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SUMMARY

The design of complex samples induces correlations between element values.
In stratification negative correlation reduces the variance; but that gain is
less for subclass means, and even less for their differences and for complex
statistics. Clustering induces larger and positive correlations between
element values. The resulting increase in variance is measured by the ratio
deff, and is often severe. This is reduced but persists for subclass means, their
differences, and for analytical statistics. Three methods for computing
variances are compared in a large empirical study. The results are encouraging
and useful.
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1. INTRODUCTION

STANDARD statistical methods have been developed on the assumption of simple
random sampling. The assumption of the independent selection of elements (hence
independence of observations) greatly facilitates obtaining theoretical results of
interest. It is essential for most measures of reliability used in probability statements,
such as aNn, chi-squared contingency tests, analysis of variance, the nonparametric
literature and standard errors for regression coefficients. Assumptions ofindependence
yield the mathematical simplicity that becomes more desirable-and at present
necessary-as we move from simple statistics such as means, to the complex statistics
typified by regression analysis. Independence is often assumed automatically and
needlessly, even when its relaxation would permit broader conclusions.

Although independence of sample elements is typically assumed, it is seldom
realized in the procedures of practical survey work. Randomization of the sample
would be unnecessary if the population itself were randomized, but "well-mixed urns"
are seldom provided by nature or created by man. This uneasy situation exists
widely in the social sciences. In the natural and physical sciences it is typically even
more difficult to achieve complete randomization of the sample over the target
population, but more often it may be somewhat reasonable to assume its existence
in the population-although not entirely and not always.

Much research is actually and necessarily accomplished with complex sample
designs, especially in social, health, economic and business studies. It is often
economical to select existing clusters or natural groupings of elements. These are
characterized by relative homogeneities within the clusters that negate the assumption
of the independence of sample elements. The assumption may fail mildly or badly;
hence standard statistical techniques result in mild or bad underestimates in reported
probability intervals. Overestimates can seldom be severe.
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Survey sampling was developed, mostly in the social sciences, censuses and
agriculture during the past half century, to provide statistical techniques and theory
for the complex selection methods needed for large-scale surveys. It was developed
(1) for samples which were not simple random samples, and (2) for finite populations
rather than hypothetical infinite populations. It was developed chiefly for descriptive
statistics, that is for means, proportions and aggregates. Early landmarks in the
literature of sampling were papers by Tchuprow (1923), Neyman (1934), Mahalanobis
(1944) and Yates (1946). Five classics in five years-Yates (1949), Deming (1950),
Cochran (1953), Hansen et al. (1953) and Sukhatme (1954)-outlined the boundaries
that have largely defined and confined developments of methods in this subdiscipline
of statistics.

The literature of survey sampling concentrates on providing estimates y and its
standard error, ste (y). The estimate y may be for an aggregate like f = Fy, where
F is a constant and y = ~Yj is the sample sum over elements of a variable; or it may
be a simple mean yjn of the sample elements, or a weighted mean, ~Wj Yjj~Wj; or
it may be a ratio, regression or difference estimator of the mean or aggregate. Further,
ste (y) = ~var (y) is the estimated standard error, computed from the sample data in
accord with the complexities of the sample design. The function of these statistics
is to provide statistical intervals of the type y ± tp ste (Y) for inference about population
values of the estimated Y.

We think it imperative and urgent to extend these statements to more complex
statistics. More and more researchers are able to obtain data from complex samples,
and to write computer programs for complex analytical statistics. We need methods
for dealing properly with complex statistics from complex samples. We need statistics
for probability statements. Such statements are symbolized here with b ± tp ste (b),
where b is some complex statistic, and ste (b) is its computed standard error. For
example, b can be the difference of two subclass means or a regression coefficient.
Inferences based on standard errors are acceptable on the assumption that survey
samples are large enough to yield the needed approximate normality in spite of the
nonindependence of the observations. Standard errors should be computed in accord
with the complexity of the sample designs; neglect of that complexity is a common
source of serious mistakes (Kish, 1957; Kish and Frankel, 1970). On the other hand,
trying to obtain more exact but more complicated statistics than standard errors
would become too difficult for complex selection designs.

When discussing the independence of observations, we deliberately neglect here
the problems of sampling without replacement from finite populations. A learned
literature devoted to these problems has recently arisen, but is limited essentially to
the relatively simple problems of means and aggregates. We believe that the important
theoretical issues of representing defined finite populations concern all statistical
applications, not only survey sampling. We welcome similar recent views from C. R.
Rao (1971): "Unfortunately the same situation prevails in other areas and considerable
literature in statistics is devoted to an examination of the foundations of statistical
methodology." The theoretical implications are important, pervasive and subtle,
but practical effects are usually small, and we may safely ignore them in the present
discussion.

For our discussions of inferential procedures, we propose dividing into three
levels of complexity both the selection methods and the statistical estimates, as shown
in Fig. 1. The divisions are arbitrary but useful. Among estimators beyond sample
means, the analysis of subclasses is common, presents fewer problems than more
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complex measures of relations, yet provides analogies and conjectures about them.
Among selection methods, the stratification of elements generally has effects that are
simpler and weaker than those of clustered sampling.

STATISTICS

SELECTION

METHODS

A. Simple random
selection of
elements

B. Stratified
selection of
elements

C. Complex
cluster
sampling

I
Means and totals
of entire samples

2
Subclass means and

differences

Available

Available

3
Complex analytical

statistics, e.g, coefficients
in regression

Conjectured

Difficult:

BRR, JRR,
TAYLOR

FIG. 1. The present status of sampling errors. Row 1 is the domain of standard statistical
theory, and column 1 of survey sampling.

Standard statistical theory continues to supply new and improved inference
procedures for row A, always assuming independent observations. In contrast, the
literature of survey sampling is mostly confined to column 1, with theoretical dis
cussions in cell Al about its finite populations. In stratified element sampling,
solutions are clear and simple for means and totals of entire samples (cell BI); they
are also fairly simple for subclass means and their comparisons (cell B2, discussed
in Section 2). For the more complicated analytical statistics used for relations between
variables (cell B3), the solutions seem theoretically difficult and unclear, but rather
simple conjectures appear reasonable, with some empirical justification. In clustered
samples, for simple means and totals (cellCI), and for subclasses and their comparisons
(cell C2), the answers are usually relatively simple and useful (discussed in Section 3).
Our main concern (discussed in Sections 4 and 5) must be with complex analytical
statistics from clustered samples (cell C3). We have some useful results, but we also
have suggestions for further work. All four of the areas (cells B2, B3, C2 and C3),
and cell C3 in particular, present challenging problems in need of both theoretical
and empirical contributions. They are of utmost importance to statistical applications,
and of great difficulty and variety.

