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Abstract—Amalia is a generator framework for constructing analyzers for operationally defined formal notations. These generated

analyzers are components that are designed for customization and integration into a larger environment. The customizability and

efficiency of Amalia analyzers owe to a computational structure called an inference graph. This paper describes this structure, how

inference graphs enable Amalia to generate analyzers for operational specifications, and how we build in assurance. On another level,

this paper illustrates how to balance the need for assurance, which typically implies a formal proof obligation, against other design

concerns, whose solutions leverage design techniques that are not (yet) accompanied by mature proof methods. We require Amalia-

generated designs to be transparent with respect to the formal semantic models upon which they are based. Inference graphs are

complex structures that incorporate many design optimizations. While not formally verifiable, their fidelity with respect to a formal

operational semantics can be discharged by inspection.

Index Terms—Amalia, analysis software, engineering trade-offs, inference graphs, operational semantics, program transformations,

proofs of correctness, transparent design.
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1 INTRODUCTION

AUTOMATED software-engineering environments (ASEs)
create and manipulate representations of specifica-

tions, designs, and programs (hereafter called system
descriptions). We recently developed the Amalia generator,1

which generates software that analyzes the behavior of
system descriptions that are defined via an operational
semantics. Amalia-generated analyzers are not stand-alone
tools, but rather are components that can be customized for
integration into an ASE [1]. Consequently, these analyzers
must satisfy design concerns that do not arise in stand-alone
analysis/verification tools. To address these concerns
requires the use of advanced object-oriented design
techniques and technologies, for which mature proof
methods are not yet available. This paper investigates
how to assure the correctness of Amalia-generated analy-
zers without violating or unduly constraining these other
design concerns.

We designed Amalia to generate analysis and verifica-
tion software subject to three concerns. First, analysis
software should support extension and contraction—in the
sense suggested by Parnas [2]—so that it can be easily
assembled into useful subsets. An important class of
contractions enables a tool designer to incorporate one or
more simplifying assumptions about the specifications that

the tool will be used to analyze, such as that the
specifications are known to be deterministic or finite state.
Second, analysis software should be designed to facilitate its
integration into a larger ASE [1]. In short, this means that
generated analyzers should interoperate with environment-
specific internal representations and should do so without
unduly constraining the design of these representations.
Third, it must be possible to demonstrate that the analyzer
itself correctly implements its intended analysis. This paper
explains how Amalia-generated software satisfies these
concerns. Specifically, we extend the results of [1], [3],
which address concerns 1 and 2, with an analysis of the
correctness of the generated software, thereby also addres-
sing concern 3.

What makes this problem difficult is that each of the
aforementioned concerns constrains the underlying design
of the generated analyzer. For example, we could provide
assurance by requiring a formal proof of correctness.
However, to satisfy thfis requirement would mean limiting
the use of design techniques and language constructs to
those for which mature proof techniques are available. Such
a limitation is unacceptable in the context of the other
concerns. For example, in [1], we argue that the use of the
visitor pattern [4] is key to integration and that GenVoca
generators [5] are a key enabling technology for supporting
extension and contraction. Later in this paper, we argue for
the use of mixin classes [6] in order to improve efficiency.
None of these advanced design methods are supported by
mature proof techniques.

Because our discipline currently lacks a rigorous en-
gineering paradigm for simultaneously optimizing con-
cerns such as these, we must make design trade-offs. This
paper demonstrates how we use designs that are transparent
with respect to the formal semantic models upon which
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they are based to accommodate the needs of integration and
extension/contraction without conceding assurance. Our
thoughts on transparency follow the ideas of Boyle et al.
who claim that to “build trust” into compilers requires
viewing the verification of compiler code as a sequence of
design transformations, each of which is “correct by
inspection” [7]. In this paper, we demonstrate that a key
component in Amalia-generated analyzers is a transparent
implementation of an operational semantics. To adequately
address the integration and extension/contraction concerns
and also argue transparency, we integrate ideas and
methods from different subdisciplines, such as formal
verification, compiler-construction theory, domain analysis
and reuse, and object-oriented design.

In [1], we argued that extension/contraction can be
addressed by decomposing analysis algorithms into a
sequence of reusable refinements in the GenVoca style [5].
In the domain of analysis software, one such refinement is
called a step analyzer, which is used to compute a labeled
transition system (LTS) representing the behaviors of an
operationally-defined specification. The specification corre-
sponds to a state in the LTS. Given a state, the step analyzer
computes its immediate successors. Labeled transition
systems are the basis for a variety of different analysis
tools (e.g., model checkers, test oracles, etc.).

By exploiting ideas from advanced object-oriented de-
sign (specifically the visitor pattern [4]), we can generate
step analyzers for a given internal representation without
imposing undue constraints on the design of that repre-
sentation. Moreover, by virtue of being able to generate step
analyzers, a designer can automatically refine analysis
algorithms within this domain to operate on a given
internal representation. While a case study integrating an
Amalia generated analyzer with a second party tool has yet
to be completed, generators and design patterns represent
the current best practice for addressing integration and
extension.

The step analyzer is thus a crucial component in Amalia-
generated analyzers. These generated step analyzers oper-
ate by creating and executing a data-flow structure called an
inference graph as a side effect of traversing an internal
representation [3]. Inference graphs balance the need to
efficiently compute the transitions leaving a state in an LTS
against the need to demonstrate the correctness of the
analysis with respect to the operational semantics of the
language used to describe the state (specification).

The computational results that a step analyzer must
compute are specified using an operational semantics in a
form that admits parameterization by a particular abstract
syntax notation (Section 2). We first recast the analysis that
a step analyzer must perform denotationally, as a function
over specifications, and prove that this function correctly
implements an operational semantics (Section 3). We then
present the inference graph (Section 4) and demonstrate
how the graph is a transparent implementation of the
denotation function (Section 5). In addition to assurance,
other concerns that we address include integration and
efficiency of step analysis. We conclude the paper with a
discussion of lessons learned and related and future
research (Section 6).

2 BACKGROUND

A step analyzer traverses the internal representation of an

operational specification. This internal representation can

be thought of as an abstract syntax tree (AST), but it might be

implemented in a variety of different ways, subject to the

concerns of a larger environment and also to the whims of

the original designer. Because integration into an existing

environment is one of the driving concerns in Amalia, the

step analyzer should impose only minimal constraints on

this representation, as every such constraint could violate

an assumption made elsewhere in the environment.

Additionally, assurance dictates that we demonstrate that

the step analyzer computes results according to the

operational semantics of the specification being analyzed.

This section provides necessary background for under-

standing these problems and the techniques that we use to

address them. We begin by describing operational seman-

tics, which formalizes the notion of a step in an execution of

a system. Because many of these ideas are abstract, we use

concrete example specifications written in a subset of the

LOTOS notation (Section 2.1). We then introduce a textual

metanotation, which uses expressions for constructing and

navigating “abstract” ASTs without reference to the details

of a particular internal representation (Section 2.2). This

metanotation permits us to give a generic description of the

procedure by which a step analyzer assembles an inference

graph. To describe how we instantiate this procedure with a

specific internal representation for LOTOS, we provide a

class model, which articulates the abstract syntax in terms of

implementation classes and operations (Section 2.3). We

then describe how visitors allow us to implement a step

analyzer so as not to unduly constrain the design of an

existing internal representation (Section 2.4). Finally, we

briefly introduce the Amalia toolsuite and identify where

step analyzers fit (Section 2.5).

2.1 Operational Semantics and the Lotos Subset

Amalia currently supports a restricted form of operational

semantics, called structural operational semantics [8], or SOS,

suitable for notations that describe synchronization of

actions in behaviors of a system, such as LOTOS [9], or

propositional linear-time temporal logic [10]. LOTOS is a

rich language for specifying event-driven behavior. A

LOTOS specification describes one or more concurrent

processes, each of which is a computational entity whose

internal structure can only be discovered by observing how

it interacts with its environment. Amalia supports pure

LOTOS, which deals with process synchronization, but not

with data exchange. Due to space limitations, this paper

considers a much smaller subset of LOTOS. This subset was

chosen to illustrate different types of semantic rules, not to

be representative of the LOTOS notation.

Briefly, a process can perform an action, which is an

atomic event that other processes can observe and, thereby,

transform itself into another process. Notationally, we

distinguish place holders for processes using uppercase

letters from the middle of the alphabet (P or Q) and place

holders for actions using lowercase letters from the
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beginning of the alphabet (a or b). We use multiletter names

to denote actual processes and actual actions, with the

former written entirely in uppercase and the latter written

entirely in lowercase. One exception is the termination of a

process—an observable action in LOTOS—which is denoted

by the Greek letter �.
We use two primitive LOTOS processes:

EXIT: This process can be observed only to terminate; doing
so causes it to become the process STOP .

STOP: This process cannot engage in any actions.

In addition to the two primitive processes, we use three
LOTOS operators:

Prefix: The process a;P , pronounced “a prefix P ,” performs
the action a and then continues to behave like the
process P .

Disable: The process P ½> Q, pronounced “P disabled by Q,”
behaves like process P unless it is interrupted by process
Q, at which point it will continue to behave like Q.

Parallel composition: The process P j A j Q, pronounced “P
and Q synchronizing on A,” behaves like process P and
process Q running independently, except on actions
from the set A and on termination, when P and Q must
synchronize.

If P denotes a LOTOS process, a step of P is a pair ða; P 0Þ,
where a designates an action that P can perform and P 0

specifies how P is transformed by performing action a.

Following convention, we write Pÿ!a P 0 to mean ða; P 0Þ is a

possible step of P ; in this case, P 0 is called a derivative of P .

We refer to Pÿ!a P 0 as a step assertion.

