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SUMMARY

A hierarchical Bayes approach to the problem of estimating N in the binomial
distribution is presented. This provides a simple and flexible way of specifying prior
information, and also allows a convenient representation of vague prior knowledge. It
yields solutions to the problems of interval estimation, prediction and decision making,
as well as that of point estimation. The Bayes estimator compares favourably with the
best, previously proposed', point estimators in the literature.
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1. I N T R O D U C T I O N

Suppose x = (x , , . . . , jcn) is a set of success counts from a binomial distribution with
unknown parameters N and 8. Most of the literature about statistical analysis of this
model has focused on point estimation of N, while interval estimation, prediction and
decision making have been little considered; see § 2.

I adopt a hierarchical Bayes approach. This provides a simple way of specifying prior
information, and also allows a convenient representation of vague prior knowledge using
limiting, improper, prior forms. It leads to solutions of the problems of interval estimation,
prediction and decision making, as well as that of point estimation.

A difficulty with Bayesian analysis of this problem has been the absence of a sufficiently
flexible and tractable family of prior distributions, mainly due to the fact that N is an
integer. The present approach gets around this by first assuming that N has a Poisson
distribution. The resulting hyperparameters are then continuous-valued, and one may
use existing results about conjugate and vague priors in better understood settings.

I assume that N has a Poisson distribution with mean fi. Then xx,..., *„ have, jointly,
an exchangeable distribution such that, marginally, each x, has a Poisson distribution
with mean A = fiO. I specify the prior distribution in terms of (A, 8) rather than (/i, 8).
This is because, if the prior is based on past experience, it would seem easier to formulate
prior information about A, the unconditional expectation of the observations, than about
H, the mean of the unobserved quantity N. If this is so, the prior information about A
would be more precise than that about n or 8, so that it may be more reasonable to
assume A and 8 independent a priori than fi and 8. In this case, n and 8 would be
negatively associated a priori.

The posterior distribution of N is for N s* xm.x
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where S = x, + .. . + xn and jcmax = max (x , , . . . , xn).
I now consider the case where vague prior knowledge about the model parameters is

represented by limiting, improper, prior forms. I use the prior p(\, 0)acA~', which is the
product of the standard vague prior for A (Jaynes, 1968) with a uniform prior for 9. This
leads to the same solution as if a similar vague prior were used for (p, 9), namely
p(fi, 0)cC(j.~

l
. It is also equivalent to the prior p(N, 0)°cN~'. The posterior is for N^xmax

When n = 1, expression (1-2) becomes

Thus, when n = 1, the posterior median is 2x,. The same solution was obtained by Jeffreys
(1961, §4.8) to the related problem of estimating the number of bus lines in a town,
having seen the number of a single bus. He argued that this was an intuitively reasonable
solution, and it seems to be so in this case also.

If A and 9 are independent a priori, and A has a gamma prior distribution, so that
p{\, 0)OCA

K
'~

1 e'^pid), then A can be integrated out analytically, and (1-1) becomes
for N > xmax

i —1 \X<

2. POINT ESTIMATION

Point estimation of N was first considered by Haldane (1942), who proposed the
method of moments estimator, and Fisher (1942), who derived the maximum likelihood
estimator, also used by Moran (1951). DeRiggi (1983) showed that the relevant likelihood
function is unimodal. However, Olkin, Petkau & Zidek (1981) showed that both these
estimators can be unstable in the sense that a small change in the data can cause a large
change in the estimate of N. Under some circumstances a reasonable confidence set
contains all large values of N, and it is no surprise that point estimators are unstable.
What is wrong is asking for a point estimate except in a specific decision making context.
In this spirit, later, I derive Bayes estimators which correspond to specific loss functions,
and hence, implicitly, to specific decision problems.