2. STRATIFIED SAMPLES OF ELEMENTS (B2 AND B3)

The problems of subclasses are common and not difficult here. There are some
useful and surprising results, especially for the kind of domains we shall call cross

classes-subclasses that cut across the strata used in selection. In crossclasses, the
Mch subclass members of the cth subclass among the Nh elements of the population
in the hth stratum are distributed roughly proportionately; so that At"h = Mch/Nh in
the stratum roughly equals At" = Mc/N = ~ Mch/~ Nh in the population. This is
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(2.1)

(2.1')

typical of most subclasses used in analyses of survey data. Conversely, the case
when the subclass can be placed into separate strata before selection belongs to
standard sampling theory B1. So does the situation when the data can be adjusted
after selection with post-stratification weights MehlM from known values of Meh. But
for most subclasses the values of Meh are unknown, and the sample of elements meh
of subclass members among the nh selected at random from the Nh in the hth stratum
is a random variable. This common situation has drastic effects on the behaviour
of the sample, as was first noted by Yates (1953).

The most drastic effect is on the variance of the simple crossclass aggregate

:fc = 'L, Yeh Nhlnh> where Yeh = 'L,mCh Yehj, which is the crossclass aggregate of the meh
sample element values Yehj selected at random from the hth stratum. Here the effect
of using fc for a subclass would be to increase the element variance approximately
from O'~h> the variance of element values of the cth subclass members around their

mean Ych = ¥ChiMch in the hth stratum, to {O'~h +(1- M;,h) f~h}; the element re1variance
is increased by (1- M;,h)' This drastic loss is well known and generally avoided in

practice by using some other estimators such as 'L, MehYeh'
Also well known is the variance for the mean Ye = 'L,Yehl'L, meh of a proportionate

stratified sample of elements:

var(Ye) = ~-;[ f w;,h{O'~h+(I-M;,h)(Ych- Yc)2},

where

f = n]N = nhlNh = fh' w;,h = MehlMe' Ych = 'L, ¥ChilMeh and Yc = 'L, 'L, ¥Chilu;
i h i

fMc is the expected value of the random sample size me = 'L, meh' We can also express
the variance in a slightly different form:

var (Ye) = ~-;[ {O'~ - 'L, M;,h w;,h(Ych - Yc)2},

where

Notice that the element variance in brackets approximately takes the place of
O ' ~ (or S~) in the variance one would have from a simple random sample of me out
of Me elements in the subclass. On the other hand, a proportionate stratified sample
with meh = fMch in every stratum would have an element variance of

O ' ~ - 'L, w;,h(Ych - Yc)2.

The last term is the between-stratum variance, to be gained from proportionate
stratification for the subclass itself. Note that for means of crossclasses the gains of
proportionate stratification, from the between-stratum components Cfch - Yc), tend to
vanish in proportion to M;,h = MehlNh, and the variance approaches that of simple
random sampling. Durbin (1958) wrote: " ... if the proportion in the domain of study
is small most of the advantage of stratification has been lost, while only if the pro
portion is close to unity has the advantage been retained." For example, a gain of
12 per cent for the entire sample would be reduced to 1·2 per cent for a crossclass of
10 per cent.
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The simple formulas above neglect only the factors Nh/(Nh-1) in the precise and
general variance, without the assumption (fh = f) for proportionate selection:

( - ) --'- '" 1-h, Nh W2 {T2 M- (iT iT)2} (2.2)var Yc - ~{' M -N1 ch ch- ch J.ch-J. c
hJh ch h-

(2.2')

where

The approximation in the above is due only to the use ofa ratio mean. For derivations
see Durbin (1958), Hartley (1959) or Kish (1961, 1965).

The approach to simple random sampling signalled by the T~h terms is even
faster for the difference of the means of two subclasses. Computing the difference
of two subclass means, Yc and Yb' from the same sample is a most common technique
for measuring relationships. The variance of the difference may be written for
proportionate sampling as

_ _ . I-f I-f 1 2

var (Yc- Yb) = fM a ~ +fM a ~ - (1-f) ~ - {JiYchCfch - fc) - Wbh(Ybh - Yb)}· (2.3)
c b h nh

This neglects factors of Nh/(Nh-1). More precisely and generally the above is

var(yc- Yb) ==

( {' ) Nh [W~h T~h W~h T~h 1 { -0- -0- -0- -0- )}2] (2.4)
~ I-Jh N -1 /; M + /; M JiYch(.lch-.lc)-Wbh(.lbh-.lb·
h h h ch h bh nh

The third term will tend to become relatively small because nh = fhNh is large
compared to fh Mch for small subclasses. Furthermore, since strata typically tend to
have "additive" effects, it tends to become negligible due to similar, and therefore
cancelling, stratum differentials. Hence,for the difference oftwo crossclasses, the gains

of proportionate stratification tend to vanish. The two variances may be computed
as if for unstratified random samples, except for weighting for unequal sampling rates.

Controlling the sample sizes, mch and mbh> for crossclasses is difficult in practical
surveys; but where feasible, it suggests optimal allocation for the differences of cross
class means (Sedransk, 1957).

The formulas for computing sample variances reflect the above (2.2-2.4):

2

var (Yc) = ~ (1-fh) W ~ h { t ~ h - mchUch - yJ2}, (2.5)
mch

where

Wch = Fhmch/~Fhmch' Fh = Nh/nh, mch = mch/nh>

m~h = mch(nh -1)/nh and t ~ h = ~ (Ychj- Yc)2/mch'
j

For the difference of two means approximately

var (y _ Y ) == ~ (1-/; ) ( W ~ h t ~ h + W~h tSh).
c b h m' m'

ch bh
(2.6)
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For proportionate samples fh = f and (2.6) becomes

where

(2.7)

Differences between means provide the most common bases for measuring
relationships between variables in survey data. Furthermore, they also provide
grounds for conjectures about the sampling fluctuations of other analytical statistics
(cell B3 in Fig. 1) used for measuring relations between variables in stratified samples.
These conjectures are necessary for the more complex statistics for which standard
theoretical analysis cannot provide measures of sampling fluctuations in accord with
stratified designs.

Table 1 contains remarkable confirmation of these conjectures applied to a large
and diverse group of chi-squared tests. Eight sets of data from stratified samples

TABLE 1

Ratios of three iterated chi-squared tests to SRS tests

Eight contingency tables based on proportionate stratified samples from Israel: Nos. 1-4
of savings, No.5 of attitudes, No. 6 of hospital data, No. 7 of poultry medicament,

No.8 of perception experiments. Adapted from data of Nathan (1972)

Nathan's three tests
Row

Data No. of x Sample First iteration Last iteration
set strata columns size

X2 X2 G X2 Xi G1

1 4 3x3 845 1·028 0·992 1·017 1·004 1'004 1'005
2 4 3x3 821 1·088 0·963 1·043 0·999 1·003 1·001
3 4 3x3 491 1'740 0'707 1·406 1·011 1·001 1'009
4 4 3x3 2581 1·095 0·959 1·049 1·003 1·005 1·003
5 6 2x4 500 1'079 0·967 1'040 1·004 1·003 1'003
6 3 2x2 120 1·013 0·967 1·009 1'008 0·969 1·007
7 5 2x2 269 1'076 0·989 1·043 1'011 1·015 1'011
8 2 2x4 81 1·368 0·889 1'186 1·029 1'037 1·029

were involved, and on each, three sophisticated iterated techniques (Nathan, 1972,
1973) were used to fit their stratified selections. Then Professor Nathan agreed to
compute the same tests, but with "naive" SRS assumptions. Finally, we computed
the ratios of the sophisticated to the naive results. Note that in the last iterations the
ratios are all within 4, and mostly within 1 percent of 1·00. These values measure how
close the naive estimates are to the last iterations, hence may slightly overestimate.

