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INFERENCE FROM A KNOCKOUT TOURNAMENT'
By J. A. HARTIGAN

Princeton University

0. Summary. A parametric probability model for order data on a set of objects
is developed, which is appropriate for analysis of data with tree structure; the
results of knockout tournaments are an example of such data. The parameters of
the model are the probabilities that the various objects will be ranked highest.
An exact Bayes analysis is possible if the prior distribution of the parameters is
Dirichlet. The 1965 Wimbledon tennis tournment is used as an example.

1. Introduction. We will consider the analysis of data consisting of ordering
relations on a set of objects. An example of such data appears in psychology,
when a subject is asked to declare his preferences among a set of objects. In
paired comparisons data, the preference judgments on pairs of a set of objects
are made independently over pairs; a number of judgments is made for each pair,
perhaps by different subjects, or by the same subject at different times, and this
sequence of judgments may be then regarded as a sequence of Bernoulli trials.
Standard statistical theory is used for the estimation of probabilities of pref-
erences; various models peculiar to paired comparisons are then available to ex-
plain and interpret these probabilities. For example Brunk (1960), David (1963),
Bradley and Terry (1952).

We will be concerned with preference judgments made simultaneously over a
set of objects, so that the transitivity property of ordering relations must be com-
plied with. For example, a subject might be required to rank objects by order of
preference. Complete ranking of a large number of objects is a difficult task; for
this reason we wish to consider data consisting of a partial order given by a
subject on a set of objects. We propose an experimental design with tree structure,
in which, at each stage, the subject chooses the best out of a small group of
objects (possibly two); the other objects in the group are eliminated from further
comparison. Such designs used in athletic contests are known as knockout tourna-
ments. In tree designs no testing of the transitivity property occurs; for this
reason they are most desirable when the transitivity property can be reliably
assumed. The outecome of a tree design is a partial order on the objects which itself
has tree structure. Examples of the tree structure of the design, and the tree
structure of the outcome are given in Figure 1 and Figure 2.

A partial order may be identified with that subset, of the set of all complete
orders, containing all those complete orders consistent with the partial order.
Thus a probability model for complete orders generates a probability model for
partial orders. The probability model for complete orders used, is derived from
the theory of non-parametric statistics, Savage (1956); suppose that X;, X,,
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--+, X, are real valued random variables with continuous distribution func-
tions F*, F*, ... F’ where F is arbitrary and the §; are non-negative; then
P(X; < X, < -+ < X,) = JI7a(8:/2%=16;) and the probability of other
complete rankings of the X; may be obtained similarly. A specific interpretation
of the 6; is that 0,/ 0, is the probability that the 4th object is ranked highest
out of the n objects. This distribution is used in non-parametric testing of the
hypothesis that some or all the X; have identical distributions, and provides an
evaluation of power if the alternative distributions have the form F% for some
F, ;. As a parametric probability model for ranks, the model is consistent with
the Bradley-Terry (1952) model for paired comparisons, which states that
Plobject 7 is ranked less than object j] = 6,/(8; + 6;), and the Luce (1963),
p. 217, Axiom of choice: if 7, denotes the highest ranked object in the set A,
the axiom of choice requires Pli, = ¢|7, e B] = P(4s = ), where B C A. In
words, the probability that ¢ is the highest ranked object in A4, given that the
highest ranked object is in B, is equal to the probability that 7 is the highest
ranked object in B.

The probability of a partial order given 6 may be formally evaluated by
summing over complete orders compatible with the partial order. For partial
orders with tree structure, this summation reduces to a simple closed expression,
making explicit analysis of the likelihood possible. For example, if a sequence of
independent, tree outcomes is available, maximum likelihood could be used to
estimate the ;. We have considered a Bayesian analysis for a single tree, in which
the prior information about the 6; is formalised as a Dirichlet variable with
density J] 6" over the simplex 8; = 0, 3 6; = 1. This prior information is
experimentally equivalent to observing that ¢ was ranked highest in «; out of
> a;trials. If O oy is kept small (2 a; < 1, say) the observed tree will play the
main role in determining the posterior distribution of the 6; ; the means, variances,
covariances, of the posterior distribution may be explicitly computed, for use in
estimating 0; .

The computations are carried through, for various priors, for the 1965 Wim-
bledon tennis tournament.