A SOS specification for the LOTOS subset consists of

semantic rules that prescribe how to derive step assertions

for a composite process from the step assertions derivable

from its parts (Table 1). Step assertions in the numerator of a

rule make up the rule’s premises. Each semantic rule is

named for reference purposes; we show the (parameter-

ized) name beside the rule. A rule with no premises (e.g.,

exitA[ ] and prefA½a; P �) is called an axiom. We refer to the

step in a premise as a premise step. The numerator of a rule

may also specify a side-condition, i.e., a Boolean expression

that must be satisfied for the rule to be applicable. For

example, disL1½P;Q� applies only if the action a in the

premise step ða; P 0Þ is not termination, as is indicated by the

side-condition ða 6¼ �Þ. The denominator of a rule specifies a

step assertion, called the conclusion, that is inferred using

the rule. The LOTOS expression on the left-hand side of the

conclusion is called the subject of the rule, and the step in

the conclusion is called the conclusion step.2

A rule is applied by instantiating the place holders in the

rule with processes and actions that satisfy the rule’s

premises and side-condition, if any. The rule then justifies

the (instantiated) conclusion. A sequence of conclusions

produced by applying rules in an iterative manner is called

a derivation. For example, consider the following process

definitions, in which ping and ctrlc denote atomic actions.3

PROC b¼ PDCC j ½ctrlc� j EDCC
PDCC b¼ PING ½> CTRLC
PING b¼ ping;EXIT
CTRLC b¼ ctrlc;EXIT
EDCC b¼ EXIT ½> CTRLC

ð1Þ

The following example derivation produces one step for

PROC:

PING ÿ!ping EXIT

PDCC ÿ!ping EXIT ½> CTRLC

PROC ÿ!ping ðEXIT ½> CTRLCÞ
j ½ctrlc� j EDCC

This sequence of conclusions is justified by applying, in

succession, the rules: prefA½ping; EXIT �, disL1½PING;
CTRLC�, and parL½PDCC; ½ctrlc�; EDCC�. This derivation

shows that PROC can perform the step

ðping; ððEXIT ½> CTRLCÞ j ½ctrlc� j EDCCÞÞ:

A similar derivation produces a second step for PROC,

namely, ðctrlc; ðEXIT j ½ctrlc� j EXIT ÞÞ.

2.2 Semantic Rules Supported by Amalia

To represent generic semantic rules, we use a metanotation

that refers to operators in the abstract syntax of a

specification language. Let OP denote an operator, or type

of expression, in the language. Then, OP ½X� denotes an

instance of a specification, also called an abstract syntax

tree. Here, X stands for the (possibly empty) list of

arguments, most of which will be subexpression ASTs,

called operands.
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TABLE 1
Semantic Rules for Some LOTOS Operators

2. “premise,” “side-condition,” and “conclusion” terminology is stan-
dard, and the “numerator,” “denominator,” and “subject” terminology is
borrowed from [11].

3. “PDCC” for “ping disabled by ctrl-c” and “EDCC” for “exit disabled
by ctrl-c.” For brevity, we use the abbreviations PROC, PDCC, PING,
CTRLC, and EDCC in examples; they must be replaced by their definitions
when applying rules or analyzing a process.



Currently, Amalia supports only binary, unary, and
nullary operators. For example, in LOTOS, disable ( ½> )
and parallel composition ( j � � � j ) are binary operators;
whereas action prefix ( ; ) is a unary operator and
“primitive” processes, such as EXIT and STOP , are
nullary operators. As a notational convention, when the
major operator OP for an AST OP ½X� is a binary operator,
we use Xl to denote the first operand (the “left” operand)
and Xr to denote the second operand (the “right” operand),
and we assume Xl;Xr 2 X; if the major operator is a unary
operator, we use Xl to denote the only operand and again
we assume Xl 2 X. In general, X may contain arguments
that are not operands, such as the set of actionsA (in Table 1)
when OP denotes the parallel composition operator.

Each rule is classified according to the number of step
assertions in its premise and to the operand(s) that the
premise steps refer to. A rule with no premise steps is called
an axiom; a rule with a single premise step is called a
singular rule, which we further distinguish as a left rule or a
right rule, depending on whether the premise step refers to
the left operand or to the right operand of the rule’s subject;
and a rule with two premise steps is called a dual rule. Thus,
exitA½ � and prefA½a; P � are axioms; disL1½P;Q�, disL2½P;Q�,
parL½P;Q�, disR½P;Q�, and parR½P;A;Q� are singular rules,
with the first three examples of left rules and the last two
examples of right rules; and parD½P;A;Q� is a dual rule.

Steps of a LOTOS process are represented as ordered
pairs. However, in general steps may have some other
structure, dependent on the semantic basis that underlies
the specific notation. When referring to a generic SOS,
therefore, we use S to denote the domain from which steps
are drawn, and we distinguish elements of S using
subscripts, i.e., Si; Sj 2 S. Moreover, a generic step assertion
is written OP ½X�ÿ!Si; we regard the LOTOS step assertion
Pÿ!a P 0 as an alternate way of writing Pÿ!ða; P 0Þ.

Amalia currently supports four types of rules (Fig. 1).

In these rule types, CopA½X�ð Þ, CopL½X�ðSlÞ, CopR½X�ðSrÞ, and

CopD½X�ðSl; SrÞ are Boolean-valued expressions; FopA½X�ð Þ,
FopL½X�ðSlÞ, FopR½X�ðSrÞ, and FopD½X�ðSl; SrÞ are step-valued

expressions; X is the set of arguments to the subject

expression; Sl; Sr 2 S are premise steps; Xl 2 X is the left

operand of the subject expression; and Xr 2 X is the right

operand. We use the constant Boolean-valued expression

True in cases where a rule has no side-condition.

For example, to codify the rules from Table 1 in this form
we define:

CexitA½ �ð Þ b¼ True

FexitA½ �ð Þ b¼ ð�; STOP Þ

CprefA½a; P �ð Þ b¼ True

FprefA½a; P �ð Þ b¼ ða; P Þ

CdisL1½P; Q�ðða; P 0ÞÞ b¼ ða 6¼ �Þ
FdisL1½P; Q�ðða; P 0ÞÞ b¼ ða; P 0 ½> QÞ

CdisL2½P; Q�ðða; P 0ÞÞ b¼ ða ¼ �Þ
FdisL2½P; Q�ðða; P 0ÞÞ b¼ ða; P 0Þ

CdisR½P; Q�ðða; Q0ÞÞ b¼ True

FdisR½P; Q�ðða; Q0ÞÞ b¼ ða; Q0Þ

CparL½P; A; Q�ðða; P 0ÞÞ b¼ ða 62 A [ f�gÞ
FparL½P; A; Q�ðða; P 0ÞÞ b¼ ða; P 0 j A j QÞ

CparR½P; A; Q�ðða; Q0ÞÞ b¼ ða 62 A [ f�gÞ
FparR½P; A; Q�ðða; Q0ÞÞ b¼ ða; P j A j Q0Þ

CparD½P; A; Q�ðða; P 0Þ; ðb; Q0ÞÞ b¼ ða 2 A [ f�gÞ ^ ða ¼ bÞ
FparD½P; A; Q�ðða; P 0Þ; ðb; Q0ÞÞ b¼ ða; P 0 j A j Q0Þ:

Amalia imposes one additional requirement on the rules in

an SOS. When an operator appears in the subject of multiple

rules, the rules must be disjoint—that is, at most one rule can

apply to any (instantiated) premise step. This assumption is

justified provided that the premises of different rules for the

same operator involve different operands or, if two or more

rules involve the same operand, provided that the side-

conditions of these rules are contradictory. For example,

disL1½P;Q� and disR½P;Q� are disjoint because they involve

different operands, whereas disL1½P;Q� and disL2½P;Q� are

disjoint because their side-conditions are contradictory.4

2.3 Internal Representations Supported by Amalia

A major goal of Amalia is to enable integration of analysis

capability into larger environments [1]. For this reason,

Amalia must tailor a step analyzer to operate on a particular

internal representation. To satisfy this requirement, we

design step analyzers to operate over ASTs in the

metanotation defined in Section 2.2. We then use a code

generator to specialize this meta design to the details of a

particular internal representation. These details are con-

veniently described by a class model.
A class model is a design abstraction that relates a

collection of classes by generalization (or “kind-of”) and
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Fig. 1. Semantic rule types.

4. A different formulation of inference graphs would allow us to relax
this assumption, but at a performance penalty for the “normal” case.



aggregation (or “part-of”) associations. When used to specify
the abstract syntax of a notation, a class model contains: a
concrete class for each operator in the notation, aggregation
associations that relate composite classes to classes that
represent their parts, and abstract classes that factor and
clarify aggregation associations and provide a most general
class. Fig. 2 presents a class model that articulates the
abstract syntax of our LOTOS subset in terms of classes and
operations of a specific internal representation of LOTOS

specifications. LOTOS processes are generalized by the
abstract class LotProc. Concrete classes—Exit, Stop,
Pre, Dis, and Par—represent operators. In the figure, an
open arrow signifies generalization and an open diamond
signifies aggregation.

Each operator class must provide a constructor with
which to create instances of the operator and an accessor
operation, with which to retrieve any parts (i.e., references to
operand ASTs or other syntactic attributes). For brevity, we
elide these operations in Fig. 2, replacing them with the
more concise aggregation associations. For example, the
aggregations action and operand show that the con-
structor for Pre takes two arguments, one designating an
Action AST and the other a LotProc AST. Constructors
for binary operators—Dis and Par—take two LotProc

arguments, and the constructor for Par takes a third
argument, which designates a set of synchronization
actions.