We conjecture that similar results usually will be obtained on other data, and
also on other analytical statistics based on stratified random selections (case B3 in
Fig. 1). It is a useful conjecture, because appropriate computations of sampling
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errors for analytical statistics will be difficult for the foreseeable future. Clearly we
need more research, both theoretical and empirical. The accumulation of empirical
evidence will be most useful, but alone it is slow, subject to sampling fluctuations,
and not completely convincing. Theoretical foundations would strengthen and
hasten understanding, but alone they cannot suffice. The conjecture involves para
meters with empirical content, and it can be contradicted in rare situations.

What attitudes should we adopt concerning the results on crossclass comparisons
(2.6, 2.7), and the analogous conjectures about analytical statistics? On the one hand,
if justified, we should welcome the convenience of the many formulas available on
simple random assumptions. On the other hand, we may be surprised and annoyed
that the effects of proportionate stratification tend rapidly to vanish altogether. It
is not a result that would suggest itself to intuition.

We may conveniently summarize this section in terms of "design effects", a
concept we shall use repeatedly. "The design effect or Deff is the ratio of the actual
variance of a sample to the variance of a simple random sample of the same number
of elements" (Kish, 1965, p. 258); this may do here briefly for elements selected with
equal probability. This concept, under diverse names, has been long and widely
used. The design effect, in proportionate stratified element samples, (a) is less than
1 typically for means based on entire samples; (b) tends towards 1 from below for
crossclasses, as these become small; (c) is close to 1 for differences between crossclass
means; and (d), we conjecture, is close to 1 for analytical statistics in general.

3. SUBCLASSES AND COMPARISONS IN CLUSTER SAMPLING (C2)

When diverse subclasses are completely segregated in separate clusters and strata
(as for regional estimates in area samples) their treatment needs no new methods,
although problems of multipurpose design and allocation arise (Kish, 1973). How
ever, most frequently we must deal with new problems due to crossclasses, that is
subclasses that cut across clusters; examples of these are age, sex and social classes in
area samples. Dealing with crossclasses instead of the entire sample produces two
principal effects on the sizes of the sample clusters, (1) a decrease in average size by
the factor Mc, and (2) an increase in the coefficient of variation CV (x).

Control of sample size, either with stratification or with PPS (probability pro
portional to size), is typically imperfect even for the entire sample. Unequal cluster
sizes lead to common use of the combined ratio mean, Yc = r = ylx, and this estimator
also serves subclasses. This estimator is rather robust, but not when the denominator
x is subject to wild variation. A sufficiently small coefficient of variation CV (x)
assures a low bias for the ratio; this is also assumed for deriving its variance (Hansen
et al., 1953; Kish, 1965). For subclasses, if small or unevenly distributed, the loss of
control over cluster sizes may permit CV (x) to become too large. Our computing
programs (Kish et al., 1972) have monitoring features to catch cases when CV (x) is
too large for comfort. Actual situations are generally comfortable, because the bias
ratio, Bias (r)/Ste (r) = - Prx CV (x), is small when either component is small; empirical
investigations have been encouraging (Kish et al., 1962).

It is useful to consider a simple model for the variance of crossclass means as a
function of the proportion Mc in the crossclass. We begin with the well-known
var(y) = {I +Rho (n/a-l)} S2/n, where brackets contain the design effect for clusters
of size n]a. Then:

(3.1)
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n = the number of elements in the entire sample,

a = the number of clusters in the sample,

1\{ = the proportion of crossclass elements in the sample,

me = n1\{, the number of crossclass members expected in the sample,

Rho, = intraclass correlation for the crossclass,

S~ = element variance of crossclass members.

The formula fails to make separate allowance for the effects of unequal sizes of
sample clusters, and for the effects of stratification. We may consider these either as
having been ignored, or as having been implicitly included in the definitions of the
parameters of the equation. It obviously breaks down when nMc approaches a,
and should not be taken seriously for such small clusters of crossclass members.
Subject to these limitations, the design effect in brackets is viewed as a function of Mc,
and of Rho, and S~. To the extent that the latter two are relatively constant for a
group of similar variables, we see the increase over 1 of the design effect in relation
to 1\{: the design effect tends toward 1 for decreasing crossclasses.

The estimation of the variance of (Ye) proceeds according to standard formulas
for the ratio mean (yjx) of two random variables. However, small and fluctuating
sizes of sample clusters cause problems; but these may be countered with two types
of averaging procedures. First, with "combined strata" (Kish, 1965)we can combine
primary selections, chosen at random across strata, to form larger units for computing
the variance. The procedure introduces no bias into the estimated variance, but
increases its variance.

Second, and much more important, are procedures for averaging computed
variances for a group of means or other variates. Survey results are produced for
so many variates-for different survey variables, and each of these for many sub
classes-that the process of computing and presenting sampling errors for all of them
usually becomes too costly and cumbersome. But we may compute them for a subset,
and then make inferences from their average to the entire set. Furthermore, such
averages may be computed for several meaningful sets of results. Another reason
for averaging is to produce more stable estimates of variances than sample designs
usually yield; averaging should increase the accuracy (lower mean-square error) in
spite of introducing some "bias" for the individual variances. To control and reduce
that bias, averaging should be confined to groups of similar variates, and should be
performed with methods that promise stability within those groups.

A common method for averaging is to plot a graph of the computed design effects
deff (or ~deff) against subsample sizes me' Here Deff and Rho refer to population
values and deff and rho to sample values. Using deffs removes two obvious sources
of disturbing factors, S~ and me, from the averaging of variances computed for different
variates. This method assumes a common Deff and Rho, for variates within a pooled
set, as a function of me and due chieflyto the same design. The averaging may be done
separately for more or less similar groups of the variates. If Rho is constant over
values of me, then Deff approaches 1 linearly with decreasing me (Kalton and Blunden,
1973).
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(3.2)

Variances for differences between subclass means raise new issues. Formulas for
computing var (Ye - Yb) = var (Ye) +var (Yb) - 2 cov (Ye, Yb) are merely extensions of
variances for single means (Kish, 1965, Section 6.5). Because subclass comparisons
are so basic and common in survey analysis, it is annoying to find computations of
their variances so rarely even today. At the Survey Research Center they have been
imbedded into our computing programs for variances since 1952, and from hundreds
of computations we found bases for the inequalities:

S~ + S~ < var (Ye - Yb)< var (Ye) +var (Yb).
me mb

In words, the variance of the difference of two means from clustered samples
shows the design effect of a positive intraclass correlation, but that effect is less than
for the separate means. In other words, the covariance is positive, but not great
enough to cancel the design effects of the separate means. See Kish (1965, Section
14.1), and Kalton and Blunden (1973).