2. A probability model for order data. Given a set of objects 4 = (1,2, ... ,N)
a partial ordering p on A consists of a relation ¢ < j on some pairs (%, j) which is
(a) irreflexive so that ¢ < 7,7 < ¢ cannot occur and (b) transitive so that 7 < j,
§ < k implies ¢ < k. It will be sometimes convenient to denote the relation ¢ < j
associated with p by p(¢) < p(j). A complete ordering or rank o on A is a partial
ordering such that for every pair (7, 7), ¢ # j we have either ¢ < j orj < 7; the
rank of 7 in ¢ is ¢(7) if exactly 6(¢) — 1 of the objects in 4 are less than ¢. We
willuse ¢ = J, p(7) < p(j) to denote: ¢ < j or< = j. Let S be the set of all N!
ranks of A; each partial ordering p may be identified with a subset of S, that
subset consisting of ranks ¢ which obey all the relations in p. For this reason, S is
the natural sample space for analysis of a partial order.

The probability model is

(1) Plo | 6] = T3 [0/ 2 ey <o 63, 211 6: = 1,8: = O.
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The parameter 6; is the probability that the 7th object is ranked highest. It has
been remarked that the model is consistent with the Bradley-Terry model for
paired comparisons, and the Luce axiom of choice. To prove this we consider
generation of the above model by associating with the family of objects a family
of exponential variables { Y} with means {1/6.;}. Then P{Y,) > Y, whenever
a(7) < o(j)] = Plo|6l; to prove this we develop (1) from the highest ranked
object towards the lowest, using the fact that if ¥ is exponential with mean 1,
Y — a|Y > aisexponential with mean 1. We now see that P7 is highest ranked]
= PlY; = inf (Y;, --+, Y.)] = 0; as claimed above. We see that P[i < j] =
P(Y;> Y;) = 6,/(8; + 6;) agreeing with the Bradley-Terry model. Finally, if
14 denotes the highest ranked object in the set A, wehave Pliz = 2] = P[Y,; =
infip Y;] = 0/ 3 ;8 6; = Plia = 4|44 € B), so that the model agrees with the
Luce axiom of choice.

Let A* = {41, 4, -+, ix+}, and consider the probability distribution induced
on S*, the set of ranks of 4, by the mapping ¢ — ¢*, where 0*(3,) < ¢*(4,) if
and only if ¢(4,) < ¢(7,). Then

(2) Plo™ 0] = TIi% (65/ 20 iy somciny B3,

This result is obvious in the exponential formulation. It means that the prob-
ability distribution of order within 4* is of the same form, as that of order within
A, and it is determined by parameters {6;,} given by the elements in A *.

Let A%, A™ be disjoint sets of objects and let ¢*, ¢** denote two ranks on
A%*, A™*. Then

(3) Ple™ on A* ™ on A*™|6] = P(¢® on A*|6)
= P(c™ on A™|9).

In words, orders within disjoint subsets are independently distributed. This result
and a similar result for any number of disjoint subsets is obvious in theex-
ponential formulation.

For an arbitrary partial order p, Plp | 6] = 2 s, Plo | 6]. A considerable simplifi-
cation occurs if the partial order is a tree r; this is a partial order for which
(1) < 7(j), r(3) < 7(k) implies either 7(j) =< 7(k) or (k) = 7(j). The element
jsuch that 7 < j, 5 < k for all k > 7 is the successor of ¢ denoted by 77; ¢ is
uniquely defined unless there is no element j, % < j. It will be convenient to
introduce an element 0, the root of the tree, and set v = 0 if there isnoj, 7 < J.
The partial order 7 is uniquely determined by the mapping ¢ — 7i. We set F; =
{777 = 1}, the family of <. We set U; = {j | 7(¢) £ 7(j)},D:= {j | 7(j) £ 7(d)}.
A characterizing property of the tree is that D, C D,;, D, C D;,orD,aD; = (¥,
for every 2, j. For any 7, 7 induces the subtree 7; on D; defined by 7.j) < 7,(k) if
and only if 7, ke D, 7(j) < +(k).

. TueorEM 1. The probability of a tree is given by

(4) P(r18) = JI< 65/ 250, 6).