Olkin et al. (1981) introduced modified estimators and showed that they are stable.
On the basis of a simulation study, they recommended a stabilized method of moments
estimator which they called MME:S, and which I denote here by NMME:S. Casella (1986)
suggested a more refined way of deciding whether or not to use a stabilized estimator.
Kappenman (1983) introduced the 'sample reuse' estimator; this performed similarly to
NMME:S in a simulation study, and is not further considered here. Dahiya (1980) used a
closely related but different model to estimate the population sizes of different types of
organism in a plankton sample by the maximum likelihood method; he did not investigate
the stability of his estimators.

Draper & Guttman (1971) adopted a Bayesian approach, and gave a full solution for
the case where N and 8 are independent a priori, the prior distribution of N is uniform
with a known upper bound, and that of 9 is beta. Blumenthal & Dahiya (1981) suggested
N* as an estimator of TV, where (N*, 9*) is the joint posterior mode of (N, 9) with the
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Draper-Guttman prior. However, they did not say how the parameters of the beta prior
for 0 should be chosen. Carroll & Lombard (1985) recommended as an N estimator the
posterior mode of N with the Draper-Guttman prior after integrating out 0, where the
prior of 0 has the form p(0)oc0(l - 0 ) (O=£0=£l). They called this estimator
'Mbeta(l, 1)'; here I denote it by NMB(, 0 . The Draper-Guttman prior has been criticized
by Kahn (1987); see § 5. The simpler problem of estimating N where 0 is known has
been addressed by Feldman & Fox (1968), Hunter & Griffiths (1978) and Sadooghi-
Alvandi (1986).

Bayes estimators of N may be obtained by combining (1-2) with appropriate loss
functions; examples are the posterior mode of N, NMOD, and the posterior median of
N, NMED. Previous authors, including Olkin et al. (1981), Carroll & Lombard (1985)
and Casella (1986) have agreed that the relative mean squared error of an estimator N,
equal to E{(N/ N-l)

2
}, is an appropriate loss function for this problem. The Bayes

estimator corresponding to this loss function is

NMRE= I N-
l
p(N\x)/ t N-

2
p(N\x).

The three Bayes estimators, NMOD, N M E D and NMRE, are reasonably stable, as can be
verified by calculating them for the eight particularly difficult cases listed in Table 2 of
Olkin et al. (1981). Also, NMED is closer to the true value of N than the other estimators
considered in four of these eight cases, while N M O D is best in a further three cases.
However, in the cases in which JVMOD is best, NM^D performs poorly; the converse is
also true. The other three estimators fall between NMOD and NMED in all eight cases.

The results of a Monte Carlo study are shown in Table 1. I used the same design as
Olkin et al. (1981) and Carroll & Lombard (1985). In each replication, N, 0 and n were
generated from uniform distributions on { 1 , . . . , 100}, [0,1] and {3 , . . . , 22} respectively.
There were 2000 replications. Table 1 shows that NMRE performed somewhat better than
NMME:S and JVMB(1 ,) în both stable and unstable cases, with an overall efficiency gain
of about 10% over NMME:S, and about 6% over NMB(11). Here, following Olkin et al.
(1981), a sample is defined to be stable if x/s

2 3=1 + 1/V2, and unstable otherwise, where
x = 1 Xi/n and s

2
 = 2, (x, — x)

2
/n.

Table 1. Relative mean squared errors of the N
estimators

Cases

All cases

Stable cases

Unstable cases

No.

2000

1378

622

0-

0-

0-

171

108

312

Estimators

NMBU.1)

0165

0104

0-300

N

0-

0-

0-

MRE

156

100

281

3. INTERVAL ESTIMATION

The posterior distribution of N given by (11) or (1-2) yields Bayesian estimation
intervals for N, such as highest posterior density regions. Expression (1-1) is an exact
Bayesian solution, while (1-2) provides an approximation to the exact solution when the
prior information is vague. Highest posterior density regions based on (.1-2) are always
intervals. To my knowledge, no other interval estimator of N has been explicitly proposed.
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In order to check the quality of the approximation provided by (1-2), note that, if the
prior distribution also represents a distribution of values of the unknown parameters
typical of those that occur in practice, then the average confidence coverage of the
Bayesian interval is equal to its posterior probability (Rubin & Schenker, 1986). I therefore
carried out a Monte Carlo study, designed in the same way as that reported in § 2. The
empirical coverage of the 80% highest posterior density region was 0-82, that of the 90%
interval was 0-91, and that of the 95% interval was 0-95.