This is an empirical statement about the additive nature of positive clustering
effects in crossclasses. In actual computations subject to large sampling variations, it
has often been contradicted, but in our experience these exceptions were negated when
recomputed on similar data. Although it cannot be logically perfect, it is a dependable
and useful empirical law. It is clearly preferable to the common practice of assuming
equality at either extreme. Most commonly, equality is assumed on the left, as if the
samples were simple random. Less commonly, the equality on the right is assumed,
with the "conservative" estimate that disregards the covariance of crossclasses
selected from the same sample of clusters.

Subclass comparisons represent a basic measure of relations between variables.
Our findings about them lead to conjectures about design effects for other statistics
that measure relations, such as regression coefficients. When techniques were un
available for computing variances for them, we conjectured that design effects were
greater than 1, but less than for the means of the variables involved (Kish, 1957).
These conjectures have received empirical confirmations (Kish and Frankel, 1970;
Frankel, 1971) as discussed in the following two sections.

4. COMPLEX STATISTICS FROM COMPLEX SAMPLES (C3)

Here we deal with clustered samples and with statistics more complex than the
difference of subclass means. The following section describes how new techniques
now make possible the computations of variances that incorporate the complexities
of the sample. We shall justify the need for such computations with three broad
propositions:

(1) Statistics (means, regression coefficients, etc.) approach their population values
as the sample size increases.

(2) The approach is generally slowed by design effects.
(3) The design effects differ for different statistics, for different variables, and for

different sample designs.

The three propositions presuppose that we are concerned with finite and real
measurements and populations. This philosophy, which should be assumed by
anyone involved in the application of statistics, pervades survey sampling theory.
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Here we extend it from means to measures of relationships. Consider a realistic view
of regression:

(I) There exists a finite population of N elements. Associated with each of these
elements is a vector of k+ I values Ji,Xli' X2i , ... , X ki ;

P = {(Ji, Xli' X 2i , ... , X ki ) Ii = 1, ... , N}.

(II) Our parameters are numbers Bj such that ~ r (Ji- ~r B, X j i )2 is minimum
subject to

N k

~ (Ji- ~ Bj Xji) = o.
i j

(III) Given a sample of n vectors from the population of N vectors our desire is
to estimate the parameters Bj •

The regression model stated in (II) does not in practice correspond exactly (or
even closely) to the complex relationship among the actual population of vectors.
The error term measures (usually in a least-square sense) the extent to which the
model departs from the actual complex relations among the population of vectors.

The statistical theory of regression begins at the other end-the theoretical end.
It first assumes a basic structure of relationships. Letting X, = (Xli' ... , Xki)T, and
B = (Bb ... ,Bk)T, it uses the model Yi = BTXi+Ci' It then makes several strong
assumptions:

(A) linearity: E( ci I~) = 0, for all i;
(B) homoscedasticity: var (ciIXi) = a 2

, for all i;
(C) independence between observations: c o v ( c i C j l ~ , ~ ) = 0, for all i#j;

(D) normality for the Ci'

Assumptions (A), (B) and (D) concern the basic structure of the universe of the
model, whereas (C) involves independent selections from it. This (or a similar) well
specified model yields several desirable results; the standard least-square estimates h
are minimum variance, linear, unbiased, normal, etc. Literature and textbooks are
written about this pretty model; this is what the research workers find in statistical
textbooks, but they find very little about how to reconcile this model with the real
population they are investigating.

Specifically, we need the real population model to describe the principal effect of
a complex selection design: assumption (C) fails to hold. Clustered selection tends
to introduce positive correlations between the errors of the model and, as will be shown
later, these often have serious consequences.

The first proposition states that the correlation between elements does not prevent

the approach of "first-order statistics" based on large samples to their respective
population values (parameters). By first-order statistics we mean estimates of para

meters ofthe population distribution; these parameters are (a) the substantive objectives
of research, (b) based on all population elements taken individually and (c) unaffected
by the sample design (for example, means, element variances, regression and corre
lation coefficients). On the other hand, by second-order statistics we mean measures

of variation (variance, standard error, mean-square error) of first-order statistics.
They estimate second order parameters, e.g. E{y-E(y)}2, that are based on aggregate
results of samples obtained under specific designs, and they are affected by the
correlations between elements induced by the designs.
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We need laws of large numbers and central limit theorems for samples in which
elements are not independent. A difficult problem here is to specify what a "large"
sample may be. It is not sufficient merely to say that it contains a large number of
elements if these come highly correlated from a few clusters (i.e. the primary selections).
To allow the clusters to become very numerous would suffice, but that would place
unrealistic demands on many practical sample designs. Large numbers of primary
selections are often neither possible nor necessary; a moderate number will suffice if
the elements are numerous and the correlations between them not too great. We
recognize that a rigorous theoretical formulation of the last statement, so needed for
practical work, stands as a difficult challenge for theoretical statisticians. We shall
merely sketch first what we know today about this topic in terms of the unbiased
(or almost unbiased) nature of the expected values of the results ofprobability samples,
without assuming independence of selections.

The weighted sum of sample observations is an unbiased estimator of the popu
lation aggregate: EC.f/!Yj/Pj) =.~rY,;, where Pj is the selection probability of the
jth sample element. This is also true of vectors Yj and Yi for several variables. (This
expectation seems to be the basis for selections without replacement.) It is also true
of moments of sample values, such as ~Y~/Pj or ~y~xj/Pj' where k and m are real
numbers, usually integers. Means based on these sums are also unbiased if the
denominator is fixed; otherwise they are consistent and close (Kish, 1965,Section 2.8).
Often the denominator is a correlated sum of sample observations as in the ratio
mean r = (~Yj/Pj)/(~ Xj/Pj); empirical evidence is reassuring (Kish et al., 1962). Many
statistics are complex versions of functions of ratio means, e.g.,

b = (~YjXj/Pj)/(~xJ/PJ

We conjecture that the biases in estimates of regression and correlation coefficients
(as with ratio means) are functions of the departure of actual population relations
from assumptions (A)-(D) above, and of sample sizes.

