covariates about voting behavior, including in-
formation about party identification and 2008 Presi-
dential election voting behavior, allowed for a refined
prediction model that incorporated numerous interac-
tions and used priors on the βs to stabilize parame-
ter estimates and resulting values of μh. The values
of Ph were estimated via probability sample exit polls
from the 2008 US Presidential election, themselves
of very large size (over 100,000). Wang et al. (2015)
showed that, despite the fact that the raw Xbox esti-
mates were severely biased in favor of Romney, re-
flecting its largely male and white sample composi-
tion, accurate estimates of voting behavior were ob-
tained, based on comparisons with aggregated proba-
bility sampling polls as well as the final election re-
sult. This accuracy was due to the large sample size



NONPROBABILITY SAMPLES 261

that allowed prediction of voting behavior among de-
cidedly under-represented elements of the population
(e.g., older minority females), combined with the hier-
archical regression modeling to stabilize predictions.

4.2.1 Multilevel regression and stratification via
Bayesian finite population inference. Wang. et al.’s im-
plementation of MRP ignored uncertainty in the esti-
mation of the Ph from the probability sample. While
this may have been warranted due to its large size, in
general failure to account for this variance will lead
to anti-conservative inference (too narrow confidence
intervals). An alternative approach would be utilize
a Bayesian finite population inference approach that
treats the unsampled elements in the population as
missing data, together with the variable Y that is miss-
ing in the probability sample data but available in the
nonprobability sample data.

Let X be the variables available in the probabil-
ity and nonprobability sample for prediction of Y , Z

be the probability sample design variables, and let
(Xns,Zns) and (Xp,Zp) represent the nonsampled and
probability-sampled elements of the population, re-
spectively. Dong, Elliott and Raghunathan (2014) ob-
tain nonparametric draws from the posterior predictive
distribution of the nonsampled elements (Xns |Xs,Zp)

p(Xns |Xs,Zp)
(18)

∝
∫

p(Xns,Zns |Xp,Zp)p(Xp,Zp)dZns

under the assumption of ignorable sampling (X is inde-
pendent of the sampling indicator I conditional on Z)
by making draws of p(Xp,Zp) from a Bayesian boot-
strap (Rubin, 1981) and draws from p(Xns,Zns |Xp,

Zp) via a finite population Bayesian bootstrap (FPBB)
procedure that accounts for probabilities of selection,
clustering and weighting. Treating the nonprobability
sample (Ynp,Xnp) as a certainty sample and concate-
nating it with the probability sample to obtain Ys =
Ynp and Xs = (Xp,Xnp), we have (Zhou, Elliott and
Raghunathan, 2016c)

p(Xns |Ys,Xs,Zp)

∝
∫

p(Xns, Yns |Ys,Xs,Zp)dYns

∝
∫ ∫

p(Yns |X,Ys,Zp, θ)p(Xns |Ys,Xs,Zp, θ)

· p(Ys,Xs,Zp, |θ)p(θ) dθ dYns

under the assumption that p(Y |X,θ) = p(Ys |Xnp, θ),
that is, the model for Y given X holds in both the

probability and nonprobability samples. Draws of
p(Xns |Ys,XsZp) can be made under (18) and im-
putations of Yns made by alternating between draws
of p(θ |Y,X) and p(Yns |Ys,X, θ). Full implemen-
tation is made by obtaining L Bayesian draws of
Ys,Xs,Zp , S draws of Xns via a weighted FPBB, and
finally M draws of Yns via standard multiple impu-
tation methods (including, possibly, MRP models of
the form used in Wang et al., 2015). Inference about
Y , or, more typically, functions Q ≡ Q(Y) can then
be made via the approximate posterior distribution
of Q given by tL−1(QL, (1 + L−1)VL) where QL =

1
LMS

∑
l

∑
m

∑
s q(lms) and VL = 1

L−1
∑

l(Q̃
(l) −QL)2

for Q̃(l) = 1
MS

∑
m

∑
s q(lms) and q(lms) is Q(Y (lms))

where Y (lms) = (Ys, Y
lms
ns ) for Y lms

ns obtained from the
sth imputation of the mth weighted FPBB of the lth
BB. Details are available in Zhou, Elliott and Raghu-
nathan (2016c, 2016a, 2016b), where empirical results
are also presented.

5. CONCLUSION

Although selection of probability samples has been
the standard for inference in finite populations for over
60 years, there are now many other sources of data that
seem useful. Data obtained from convenient sources
like internal business records or the internet are plenti-
ful and tempting to use in estimation. Another mitigat-
ing factor is that selecting and maintaining probability
samples becomes more difficult all the time, particu-
larly when surveying households and persons. Because
of these considerations, methods of statistical infer-
ence other than the design-based, repeated sampling
approach are required.

Two alternatives are quasi-randomization and super-
population modeling. In the former, probabilities of be-
ing included in a sample are estimated based on covari-
ates. Unit-level covariates must be available for both
the nonprobability sample and either a census of the
population or a well-controlled, reference dataset that
represents the nonsample units. The reference sample
may or may not be a probability sample. But, in any
case, the reference sample must permit inclusion prob-
abilities to be estimated for the nonprobability units
when the two covariate sources are combined. The su-
perpopulation approach constructs models for y vari-
ables and uses them to predict finite population quanti-
ties like means or totals. The quasi-randomization and
superpopulation approaches can also be combined to
create estimators.

There are pros and cons to the two. In quasi-
randomization, general inclusion probabilities can be
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estimated that are not specific to particular analytic y

variables. Thus, they can apply to estimation for any
y. An estimator generated for a particular y using the
superpopulation approach may use a model specific
to the y. Such an estimator can have a lower model-
variance than a quasi-randomization estimator because
it accounts for the population structure of the y. On the
other hand, it can be model-biased if the superpopula-
tion model is misspecified by, say, omitting important
covariates. Although a quasi-randomization estimator
may be unbiased with respect to repeated “pseudo-
sampling,” it can also be model-biased with respect
to the superpopulation y model. Which of these two
approaches is the most useful and statistically efficient
appears to be an open question. Comparing these two
approaches in the context of the many different types
of data now available should be fertile ground for re-
search.

Finally, a broader issue is whether there are certain
situations in which nonprobability samples should be
avoided altogether if some sort of probability sample
is available. This consideration can be viewed through
the “fit for purpose” framework (Baker et al., 2013b).
Though perhaps most commonly used in defense of
nonprobability samples by adding factors such as time-
liness, accessibility and cost to the assessment of sur-
vey design, fit for purpose suggests that, when criti-
cal estimates of descriptive quantities such as means,
quantiles or cell probabilities are required, nonproba-
bility designs should be avoided or utilized only when
it is reasonably certain that there are available covari-
ates in both datasets related to the nonprobability selec-
tion mechanism that can be used to appropriately incor-
porate information from the nonprobability sample. If
a sufficiently large probability sample is available for
estimating descriptive statistics, methods to incorpo-
rate nonprobability data are likely not warranted. (We
focus on descriptive statistics because there may be a
smaller impact of nonprobability samples on model es-
timators. The effect on model estimators results from
interactions between the probability of selection and
the model effects, which we might presume to be less
prevalent to the degree that models are correctly speci-
fied. However, the possibility of nonignorable selection
related to model residuals remains present in nonprob-
ability samples.) Developments of methods to assess
the sensitivity of results to failures of the observed co-
variates to fully capture the selection mechanism for
the nonprobability sample is, thus, yet another avenue
for future research.
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