To prove this we usé the exponential formulation stating P(7|8) = P{¥.u =
Y. whenever r(2) < 7(j)]. The equation holds for N = 1, and we will assume
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it holds for 2,3, -+ , (N — 1) elements. Suppose that 7 is an element such that
75, = 0; at least one such element must exist since ¢ < 77 for 77 ¢ A; thus the
sequence %, 74, (%), - - - consists of different elements of 4, and 0. If 4 is unique,
let {41, %2, -, 4} = Fsy. Then v = {o|o(é) = N} n [[}-17:, and P(7]0) =
Pl{Y;, = inf Y} n ] =i, |6]. Now given that ¥;, = inf ¥;, we have that the
Y; — Y, are independent exponentials for ¢ # 4, ; thus order relations among the
Y are independent of the knowledge ¥i, = inf ;. Therefore P(r |0) = (0;/
Zﬁi) H:L=1 HigDir (01/ zjgl)i Oj) = H{L'l (91/ ?:ngi 0,‘). The equation has been
extended to N elements if 4, is unique. If %, is not unique, suppose that
%, %, ", i, are n distinct elements satisfying 77, = 0. Then r = I 7, and
P(r|e) = T1P(ril0) = TLra TLens, (84 Ziens 05) = TTia (65/ 25em; 65).

The equation holds in this case also.

3. Bayesian analysis'of 8. Given 7, we wish to make inferences about
0 = (61,05, ,0x);0:is the probability that the ith object will be ranked first.
A convenient form of prior distribution for 8 specifies 8 to be a Dirichlet variable
Dla;, i = 1 -+, NJ, having density proportional to T 8" over the simplex
9; = 0, >, 6, = 1. This prior distribution corresponds to prior knowledge of the
form: the ¢th object was ranked first in a; out of 3" a; competitions in the past.
Thus a;/ D o is an estimate of the probability that the ¢th object will be ranked
first, and D a; represents the weight associated with the estimate.

Tuporem 2. Let B = D jen; ;. Let Z; = [{W;, j e Fi}, W.*] be independent
Dirichlet variables with parameters [{8;,j e Fi}, as + 11,4 = 0,1, 2, ---, N. (Let
Wo* = 0). Then the posterior distribution of 0 given 1 is given by 8; = W* [ Ljev, W;.

Proor. We may write ¢; = E,-,;Ui 0;, Wi = ¢i/¢dri s0 that W is the probability
that an object in D is ranked first, given that an object in D.; is ranked first. In
this Bayesian approach, we are regarding this probability W, as a random vari-
able, whose distribution changes in the light of the data 7. The prior distribution
on 0 induces the distribution on {W;, % = 1, ---, N} in which [{W;,j e F4}, W
are independent, Dirichlet variables with parameters [{8;,j ¢ F}, ai. (Note that
W = 1 — D s, W; is the probability that the object 7 is ranked first of the
objects in D;.) The prior information is equivalent, for [{W;, je Fi, W, to
performing 8; = a; + 5 jer; B; experiments and noting that an object in D,
(j e F;), was ranked first in 8j-cases. In terms of the original prior information
we look at those cases in which an object in D; was first, and count the cases in
which an object in D; was first, j ¢ F:. We now consider the effect of the present
tree 7 on the W variables; 7 may be expressed as the intersection of the inde-
pendent events: ¢ is ranked first among the objects in D;. Thus the information
for [Wi,jeF:, W ¥ is now equivalent to performing 8; + 1 experiments and
observing that an object in D;, j e F;, was ranked first in 8; cases. Thus the
Uw;, jeFd, W.*] become independent Dirichlet variables with parameters
[{8;,j € Fi}, a: + 1], proving the theorem.

" Tt is possible to demonstrate the theorem symbolically, working with the
densities of the variables { W}, and following through the above verbal argument.
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The verbal argument makes it possible to better understand the meaning of the
prior information, and the effect of the tree » on the parameters.

Since 8; is a product of independent Dirichlet variables, it is relatively simple
to determine its moments, and more generally any expectation of the form
E(J1 05| 7). For example,

(5)  E(8:|7) = [(ai + 1)/80 [ Liew, 8/ (8; + 1),
(6) E(6]|7) = [(a; + 1)(ai + 2)/8(Bo + V] [Liew; 8i/(8; + 2),
(7) E68;|7) = (o + V)E(6" | 7)E(0:| 7)E(6; | 7)/E* (8| 7) (0w + 2),

where ¢ & j, k = inf {I|7(Z) = =(1), 7(§) £ r(])}.

In practice, the 8; may be computed by recurrence relations on the tree, and
the above equations for the first two moments are also best exploited by recur-
rence relations. Empirical sampling of the posterior distribution may be per-
formed by generating Dirichlet variables and computing 6; from these using
Theorem 2.