TABLE 2

Biases in complex samples offive types of estimators

Averages of relative biases = bias (P.)/P, and of the bias ratios = bias (p.)/ste (P.). Data from
Tables 5.1 and 5.2 of Frankel (1971)

6 12 30
Strata design Strata design Strata design

Estimator No. in 300 samples 300 samples 200 samples
average

Relative Bias Relative Bias Relative Bias
bias ratio bias ratio bias ratio

Ratio means 8 0·00425 0'04653 0·00216 0·03909 0·00295 0'08520
Simple correlations 12 0·06972 0·19847 0·05399 0'19013 0·01748 0'09896
Regression coefficients 8 0'04978 0·04429 0·03320 0·07108 0·02776 0·05558
Partial correlations 6 0·12333 0·21155 0·08365 0·20165 0·05863 0'17358
Multiple correlations 2 0·16002 0·72855 0·11115 0'52975 0'04670 0·29105

Analytical expressions would be complex and are not available now. Hence our
inferences must rely heavily on accumulating empirical evidence. In Table 2 we
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summarize results on the biases of five types of estimators from a complex sample
(Frankel, 1971). The results from this large study, described in Section 5, are
reassuring. Even for small sizes (12 units from 6 strata) the relative biases (ratio of
bias to parameter) are small, and they decrease with the sample size for means and for
three diverse types of regression coefficients. Because the standard errors also decrease
the bias ratios (ratio of bias to standard error) fluctuate, but they remain small or
moderate. The multiple correlation coefficient shows worse behaviour; but we think
this is due to the basic defect of the estimator, rather than to the design's complexity.

In addition to small biases, in Table 3 the same study also gives us comforting
news about the approaches to normality of complex statistics from complex samples.

TABLE 3

Approach to normality in complex samples offive types of estimators

Averages of relative frequencies within stated intervals of statistics (P.-p)/ste (P.). Data from
Table 5.3 of Frankel (1971)

Intervals ±2·576 ± 1'960 ±1'645 ± 1·282 ±1'000

P for normal deviate 0·9900 0'9500 0·9000 0'8000 0·6827

6-strata design (300 samples)
8 Ratio means 0·9875 0·9533 0·9067 0'8075 0'6929

12 Simple correlations 0·9861 0·9533 0·9039 0·8061 0·6986
8 Regression coefficients 0·9742 0·9387 0'9067 0·8392 0·7425
6 Partial correlations 0·9822 0·9444 0·9050 0·8178 0'7039
2 Multiple correlations 0'9767 0·9467 0·9167 0'8417 0·7233

12-strata design (300 samples)
8 Ratio means 0·9900 0'9550 0·8987 0·8804 0·6750

12 Simple correlations 0·9872 0·9461 0·9003 0·8064 0·6919
8 Regression coefficients 0·9808 0·9492 0·9092 0·8192 0·7079
6 Partial correlations 0·9872 0·9506 0·9050 0·8133 0·6861
2 Multiple correlations 0·9733 0'9383 0·9067 0'8350 0·7233

30-strata design (200 samples)
8 Ratio means 0·9887 0·9544 0·9100 0·8069 0·6744

12 Simple correlations 0·9900 0·9567 0·9017 0·7929 0·6867
8 Regression coefficients 0·9869 0·9444 0'9019 0·8144 0·6912
6 Partial correlations 0·9875 0·9575 0'8958 0·8000 0·6942
2 Multiple correlations 0'9900 0·9525 0·9100 0·8275 0·6825

The approach seems to be good even for 12 units from 6 strata, and it improves
markedly in moderate sample sizes (see also the tables in Section 5).

The approach to population values promised by the first proposition must be
accompanied by the second proposition's warning about the slowing of the approach
caused by positive correlations among selected elements. The extent of the slowing is
simply expressed by the design effect on the variance of the mean: Deff = {I +p(n-l)}.
This expression is well known for random selections of equal clusters. It also has
been extended for sample means obtained from probability samples in general, with
p expressing the pairwise correlation of sampled elements, and ii a parameter of the
selection design (Tharakan, 1969). The same fruitful approach was used by "Student"
(1909) in a paper that, surprisingly, has been neglected in the literature of sampling.

Similar analytical expressions, in a few useful parameters, are needed for the effects
ofdesign on the variances of complex statistics. The effective content of the expressions
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must be statements about the structure of population variables, and the effect of the
selection design on the variates studied. Meanwhile we must accumulate evidence
about the magnitudes of these effects. Some of this empirical evidence is shown in
Table 4, which summarizes results of Kish and Frankel (1970) and Frankel (1971).

TABLE 4

Values of ~ D e f f for five types ofestimators from three complex samples

Set A from Table 2, Set B from Table 3 of Kish and Frankel (1970);
Set C from Table E-l of Frankel (1971)

Sample set

Ratio means
Simple correlations
Regression coefficients
Partial correlation coefficients
Multiple correlation coefficients

A

1·106
1·096
1·015
1-041
NA

B

1·800
1·262
1·295
1·400
1·465

C

1·438
1-355
1·106
1-360
1·894

We would like to know how the design effects tend to differ for different statistics
obtained from complex selection designs. In addition to scientific curiosity, we have
practical needs to discover reasonable regularities.

Often it is difficult to compute standard errors for all statistics, or to compute
them with adequate precision. Hence reasonable conjectures would be most useful
to researchers. Theory will help eventually, but it will need to be buttressed with
empirical content. Our present conjectures have a light theoretical framework and
some empirical background. They are phrased in terms of design effects Deff(b) for
complex statistics b from complex samples.

(i) Deff(b) > 1. In general, design effects for complex statistics are greater than 1.
Hence standard errors based on simple random assumptions tend to under
estimate the standard errors of complex statistics.

(ii) Deff(b) < Deff(yj. The design effects for complex statistics tend to be less
than those for means of the same variables. The latter, more easily computable
than the former, tend to be "safe" overestimates. (We noted earlier the
"pathology" of multiple R.)

(iii) Deff(b) is related to Deff(ji). For variates with high Deff(ji), values of Deff(b)
tend also to be high. See Kish and Frankel (1970, Section 7) for a set of
striking results.

(iv) Deff(b) tends to resemble the Deff for differences of means. The latter is
a simple measure of relations for which values of deff are easily computed,
and for which (1)-(111) also hold.

(v) Deff(b) tends to have observable regularities for different statistics. This is a
hope based on theoretical considerations; confirming results would help us
make useful conjectures.

A simple model of the above would be

Deff(bg) = 1+fg{Deff (v) - I }, (4.1)

with Deff(ji)> 1, O<fg< 1 andfg specific to the variables and statistic denoted by g.
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5. THREE METHODS FOR COMPUTING SAMPLING ERRORS

We shall compare here three basic methods for computing sampling errors from
stratified clustered sample designs: The Taylor expansion method (TA YLO R), the
method of balanced repeated replication (BRR) and the method of jackknife replication
(JRR). These names are convenient, but not unique. The comparisons are based
on a large-scale empirical study which contains a fuller discussion of all three
(Frankel, 1971).