We treat a class model as a refinement of our metanota-
tion as follows: First, we treat OP as a generic operator
class, i.e., a concrete subclass of the most general AST class,
and OP ½X� as an object of class OP instantiated with the
(possibly empty) list of arguments X that are passed to the
constructor of the concrete class associated with OP .
Second, commensurate with our metanotation, we distin-
guish operand arguments to a class’ constructor from
nonoperand arguments. Here, an operand Xi 2 X must be
an instance of the most general AST type. For example, an
instance of type Pre has a single operand, even though its
constructor takes two arguments (the Action argument is
not an operand). An AST is an instance of a class model in
the following sense: Each node is an instance of a concrete
class, and children correspond to aggregation links that
conform to the class model (Section 4, Fig. 6, top).

2.4 Implementing a Step Analyzer as a Visitor

Refining general AST accessor and constructor operations
into operations over a specific internal form addresses only
part of the integration concern. In addition, the analysis
function itself must not impose constraints on the design of

the internal representation, as such constraints might
conflict with decisions already made. To address this
concern, step analyzers implement the visitor pattern [4],
which allows an operation over a linked object structure,
such as an AST, to be separated from the design of the
objects being traversed and encapsulated into a single class,
called a visitor class.

In general, the visitor pattern accommodates algorithms
that traverse a composite object structure, dispatch a
function on an object in the structure (based on the class
of the object) when the object is traversed, and exploit object
orientation to collect information derived from the objects
during the traversal. This second property—dispatching a
function on an object based on the class of the object—illus-
trates that the operation implemented by a given visitor is
polymorphic over its argument. Moreover, because a visitor
class provides a visitOp method for each AST operator
Op, the visitor class can be viewed as implementing a
function that is designed by cases. Thus, the visitor pattern
affords a degree of transparency for implementing induc-
tive, polymorphic functions that are defined by cases. In
Section 3.2, we formalize the derivation of steps for an AST
as a polymorphic function of the AST and, indeed, most
formally defined semantic functions are of this form. Thus,
many interesting analyses can be implemented transpar-
ently using visitors, and designs based on this pattern are
amenable to integration.

A visitor class ASTVisitor provides a visitOp

operation for each distinct AST operator Op, and each such
operation expects to be invoked with a single parameter of
type Op. Furthermore, each AST-operator class Op provides
an operation called Accept, which takes a single parameter
of type ASTVisitor. To traverse a particular AST, you
must allocate an object of class ASTVisitor and then
invoke the Accept operation of the root of the AST, passing
the ASTVisitor object as a parameter. Each AST class Op
defines an Accept method that invokes the appropriate
visitOp operation on its (ASTVisitor) parameter,
passing itself (i.e., the AST node) as a parameter. This
“double dispatch” operation is the key to decoupling the
design of functions that operate by traversing an AST from
the design of the AST classes themselves.

2.5 Amalia Tool Suite

Amalia combines principles from the GenVoca model of
component-based application generators [5] with our
results in visitor-based implementation of formal analyses
to produce analyzers for formal notations. The step
analyzer is a critical component to a variety of formal
analysis capabilities, such as model checking, simulation,
and test verification using oracles. These analysis capabil-
ities can be designed as GenVoca components that can be
instantiated with a particular step analyzer to work for a
particular formal language whose AST is implemented
using a particular internal representation [1]. Moreover,
step analyzers are not written by programmers, but are
generated automatically from SOS rules, expressed in the
metanotation of Fig. 1 and from a description of how
operators and operations in the SOS rules map to classes
and navigation operations of a particular internal repre-
sentation.
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Fig. 2. Class model for the Lotos subset.



Fig. 3 depicts the Amalia tools that are concerned with
generating step analyzers. In this diagram, documents
(crimped-page icons) represent input files that a human
designer must construct and the boxes written in the UML-
like notation denote classes that are generated by the step-
analyzer generator. The XStepAnalyzer class, which is
used by higher-level Amalia components to compute the
steps of a given AST, is implemented using the visitor
pattern. The other generated classes, called rule classes, are
described later in the paper. Essentially, one rule class is
generated for each axiom or inference rule in the SOS of a
notation. In the diagram, we partition the rule classes into
groups based on the major operator to which they apply.
The rule classes are used by the XStepAnalyzer to build
and execute an inference graph for an AST as the AST is
being traversed. The remainder of this paper is concerned
with this process.

3 DENOTATIONAL MODEL OF THE STEP RELATION

As discussed previously, we require that a step analyzer is
implemented as a visitor, which performs an analysis in a
single, top-down traversal of an AST. Moreover, for
assurance, the implementation of the step analyzer must
be transparent—that is, we must be able to rigorously show
how it implements the step relation defined by an SOS. The
previous formalization of the steps of a process as those
steps that are produced by multiple derivations implies a
bottom-up traversal of an AST during which steps of each
child AST node are buffered for use in computing the steps
of its parent. This simple bottom-up strategy has two
drawbacks. First, it requires buffering all steps of a child
AST node and iterating over these buffers to calculate the
steps of the parent AST node. We show in the sequel that
buffering of steps is needed at a node with operator OP only
if there are one or more dual rules for OP and if its left
operand produces steps that do not satisfy the side-
conditions of any left rules for OP. Additionally, because
a purely bottom-up strategy cannot take context into
account, it may result in calculation of steps for nodes that
cannot contribute to steps of some ancestors. In LOTOS, for
example, the steps of an AST containing a prefix node do
not depend on the steps of the prefix operator’s operand;
thus, there is no reason to compute the steps of the operand
AST. A second drawback of the bottom-up strategy is that

buffering steps and iterating through these buffers obstructs
transparency since the buffers have no direct counterpart in
the formalization of the step relation defined by an SOS.

To overcome these problems, we introduce a denota-
tional model of the step relation defined by an SOS.
Specifically, we use an SOS to define a meaning function
M that maps an AST OP ½X� to a sequence of steps
M½½OP ½X��� containing exactly those steps that can be
derived from OP ½X�.5 Briefly, the meaning function is
obtained by treating SOS rules as defining functions over
steps, which can be aggregated into larger functions on the
basis of the operator in the rule’s subject and the operand(s)
in the rule’s premise assertion(s) (Section 3.1). The
aggregated rule functions permit us to define M by
induction on the structure of an AST (Section 3.2). We
require an inductive definition in order to justify certain
optimizations that are performed when generating infer-
ence graphs (Section 3.3) and to show that M is
correct—that is, that M½½OP ½X��� contains precisely those
steps derivable from OP ½X� according to the SOS
(Section 3.4). Table 2 summarizes notation needed for the
definitions in this section.

3.1 Rule Functions, Initiator Functions, and
Transfer Functions

Rule functions are defined using the schemata for
representing SOS rules (Fig. 1). We treat an axiom opA½X�
as defining a (0-ary) rule function iopA½X�, a left (respec-

tively, right) rule opL½X� (respectively, opR½X�) as defining

a unary rule function topL½X� (respectively, topR½X�), and a

dual rule opD½X� as defining a binary rule function topD½X�:

iopA½X�ð Þ b¼ FopA½X�ð Þ if CopA½X�ð Þ
? otherwise;

�

topL½X�ðSiÞ b¼ FopL½X�ðSiÞ if CopL½X�ðSiÞ
? otherwise;

�

topR½X�ðSiÞ b¼ FopR½X�ðSiÞ if CopR½X�ðSiÞ
? otherwise;

�

topD½X�ðSi; SjÞ b¼ FopD½X�ðSi; SjÞ if CopD½X�ðSi; SjÞ
? otherwise:

�
The rule functions produced in this manner from the rules
that apply to the major operator OP in an AST OP ½X� are
then summed, based on the operand steps that they work
on, to yield four functions.

Definition 1. Given an AST OP ½X�:

. The initiator function iop½X� aggregates the (0-ary)
rule functions produced from the axioms, opA½X�:

iop½X� b¼ X
opA½X�

iopA½X�:
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5. An inference graph computes sets rather than sequences, but we
model the sets as sequences to simplify the proofs. The ordering of steps in
these sets has no bearing on correctness.

Fig. 3. Amalia step-analyzer generator.



. The left transfer function tl
op½X� aggregates the rule

functions produced from the left rules, opL½X�:

tl
op½X� b¼ X

opL½X�

topL½X�:

. The right transfer function tr
op½X� aggregates the rule

functions produced from the right rules, opR½X�:

tr
op½X� b¼ X

opR½X�

topR½X�:

. The dual transfer function td
op½X� aggregates the rule

functions produced from the dual rules, opD½X�:

td
op½X� b¼ X

opD½X�

topD½X�:

The initiator functions and transfer functions needed for

defining M½½PROC�� are shown in Fig. 4. The fourth and

sixth transfer functions are examples of summing: tl2 is the

sum of the rule functions for disL1½PING;CTRLC� and

disL2½PING;CTRLC�, and tl3 is similar. For brevity, we use

the indicated abbreviations (td1, tl1, etc.) in subsequent

examples.

3.2 The Meaning Function

To motivate the definition ofM, consider an AST OP ½X� for
a binary operator OP. A step analyzer first visits the left
operand and then visits the right operand, generating the
steps that the respective operands can perform during these
visits. This fact suggests that M can be defined in terms of
auxiliary functions, which are given the sequences of left-
operand steps and right-operand steps as inputs, and that

these auxiliary functions should use first the left-operand
steps and then the right-operand steps, from left to right, in
a demand driven fashion. We define two such auxiliary
functions. The first of these functions (Definition 2) applies

the left transfer function to transform left-operand steps
that satisfy the side condition of a left rule into steps of
OP ½X�. It takes a special parameter (x) which contains left-
operand steps that do not satisfy the side condition of any
left rule. These steps will used by the second auxiliary
function (Definition 3) in building pairs of left- and right-
operand steps on which to apply the dual transfer function.