If the tree 7 is a complete rank o, and if @; = @, 7 = 1,---, N we have
E(0w o) = (a + 1)/Na-a" J[jm (N —j + 1)/(1 + (N — j + 1)) where
1) denotes the parameter associated with the object ranked #th. For a; = 1,
7 = , N we have E[8 |o] = (N — 7 + 1)/2(N 4+ 1)N, which sets the
expected probablhtles proportional to the inverse order; these estimates reflect a
very heavy prior judgment of equality, equivalent to the observation that each
object was ranked first an equal number of times in N experiments. In Table 1,
the posterior averages of 8 given o, Elf;) | ], are listed for N = 16, Na = 0, 1, 2,

TABLE 1
Posterior averages of 0 given ranks, for various prior weights
Prior Weight
Rank
0 1 2 4 8 16

1 1.000 .5313 .3750 .2500 .1667 1176

2 * .2571 .2446 .1974 .1471 .1103

3 * .1200 .1556 .1535 .1287 .1029

4 * .0538 .0963 1174 1115 .0956

5 * .0230 .0578 .0880 .0956 .0882

6 * .0094 .0335 .0646 .0809 .0809

7 * .0036 .0186 .0461 .0674 .0735

8 * .0013 .0098 .0319 .0551 .0662

9 * .0004 .0049 .0213 .0441 .0588
10 * .0001 .0023 .0135 .0343 .0515
1 * * .0010 .0081 .0257 .0441
12 * * .0004 .0045 .0184 .0368
13 * * .0001 .0023 .0123 ,0294
14 * * * .0010 .0074 .0221
15 * * * .0003 .0037 L0147 -~
16 * * * .0001 .0012 .0074
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EMERSON
FLETCHER
DIEPRAAM
MCMANUS
RALSTON
KOCH
RIESSEN
HOWE
STOLLE
HEWITT
OSUNA
ASHE

[o Sommum—
DRYSDALE }
[l S——

] LTJ LIJ H\Lrj

NEWCOMBE
FOX

PIETRANGELI o—
Fi1e. 1. Design of 1965 Wimbledon quarter finals (ro).

PIETRANGELl o Fox
NEWCOMBE
ASHE o OSUNA STOLLE
HEWITT c»———]
RIESSEN
HOWE o SS o
RALSTON EMERSONJ,
KOCH
PRAAM
McMANUS o—IEPRAA
FLETCHER o

F16. 2. Observed tree, 1965 Wimbledon quarter finals.

4,8, 16. With @ = 0, we estimate 6¢;y = 1, ¢y = 0 for ¢ 5 1, in accordance with
the single observation of which object is first. As « increases, the probability
spreads out over the lower ranked objects, and at « = «, F(0;|¢) = .

As a second example, consider the 1965 Wimbledon tennis tournament, from
the quarter finals on. The tree design 7 is given in Figure 1. The realised tourna-
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TABLE 2

Posterior Means and Variances of Players Win Probabilities Given the 1965 Wimbledon Tennis
Quarter Finals

Prior Weight

Players

0 1 2 4 8 16
1 Emerson 1.00 .53 (.08) .38 (.06) .25 (.03) .17 (.01) .12 (.006)
2 Stolle * 18 (.19) .19 (.10) .17 (.04) .13 (.02) .10 (.007)
3 Ralston * L1 (.11) .13 (.06) .13 (.03) .11 (.01) .09 (.006)
4 Drysdale * 04 (.12) .06 (.08) .08 (.04) .09 (.02) .08 (.008)
5 Diepraam * .06 (.06) .08 (.04) .08 (.02) .08 (.01) .08 (.005)
6 Osuna * .02 (.06) .04 (.04) .06 (.03) .07 (.01) .07 (.006)
7 Riessen * .01 (.06) .03 (.04) .04 (.03) " .06 (.01) .06 (.007)
8 Fox * .00 (.06) .01 (.04) .03 (.03) .04 (.01) .06 (.008)
9  Fletcher * .03 (.03) .04 (.02) .05 (.01) .06 (.01) .06 (.005)
10 Hewitt * .01 (.03) .02 (.02) .03 (.01) .04 (.01) .05 (.005)
11 XKoch * .01 (.03) .01 (.02) .03 (.02) .04 (.01) .05 (.006)
12 Newcombe * .00 (.03) .01 (.02) .02 (.02) .03 (.01) .04 (.006)
13 McManus * .00 (.03) .01 (.02) .02 (.02) .03 (.01) .04 (.006)
14  Ashe * .00 (.03) .00 (.02) .01 (.02) .02 (.01) .03 (.006)
15 Howe * .00 (.03) .00 (.02) .01 (.02) .02 (.01) .03 (.006)