In that study for the sake of simplicity, we used sample designs with equal numbers
A of primary units within all strata, and with two of those units selected from each
stratum with random choice, without replacement and without subsampling. Thus,
we have a clustered stratified sample design, where each population element has equal
probability (f= 2/A) of appearing in the sample. However, all three methods for
computing variances can deal with appropriate weighting to compensate for unequal
probabilities of selection within and between strata. The extension to any number of
primary selections per stratum is straightforward for the TAYLOR. With modifi
cations and with the use of collapsed and combined strata techniques, methods BRR
and JRR also can be applied to other sample designs (Kish and Frankel, 1970,
Section 12).

5.1. Taylor Expansion Method

The use of the Taylor expansion for computing variances of ratio means has been
described in textbooks. Deming (1960), Kish (1965) and Woodruff (1971) describe
its use for estimating variance for other functions of the basic sample sums. The
method is also known as the linearization or delta (0) method. A detailed published
extension of this method to more complex first-order estimates specific to survey
sampling is due to Tepping (1968). This method produces an approximate estimate
for the variance of a first-order statistic, based on variances of the linear terms of
the Taylor expansion of the statistic (Brillinger and Tukey, 1964).

Let Y= (YI' ""Yi' .. ',Yk)T be a vector of sample totals; the sample total Yi is the
aggregate of primary selection totals Yiha, where the indexes h and a denote strata
and primary selections:

Yi = ~ ~Yiha' where h = 1, ... ,H and a = 1,2.
h a

(5.1)

(5.2)

The Yiha values are sums over primary selections of element values Yihaj, weighted
by the inverses of selection probabilities, so that E(Yi) = K¥i, the corresponding
population value, with K some convenient constant.

The y/s are chosen so that g( Y) is the parameter we wish to estimate with the
first-order statistic g(y). Using the linear terms of the Taylor expansion g(y) near
g( Y), the estimator of var{g(y)} is given by

( og(Y) og( Y) }2
var{g(y)} = (l-f)~h \~~Yihl- ~~Yih2 .

\ t t t t

og(Y)/o¥i is the partial derivative of g(¥i) with respect to the variable ¥i, and taken
at the expected value ¥i; we must use og(y)/oYi as sample estimators of og(y)/o¥i.

5.2. Balanced Repeated Replication (BRR) Methods

The approach of repeated replications was developed at the U.S. Census Bureau
(Deming, 1956) from basic replication concepts (Mahalanobis, 1946) and orthogonal
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(5.4)

balancing was added later (McCarthy, 1966; Kish and Frankel, 1969). The BRR
methods can be briefly described as follows. Assume that we have a stratified sample
design with two primary selections from each stratum. Let S denote the entire sample;

let Hi denote the ith half-sample formed by including one of the two primary selections

from each of the strata; and let C, denote the ith complement half-sample, formed

by the primary selections in S not in Hi' The method we used for choosing the pattern
of primary units that form the half-samples, Hi and Ci, is known as "full-orthogonal

balance". If we form k half-samples HI' ... ,Hk , and corresponding complement

half-samples CI , ... , Ck , then we form BRR second-order estimators in one of two
ways:

or

1-f k

varBRR-D{g(S)} = 4k i~I(g(Hi)-g(Ci)}2.

Each of the two components in the BRR-S form also may be used separately for a

less costly but less precise second-order estimator (Kish and Frankel, 1970; Frankel,

1971).

5.3. Jackknife Repeated Replication (JRR) Methods

The term JRR refers to a set of second-order estimation methods motivated by

jackknife estimation procedures (Brillinger, 1964) and by BRR. With BRR methods,

each of the k replications estimates the variance of the entire sample. With the JRR
methods, each replication measures the variance contributed by a single stratum.
The technique used to measure these contributions to the variance from the strata was

suggested by the jackknife method for variances; it was formed by leaving out

replicates from the sample. The specific procedures below were first used and described
in Frankel (1971).

Assume again that we have two selections from each of H strata. Let S denote the

entire sample; letJi (i = 1, ... ,H) denote the replicate formed by removing from S one

selection in the ith stratum, but including twice the other selection in that stratum.

Let CJi (i = 1, ... , H) denote the complement replicate formed from S by inter

changing the eliminated and duplicated selections in the ith stratum.
Two JRR estimators of variance are defined as follows:

and

(5.6)

5.4. Accuracy of the Three Methods

If we assume first-order estimates g(y) or g(S) that are linear functions of statistics,

then a number ofexact analytical results can be derived for all three variance estimation
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methods: TAYLOR, BRR and JRR. However, when we consider the first-order
estimates actually used by survey analysts (e.g. ratios, correlation and regression
coefficients)we find that usable methods for exact (non-approximate, non-asymptotic)
results evade us. Since estimators of sampling errors are needed now, we follow a
tradition among statisticians that goes back at least as far as 1907, when "Student"
(1908) selected 750 simple random samples to evaluate his theoretical derivation of
the distribution of the sample mean divided by its estimated standard error.

We empirically evaluated and compared all three variance estimation methods,
using three clustered and stratified sample designs. These called for paired selections
(approximately 14 elements each) from 6 strata (approximately 170 elements), 12
strata (approximately 340 elements) and 30 strata (approximately 847 elements). The
coefficients of variation CV (x) of the sample sizes were 0,19, 0·13 and 0·074
respectively. Thus we imposed rather harsh, demanding tests on the empirical
validity of these methods. For a more complete description of this study, which makes
use of data from the Current Population Survey of the U.S. Bureau of the Census, the
reader is directed to Frankel (1971).

The three methods were used to compute sampling errors of several statistics:
ratio means, simple correlations and multiple regression coefficients. BRR and JRR
methods also were used to compute sampling errors for partial and multiple correlation
coefficients, but for the TAYLOR method we were unable to find tractable forms for
the partial derivatives.

For standards of comparison we used robust fundamentals based on the definitions
of means and variances. The bias offirst-order statistics was judged against population
parameters, based on the entire population of 45,737 households in 3,240 primary
sampling units. The statistics were based on 300 independent drawings for the 6-strata
and the 12-strata samples, and 200 drawings for the 30-strata sample. We used
8 variables in 2 multiple regression equations, each with 3 predictor variables. Thus
the 8 coefficients of regression, 12 of simple correlation, and 6 of partial correlation,
represent averaging 300 x (8, 12 and 6) statistics in the 6 and the 12 strata, and
200 x (8, 12 and 6) in the 30 strata. The total of about 400,000 complex computations
made good use of modern computers.

We could not afford to compute all the possible combinations for the second-order
statistics such as E{y - E(Y)}2 for the variance, and E{y - :f}2 for the mean-square
error; these were averaged from the 300, 300 and 200 statistics. To these standards
for second-order statistics were compared the corresponding results of the three
methods.

Here we can only summarize a large set of results. In the original publication
(Frankel, 1971), the large volume of details for distinct statistics provides firmer bases
for the tables here and for the conclusions derived from them. For first-order
estimators the biases on the average were relatively small; this was true both in terms
of the relative bias (bias/estimate), and of the bias ratio (the ratio of bias to standard
error). These were in the neighbourhoods of0·05 for means and regression coefficients,
and of 0·1-0·2 for simple and partial coefficients; the multiple correlation coefficient
was around 0,3-0,7 and clearly presented problems as noted above (Table 2). As for
the variability of first-order estimators, the strong design effectswere shown in Table 4.