Definition 2. The recording function R is defined for functions

tl; tr : S? ! S? and td : S? � S? ! S?, and for sequences

x; sl; sr 2 S�:6

Rtl;tr;tdðxÞðsl; srÞ b¼
Ptr;tdðxÞðsrÞ if sl ¼ h i;
tlðslð0ÞÞ :: Rtl;tr;tdðxÞðs0l; srÞ if sl 6¼ h i and slð0Þ 2 domðtlÞ;
Rtl;tr;tdðxbhslð0ÞiÞðs0l; srÞ if sl 6¼ h i and slð0Þ 62 domðtlÞ:

8><>:
Intuitively, sl and sr represent steps of the (respectively, left

and right) operands, and tl, tr, and td represent (respectively,

left, right, and dual) transfer functions. The parameter x

keeps left-operand steps that do not satisfy the side

conditions of any left rules. The second case of the definition

applies when the first step of sl is in the domain of tl. In this

case, a new step tlðslð0ÞÞ is inserted into the output sequence.

The third case applies when the first step of sl is not in the

domain of tl. In this case, the first step of sl is inserted into

the sequence of left-operand steps that will be passed to the
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Summary of Notation

6. That is, R is a function of six arguments. For better readability, we
curry some of the arguments and we show the first three as subscripts. A
similar comment applies to the next definition, for the playing function P .



second auxiliary function. The disjointness assumption

ensures that only those left-operand steps that are not in

the domain of tl need to be passed to the second auxiliary

function. Both of the latter two cases in the definition recurse

on the tail of sl. The first case is the basis case; it applies

when the sequence of left-operand steps have been

consumed. In this case, the second auxiliary function P is

applied with the sequence of left-operand steps that do not

satisfy the side conditions of any left rules and with the

sequence of right-operand steps.

Definition 3. The playing function P is defined for functions
tr : S? ! S? and td : S? � S? ! S?, and for sequences
x; sr 2 S�:

Ptr;tdðxÞðsrÞ b¼
h i if sr ¼ h i;
trðsrð0ÞÞ :: Ptr;tdðxÞðs0rÞ

if sr 6¼ h i and srð0Þ 2 domðtrÞ;
mapðtd; pairðx; srð0ÞÞÞ b Ptr;tdðxÞðs0rÞ

if sr 6¼ h i and srð0Þ 62 domðtrÞ:

8>>>>>><>>>>>>:
Informally, the second case of the definition applies

when the first step in sr is in the domain of tr. In this case, a
new step trðsrð0ÞÞ is inserted into the output sequence. The
third case applies when the first step of sr is not in the
domain of tr. In this case, the first step of sr is paired with
the left-operand steps in x, and td is mapped over the
resulting sequence of left-and right-operand pairs. Apply-
ing td to a pair in its domain produces a new step in the
output sequence, whereas applying it to a pair outside of its
domain has no effect on the output sequence.7 Both of these

latter two cases recurse on the tail of sr. The basis (first) case
applies when the sequence of right-operand steps has been
consumed.

These definitions allow us to define the function M.

Definition 4. Let an AST OP ½X� be given.

M½½OP ½X��� b¼ iop½X�ð Þ :: Rtl
op½X�

;tr
op½X�

;td
op½X�
ðh iÞðsl; srÞ;

where sl b¼M½½Xl��, if X contains a left operand Xl 2 X, and

sl b¼ h i, otherwise; and sr b¼M½½Xr��, if X contains a right

operand Xr 2 X, and sr b¼ h i, otherwise.

For example, the meanings of several of the processes in
(1) are computed (using the abbreviations from Fig. 4):

M½½CTRLC�� ¼ hðctrlc; EXIT Þi
M½½EXIT �� ¼ hð�; STOP Þi
M½½EDCC�� ¼ Rt3

l
;t3r ;?ðh iÞðhð�; STOP Þi;

hðctrlc; EXIT ÞiÞ
¼ ð�; STOP Þ ::

Pt3r ;?ðh iÞðhðctrlc; EXIT ÞiÞ
¼ hð�; STOP Þ; ðctrlc; EXIT Þi:

The denotational formulation of the process by which an
SOS defines a step relation is well suited to a transparency
argument for several reasons. First, it is succinct and
mathematically precise. Second, it defines M in a de-
mand-driven style, which admits efficient reification using
a data flow structure. Third, it makes explicit the buffers
needed to realize the semantics of binary operators with
dual rules (using the parameter x): Only those left-operand
steps that do not satisfy the side conditions of the left rules
need to be buffered. Finally, it permits us to formally justify
optimizations that a step analyzer performs.
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Fig. 4. Transfer functions (td1, tl1, etc.) and initiatator functions (i4, i5, etc.).

7. Because ? is a left identity for insertion (Table 2).



3.3 Standard Simplifications

Definition 4 is a compromise between simplicity and
transparency. For simplicity, we define initiator functions
and left, right, and dual transfer functions for all operators,
without regard to whether the operators have axioms, or
left, right, or dual rules. When the SOS does not provide
rules of a given type for an operator, we use the null
function for the corresponding initiator or transfer function.
For efficiency, however, a step analyzer does not implement
degenerate initiator and transfer functions.

The following theorem justifies optimizations that a step
analyzer performs when assembling an inference graph in
the presence of degenerate functions.

Theorem 1. Let an AST OP ½X� be given. Then, we have as
special cases:

. If tl
op½X� ¼ ?, tr

op½X� ¼ ?, td
op½X� ¼ ?, and iop½X� 6¼ ?,

then M½½OP ½X��� ¼ hiop½X�ð Þi
. I f iop½X� ¼ ?, tr

op½X� ¼ ?, and td
op½X� ¼ ?, then

M½½OP ½X��� ¼ mapðtl
op½X�; slÞ.

. If iop½X� ¼ ? and td
op½X� ¼ ?, then M½½OP ½X��� ¼

mapðtl
op½X�; slÞbmapðtr

op½X�; srÞ:
. If iop½X� ¼?, tl

op½X� ¼?, and tr
op½X� ¼?, thenM½½OP ½X���

¼ mapðtd
op½X�; prodðsl; srÞÞ.

The proof of Theorem 1 requires several intermediate
claims, which we do not include because of space
limitations. Detailed statements and proofs of these claims
can be found in [12], where a proof of Theorem 1 also
appears.

3.4 Correctness

We define the meaning functionM to use in arguing that an
Amalia-generated step analyzer is correct. For this argu-
ment to be valid, we must show that M correctly models
the step relation defined by a set of SOS rules. In the sequel,
we prefix a step assertion with “‘ ” to indicate that the
assertion is provable by a derivation.

Theorem 2 (Correctness). Let an AST OP ½X� be given and let
Sj denote a step. Then, Sj 2 M½½OP ½X��� if and only if
‘ OP ½X�ÿ!Sj.

To prove soundness, we assume that Sj 2 M½½OP ½X���.
We then show, by induction on the number of nodes in
OP ½X�, that ‘ OP ½X�ÿ!Sj. Conversely, to prove complete-
ness, we assume ‘ OP ½X�ÿ!Sj. We then show, by induc-
tion on the length of the derivation of OP ½X�ÿ!Sj, that
Sj 2 M½½OP ½X���. Details are not included for lack of space.
They can be found in [12].

4 INFERENCE GRAPHS

A step analyzer computes the step-analysis functionM as a
side effect of a top-down traversal of an AST. Moreover, it
does so in a way that is amenable to integration with
different AST representations, is transparent with respect to
the formal definition ofM so as to enable a high degree of
assurance, and does not require creation and manipulation
of unnecessary auxiliary storage structures. Satisfaction of

these design goals owes to a computational structure, called
an inference graph. Whereas an inference graph is a program
object and not a mathematical abstraction, we use mathe-
matical terminology, such as “graphs” and “nodes” because
it is simpler and more suggestive than programming
terminology. An inference graph reifies a data-driven
interpretation of M and admits several optimizations. We
now describe this design in detail. For reference throughout
this section, Fig. 5 depicts the relationship between the
formal abstractions and the computational structures that
reify them.

An inference graph is a linked assembly of objects that
collaborate to compute the steps of an AST. The graph is
executed in a data-driven manner, whereby distinguished
initiator nodes are fired to produce basis steps that are then
forwarded to transfer nodes, which then fire to compute
derived steps, which are then forwarded to other nodes,
and so on. A distinguished output node collects the steps of
the given AST; when fired, it merely adds input steps to a
buffer and does not forward them. Eventually, the
propagation of steps terminates, at which point the
computation is complete. By computing steps in this data-
driven style, inference graphs avoid the need to create
collections of steps at every node in the graph.

As suggested by their names, initiator nodes reify
initiator functions and transfer nodes reify transfer func-
tions. An initiator node provides a firing interface that is
invoked without parameters and also an exit out-flow along
which to propagate the step that it computes. Likewise, a
transfer node provides a firing interface and an exit out-
flow, on which to propagate the steps that it computes;
however, unlike an initiator node, it must be invoked with a
(single) step parameter and it needs an additional out-flow.
Thus, a transfer node provides an in-flow, along which it
receives steps. Because it reifies a transfer function, which
might return ? on some inputs, it also provides a shunt out-
flow, along which to forward unhandled inputs. An
inference graph is connected to form a directed acyclic
graph whose source nodes are initiator nodes and whose
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Fig. 5. Reification of mathematical abstractions into computational

structures.



edges represent connections between the out-flow of one
node and the in-flow of another.