*

16  Pietrangeli .00 (.03) .00 (.02) .01 (.02) .02 (.01) .03 (.007)

ment tree is given in Figure 2. Estimation of the parameters 6;, the probability
that player ¢ wins the tournament, is given in Table 2, with prior weights equiva-
lent to 0, 1, 2, 4, 8, 16 tournaments; the variances of the parameters are included.
The order of listings of the player is: player ¢ is ranked over player j if he played
in a later round of the tournament, or if player 77 is ranked over player 5. (Here
7 is the player that beat ¢.) In the estimates of 8; this order is violated by
Fletcher who was beaten by the final winner Emerson in the first round. With
priors a; = %, Fletcher beats Osuna, Riessen, Fox all of whom reached the next
round. These reversals disappear if the weight of prior evidence is increased.

4. Extensions, exploitation, and left-overs.

(1) Independent matches. It may be argued that the matches in a knockout
tournament be regarded as independent events; in this case the observed tree is
an intersection of independent events of the form: ¢ is ranked highest of the ob-
jects {7, F} and P(r|0) = [[t=1 (8:/(2 ser, 6; ++ 6:). In our model, we do not
regard the events as independent, but allow the past records of the players in the
tournament to affect the probable outcomes of the matches. It will help under-
standing of the differences of the models if we consider players with abilities
X, -+, X, which are random variables with distributions F' F% ... P’
In the dependent model we used, we imagine the X;, X», - -+, X, fixed for the
duration of the tournament, which merely elicited ordering relations between the
fixed but unknown X ;. In the independent model, the X, are selected freshly
and at random at each mateh, the outcomes of the matches are independent with
the above probabilities.
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The dependent model is thus appropriate if the judgments are in some sense
simultaneous, so that the same X; are used in all judgments. The independent
model is appropriate if the judgments are made ignoring the results of past judg-
ments. It seems reasonable that practice lies somewhere between these two ideali-
zations. In many athletic contests, the independent model may be more appropri-
ate. The advantage of the dependent or simultaneous scheme is that the transi-
tivity requirement may be assumed; resulting in more precise estimates of 6 with
a given body of data.

Another model, which we shall not discuss, is proposed by Bradley (1965).

(2) Tournament design. Attempts are sometimes made to “seed” tournaments
so that the a priori highly ranked players will have a better chance of winning.
With the dependent model, the probability of a given player winning does not
depend on the tournament design, so that the usual objective of seeding ecannot be
considered as a criterion for tournament design; this objective could be attempted
with the independent model. A more natural criterion requires the tournament to
be designed so that the results are most informative about the parameters
61,+-+, 6, . The design 79 of the tournament may be formalized as a family of
subsets of A which are a partial order under inclusion; i.e. 7¢(41) = 7o(A4e) if
Ai C 4,. The outcome 7 of such an experiment states that best element in each
subset in o ; for each 7o, a certain family of outcome trees 7 is possible, and this
family is a partition of the set of all N! possible ranks o. Formally we may seek to
optimize the change in entropy of 6 due to 7,

AI(ro) = Ellog P(r|8)/P(7)]

where E denotes averaging over 6 and 7, and p(7) is the prior distribution of r.
No progress towards this objective has been made.

TABLE 3
Estimation of 6; Based on Conditional Exponential; Means and Variances of Conditional
Ranks

Players 1/6; 6:/>6: Eloe(@)|7) Varlo() | ]
Emerson 1 .41 1.00 0.00
Stolle 3 .14 2.78 1.11
Ralston 5 .10 4.20 4.69
Drysdale 7 .06 5.62 4.23
Dieptaam 9 .05 6.33 11.56
Osuna 11 .04 7.52 9.42
Riessen 13 .03 8.47 9.32
Fox 15 .03 9.41 7.41
Fletcher 17 .02 9.00 18.67
Hewitt 19 .02 9.89 14.85
Koch 21 .02 10.00 13.08
Newcombe 23 .02 11.31 10.30
McManus 25 .02 11.67 11.56
Ashe 27 .02 12.26 9.05
Howe 29 .01 12.73 7.75

Pietrangeli 31 .01 13.21 6.00
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(3) Exponential variables. We know that the probability model for ranks may
be obtained by letting {¥;} be independent exponential variables with means
{1/6;}, and setting Plo | 6] = P{Yow < Yo if 0(4) = (J), all 4, j}. We then have
that Yy, -+, Y. |7, 6 are such that {Y; — Y.} are joint independent exponen-
tials with means {1/ Zr(j) < 05} ; here Yo = 0. Thus the famous result, that
differences of successive exponential order statistics are independent exponentials,
extends to tree type partial orderings. It may be plausible to evaluate r by its
action on the exponential variables Y;,---,Y,. For example, letting
By = Z,(i) <r@ @i, where the a; are prior estimates of 0;, we have ElY:|r,al =
>~ (1/Bs). Also given 8; we have E[Y;|60] = 1/6;. This suggests D ety <ety (1/Bw)
as an estimate of 1/6;. See Table 3.