The distribution from which N was simulated has a much shorter tail than the prior
on which (1-2) is based, although it is fairly diffuse. Thus, these results are evidence that
(1-2) does provide a reasonable approximation to an exact Bayesian solution when prior
information is vague. It also supports the use of highest posterior density regions based
on (1-2) as frequentist interval estimators. The interval estimators based on (1-2) are also
reasonably stable, as can be verified by calculating them for the eight particularly difficult
data sets of Olkin et al. (1981).

4. EXAMPLES

Carroll & Lombard (1985) analysed two examples, involving counts of impala herds
and individual waterbuck. The observed numbers of impala herds were 15, 20, 21, 23
and 26. The observed numbers of waterbucks were 53, 57, 66, 67 and 72. The point and
interval estimators are shown in Table 2. The stability of the Bayes estimators is again
apparent; the stability of N M R E for the waterbuck example is noteworthy given the highly
unstable nature of this data set.

Table 2. Point estimators and 80% highest posterior density regions for the

impala and waterbuck examples: original and perturbed samples

Example

Impala

Waterbuck

#MME:S

54

©

199

215

Point

#MB<1,1)

42

46

140

146

estimators

^MOD

37
40

122

127

#MED

67

76

223

232

N M R E

49

54

131

132

Limits of

80% region

Lower

26

28

80

82

Upper

166

193

598

636

For each example, first entries are N estimates for original sample; second entries are S

estimates for perturbed sample obtained by adding one to largest success count.

The posterior distributions obtained from (1-2) are shown in Fig. 1. The posterior
distribution for the waterbuck example has a very long tail; this may be related to the
extreme instability of this data set.
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Fig. 1. Posterior distribution of N for (a) impala data, and (b) waterbuck data.
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5. DISCUSSION

The present approach can be used to solve the prediction problem. For example, the
predictive distribution of a future observation, xn+x, is simply

oo f 1

p(xn+l\x)cc £ P(xn+l,x\N,6)p(N,e)d0.
N-i™ Jo

When the vague prior which leads to (1-2) is used, this becomes

where S' = S + xn+i and x'ma% = max(xmBX,xn+i).

No other solution to the prediction problem has, to my knowledge, been explicitly
proposed in the literature. A standard non-Bayesian approach would be to use the
predictive distribution conditional on point estimators of N and 0. As a general method,
prediction conditional on the estimated values of the unknown parameters is widespread,
and underlies, for example, the time series forecasting methods of Box & Jenkins (1976).
For the present problem, however, it yields predictive distributions which are unsatisfac-
tory because they attribute zero probability to possible outcomes.

The present approach also yields a full solution to the decision-making problem, by
the usual method of minimizing posterior expected loss. It may often be easier to specify
loss or utility in terms of future outcomes than of values of N, so that a predictive
approach to loss specification may be helpful here.

Kahn (1987) has pointed out that in any Bayesian analysis of this problem, the
asymptotic tail behaviour of the posterior distribution of N is determined by the prior.
This is not, of course, the same as saying that inferences about N are determined by the
prior. Indeed, in § 4, we have seen examples where different data lead to very different
conclusions about N, in spite of the priors being the same, and the data sets being small,
and of the same size. Kahn (1987) also pointed out that the posterior resulting from the
prior used by Draper & Guttman (1971) depends crucially on the, assumed known, prior
upper bound for N, contrary to a comment of Draper and Guttman (1971). The vague
prior used here does not appear to suffer from such a drawback.
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