Fig. 6 illustrates these concepts. At the top, it depicts the
AST of the running example specification. Roundtangles
denote AST objects and arrows denote pointers from
operator objects to their operand AST(s). Each object is
named for reference purposes (above the roundtangle).
Some objects (e.g., “;” and “k ”) are attributed with
additional syntax (e.g., “ping,” “ctrlc,” and “[ctrlc]”), which
indicates the nonoperand arguments. The bottom of Fig. 6
shows the inference graph for this AST. Initiator nodes are
shown as circles, transfer nodes as squares, and commu-
nication pathways as dashed arrows. We label each initiator
node with the initiator function that is applied when the
node is invoked (i4, i5, etc.). Similarly, we label each transfer
node with the reified transfer function (tl1, tr1, etc.). These
initiator and transfer functions are defined in Fig. 4.

It is useful to view the graph as a hierarchical assembly
of boxes of inference nodes. Thus viewed, the inference graph
constructed for AST OP ½X� comprises an inference sub-
graph for each operand Xi 2 X and a box that uses the steps
computed by these inference subgraphs to compute the
steps of OP ½X�. A box may have up to two in-flows—a left
in-flow, on which to receive steps of the left inference
subgraph; a right in-flow, on which to receive steps of the
right inference subgraph; and one out-flow, on which it
sends steps that it computes. The bottom of Fig. 6 also
shows the box structure of the inference graph with shaded
lines demarcating boxes, arrow-shaped cut-outs signifying
in-flows, and arrow-shaped push-outs signifying out-flows.
Communication pathways that go from a left or right
transfer node to a dual node are used for shunting premise
steps to the dual node. All such shunting pathways are
internal to a box.

Transfer nodes are classified as left, right, or dual,
according to the type of transfer function that they reify. A

left (respectively, right) transfer node fires when its box
receives a step on its left (respectively, right) in-flow. If this
step is in the domain of the reified transfer function, then
the left (respectively, right) node computes and then
propagates a new derived step to the exit out-flow. On
the other hand, if the step is not in the domain of the reified
transfer function, then the node shunts the step to the dual
transfer node, if there is one, or else discards the step. The
firing logic for a dual node is a bit more complicated, as the
node must be fired with a single step, but dual transfer
functions require two step parameters. To understand this
logic, requires understanding the incremental execution of
an inference graph, which we now discuss.

4.1 Incremental Assembly/Execution of
Inference Graphs

A step analyzer does not sequentially generate and then
execute an inference graph. Rather, it dynamically assem-
bles and executes the graph on-the-fly, as it visits an AST.
Incremental assembly and execution are possible because
an operand’s inference graph is no longer needed once the
visit of that operand returns. This strategy yields benefits
not only in terms of storage efficiency, but also in terms of
transparency with the formal definition of M.

A step analyzer is implemented using a visitor class.
When instantiated, a step analyzer receives an in-flow,
called a target, in which to connect the exit out-flow of the
inference graph that it creates. For each operator OP , it
provides a visitOP method that expects to be passed an
AST whose root has type OP . A visit method creates a box
for the root of the input AST and instantiates new step
analyzers to assemble inference subgraphs from the oper-
ands of the root operator, if needed. It initializes the step
analyzers for the operands with the in-flow of the box just
created. This recursive elaboration of the inference graph as
a hierarchy of boxes continues until we visit a sub-AST that
has no left, right, or dual rules. Each such sub-AST
corresponds to a box that contains only a flow initiator.

More precisely, a step analyzer is initialized with a target

T to use as an out-flow. When its visitOP method is

invoked to visit an expression OP ½X�, it assembles a box B

for OP ½X�, using T as the out-flow for B. Then, for each

operand Xi 2 X, starting with the leftmost operand, if B has

an in-flow I that operates on steps of Xi, the step analyzer

for OP ½X� initializes a new step analyzer with target I and

applies the new analyzer to Xi to generate an inference

graph for Xi that connects to B on I. Incremental execution

occurs whenever an initiator node is allocated and linked

into the graph. At this point, the initiator node is fired,

causing a flow of steps, which may result in steps flowing

out of the output of the entire graph.
To support incremental execution requires some special

handling in the case of dual transfer nodes. A dual transfer
node requires a step from each of two inference subgraphs,
but as we mentioned earlier, a dual node must be fired with
a single step at a time. Because AST traversals are
performed in order, a dual node will receive all the premise
steps for the left operand before it receives any premise
steps for the right operand. Thus, a dual node operates in
one of two modes: It is in recording mode during traversal of
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the left operand AST, after which it transitions into playing
mode for the traversal of the right operand AST. In recording
mode, it buffers all incoming (left operand) steps and, in
playing mode, it pairs incoming (right operand) steps with
the buffered (left operand) steps and transforms the paired
premise steps into conclusion steps. This behavior is
designed to be transparent with respect to M, which is
defined in terms of the playing and recording functions
(Definitions 2 and 3); the logic for firing dual nodes reifies
the playing/recording distinction.

Fig. 7 illustrates these concepts by showing four different

snapshots of the inference graph that is constructed for the

AST of Fig. 6. When a box contains a dual transfer node, we

annotate the box with record or play to indicate the mode

of the dual node, and we show any steps that are buffered

in the node immediately below the mode annotation. The

four configurations of the inference graph illustrate how the

graph is assembled and executed as a step analyzer

traverses the AST. The top-left configuration illustrates the

state of the inference graph once the step analyzer has

reached the AST object labeled PING, by which point

boxes have been created for objects PROC, PDCC, and

PING. The box for PING contains only an initiator node,

which is fired as soon as it is created, producing a flow of

steps. This flow propagates from box to box, eventually

outputting a step of PROC. In the figure, we illustrate the

propagation of steps by labeling the out-flows of the nodes

that are fired with the steps that they produce.
The next initiator node is created and fired when the

analyzer reaches AST node CTRLC1. This flow shunts a
step to the dual node, where it is buffered (top right). On
completing the traversal of the AST node PDCC, the
analyzer signals the dual node to change from recording
mode to playing mode. The third flow is then initiated
when the analyzer reaches AST node EXIT3. This flow

shunts a premise step to the dual node, which pairs the
premise step with the step it has buffered. However, as td1 is
not defined on this pair, the pair is discarded (bottom left).
The fourth and final flow is initiated when the analyzer
reaches AST node CTRLC2. This flow propagates the
second behavior of PROC to the graph’s out-flow (bottom
right). As a practical matter, the analyzer deallocates the
box for an AST node when the traversal of the AST node is
complete, which we show by greying out the box and its
contents.

This design incorporates several optimizations and it
does so without violating transparency. First, the step
analyzer visits an operand of an AST node only if some
inference node in the box that it creates requires steps from
that operand. The box created for an instance of the LOTOS

prefix operator is a good example of this behavior. An
instance of the prefix operator has an operand, but the
semantics of prefix are defined entirely by axioms; thus,
there is no need to compute the steps of the operand, nor
even to traverse the AST of the operand. Second, at any
point during traversal of an AST, the inference graph
contains boxes for only those AST operands that are
currently being visited. The storage used by functions
called for nodes that are being visited will be allocated on
the run-time stack, which means that the lifetime of the
inference nodes for a given AST node is bounded by the
lifetime of the function invocation for that node. Thus, while
the inference graph is a dynamic linked structure, the
inference nodes can be allocated and reclaimed using
automatic storage by declaring them as local variables in
the step analyzer(s). Finally, the design does not call for
needless buffering of steps at each AST node. Only those
left-operand steps that must await pairing with right-
operand steps are buffered. Moreover, these buffers are
made explicit in the definition of M enhancing transpar-
ency, as discussed in the sequel.
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5 TRANSPARENCY

For assurance, we must demonstrate the fidelity of the
mathematical model developed in Section 3 against the
implementation described in Section 4. Unfortunately, an
inference graph is implemented using advanced object-
oriented design constructs (e.g., mixin classes [6] and the
visitor pattern [4]) for which mature proof techniques have
yet to be developed. Thus, it would be very difficult to
demonstrate fidelity by means of a formal proof of
correctness. We opt instead to demonstrate fidelity by
inspection, exploiting the transparency that we carefully
engineered into our implementation. Specifically, we argue:

1. An inference node behaves as specified by the
corresponding initiator or transfer function.

2. The nodes in a box are interconnected as prescribed
by our formalization of inference graphs.

3. The collaboration among these nodes is as pre-
scribed by the playing and recording functions.

We designed inference nodes to be composite assemblies
of more primitive objects that reify individual rule func-
tions. These rule instances compose so that their (daisy-
chained) execution preserves the semantics of the sums of
the corresponding rule functions (Section 5.1). An inference
node is then an assembly of these rule instances sand-
wiched between special adapter objects, which manage the
flow of steps through the graph (Section 5.2). Inference
nodes defined in this way are transparent implementations
of the initiator and transfer functions defined in Section 3;
however, the solution incurs some indirection, a result of
the shunting logic and the introduction of adapters. We
demonstrate how to remove this indirection—essentially
collapsing a composite assembly of adapters, terminators,
and rule instances into a single object—using ideas from
advanced OO design (Section 5.3). Finally, we demonstrate
how these (optimized) inference nodes are linked together
into a graph by a step analyzer and how they collaborate as
prescribed by the playing and recording functions
(Section 5.4). As an example, we argue correctness for part
of the analyzer generated for LOTOS.

5.1 Reifying Rule Functions and Sums

A rule instance is an object that reifies a rule function by
providing an infer operation, which can be invoked with
zero, one, or two step parameters, as appropriate to the
arity of the rule function. Rule instances play roles in the
inference graph. We say that a rule instance receives a step
(or pair of steps) when its infer operation is invoked. A
rule instance R also contains two references to other objects.
The first reference, called target, points to a transfer node,
which is fired with the step that is computed when R
receives a premise step (or pair of premise steps) that
satisfies its side condition. The second reference, called
shunt, points to another rule instance with a plug-
compatible infer operation. When R receives a step that
does not satisfy its side condition, it forwards this step to
the rule instance referenced by shunt.