It is true, and pointed out by a referee and the editor, that the exponential
variables are artificial constructs, possibly useful in generating probability rela-
tionships, but probably best kept away from inferences about 8. The exponential
variables may be realized in reliability problems examining the life of several
components, which are connected together in a device; when the device fails, it
seems plausible to suppose that examination of the components will reveal some
dead, some alive, and ordering relations on the lives of the dead components. I
have had no luck in imagining devices for which these ordering relations have tree
structure.

(4) Conditional ranks. In Hartigan (1966), it was proposed to summarize the
tournament r by features of the conditional rank distribution ¢ | 7. It was there
assumed that all 6; were equal, and that the tournament structure was of a
particular type on 2" objects. By combinatorial arguments similar to those used
there (so a referee has suggested) the distribution of ¢(%) given 7 may be ob-
tained in terms of the distribution of o(77¢) by

() Plo(i) = k4 a(ri) = Kl = ("FED/CF), 1S 1S N — Ny,

where N, is the number of objects ranked below 7 by the tree. The mean and
variance of o(¢) may be obtained directly from (8) or from the conditional
exponentials.

(9) Ell —o(8)/(N + 1) |7l = [:p =@ Ni/(N; + 1),
(10) B[l — o(i)/(N + DI — o(0)/(N + 2]|7] = [T-tpsro Ni/(N; + 2)..

Computation of the means and variances of conditional ranks offers a simple
way to represent r without overt commitment to a parametric approach. The
above assumes that all 8; are equal. See Table 3.

TABLE 4
Approzimate Dirichlet Distributions Before and After Wimbledon
i + 2 3 4 5 6 1 8 9 10 1 12 13 14 15 16
« Before .006 .006 .006 .006 .006 .006 .006 .006 .006 .006 .006 .006 .006 .006 .006 .006

a After 531 .177 .06 .035 .059 .020 .012 .004 .031 .010 .006 .002 .004 .001 .001 .000
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It is interesting to note the close relation between equations (9) and (10) and
equations (5) and (6) whena; = 1,2 =1, n.

(5) General partial orders. Analytic techniques for general partial orders are
not available. It is possible to use an empirical conditional rank analysis; suppose
that all ranks are a priori equally likely. Generate ranks consistent with the
partial order yielding ¢ with probability p(c). Then, for example, E(s(7)) is
estimated by Ko(7)/p(s) where K may be computed by noting that
2 a(i) = N(N + 1)/2.

(6) Sequences of tournaments. Suppose that 1, 72, - -+, 7, are a sequence of
independent tournament results. It is not necessary that all players appear in all
tournaments. We can evaluate the likelihood ][ P(7:|8), but a complete
Bayesian analysis is no longer available. Maximum likelihood may be a feasible
tool for n large enough (for n = 1 it is useless). A weak prior may be applied to
each of the tournaments to obtain estimates of the 8; for each tournament, and
these may be combined to obtain an overall estimate, and compared to examine
differences between tournaments. A similar analysis may be used on the con-
ditional ranks.

An approximate Bayes analysis can be performed if we express the posterior
distribution of 8; given a tournament 7 as a Dirichlet distribution; the effect on the
posterior distribution of a new tournament result may then be evaluated. It
seems plausible to use D{a;, 7 = 1, - -+ ,n}, o/ D, o = E[8;| 7], with 2, a; equal
to the weight of the original prior. Table 2 suggests that the essential effect of the
observation r is drastic changes in the estimation of 8; and only small changes in
the variability of 8;. See Table 4 for an example.

(7) Asymmetry. The probability model for ranks is asymmetric in the sense
that the probabilities of propositions like j < %,k < ¢ are quite different to those
of propositions like ¢ < 7, ¢ < k. For example 6, is the probability that object ¢ is
ranked highest, but no simple expression is available for the probability that
object 7 is ranked least. The axiom of choice holds for selecting the most preferred
object from a set, but not for selecting the least preferred.

The independent model avoids this difficulty.
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