We are chiefly concerned here with the performances of the three methods of
computing variances. These are summarized in Tables 5 and 6. Table 5 summarizes
the averages of relative biases for the mse's (three mean-square errors), and the
averages of their dispersions, measured as mean-squared errors of the mse's. The
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corresponding results for the computed variances (Frankel, 1971, Tables 6.1 and 6.3)
were close to these results shown for mse's, because the biases that would separate
them (mse = var +bias-) were small or negligible.

TABLE 5

Accuracy for mean-square errors (MSE)for three methods or error computations

Adapted from Tables 6.2 and 6.4 of Frankel (1971)

Relative bias of MSE Relative MSE of MSE
Bias (MSE)/MSE MSE(MSE)/(MSE)2

BRR JRR TAYLOR BRR JRR TAYLOR

6 Strata

0·032 -0,019 -0,041 Means 0·543 0·501 0·483
0·188 -0·006 -0,075 Regression coefficients 4'207 2·803 2·437

-0,040 -0,163 -0,278 Simple correlations 0·772 0·678 0·431
0·029 -0,153 Partial correlations 0·989 0·852

-0,297 -0,426 Multiple correlations 1'168 1·079

12 Strata

0·064 0·035 0·022 Means 0·437 0·418 0·381
0'097 -0,010 -0,034 Regression coefficients 1'425 1·180 1'134

-0,072 -0,159 -0,243 Simple correlations 0·530 0·483 0·326
-0,013 -0-157 Partial correlations 0·686 0'603
-0,330 -0-439 Multiple correlations 0·993 0·906

30 Strata

0·004 -0,011 -0,014 Means 0·156 0·152 0'147
0·068 0·019 0·014 Regression coefficients 0·608 0'558 0'554

-0,036 -0,104 -0-159 Simple correlations 0'405 0'349 0·231
0·012 -0,101 Partial correlations 0'578 0·497

-0,161 -0'286 Multiple correlations 1'050 0'895

Table 6 presents results for the criterion we consider most significant because it
measures directly the inputs of the three methods into inference statements. Against
the accepted standards of probability levels (for 6, 12 and 30 degrees of freedom),
this table shows the levels actually attained on the average by the sample functions

t(s) =
g(s)-E{g(s)}

(5.7)
ste{g(s)}

The proportion of times that the ratio t(s), computed for each sample, fell within
fixed symmetric intervals tp (± 2,576, ± 1,960, ± 1,645, ± 1,282) are shown against
the Student's P, expected probabilities. Relative frequencies are shown for three
methods: BRR-S, JRR-S and TAYLOR (from Frankel, 1971, Tables 7.4, 7.8 and 7.1

respectively). We omitted data for BRR-D, BRR-H, BRR-C and for JRR-D, JRR-H,
JRR-C; the differences of these from the results shown for BRR-S and JRR-S are
less important and are discussed elsewhere (Kish and Frankel, 1970; Frankel, 1971).
The latter gives Tables (7.1-7.9) for all nine variations of the three methods and for
asymmetric (one-sided) intervals, for which the performances were less satisfactory
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TABLE 6

Relative frequencies ofP, intervals for three methods of error computations

Value of t= {g-E(g)}/{ste(g)} computed, then for each type of (statistic x design x
method) the proportions that fall within ± t intervals. Adapted from Tables 7.1, 7.4,

7.8 of Frankel (1971)

BRR JRR TAYLOR BRR JRR TAYLOR

t = ±2·576 t= ±1·960

6 Strata
P, = 0·9580 P, = 0·9023

0·956 0·951 0·948 Means 0·904 0·894 0·888
0·966 0·952 0·942 Regression coefficients 0·915 0·883 0·873
0·948 0·931 0'916 Simple correlations 0·886 0·863 0·837
0·957 0·937 Partial correlations 0·908 0·868
0·935 0·912 Multiple correlations 0·895 0·840

12 Strata
P, = 0·9757 P, = 0·9264

0·972 0·971 0·971 Means 0·922 0·920 0·919
0·973 0'968 0·966 Regression coefficients 0·934 0·916 0·912
0·955 0·944 0·933 Simple correlations 0·897 0·875 0·859
0·966 0·949 Partial correlations 0·912 0·888
0·920 0·895 Multiple correlations 0·850 0·813

30 Strata
P, = 0·9848 P, = 0·9407

0·983 0·982 0·982 Means 0'944 0·943 0'943
0·983 0·980 0·979 Regression coefficients 0·938 0·933 0·932
0·973 0·966 0·965 Simple correlations 0·911 0·902 0·898
0·955 0·946 Partial correlations 0·897 0·879
0·913 0'895 Multiple correlations 0·825 0·793

t = ± 1'645 t= ±1·282

6 Strata
P, = 0·8489 P, = 0·7529

0·845 0·836 0·833 Means 0·756 0·742 0·738
0·860 0·830 0·815 Regression coefficients 0'768 0·731 0·717
0·836 0·805 0'774 Simple correlations 0·739 0·699 0·671
0·855 0·810 Partial correlations 0'766 0·705
0·823 0'780 Multiple correlations 0·738 0·660

12 Strata
P, = 0·8741 P, = 0·7760

0·870 0·866 0·865 Means 0·769 0·765 0'763
0·875 0·854 0·850 Regression coefficients 0·773 0·750 0·744
0·844 0·826 0·803 Simple correlations 0·758 0·731 0·705
0·869 0·826 Partial correlations 0·754 0·711
0'790 0·738 Multiple correlations 0·677 0·633

30 Strata
P, = 0·8896 P, = 0·7903

0·891 0·889 0·888 Means 0'789 0·786 0·784
0·890 0·884 0·884 Regression coefficients 0·789 0·779 0·778
0'862 0·847 0·836 Simple correlations 0·753 0·735 0·723
0·844 0·819 Partial correlations 0·753 0'725
0·735 0·703 Multiple correlations 0·638 0·595
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(because of skewed distributions) especially for the 6-strata design. Many tables of
Frankel (1971, Appendices) give results for separate variables: 8 means, 8 regressions,
12 simple, 6 partial and 2 multiple correlation coefficients.

We derive from these tables several summary conclusions useful for survey

sampling.

(i) All three methods gave good results for several statistics: means, coefficients
of regression and of correlation, simple and partial. The mse values have
small relative biases (Table 5), and the proportions of t(s) values conform
well to P, expectations (Table 6). We now have three good methods for these
difficult tasks.

(ii) The relative biases and the t(s) proportions improve as expected for increasing
sample size, from 6 to 12 to 30 strata.

(iii) The results for coefficients of multiple correlation are poor on all criteria,
and they fail to improve for larger samples. We conjecture that this patho
logical behaviour does not result from the complexity of the selection design,
but from more basic faults of the statistic.