Whereas a rule instance is an object in a data-flow graph,
a rule function is a mapping over S?. To demonstrate that a
rule instance reifies a rule function, we first rewrite this

function in a form called continuation-passing style (CPS)
[13]. Without loss of generality, consider a unary function
f : S? ! S?. We define the CPS reformulation fcps of f as
follows:

fcpsðSi; exit; shuntÞ b¼ exitðfðSiÞÞ if Si 2 domðfÞ
shuntðSiÞ otherwise;

�
where exit and shunt are continuations, i.e., functions that
express “what to do next” upon completion of f . Generally
speaking, continuations are invoked with one parameter,
although that parameter might aggregate multiple objects
(e.g., a pair of steps as opposed to a single step). Here, exit
is the “normal” continuation, which fcps invokes with its
result, when the result is a value other than ?; whereas
shunt is the continuation that fcps invokes with its original

input parameter, when this parameter is not in the domain
of f .

Rule functions, of the form used in Section 3, are easily
and transparently reformulated in CPS. Consider, without
loss of generality, a left rule function topL½X� : S? ! S?. It is
reformulated in CPS as follows:

tcps

opL½X�ðSi; exit; shuntÞ b¼ exitðFopL½X�ðSiÞÞ if CopL½X�ðSiÞ
shuntðSiÞ otherwise:

�
A similar reformulation yields a CPS version for axioms and
for right- and dual-rule functions.

A rule instance is a transparent implementation of the
CPS reformulation of a rule function. To demonstrate the
transparency, observe that the first parameter to the CPS
reformulation corresponds to the parameter of the rule
instance’s infer operation; whereas the second and third
parameters of the reformulation correspond, respectively,
to the transfer node pointed to by target and the rule
instance pointed to by shunt. When connected in this
manner, invoking the exit continuation with a new step
corresponds to firing the target reference with this new step.
Likewise, invoking the shunt continuation with an un-
handled premise step corresponds to invoking the infer

operation of the shunt reference with this step.
Whereas a rule instance is a transparent implementation

of a rule function, a daisy-chained sequence of rule
instances is a transparent implementation of the sum of
the corresponding rule functions. Such a sequence is one in
which: All of the target references point to the same transfer
node and the shunt reference of the rule instance in position
i < n in the sequence points to the rule instance in position
iþ 1. Fig. 8 illustrates a daisy-chained sequence. To show
that such a sequence reifies the sum of the corresponding
rule functions, it suffices to show that sums of functions are
preserved under CPS reformulation, and then to argue that
a daisy-chained sequence transparently implements the
CPS form of sums.

Commensurate with the definition for the sum of
functions f and g, their CPS versions are summed as
follows:

ðfcps � gcpsÞðx; exit; shuntÞ b¼
fcps ðx; exit; �z : gcpsð z; exit; shunt ÞÞ:
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Thus, if a given value x is in the domain of f , then the exit
continuation is invoked with fðxÞ. Otherwise, the shunt
continuation of fcps—in this case, the function formed by
binding the exit and shunt parameters of gcps with exit and
shunt, respectively—is invoked with x. Consequently, if
x 62 domðxÞ, then the behavior of fcps � gcps is the behavior
of gcps.

The method for daisy chaining rule instances is a
transparent implementation of operator �. Suppose, for
example, that Rf is the rule instance that corresponds to fcps,
and that Rg is the rule instance that corresponds to gcps.
Making the target reference of both Rf and Rg point to the
same transfer node corresponds to binding the exit con-
tinuation of both fcps and gcps to the same parameter (exit).
Likewise, connecting the shunt reference of Rf to Rg
corresponds to binding the shunt continuation of fcps to
the �-abstraction that binds the exit and shunt continuations
of gcps.

5.2 Inference Nodes

Intuitively, an inference node is just a daisy-chained
sequence of rule instances. However, interface incompat-
ibilities prevent us from connecting assemblies of rule
instances into the configurations described in Section 4.
There are two sources of interface incompatibility. First, the
infer operation of a singular rule instance has a different
signature from that of a dual rule instance; the former
expects to receive one step, whereas the latter expects to
receive two. Second, the infer operation, which is invoked
to send steps to a rule instance, differs from the firing
operation, which is invoked to send steps to a transfer node.
We overcome these incompatibilities by wrapping a daisy-
chained sequence of rule instances with special adapter
objects.

The adapter design pattern is used to “convert the
interface of an existing class into another interface that
clients expect” [4]. We use two kinds of adapters: input
adapters and terminators. An input adapter converts the
infer interface of a rule instance into the firing interface of
a transfer node. Two varieties are needed: s-adapters for use
with singular rule instances and d-adapters for use with dual
rule instances. Both s-adapters and d-adapters provide a
firing operation that is invoked with a single step para-
meter. In response to being fired with a step, an input
adapter may play one or more steps by invoking the infer
operation of the rule instance to which it is connected. An
s-adapter plays a step immediately upon receiving it since
singular instances require only a single premise step.
However, a d-adapter cannot play steps as it receives them
since it is fired with a single step at a time and a dual
instance requires a pair of left- and right-operand steps.

In fact, because a dual transfer node receives all steps of
the left operand before receiving any steps of the right

operand, a d-adapter cannot play a pair of steps until after it
has received all left-operand steps. A d-adapter has two
modes of operation: recording and playing modes. While in
recording mode, the d-adapter assumes all incoming steps
are left-operand steps; whereas in playing mode, it assumes
that incoming steps are right-operand steps. In recording
mode, the d-adapter stores incoming steps in a local buffer.
In playing mode, it pairs an incoming step with each step in
this buffer and then plays each pair to a dual rule instance,
one after another. The analyzer switches the d-adapter from
recording mode to playing mode on completing the visit of
the left operand and before starting the visit of the right
operand.

In contrast with the input adapters, a terminator ties
down the shunt out-flow of the last rule instance in a daisy-
chained sequence. Recall that the shunt reference of a rule
instance is another rule instance and not a transfer node;
whereas, the shunt out-flow of a transfer node is connected
to the in-flow of another transfer node. There are two kinds
of terminators: shunt grounds and shunt forwards. A shunt
ground provides an infer operation that receives a step
(or pair of steps) and then returns without processing or
further propagating the step (pair of steps), effectively
discarding it. By contrast, a shunt forward provides an
infer operation that receives a step and then propagates
the step to a transfer node. We have three different kinds of
terminators: a singular shunt forward, a singular shunt
ground, and a dual shunt ground. There is no dual shunt
forward, as a transfer node is fired with only one step.

A transfer node is a daisy-chained sequence of rule
instances sandwiched between an input adapter and a
terminator. The out-flow of the input adapter is connected
to the in-flow of the first rule instance in the sequence and
the shunt out-flow of the last rule instance in the sequence is
connected to the in-flow of the terminator. Fig. 9 shows four
different inference-node assemblies. At the top left is a
singular node for PDCC, which a step analyzer assembles
by connecting an s-adapter (SA) to a sequence of two rule-
instances (SL1 and SL2 ) and terminating this sequence with a
singular shunt ground (SSG). The other three assemblies
collaborate to form the box associated with PROC. These
assemblies demonstrate the use of singular shunt forwards
(SSF ), a d-adapter (DA), and a dual shunt ground (DSG).

5.3 Static Assembly of Inference Nodes

At first glance, the function-call overhead incurred by
assembling an inference node as a linked sequence of
smaller encapsulated objects might appear to be unaccep-
table. However, Amalia implements the daisy chaining of
rule instances and the attachment of adapters statically,
not dynamically. This static composition affords all the
transparency benefits of modeling inference nodes as
assemblies of rule instances and adapters without incur-
ring the efficiency costs.

Every rule instance is an instance of a rule class, which
we generate automatically. A rule class uses a technique
called parameterized inheritance: It is a C++ template class
whose parent class is not specified until the template is
instantiated. Such class templates are called mixin classes [6].
Mixin classes have the useful property that invocations
(within the mixin class) of parent-class operations are
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implemented using static binding and can therefore be

inlined. We exploit this property to implement daisy

chaining and adapter composition statically, thereby re-

moving unnecessary indirection.
Fig. 10 depicts an example rule class that corresponds to

the rule disL1½P;Q� from Table 1. The class is a mixin whose

template parameter is named SHUNT to suggest that the

template will be instantiated with another rule class (or a

terminator) to which objects of class disL1 will shunt

unhandled premise steps.
The infer operation takes two parameters, an action a

and a process P_Prime, which together constitute a

premise step. The side-condition test (line 3) uses a function

delta to check if the premise action a is equal to the

termination action (�). If delta(a) is false (the side

condition of rule disL1½P;Q� is satisfied), then a conclusion

step is computed and the target node is fired to propagate

the conclusion step. (We show in the next section that

invoking target fires the appropriate transfer node in the

inference graph.) On the other hand, if the input step does

not satisfy the side condition, then it is shunted (line 10).

Shunting is performed by invoking the infer operation of

the superclass (SHUNT). When the template is instantiated,

the call to SHUNT::infer(a, P_prime) is implemented

using static binding, which a good compiler can optimize

away for efficiency.

Using mixin composition, we can daisy-chain an arbi-
trary sequence of rule classes so that the steps shunted by
one rule instance are efficiently piped into another.
Consider, for example, the inference node that is used to
process steps from the left operand of an expression whose
major operator is disable (Dis). Fig. 9 depicts such a node
as a linked assembly of four objects—an s-adapter (SA), two
daisy-chained rule instances (SL1 and SL2 ) that correspond to
rules disL1½P;Q� and disL2½P;Q�, and a singular shunt
ground (SSG). The C++ class for this inference node is
declared as the mixin composition:

SAdapter< disL1< disL2< SSGround > > >

Thus, the node is a single, monolithic object, which incurs
no indirection when choosing the appropriate rule func-
tion to apply to its input step. At the same time, it
transparently implements the design for the node illu-
strated at the top of Fig. 9.