(iv) The BRR method was consistently the best when judged by the criterion we
believe most significant: the closeness to expected P, of the actual proportions
of t(s) values. The BRR performed consistently better than JRR, and JRR

performed better than TA YLO R. The BRR's better performance is particu
larly noticeable for simple and partial correlation coefficients, where JRR and
TA YLO R are less satisfactory.

The weaker performance ofJRR and TA YLO R for correlation coefficients
on the t(s) criterion is probably associated with the negative relative biases
of the mse measures of order -0,10 to -0,16 for JRR and -0,16 to -0,28
for TA YLOR. Moderate positive biases for betas with BRR may explain
its "conservative" high proportion of t(s) values for 6 and 12 strata.

(v) The variability, measured with mean-square errors in Table 5, shows interest
ing and surprising results. The values generally are greater than we should
expect. Also, the decrease (consistency) for larger sample size is weaker
than we expected. These results contrast sharply with the much better (and,
we believe, more significant) results for proportions of t(s) values in Table 6.
Perhaps large numerators (deviations) and denominators tend to occur jointly
with strong positive correlations. This possibility deserves further investi
gation.

The variability is consistently lowest for TA YLOR and highest for BRR.

The differences are small, and apparently have less effect than the relative
biases on the closeness of t(s) values.

Clear differences in variabilities appear for the five kinds of statistics.
Relative variation is least for means, and consistently decreases with larger
sample sizes. For regression coefficientsit is much greater, but also consistent.
For correlation coefficients, both simple and partial, variability is somewhat
greater than for means, and decreases for larger samples are rather weak.

(vi) When judged by several criteria, none of the three methods showed up
strongly and consistently better or worse. The choice among methods may
depend in most cases on relative costs and simplicity, and these will vary with
the situation and with the statistics. TAYLOR methods may be best for
simple statistics like ratio means, and BRR and JRR for complex statistics
like coefficients in multiple regressions.
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6. COMPUTING SAMPLING ERRORS

For complex samples (row C in Fig. 1), computing sampling errors seems both
necessary and difficult. These computing methods are the necessary tools for inference,
because the alternatives perform poorly in many practical situations. The difficulties
must be great because actual computations still occur only as rare exceptions, rather
than as the normal complement they should be for probability samples. The failure
to compute sampling errors is a widely known scandal among practitioners. What
difficulties cause this widespread evasion of an admitted duty? The list of difficulties
to be overcome can also serve as criteria for good practical programs.

(i) Complexity. Computing second-order statistics is inherently more compli
cated than computing the first-order statistics they serve. This problem
becomes more acute for complex multivariate statistics.

(ii) Approximations. Computations of variance typically involve approximations,
and strategy involves a choice among them for validity and utility. We
compared three methods; references contain further discussions (also see
Kish, 1965; Sections 6.5, 8.6, 12.11, 14.1, 14.2).

(iii) Data input. This appears as the most important component in machine-time,
because surveys are typically large-scale, involving thousands of cases. It
weighs heavily in large-scale computations for multipurpose surveys, and
especially for many subclasses.

(iv) Multipurpose. Surveys typically concern many variables, and these require
many separate computations. The input for thousands of cases is multiplied
by the number of distinct survey variables.

(v) Subclasses. Survey statistics, and errors, are needed not only for the entire
sample, but typically also for many domains. This further increases and
complicates the volume of computations.

(vi) Interface. For computing sampling errors we often need a triangular interface
involving the researcher, the sampling statistician and the computer specialist.
This is expensive, but omitting a side of this triangle without adequate
planning can be dangerous.

We cannot present here a comprehensive treatment of these problems. In general
we believe that for complex statistics (cell C3 in Fig. 1), the strongest emphasis should
be placed on dealing with complexity and with valid approximations. Here the
TA YLOR method becomes too complex for practical work and BRR or JRR is needed.
But for simpler statistics (cells Cl and C2), we think that the TAYLOR method
offers a better approach to dealing with the last four criteria.

These approaches are incorporated in a set of computing programs we have
designed and used over the years; more recently they have been made available to
others. SEPP (Sampling Error Program Package) is a set of three programs which
we have used for routine computations of sampling errors. Manuals and descriptions
appear in a book with that title (Kish et al., 1972), and a SEPP package of tape plus
manuals may also be purchased. For brief descriptions see Kish (1971).

7. DISCUSSION OF ALTERNATIVES

The approximations proposed here for sampling errors should be useful for
research workers involved with applications. We are concerned here chiefly with
analytical statistics (B3 and especially C3 in Fig. 1) and somewhat less with subclasses
means and their differences (B2 and C2). We know that we have raised more questions
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than we have answered. There are important contributions to be made by both
theoretical and empirical investigations; we think it preferable that they be performed
jointly. We urge the importance of the task by contrasting the proposed methods with
the alternatives below.

(i) To restrain analysis of data to those statistics for which mathematics provides
explicit distribution theory for complex samples. That poses difficult and
distant goals. Meanwhile there exist irrepressible demands for the analysis of
data provided by survey technology and facilitated by computer technology.

(ii) To restrain samples to independent selections for which distribution theory is
adequate. This would be wise sometimes, but often it is not practical because
it would be too expensive. Furthermore, analyses of relations are often
secondary to the collection of descriptive data, for which complex selections
are much more efficient.

(iii) To omit computing and presenting sampling errors. This is common practice.
The "first-order statistics" seem to be reasonably well behaved, and rigorous
proofs of that may be obtained easier and sooner than for "second-order
statistics" of variability. We believe, however, that this proposal is less
acceptable to most than (iv).

(iv) To compute sampling errors with the available formulas based on independent
observations. This often gives bad underestimates; our evidence will be
buttressed by many others. The magnitudes of these mistakes testify to the
magnitude of this problem (in ironic contrast with many research papers).

(v) To select simple replicated (interpenetrating) samples, and to compute
sampling errors using simple replications or jackknife modifications. This
fundamental idea has much (and many) to recommend it, and it is useful
sometimes. But more often in practice it is unsatisfactory for numerical
reasons. If the replications are simple and few, estimates of error are poor
(perhaps worse than those of (iv)). Even averaging may not rescue them
sufficiently and practitioners have been disappointed. On the other hand,
many replications sacrifice stratification, simplicity and perhaps validity. Here
we think that ERR is a better answer (Kish and Frankel, 1971).
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DISCUSSION OF THE PAPER BY PROFESSOR KISH AND DR FRANKEL

Professor G. KALTON (University of Southampton): It is a great pleasure for me to

propose the vote of thanks to Professor Kish and Dr Frankel for a very stimulating paper,

and also to see both of them here to present it. The paper usefully brings the results of

recent research in survey sampling into a coherent framework, and in doing so it draws

attention to the gaps in our knowledge. The framework also enables conjectures to be

made about the nature of the unavailable results, and such conjectures appear in various

places throughout the paper. Besides providing valuable guidance to survey researchers,