5.4 Linking Objects into Boxes

Next, we argue that an Amalia analyzer connects the nodes
in an inference graph as prescribed by our model.
Specifically, we show that the left and right nodes shunt
unprocessed steps to a dual node, if one exists, and that all
conclusion steps produced by these nodes are piped to the
outflow of the box.

Amalia generates a visitor class, which provides a
visitOp operation for each distinct AST operator Op, to
implement a step analyzer. Fig. 11 illustrates a portion of
the step analyzer class generated from the LOTOS rules.
This portion includes code to assemble a box for the disable
operator Dis (lines 1-7) and for the parallel operator Par
(lines 8–17). The method visitDis takes a parameter P,
which is a pointer to an AST whose root operator is a Dis;
whereas, the method visitPar takes a parameter P, which
is a pointer to an AST whose root operator is a Par. The
step analyzer object itself carries, as a private data member,
an object called target, which is a reference to an in-flow
of the box into which any conclusion steps are forwarded
(line 0). Recall from the previous section that a rule class’s
infer operation invokes this object to send conclusion
steps to its exit out-flow.

As Table 1 indicates, the semantics of the disable
operator are governed by two left rules, disL1½P;Q� and
disL2½P;Q�; a right rule, disR½P;Q�; and no axioms. Thus,
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the visitDis method creates two inference nodes, t_l
and t_r. Node t_l is assembled from an SAdapter, the
rule classes for the left rules, and an SSGround (lines 1 and
2). The node t_r is assembled in a similar manner, but
using the rule class for disR½P;Q� (line 3).

In contrast, the semantics of the parallel operator are
governed by a left rule parL½P;A;Q�, a right rule
parR½P;A;Q�, a dual rule parD½P;A;Q�, and no axioms.
Thus, the visitPar method creates three different
inference nodes, t_l, t_r, and t_d. Both t_l and t_r

(lines 8 and 10) are terminated by an SSForward, instead of
an SSGround, which means that unused steps will be
forwarded to a dual node. This forwarding connection is
established by invoking the function tee on t_l and t_r,
passing a pointer to t_d as a parameter (lines 11 and 12).
Continuing to elaborate the generated code in this manner,
we argue that the structural model of a box is transparent
with respect to how the nodes in a box are interconnected.

It remains to demonstrate how the nodes in a box are
connected to the outflows of inference subgraphs for the
operands. These connections are established by creating
new visitor objects, which traverse the left and right
operands of an AST, and initializing these visitor objects
with references to either t_l or t_r as appropriate. For
example, line 13 creates the visitor I_l that assembles and
executes the inference graph for the left operand of P.
Observe that the target object of I_l is initialized with
t_l, which plays the role of the in-flow for steps produced
by the inference subgraph associated with P’s left operand.

Thus, any conclusion step generated by I_l flows into t_l.
Line 14 actually performs the visit, using the protocol in
Section 2.4, which assembles and executes the inference
subgraph for the left operand of P. A similar idiom is used
for the right operand in lines 16 and 17.

5.5 Execution Logic

Finally, we argue that the recording and playing logic
defined in Section 3.2 accurately represents the operational
behavior of the generated inference graphs. Consider, for
example, the operational behavior of the visitPar method
in Fig. 11. This behavior is modeled in Section 3.2 in terms
of sequences of premise steps, which are assumed to be
produced as a result of analyzing the operands of a given
AST. We have already argued that any step generated by
analyzing the left operand (in line 14) flows into t_l and
any step generated by analyzing the right operand (in line
17) flows into t_r. We have also argued that, for each step
S that flows into t_l (respectively, t_r), if S satisfies the
side condition of the left rule parL½P;Q�) (respectively, right
rule parR½P;Q�), the infer operation of the corresponding
rule class sends a conclusion step to the out-flow,
commensurate with Definition 2, case 2 (respectively,
Definition 3, case 2). On the other hand, if S does not
satisfy the side condition of the left (respectively, right) rule,
then it is shunted to the in-flow of t_d. (As noted
previously, Amalia selects this shunting behavior by
instantiating the mixins that comprise t_l and t_r with
the SSForward class.)

By design, the dual node t_d is initialized in recording
mode, and it remains in recording mode until instructed to
transition into playing mode. This transition occurs after the
traversal of the left operand, but before the traversal of the
right operand (line 15). Thus, the shunting of a step to t_d

by t_l occurs when t_d is in recording mode. By design,
t_d buffers incoming steps when it is in recording mode.
The shunting of a step to t_d by t_l is therefore
commensurate with Definition 2, case 3.

On the other hand, the shunting of a step to t_d by t_r

occurs when t_d is in playing mode. By design, when a
dual node in playing mode is invoked with a step, it loops
through each of the buffered steps to create a pair of steps
which it then passes as a parameter to the infer

operation(s) of the rule classes for the dual rule(s). Thus,
the shunting of a step to t_d by t_r is commensurate with
Definition 3, case 3.

Finally, observe that the invocation of t_d.play() after
the traversal of the left operand is accurately reflected in
Definition 2, case 1: As there are no longer any steps left to
process from the left operand, the collaboration transitions
from recording to playing mode.

6 CONCLUSIONS AND RELATED WORK

Amalia is concerned with designing analysis software
subject to three design goals: extension/contraction, tight
integration into constraining external contexts, and assur-
ance. To satisfy these disparate design concerns, we have
integrated ideas from several subdisciplines. Specifically,
we provide for extension/contraction by designing analysis
algorithms in the GenVoca style. We address integration
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with other program development tools using OO design
patterns and generation technology. For assurance, we
combine concepts from denotational semantics and data-
flow programming, and discharge proof obligations
through rigorous inspection of the code. The GenVoca
domain model produced by Amalia is described in [1]. In
this paper, we have focused on how to provide assurance in
the face of the complex mechanisms that we adopted for
efficiency and in order to achieve integration.

6.1 Integration with Other Tools

To integrate formal analysis capability into an existing
target tool requires overcoming two obstacles. First, the
analysis capability must interact with an existing represen-
tation via the APIs provided by that representation. Second,
the capability to be integrated cannot arbitrarily add
functionality or constraints to these existing APIs. We
address the first obstacle by automatically customizing our
step analyzers to use the APIs provided by an existing
representation. We address the second obstacle by impos-
ing only one additional constraint, namely, that the existing
representation must implement traversal methods in
accordance with the visitor pattern.

The visitor pattern allows us to separate step-analysis
capability from the design of the AST classes, which, in
turn, allows us to automate the generation of a step
analyzer that operates on a given AST notation. However,
other technologies for separating concerns could be used.
For example, using adaptive programming [14], the proces-
sing currently performed by a visitor could be localized
within a propagation pattern and woven into the AST classes.
Alternatively, using aspect-oriented programming [15], we
could associate pointcuts with AST classes and define an
aspect that performs the processing currently performed by
a visitor; the aspect could then be woven into the AST
classes using the pointcuts. Each of these approaches—
visitor-based design, adaptive programming, and aspect-
oriented programming—allows for the design of step-
analysis capability with only negligible effect on the design
of an internal representation. We chose to use visitors
because, unlike the other techniques, visitor-based designs
can be implemented in standard programming languages,
without the need for additional tool support, such as
weaving tools.

While we have yet to undertake a major case study with
a third-party tool, we designed Amalia around current best
practices for maintenance and integration. For example, we
use generators to customize generic designs to existing APIs
and we use the visitor and other design patterns. This paper
is concerned with achieving assurance in analysis capability
that is designed for integration according to these current
best practices.

6.2 Assurance

An inference graph is a network of objects that collaborate
to compute an analysis. Here, the term collaboration refers to
a protocol of behavior among multiple objects, which play
roles in the collaboration. These collaboration-based designs
typically involve a complex exchange of messages among a
group of stateful objects that are working together to solve a
problem. Research on formalizing and analyzing such

collaboration-based designs is less mature than that for
functional designs, which is why we opted to provide
assurance through transparency; but some techniques for
collaboration-based designs are being developed.

Fisler and Krishnamurthi [16] suggest an approach in
which collaborations are modeled as sets of abstract-state-
machine (ASM) fragments that are annotated with proper-
ties that the collaboration requires and properties that the
collaboration provides. Assume-guarantee reasoning is
used to prove properties of compositions that join ASM
fragments at designated states. To use this approach with
an Amalia-generated step analyzer, the components that
make up an inference graph would need to be partitioned to
form collaborations and the collaborations specified as ASM
fragments and required/provided properties.

Parallels exist between our approach and that of Liu et al.
[17] for showing correctness of code generated from ML
specifications of microprotocol compositions. Microprotocols
are compiled into functions that are parameterized by states
and events. Optimizations result from specializing these
functions for special states and/or events. In principal, this
approach does not require a transparency argument
because the microprotocols are implemented in a formal
notation. However, in practice, a verification of a nontrivial
protocol that involves more than one participant has yet to
be fully automated.

Given the increasing popularity of design methods that
encourage collaboration-based design (e.g., design patterns
[4], aspect-oriented programming [15], and mixin layers
[18]), we expect that there will be a growing need for
reasoning techniques that are transparent with regard to the
role structure of these collaborations. Such proofs typically
rely on mathematical abstractions of source code. Because
the connection between the actual code and the model is
ultimately informal, they should be based on assumptions
and abstractions that can be discharged by inspection. Thus,
the results of this paper provide an example that could be
consulted in developing transparent models and correct-
ness proofs of other collaboration-based designs.

6.3 Automated Analyzer Generators

Many other researchers have worked on automatic genera-
tion of analyzers from formal-semantics descriptions. For
example, CENTAUR [19] maps specifications in natural
semantics into Horn clauses in Prolog and SPARE [20]
synthesizes analysis algorithms from denotational-semantic
specifications. Of particular interest, the Concurrency
Workbench of North Carolina (CWB-NC) provides a full
toolkit for analyzing operational specifications [21]. It
contains a Process Algebra Compiler (PAC) that enables
use of the CWB-NC with different specification notations.
Like Amalia, the PAC takes as input definitions of a
notation’s abstract syntax and SOS rules defining the
notation’s semantics. From these definitions, it generates
semantic routines (the main routine being a step analyzer)
that a user can insert into the CWB-NC. Thus, whereas
Amalia automatically tailors high-level analyses directly to
an abstract syntax, the PAC generates a front end that
interfaces with the CWB-NC.

The OPEN/CAESAR effort [22] also shares many of the

same goals as Amalia. OPEN/CAESAR is an architecture
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for rapidly prototyping formal analysis tools from reusable

algorithms, which can be mixed and matched and applied

to multiple formal notations. Both OPEN/CAESAR and

Amalia achieve flexibility and reuse by exploiting some of

the same abstract data types that enable the decoupling of

exploration algorithms from the specific formal notation(s)

being analyzed. That similar abstractions and decoupling

decisions play such central roles in two independent efforts

suggests that these abstractions and decouplings are

fundamental in efforts at integrating formal analysis

capability into larger environments.
A related problem concerns the customization of analysis

capability to accommodate multiformalism specifications
(i.e., when a system specification comprises multiple
component specifications, each written in a different
formalism). Pezze and Young describe how to accomplish
this customization without requiring a translation of each
constituent formalism into a common semantic notation
[23]. Rather, these specifications are mapped into a frame-
work in which the semantics of composition can be tailored
to the particular set of notations being composed. The
semantics of composition are expressed in a rules language,
which seems amenable to tool support so that custom
analyzers could be automatically generated.

Some general transformation environments, such as the

Software Refinery [24], can automate the generation of

trusted step analyzers from declarative specifications of

SOS rules. Similarly, general-purpose theorem provers like

Isabelle [25] or HOL [26] can infer steps from declarative

specifications of semantic rules. Day and Joyce [27] describe

a framework that, given an embedding in HOL of a

notation’s semantics and of a specification, formalizes the

specification’s next-step relation as a HOL type. This

framework uses symbolic functional evaluation to allow

certain analyses (e.g., consistency and completeness check-

ing and model checking) without using a theorem prover

[28]. However, these efforts do not address issues of

integration with external tools.

6.4 Validation Studies

We have validated that our design using inference graphs

allows generation of efficient analyzers using a prototype

implementation, written in C++. This prototype was used to

build analyzers for two notations, pure LOTOS and a subset

of linear-time temporal logic (LTL); the latter case study is

described in [1].
Step analyzers for the notations were automatically

generated from semantic rules. The LTL case study
demonstrated that the generated step analyzer worked
with two different implementations of the LTL class
model. The step analyzers were also used to refine two
high-level analysis components to generate labeled transi-
tion systems from specifications. The first analysis compo-
nent inferLTS uses a step analyzer to elaborate the nodes
and labels of a labeled transition system in a demand-
driven fashion. This component is useful in simulation
tools that do not construct an entire state graph. Because
this analyzer does not perform a change in representation,
a simulator can step the user through a sequence of

behavior using a specification in the original notation to
describe each state that is being traversed. The second
analysis component minLTS derives a minimized LTS
using Hopcroft’s finite-automata minimization algorithm
[29]. This component constructs the entire state graph
associated with a specification; consequently, it can be
applied only if the specification is finite state. These case
studies demonstrated that the packaging of components in
Amalia supports extension and contraction by virtue of
layering higher- and lower-level components, having
different characteristics, with a step analyzer.

Currently, Amalia does not handle rules with the
expressive power that is provided by other automated
analyzer generators, such as CENTAUR and CWB-NC. As
we mentioned in Section 2, our step-analyzer generator
currently only handles binary, unary, and nullary operators.
This is not a fundamental limitation of the approach; in fact,
an n-ary operator can be treated as a unary operator whose
operand is a sequence of length n. Dealing with such
operators requires extensions to our rules language for
constructing and traversing sequences, and we are cur-
rently implementing these extensions.

We continue to extend Amalia with new languages and
high-level analysis algorithms. We are currently specifying
analyzers for StateCharts (using the semantics of [30]) and
for Graphical Interval Logic [31]. We also plan to add
model-checking and trace-checking layers to Amalia.
Finally, we propose to conduct a case study integrating
the analyzer generated for StateCharts into ArgoUML [32]
to validate that the design decisions implemented by an
Amalia-generated analyzer facilitate integration with tools
in an existing environment.

ACKNOWLEDGMENTS

This work is supported in part by the US National Science
Foundation Grants EIA-0000433, CCR-9984726, and EIA-
0130724; and by the US Office of Naval Research Grant
N00014-01-1-0744. Any opinions, findings, and conclusions
or recommendations expressed in this article are the
authors’ and do not reflect views of the sponsoring
agencies.

REFERENCES

[1] R.E.K. Stirewalt and L.K. Dillon, “A Component-Based Approach
to Building Formal Analysis Tools,” Proc. 2001 Int’l Conf. Software
Eng. (ICSE ’01), pp. 167-176, 2001.

[2] D. Parnas, “Designing Software for Ease of Extension and
Contraction,” IEEE Trans. Software Eng., vol. 5, no. 2, pp. 128-
138, 1979.

[3] L.K. Dillon and R.E.K. Stirewalt, “Lightweight Analysis of
Operational Specifications Using Inference Graphs,” Proc. 2001
Int’l Conf. Software Eng. (ICSE ’01), pp. 57–67, 2001.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[5] D. Batory and S. O’Malley, “The Design and Implementation of
Hierarchical Software Systems with Reusable Components,” ACM
Trans. Software Eng. Methods, vol. 1, no. 4, pp. 355-398, Oct. 1992.

[6] B. Stroustrup, The Design and Evolution of C++. Addison Wesley,
1994.

[7] J.M. Boyle, R.D. Resler, and V.L. Winter, “Do You Trust Your
Compiler?,” Computer, vol. 32, no. 5, pp. 65-73, May 1999.

DILLON AND STIREWALT: INFERENCE GRAPHS: A COMPUTATIONAL STRUCTURE SUPPORTING GENERATION OF CUSTOMIZABLE AND... 149



[8] G.D. Plotkin, “A Structural Approach to Operational Semantics,”
Technical Report DAIMI FN-19, Computer Science Dept., Aarhus
Univ., 1981, http://www.dcs.ed.ac.uk/home/gdp/publications/
SOS.ps.gz.

[9] T. Bolognesi and E. Brinksma, “Introduction to the ISO Specifica-
tion Language LOTOS,” The Formal Description Technique LOTOS,
P.H.J. van Eijk, C.A. Vissers, and M. Diaz, eds., pp. 23-73, 1989.

[10] Z. Manna and A. Pneuli, The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag, 1991.

[11] I. Attali and D. Parigot, “Integrating Natural Semantics and
Attribute Grammars: The Minotaur System,” Technical Report
2339, INRIA Sophia Antipolis, 1994.

[12] L.K. Dillon and R.E.K. Stirewalt, “An Example Proof of Correctness
foraCollaboration-BasedDesign,”TechnicalReportMSU-CSE-01-6,
Computer Science and Eng. Dept., Michigan State Univ., East
Lansing, Mar. 2001, www.cse.msu.edu/~ldillon/Sel_pubs/ig.ps.

[13] A.W. Appel, Compiling with Continuations. Cambridge Univ. Press,
1992.

[14] K.J. Lieberherr, “Object-Oriented Software Evolution,” IEEE Trans.
Software Eng., vol. 19, no. 4, pp. 313-343, 1993.

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, , C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-Oriented Programming,” Eur-
opean Conf. Object-Oriented Programming (ECOOP ’97), M. Aksit
and S. Matsuoka, eds., pp. 220-242, 1997.

[16] K. Fisler and S. Krishnamurthi, “Modular Verification of
Collaboration-Based Software Designs,” Proc. ESEC/ACM SIG-
SOFT Conf. Foundations of Software Eng., V. Gruhn, ed., pp. 152-163,
Sept. 2001.

[17] X. Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hayden, K. Birman,
and R. Constable, “Bulding Reliable, High-Performance Commu-
nication Systems from Components,” Operating Systems Rev., vol.
34, no. 5, pp. 80-92, Dec. 1999.

[18] Y. Smaragdakis and D. Batory, “Implementing Layered Designs
with Mixin Layers,” Proc. 12th European Conf. Object-Oriented
Programming, 1998.

[19] P. Borras, D. Clement, T. Despeyrouz, J. Incerpi, G. Kahn, B. Lang,
and V. Pascual, “CENTAUR: The System,” Proc. ACM SIGSOFT/
SIGPLAN Software Eng. Symp. Practical Software Development
Environments (PSDE), P. Henderson, ed., pp. 14-24, 1988.

[20] G.A. Venkatesh and C.N. Fischer, “Spare: A Development
Environment for Program Analysis Algorithms,” IEEE Trans.
Software Eng., vol. 18, no. 4, pp. 304-318, Apr. 1992.

[21] R. Cleaveland and S. Sims, “Generic Tools for Verifying
Concurrent Systems,” Science of Computer Programming, vol. 42,
no. 1, pp. 39-47, 2002.

[22] H. Garavel, “OPEN/CAESAR: An Open Software Architecture for
Verification, Simulation, and Testing,” Proc. First Int’l Conf. Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS ’98), 1998.
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